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Abstract

Reciprocity, or the tendency of individuals to mirror behavior, is a key measure that de-
scribes information exchange in a social network. Users in social networks tend to engage
in different levels of reciprocal behavior. Differences in such behavior may indicate the
existence of communities that reciprocate links at varying rates. In this paper, we de-
velop methodology to model the diverse reciprocal behavior in growing social networks. In
particular, we present a preferential attachment model with heterogeneous reciprocity that
imitates the attraction users have for popular users, plus the heterogeneous nature by which
they reciprocate links. We compare Bayesian and frequentist model fitting techniques for
large networks, as well as computationally efficient variational alternatives. Cases where
the number of communities is known and unknown are both considered. We apply the
presented methods to the analysis of Facebook and Reddit networks where users have non-
uniform reciprocal behavior patterns. The fitted model captures the heavy-tailed nature
of the empirical degree distributions in the datasets and identifies multiple groups of users
that differ in their tendency to reply to and receive responses to wallposts and comments.

Keywords: Variational inference, community detection, preferential attachment, Bayesian
methods

1. Introduction

A frequent goal in the statistical inference of social networks is to develop models that
adequately capture and quantify common types of user interaction. One such feature is the
propensity of users to generate links with other users that already have attracted a large
number of links (Newman, 2001; Jeong et al., 2003). To model this “rich get richer” self-
organizing feature of nodes in a growing network, Barabási and Albert (1999) developed
the preferential attachment (PA) model. The classical preferential attachment model posits
that as users enter a growing network, they connect with other users with probability pro-
portional to their degree. This simple mechanism produces power-law degree distributions,
yet another feature of many real-world networks (Mislove et al., 2007). Since its inception,
many generalizations of the preferential attachment model have been developed to capture
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more features of growing networks (Bhamidi et al., 2015; Hajek and Sankagiri, 2019; Wang
and Zhang, 2022; Wang and Resnick, 2023a).

Another common feature of online social networks is a significant degree of reciprocity
(see Newman et al., 2002; Zlatić and Štefančić, 2011, for example). Reciprocity describes the
tendency of users to reply to links and is typically measured by the proportion of reciprocal
links in a network (Jiang et al., 2015). A recent study by Wang and Resnick (2022a)
found that the traditional directed preferential attachment model often produces a negligible
proportion of reciprocal links. Motivated by this finding, Wang and Resnick (2022b) and
Cirkovic et al. (2023a) developed a preferential attachment model with reciprocity that is
a more realistic choice for fitting to social networks. The model assumes that upon the
generation of a link between nodes through the typical preferential attachment scheme, the
users reciprocate the link with a probability ρ ∈ (0, 1) that is common to all users in the
network. The model was used to analyze a Facebook wallpost network.

Although an improvement, the model of Cirkovic et al. (2023a) fails to account for the
heterogeneity of reciprocal behavior in a social network. In reality, it is näıve to assume
all users in a large network engage in similar levels of reciprocity. Such an assumption
has caused Cirkovic et al. (2023a) to remove a subset of nodes that apparently engaged
in dissimilar reciprocal behavior from their analysis of the Facebook wallpost network.
Further, when a link is made between two nodes u and v, the decision of whether or not
to reciprocate the link depends on the direction of the original link, (u, v) or (v, u). For
example, a celebrity in a social network may be less likely to reply to a message sent by a
fan, whereas a fan is very likely to respond to a message sent by the celebrity. Recently,
Wang and Resnick (2023b) relax the assumption of having only one reciprocity parameter
ρ to the case where reciprocity probabilities are different for users belonging to different
communication classes. Theoretical results in Wang and Resnick (2022b) are obtained by
assuming no new edge is added between existing nodes.

In this paper, we consider a further generalization of the model presented in Wang and
Resnick (2023b) to allow for more realistic assumptions, i.e. heterogeneous, asymmetric
reciprocity as well as edges between existing nodes. We assume that each user in the network
is equipped with a communication class that governs its tendency to reciprocate edges. In
the network generation process, initial edges between nodes are generated via preferential
attachment, while the decision to reciprocate the edge is decided by a stochastic blockmodel-
like scheme. We describe three methods to fit such a model to observed networks, both when
the number of communication classes is known and unknown. Specifically, we propose
a fully Bayesian approach, along with variationally Bayesian and frequentist approaches.
The approaches and their performance on synthetic networks are then compared through
simulation studies. Finally, we reconsider the Facebook wall post network as in Cirkovic
et al. (2023a), as well as a newly analyzed Reddit network, and use the heterogeneous
reciprocal preferential attachment model to glean new insights into communication patterns
on Facebook and Reddit.

2. The PA Model with Heterogeneous Reciprocity

In this section, we formulate the preferential attachment model with heterogeneous reci-
procity. Based on the model definition, we present the likelihood of a graph observed from
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the proposed preferential attachment model. Said likelihood that will form the basis of all
of our proposed inferential procedures.

2.1 The model

Let G(n) be the graph after n steps and V (n) be the set of nodes in G(n). Attach to each
node v a communication type Wv, where {Wv, v ≥ 1} are iid random variables with

P(Wv = r) = πr, for

K∑
r=1

πr = 1, (1)

where K represents the number of communication classes. Define the vector π ≡ (πr)r. Let
W (n) := {Wv : v ∈ V (n)} denote the set of group types for all nodes in G(n). Throughout
we assume that the communication group of node v is generated upon creation and remains
unchanged throughout the graph evolution. Also, denote the set of directed edges in G(n)
by

E(n) := {(u, v) : u, v ∈ V (n)}.

Throughout this paper, we always assume G(n) = (V (n), E(n),W (n)), for n ≥ 0.

We initialize the model with seed graph G(0). G(0) consists of |V (0)| nodes, each
of which is also endowed with its own communication class randomly according to (1).
The edges E(0) will have no impact on inference other than setting the initial degree
distribution. For each new edge (u, v) with Wu = r,Wv = m, the reciprocity mechanism
adds its reciprocal counterpart (v, u) instantaneously with probability ρm,r ∈ [0, 1], for
m, r ∈ {1, 2, . . . ,K}. Here ρm,r measures the probability of adding a reciprocal edge from a
node in group m to a node in group r. Note that the matrix ρ := (ρm,r)m,r is not necessarily
a stochastic matrix, but can be an arbitrary matrix in MK×K([0, 1]), the set of all K ×K
matrices with entries belonging to [0, 1].

We now describe the evolution of the network G(n+1) from G(n). Let
(
Din
v (n), Dout

v (n)
)

be the in- and out-degrees of node v ∈ V (n), and we use the convention that Din
v (n) =

Dout
v (n) = 0 if v /∈ V (n).

1. With probability α ∈ [0, 1], add a new node |V (n)|+ 1 with a directed edge (|V (n)|+
1, v), where v ∈ V (n) is chosen with probability

Din
v (n) + δin∑

v∈V (n)(D
in
v (n) + δin)

=
Din
v (n) + δin

|E(n)|+ δin|V (n)|
, (2)

where δin > 0 is an offset parameter, and update the node set V (n + 1) = V (n) ∪
{|V (n)|+ 1} and W (n+ 1) = W (n) ∪ {W|V (n)|+1}. The new node |V (n)|+ 1 belongs
to group r with probability πr. If node v belongs to group m, then a reciprocal edge
(v, |V (n)| + 1) is added with probability ρm,r. Update the edge set as E(n + 1) =
E(n) ∪ {(|V (n)| + 1, v), (v, |V (n)| + 1)}. If the reciprocal edge is not created, set
E(n+ 1) = E(n) ∪ {(|V (n)|+ 1, v)}.
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2. With probability β ∈ [0, 1 − α], generate a directed edge (u, v) between two existing
nodes u, v ∈ V (n) with probability

Din
v (n) + δin∑

v∈V (n)(D
in
v (n) + δin)

Dout
v (n) + δout∑

v∈V (n)(D
out
v (n) + δout)

=
Din
v (n) + δin

|E(n)|+ δin|V (n)|
Dout
v (n) + δout

|E(n)|+ δout|V (n)|
,

(3)

where δout > 0 is also an offset parameter. If node u belongs to group r and node
v belongs to group m, then a reciprocal edge (v, u) is added with probability ρm,r.
Update the edge set as E(n + 1) = E(n) ∪ {(u, v), (v, u)}. If the reciprocal edge is
not created, set E(n + 1) = E(n) ∪ {(u, v)}. Finally, update V (n + 1) = V (n) and
W (n+ 1) = W (n).

3. With probability γ ≡ 1 − α − β, add a new node |V (n)| + 1 with a directed edge
(v, |V (n)|+ 1), where v ∈ V (n) is chosen with probability

Dout
v (n) + δout∑

v∈V (n)(D
out
v (n) + δout)

=
Dout
v (n) + δout

|E(n)|+ δout|V (n)|
, (4)

and update the node set V (n + 1) = V (n) ∪ {|V (n)| + 1}, W (n + 1) = W (n) ∪
{W|V (n)|+1}. The new node |V (n)|+1 belongs to group r with probability πr. If node
v belongs to group m, then a reciprocal edge (|V (n)|+ 1, v) is added with probability
ρr,m. Update the edge set as E(n+ 1) = E(n)∪ {(v, |V (n)|+ 1, v), (|V (n)|+ 1, v)}. If
the reciprocal edge is not created, set E(n+ 1) = E(n) ∪ {(v, |V (n)|+ 1)}.

Let {Jk} be iid Categorical random variables that indicate under which scenario the
transition from G(k) to G(k+ 1) has occurred. That is, P(Jk = 1) = α, P(Jk = 2) = β and
P(Jk = 3) = 1− α − β. At each step k, we denote the outcome of the reciprocal event via
Rk where Rk = 1 if a reciprocal edge is added and Rk = 0 otherwise.

2.2 Likelihood inference

Suppose we observe the evolution of the graph sequence {G(k)}nk=0 so that we have the
edges ek = E(k) \ E(k − 1) added at each step according to the description in Section 2.1.
Here,

ek =

{
{(sk, tk), (tk, sk)} if Rk = 1

{(sk, tk)} if Rk = 0,
(5)
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where sk, tk ∈ V (k− 1)∪ {|V (k− 1)|+ 1}. Let θ = (α, β, δin, δout). With these ingredients,
the likelihood associated with the graph sequence {G(k)}nk=0 is given by

p ((ek)
n
k=1,W (n) | θ,π,ρ)

= α
∑n

k=1 1{Jk=1}β
∑n

k=1 1{Jk=2}(1− α− β)
∑n

k=1 1{Jk=3}

×
n∏
k=1

(
Din
tk

(k − 1) + δin

|E(k − 1)|+ δin|V (k − 1)|

)1{Jk∈{1,2}} ( Dout
sk

(k − 1) + δout

|E(k − 1)|+ δout|V (k − 1)|

)1{Jk∈{2,3}}

×
K∏
r=1

π

∑n
k=1 1{Jk=1}1{Wsk=r}+

∑n
k=1 1{Jk=3}1{Wtk=r}

r

×
K∏
r=1

K∏
m=1

ρ

∑n
k=1 1{Wsk

=r}1{Wtk
=m}1{Rk=1}

m,r (1− ρm,r)
∑n

k=1 1{Wsk
=r}1{Wtk

=m}1{Rk=0}

≡ p((ek)nk=1 | θ)× p((ek)nk=1,W (n) | π,ρ).

The function p(· | θ) collects the likelihood terms dependent on θ and likewise p(· | π,ρ)
collects the terms dependent on π and ρ. Such factorization implies that the estimation
of the parameters θ and π,ρ can be conducted independently. The frequentist estimation
of θ in homogeneous reciprocal PA models has already been considered in Cirkovic et al.
(2023a). These estimators are unchanged in the heterogeneous case. Naturally, the max-
imum likelihood estimators (MLE) for α and β are given by α̂ = n−1

∑n
k=0 1{Jk=1} and

β̂ = n−1
∑n

k=0 1{Jk=2}. The MLE for δin satisfies

n∑
k=1

1{Jk∈{1,2}}
1

Din
tk

(k − 1) + δ̂in
−

n∑
k=1

1{Jk∈{1,2}}
|V (k − 1)|

|E(k − 1)|+ δ̂inN(k − 1)
= 0, (6)

where (6) is obtained by setting ∂
∂δin

log p((ek)
n
k=1 | θ) = 0. The MLE for δout is obtained

similarly. The estimators α̂ and β̂ are strongly consistent for α and β, while consistency for
δ̂in and δ̂out has not yet been verified since the reciprocal component of the model interferes
with traditional techniques to analyze consistency in non-reciprocal preferential attachment
models as in Wan et al. (2017). Estimation of ρ and π is considerably more involved, and
will be the main focus of this paper.

The reciprocal component of the preferential attachment model with heterogeneous
reciprocity is reminiscent of a stochastic block model. Nodes first attach via the preferential
attachment rules in (2), (3) and (4), then a stochastic-block-model type mechanism dictates
the reciprocal behavior. A large portion of the literature on stochastic block modeling
is concerned with community detection Bickel and Chen (2009); Holland et al. (1983);
Karrer and Newman (2011); Zhao et al. (2011). Here we are primarily concerned with the
estimation of ρ and π, and consider the recovery of W (n) as a secondary goal. The optimal
recovery of ρ and π hinges on the correct specification of K, the number of reciprocal
classes. We will thus examine cases when K is known a priori, as well as cases where it
must be inferred from the data.

We also note that a minor nuisance of modeling reciprocal PA models is the observation
of the random variable Rk. Upon serial observation of the edges {(u, v), (v, u)}, it is not
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possible to identify whether the second edge was generated under Rk = 1 or the events
Rk = 0 and Jk+1 = 2. Assuming that (u, v) was added according to one of the attachment
rules (2)-(4), (v, u) is either added by reciprocation, which occurs with probability ρWvWu ,
or without reciprocation and with Jk+1 = 2, which occurs with probability

(1− ρWvWu)β

(
Din
u (k − 1) + 1{u=v} + δin

|E(k − 1)|+ 1 + δin(|V (k − 1)|+ 1{Jk∈{1,3}})

)
(

Dout
v (k − 1) + 1{u=v} + δout

|E(k − 1)|+ 1 + δout(|V (k − 1)|+ 1{Jk∈{1,3}})

)
.

The latter probability is generally of smaller order due to the attachment rule (3), and
hence it is reasonable to assume that all reciprocated edges are generated under Rk = 1.
As demonstrated by our simulation studies in Section 5, this assumption has seemingly no
effect on model estimation. In real-world networks time will often pass between message
replies. For such networks, we will thus employ window estimators from Cirkovic et al.
(2023a). We defer further discussion of window estimators to Section 6.

We will continue to consider the estimation of ρ and π based on p((ek)
n
k=1,W (n) | π,ρ).

Since W (n) is unobservable, a natural probabilistic approach would marginalize over the
unobservable communication types, and form a complete-data likelihood p((ek)

n
k=1 | π,ρ).

This, however, involves a sum over all latent configurations of W (n) which is analytically
intractable, as well as computationally infeasible for large networks. Such difficulties en-
courage attempts to learn W (n) from the conditional distribution of W (n) given (ek)

n
k=1 (á

la an EM Algorithm Dempster et al. (1977)) and jointly estimate W (n),π and ρ. Often,
these attempts are computationally infeasible due to the lack of factorization in the condi-
tional distribution. In the following section, we will consider both Bayesian and frequentist
estimation methods for π and ρ where K is known. We will first present an “ideal” fully
Bayesian approach, and then move on to variationally Bayesian and frequentist approxima-
tions to that ideal. Afterwards, we will discuss how to perform model selection when K is
unknown for each of these methods.

3. Inference for a known number of communication types

In this section, we propose three ways of fitting the preferential attachment model with
heterogeneous reciprocity to observed networks when the number of communication types
is known. The first is a fully Bayesian procedure. The latter two are computationally
efficient variational alternatives, one Bayesian and one frequentist.

3.1 Bayesian inference

For Bayesian inference of the heterogeneous reciprocal PA model we follow Nowicki and
Snijders (2001) and employ independent and conditionally conjugate priors

ρm,r
i.i.d.∼ Beta(a, b), m, r = 1, . . . ,K,

π ∼ Dirichlet(η, . . . , η).
(7)

The prior specification (7) leads to a simple Gibbs sampler that draws approximate samples
from the posterior p (ρ,π,W (n) | (ek)nk=1). We present the Gibbs sampler as Algorithm
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1. Here, ρ and π are initialized from prior draws and W (n) is initialized by drawing
from p (Wv | π) for v = 1, . . . |V (n)|. Although the sampler is standard, many samples are
required to sufficiently explore the posterior distribution. For large networks, this can be
computationally onerous, and hence we appeal to variational alternatives.

Algorithm 1 Gibbs sampling for heterogeneous reciprocal PA with known K

Input: Graph G(n), # communication types K, prior parameters a, b, η, # MCMC iter-
ations M

Output: Approximate samples from the posterior p (ρ,π,W (n) | (ek)nk=1)
Initialize: Draw π and ρ from (7), draw Wv ∼ Multinomial(π) for v ∈ V (n)
for i = 1 to M do
1. Sample W (n) from its conditional posterior

for all v ∈ V (n) do
Sample Wv according to

P (Wv = ` | π,ρ, (Wu)u6=v, (ek)
n
k=1)

∝ πr
K∏
m=1

ρ

∑
k:sk=v 1{Wtk

=m}1{Rk=1}

m,` (1− ρm,`)
∑

k:sk=v 1{Wtk
=m}1{Rk=0}

×
K∏
r=1

ρ

∑
k:tk=v 1{Wsk

=r}1{Rk=1}

`,r (1− ρ`,r)
∑

k:tk=v 1{Wsk
=r}1{Rk=0}

for ` = 1, . . . ,K
end for

2. Sample ρ from its conditional posterior
for m = 1 to K do

for r = 1 to K do
Sample ρm,r from

ρm,r | π,W (n), (ek)
n
k=1 ∼ Beta

(
a+

n∑
k=1

1{Wsk=r}1{Wtk=m}1{Rk=1},

b+
n∑
k=1

1{Wsk=r}1{Wtk=m}1{Rk=0}

)

end for
end for

3. Sample π from its conditional posterior

π | ρ,W (n), (ek)
n
k=1 ∼ Dirichlet

η +
∑

v∈V (n)

1{Wv=1}, . . . , η +
∑

v∈V (n)

1{Wv=K}


end for

7



Cirkovc and Wang

3.2 Variational inference

In this section, we present variational alternatives for approximating posteriors associated
with the heterogeneous reciprocal PA model. Variational inference aims to approximate
the conditional distribution of latent variables z given data x via a class of densities Q
typically chosen to circumvent computational inconveniences. If Bayesian inference is being
performed, the latent variables z can also encompass the model parameters (π and ρ in our
setting). The variational inference procedure aims to find the density q? ∈ Q that minimizes
the Kullback-Leibler (KL) divergence from p(· | x), i.e.

q? = arg min
q∈Q

KL (q(·) || p(· | x)) . (8)

We will restrict Q to the mean-field family, that is, the family of densities where components
z are mutually independent. Naturally, such restriction will prevent q? from capturing the
dependence structure between the latent variables. Recently, however, some more struc-
tured, expressive families have been proposed that may improve the approximation; see for
instance Yin et al. (2020). Conveniently, using the definition of the conditional density, the
objective (8) can be expressed as

KL (q(·) || p(· | x)) = Eq[log q(z)]− Eq[log p(z,x)] + log p(x) ≡ −ELBO(q) + log p(x), (9)

so that minimizing the KL divergence from p(· | x) to q(·) is equivalent to maximizing
the evidence lower bound (ELBO(q)) since log p(x) does not depend on q. For more on
variational inference, see Blei et al. (2017).

3.2.1 Bayesian Variational Inference

Now we consider solving the variational problem (8) for the probabilistic model presented in
Section 3.1. Although we have presented a sampler in Algorithm 1 that draws approximate
samples from the posterior, we aim for an estimate that sacrifices modeling the dependence
in the posterior distribution in favor of computation time. Variational inference for stochas-
tic blockmodels in the Bayesian setting was studied in Latouche et al. (2012). Following
their strategy, we posit a mean-field variational family:

q(π,ρ,W (n)) = q(π)q(ρ)q(W (n)) = q(π)

K∏
m=1

K∏
r=1

q(ρm,r)
∏

v∈V (n)

qv(Wv).

We further assume that the variational densities have the following forms:

q(π) ∝
K∏
r=1

πdrr , d1, . . . , dK ≥ 0,

q(ρm,r) ∝ ρ
ωm,r
m,r (1− ρm,r)ξm,r , ωm,r, ξm,r ≥ 0, m, r = 1, . . . ,K,

qv(Wv) =

K∏
r=1

τ
1{Wv=r}
v,r , τv,r ≥ 0, r = 1, . . . ,K, v = 1, . . . |V (n)|,
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and additionally
∑K

r=1 τv,r = 1 for all v ∈ V (n). In other words, the posterior of π is ap-
proximated by a Dirichlet(d1, . . . , dK) distribution, and the component-wise posteriors of ρ
and W (n) are approximated by Beta(ωm,r, ξm,r) and Multinomial(1, (τv,r)

K
r=1) distributions,

respectively. These choices are made to obtain a tractable algorithm; independence among
parameters allows for a simpler calculation of (8) and the distributional families mimic
the functional forms of the prior and likelihood which helps to facilitate computation. In
Algorithm 2 we present a coordinate ascent variational inference (CAVI) algorithm for op-
timizing the ELBO. Here, ψ(·) is the digamma function. Note that in step 3 of algorithm,
we write

∑
k:sk=v

≡
∑

k:sk=v,sk 6=tk for brevity of notation. The inclusion of self-loops makes
the optimization of the ELBO much more difficult, hence their exclusion. Here, the class
probabilities, τv,r, are initialized uniformly at random. We omit the calculations for the
derivation of this algorithm, as they are very similar to Latouche et al. (2012).

To monitor the convergence of Algorithm 2, we recommend computing the ELBO after
each iteration of the CAVI algorithm and terminating the algorithm once the increase in the
ELBO is less than some predetermined threshold ε. Specifically, if the ELBO is computed
after step 2, it has the simplified form:

ELBO(q) = log

(
Γ(Kη)

∏K
r=1 Γ(dr)

Γ(
∑K

r=1 dr)Γ(η)K

)
+

K∑
r=1

K∑
m=1

log

(
Γ(a+ b)Γ(ωm,r)Γ(ξm,r)

Γ(ωm,r + ξm,r)Γ(a)Γ(b)

)

−
∑

v∈V (n)

K∑
r=1

τv,r log τv,r.

(10)

Here, recall that a, b and η are prior parameters defined in (7).

3.2.2 Variational Expectation Maximization

In this section, we consider frequentist estimation of the PA model with heterogeneous
reciprocity through a variational expectation maximization algorithm (VEM). VEM for
stochastic blockmodel data was first considered in Daudin et al. (2008) which further in-
spired many interesting generalizations that could enhance the reciprocal PA model (see
Matias and Miele, 2017, for example). The VEM algorithm augments the traditional EM
algorithm by approximating the E-step for models in which the conditional distribution of
the latent variables given the observed data is computationally intractable. The VEM esti-
mates thus serve as a computationally efficient approximation to the maximum likelihood
estimates of π and ρ. Although a frequentist procedure, the VEM algorithm may enhance
Bayesian inference of stochastic blockstructure data. For example, since the dimension of
the posterior p (π,ρ | (ek)nk=1) does not grow with the size of the data, one might expect a
Bernstein-von-Mises phenomena to occur. The VEM estimates may thus approximate the
posterior mean or even be leveraged to enhance posterior sampling as in Donnet and Robin
(2021).

As in Section 3.2.1, we approximate the distribution of the communication types given
the observed network, p (W (n) | π,ρ, (ek)nk=1), via the mean-field approximation

q(W (n)) =
∏

v∈V (n)

qv(Wv).
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Algorithm 2 CAVI for heterogeneous reciprocal PA with known K

Input: Graph G(n), # communication types K, prior parameters a, b, η, tolerance ε > 0
Output: Variational approximation to the posterior q?

Initialize: Draw τv,r, r = 1, . . . ,K uniformly at random from the K-simplex for every
v ∈ V (n)
while the increase in ELBO(q) is greater than ε do
1. Update q(π)

for r = 1 to K do

dr = η +
∑

v∈V (n)

τu,r

end for
2. Update q(ρ)

for m = 1 to K do
for r = 1 to K do

ωm,r = a+

n∑
k=1

τsk,rτtk,m1{Rk=1}

ξm,r = b+

n∑
k=1

τsk,rτtk,m1{Rk=0}

end for
end for

3. Update ELBO(q) according to (10)
4. Update q(W (n))

for all v ∈ V (n) do
for ` = 1 to K do

τv,` ∝ exp

{
ψ (d`) − ψ

(
K∑
r=1

dr

)}

×
K∏
m=1

exp

{
ψ (ωm,`)

∑
k:sk=v

τtk,m1{Rk=1} + ψ (ξm,`)
∑
k:sk=v

τtk,m1{Rk=0}

− ψ(ωm,` + ξm,`)
∑
k:sk=v

τtk,m

}

×
K∏
r=1

exp

{
ψ (ω`,r)

∑
k:tk=v

τsk,r1{Rk=1} + ψ (ξ`,r)
∑
k:tk=v

τsk,r1{Rk=0}

− ψ(ω`,r + ξ`,r)
∑
k:tk=v

τsk,r

}

end for
end for

end while

10
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Via the mean-field family assumption, the ELBO is given by

ELBO(q,π,ρ)

=Eq [log p (W (n), (ek)
n
k=1 | π,ρ)]− Eq [log q(W (n))]

=
n∑
k=1

K∑
r=1

(
1{Jk=1}τsk,r + 1{Jk=3}τtk,r

)
log πr −

∑
v∈V (n)

K∑
r=1

τv,r log τv,r

+

n∑
k=1

K∑
r=1

K∑
m=1

τsk,rτtk,m
(
1{Rk=1} log ρm,r + 1{Rk=0} log(1− ρm,r)

)
.

(11)

Note that from (9), maximizing (11) concerning q (the E-step) is equivalent to minimizing
the KL divergence from p (· | π,ρ, (ek)nk=1) to q(·) and maximizing (11) for π and ρ is
equivalent to the M-step in the usual EM algorithm. Thus, the E-step is equivalent to
performing variational inference for p (· | π,ρ, (ek)nk=1) where π and ρ are evaluated at
their current estimates π̂VEM and ρ̂VEM.

The VEM algorithm for the heterogeneous reciprocal PA model is given in Algorithm 3.
As in Algorithm 2, we write

∑
k:sk=v

≡
∑

k:sk=v,sk 6=tk for ease of notation. We describe the
initialization of the algorithm at the end of Appendix A in Algorithm 5. We further provide
some derivations of the VEM algorithm in Appendix B. Similar types of computations can
be employed to derive Algorithm 2. As in Algorithm 2, we recommend cycling through
the updates of τ̂v,` in the E-step until the ELBO no longer increases beyond a pre-specified
threshold ε > 0.

4. Model selection for an unknown number of communication types

In this section we extend the methods discussed in Section 3 to the case where the number
of communication types is not known a priori. This can be viewed as a model selection
problem, where the Bayesian solution places a prior on K while the variationally Bayesian
and EM algorithms aim to imitate marginal likelihood-based procedures.

4.1 A prior on K

This section extends the Bayesian solution in Section 3.1 to making inference on the un-
known number of communication classes K. In a fully Bayesian framework, K is assigned
a prior and inference is made on the posterior of K given the observed data. This, how-
ever, often requires the use of complicated reversible jump MCMC (RJMCMC) algorithms
to make valid posterior inference on K. Generically, mixture models with a prior on the
number of mixture components are known as mixture of finite mixture (MFM) models. For
Bayesian MFMs, Miller and Harrison (2018) derived the Dirichlet process-like properties
of MFMs and proposed a collapsed Gibbs sampler that circumvented the need for RJM-
CMC. Geng et al. (2019) used a similar collapsed Gibbs sampler for learning the number
of components in a stochastic block model. Unfortunately, such collapsed Gibbs samplers
require analytically marginalizing over K, restricting our ability to make inference on π
without some ad-hoc post-processing of the posterior samples. Recently, a telescoping sam-
pler has been developed by Frühwirth-Schnatter et al. (2021) for MFMs that obviates the
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Algorithm 3 VEM for heterogeneous reciprocal PA with known K

Input: Graph G(n), # communication types K, tolerances ε, κ > 0
Output: Variational EM estimates π̂VEM and ρ̂VEM

Initialize: Draw τ̂v,r, r = 1, . . . ,K uniformly at random from the K-simplex for every
v ∈ V (n), run Algorithm 5 to initialize π̂VEM and ρ̂VEM

while at least one of the elements of π̂VEM and ρ̂VEM change by more than κ in absolute
value do
1. E-step: Update q̂ via

while the increase in ELBO(q) is greater than ε do
for all v ∈ V (n) do

for ` = 1 to K do

τ̂v,` ∝ π̂`
K∏
m=1

ρ̂

∑
k:sk=v τ̂tk,m1{Rk=1}

m,` (1− ρ̂m,`)
∑

k:sk=v τ̂tk,m1{Rk=0}

×
K∏
r=1

ρ̂

∑
k:tk=v τ̂sk,r1{Rk=1}

`,r (1− ρ̂`,r)
∑

k:tk=v τ̂tk,r1{Rk=0}

end for
end for
Update ELBO(q) according to (11)

end while
2. M-step: Update π̂VEM and ρ̂VEM via

for m = 1 to K do

π̂m =
∑

v∈V (n)

τ̂v,m

for r = 1 to K do

ρ̂m,r =

∑n
k=1 τ̂sk,r τ̂tk,m1{Rk=1}∑n

k=1 τ̂sk,r τ̂tk,m

end for
end for

end while

12
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need to marginalize over K. Rather, K is explicitly sampled in the scheme by distinguish-
ing between K, the number of mixture components, and K+, the number of filled mixture
components.

For the heterogeneous reciprocal PA model, we adopt the prior specification in (7) and
additionally let K − 1 follow a beta-negative-binomial (BNB) distribution with parameters
c1, c2 and c3 as recommended by Frühwirth-Schnatter et al. (2021). The BNB distribution is
a hierarchical generalization of the Poisson, geometric, and negative-binomial distribution.
If K − 1 ∼ BNB(c1, c2, c3) then the probability mass function on K is given by

p(K) =
Γ(c1 +K − 1)B(c1 + c2,K − 1 + c3)

Γ(c1)Γ(K)B(c2, c3)
, K = 1, 2, . . . ,

where B denotes the beta function. As discussed in Frühwirth-Schnatter et al. (2021),
the BNB distribution allows the user to specify a heavier tail on the number of mixture
components which is essential for the telescoping sampler to mix well. Previous analyses in
Geng et al. (2019) and Miller and Harrison (2018) specify that K − 1 ∼ Poisson(1), which
is a highly informative choice with a light tail.

We present the telescoping sampler for heterogeneous reciprocal PA models in Algorithm
4. For ease of notation, we do not distinguish between W (n), the communication types, and
the random partition of the |V (n)| nodes into K+ clusters induced by W (n). However, the
alternating between sampling on the parameter space of the mixture distribution and the
set partition space is a key aspect that allows K to be directly sampled from the conditional
posterior of K given the partition induced by W (n) (Step 3 in Algorithm 4). We refer to
Frühwirth-Schnatter et al. (2021) for more details on the telescoping sampler. Note that
within the sampler, K only decreases if one of the K+ filled components loses all of its
membership in Step 1. Thus, for the sampler to mix well, K must occasionally exceed K+,
emphasizing the need for a heavier-tailed prior on K.

Frühwirth-Schnatter et al. (2021) also present a dynamic mixture of finite mixture model
where the prior on π is taken to be Dirichlet(ϕ/K,ϕ/K, . . . , ϕ/K) for some ϕ > 0. This
specification would induce a sparse mixture model where a large number of mixture compo-
nents K would be fit, but a majority of them would be unfilled (Frühwirth-Schnatter and
Malsiner-Walli, 2019; Malsiner-Walli et al., 2016). In this sense, the posterior distributions
on K and K+ would differ greatly. Though this is undesirable for learning the parameters
of a mixture model, it may be useful for analyses more focused on partitioning nodes into
a small number of classes with similar reciprocal behavior.

4.2 Imitations of the marginal likelihood

In this section, we review criteria for choosing the number of communication types K for the
variational methods proposed in Section 3.2. A typical strategy for Bayesian model selection
is choosing the model that maximizes the marginal likelihood, or the probability distribution
that is obtained by integrating the likelihood over the prior distribution of the parameters.
For many of the same reasons presented in Section 2.2, the marginal likelihood is not
available for stochastic blockmodel data. Instead, for the Bayesian Variational Inference
method presented in Section 3.2.1, Latouche et al. (2012) recommend employing the ELBO
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Algorithm 4 Telescoping sampler for heterogeneous reciprocal PA with known K

Input: Graph G(n), parameters a, b, η, c1, c2, c3, K initial/max values Kinit, Kmax, #
MCMC iterations M

Output: Approximate samples from the posterior p (ρ,π,W (n),K | (ek)nk=1)
Initialize: Set K = Kinit, draw π and ρ from (7), draw Wv ∼ Multinomial(π) for
v ∈ V (n)
for i = 1 to M do
1. Sample W (n) from its conditional posterior

for all v ∈ V (n) do
Sample Wv according to

P (Wv = ` | π,ρ, (Wu)u6=v, (ek)
n
k=1)

∝ π`
K∏
m=1

ρ

∑
k:sk=v 1{Wtk

=m}1{Rk=1}

m,` (1− ρm,`)
∑

k:sk=v 1{Wtk
=m}1{Rk=0}

×
K∏
r=1

ρ

∑
k:tk=v 1{Wsk

=r}1{Rk=1}

`,r (1− ρ`,r)
∑

k:tk=v 1{Wsk
=r}1{Rk=0} ,

for ` = 1, . . . ,K
end for

and determine the number of filled components K+. Relabel the communication classes
such that the first K+ components are filled and the rest are empty.
2. Sample the filled components of ρ from its conditional posterior

for m = 1 to K+ do
for r = 1 to K+ do

ρm,r | π,W (n), (ek)
n
k=1 ∼ Beta

(
a+

n∑
k=1

1{Wsk=r}1{Wtk=m}1{Rk=1},

b+
n∑
k=1

1{Wsk=r}1{Wtk=m}1{Rk=0}

)
,

end for
end for

3. Sample K from

p(K|W (n)) ∝ p(K)
K!

(K −K+)!

Γ(ηK)

Γ(|V (n)|+ ηK)Γ(η)K+

K+∏
r=1

Γ

 ∑
v∈V (n)

1{Wv=r} + η

 ,

where K = K+,K+ + 1, . . . ,Kmax. If K > K+, generate K−K+ empty components and
fill the corresponding ρ components with draws from the prior Beta(a, b).
4. Sample π from its conditional posterior

π | ρ,W (n), (ek)
n
k=1 ∼ Dirichlet

η +
∑

v∈V (n)

1{Wv=1}, . . . , η +
∑

v∈V (n)

1{Wv=K}


end for 14
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as the model selection criterion. From (9), it can be seen that

ELBO(q) = −KL (q(·) || p(·|(ek)nk=1))) + log p ((ek)
n
k=1) ≤ log p ((ek)

n
k=1) .

That is, the ELBO lower bounds the marginal likelihood, and if the variational approxima-
tion to the posterior is good, the ELBO should approximate it. Though, there is no evidence
that the variational approximation results in a sufficiently small KL divergence such that
the ELBO accurately estimates the marginal likleihood. Regardless, this criterion is often
used in practice (Blei et al., 2017).

For the VEM algorithm, Daudin et al. (2008) recommend employing the Integrated
Classification Likelihood (ICL). Although the VEM algorithm is a frequentist procedure,
the ICL criterion is derived by assuming a Jeffrey’s prior on π (η = 1/2) and further employs
a BIC approximation to the distribution of (ek)

n
k=1 given W (n). The ICL for reciprocal PA

models is given by

ICL(K) = log p((ek)
n
k=1, Ŵ (n) | π̂VEM, ρ̂VEM)− K2

2
log n− K − 1

2
log |V (n)|,

where Ŵ (n) is the modal approximation of W (n) given by Ŵv = arg max`=1,...,K τ̂v,`.

5. Simulation Studies

In this section, we evaluate the performance of the estimation procedures presented in
Sections 3 and 4 on synthetic datasets. We evaluate the performance of estimation methods
for π and ρ when K is known, as well as the accuracy of the model selection criteria
presented in Section 4 when K is unknown. When K is known, we employ the Monte
Carlo averages of the approximate posterior samples, the posterior means of the variational
densities and the variational EM estimates as point estimators of π and ρ for the fully
Bayesian (B), variational Bayes (VB) and variational EM (VEM) methods, respectively.
Since the B and VB methods produce approximate posteriors, we also provide marginal
coverage rates of credible intervals constructed using the element-wise 2.5% and 97.5%
quantiles of the respective posteriors for π and ρ. In the case of known K, we further
provide the average Rand index for estimating (Wv)v∈V (n) for each method. When K is
unknown, we record the frequencies of the estimated K under each model selection criteria.
We employ the posterior mode as the estimated K for the fully Bayesian method.

In each simulation, we assume non-informative priors Dirichlet(1/2, . . . , 1/2) on π and
Beta(1/2, 1/2) on ρ for the VB and B methods. Although a prior is not explicitly assumed
for the VEM method, the ICL model selection criterion implicitly assumes the same prior
on π, hence these choices are consistent. For the VEM algorithm, we terminate the E-step
once either the ELBO has increased by less than ε = 0.01 or the total number of iterations
exceeds 500, and terminate the entire algorithm once the element-wise differences in the
parameters fall below κ = 0.01. We also terminate the VB algorithm via the same conditions
as in the E-step of the VEM algorithm. We run the fully Bayesian method for M = 5,000
MCMC samples, and discard the first half as burn-in. Further, when K is unknown, we
assume a BNB(1, 4, 3) prior on K as recommended by Frühwirth-Schnatter et al. (2021)
and set Kmax = 20. For the variational methods, we search over K = 1, 2, 3, 4.
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Method π1 = 0.8 ρ11 = 0.5 ρ12 = 0.9 ρ21 = 0.05 ρ22 = 0.2

Mean(SE)
B 0.803(0.003) 0.500(0.002) 0.900(0.004) 0.050(0.002) 0.198(0.010)

VB 0.805(0.003) 0.500(0.002) 0.896(0.004) 0.050(0.002) 0.198(0.010)
VEM 0.788(0.004) 0.501(0.002) 0.889(0.005) 0.052(0.002) 0.196(0.010)

% Coverage
B 98 93 94 92 94

VB 50 90 70 87 92

Table 1: Average point estimates and standard errors for 100 networks generated from a PA
model with θ = (0.15, 0.8, 1, 1). Coverage rates for equal-tailed credible intervals
produced by the B and VB methods are also provided.

5.1 Simulations on Pragmatic Networks

In this section, we evaluate the presented model estimation and selection criteria on net-
works that are generated to reflect those found in real-world applications. In particular,
we generate a PA network with heterogeneous reciprocity such that θ = (α, β, δin, δout) =
(0.15, 0.8, 1, 1),

π =

[
0.8
0.2

]
and ρ =

[
0.5 0.9
0.05 0.2

]
.

This network generating process contains two groups, the first of which can be thought of
as typical users and the other can be thought of as celebrities. Here typical users will often
reciprocate the messages from celebrities, but a celebrity is far less likely to respond to a
typical user. As one might expect, there are far more typical users than celebrities on this
network.

Table 1 displays the means and standard errors of the element-wise point estimators
across the simulations, as well as the coverage of credible intervals produced from the B
and VB methods. Here, the estimation procedures have virtually identical performance
in terms of point estimation. Further, the coverage rates for the fully Bayesian method
hover around the expected 95%, while the coverage rates for the variational Bayes method
vary across the parameters. The VB method seems to have difficulty capturing the larger
reciprocity ρ12 = 0.9, as well as π1 = 0.8. The methods also perform similarly in terms
of classification, as the average Rand index for the communication types is given by 0.767,
0.767, and 0.766 for the B, VB, and VEM methods respectively.

Table 2 displays the performance of the model selection criteria on the same preferential
attachment model but for unknown K. For the fully Bayesian method, we initialize at
Kinit = 4 to exhibit the insensitivity of the telescoping sampler to initialization. Note
that the ELBO and ICL select the correct class for every simulated data set, while the
fully Bayesian method has a slight tendency to over-select the number of classes. However,
analysis of such networks results in variational methods that perform comparably to the
fully Bayesian method, at less computational cost.

We continue our simulations by evaluating the performance of the estimation procedures
on 100 synthetic networks generating from a PA network with heterogeneous reciprocity
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Method K̂

1 2 3 4
B 0 68 31 1

VB 0 100 0 0
VEM 0 100 0 0

Table 2: Estimated K from 100 networks generated from a PA model with θ =
(0.15, 0.8, 1, 1) and π and ρ as in Table 1.

such that θ = (0.15, 0.8, 1, 1) but now

π =

[
0.8
0.2

]
and ρ =

[
0.5 0
0.05 0.2

]
.

Note that the only difference between this simulation setup and the previous one is that ρ12
has decreased from 0.9 to 0. The inclusion of 0 into the ρ matrix is motivated by the data
example in Section 6.1, where we find a group of users that do not receive reciprocal edges.
This set-up is analogous to a diagonally-dominant stochastic block model where users are
likely to communicate within groups but not across groups.

Table 3 displays the point estimates for all three methods, along with the coverage
probabilities for the B and VB methods. With the decrease in ρ12, the variational methods
struggle to recover ρ22. This is sensible since class 2 communicating with class 2 should be
the least common communication type according to π and, unlike the case when ρ12 = 0.9,
the difference between the communication classes is not obvious. Otherwise, the estimation
accuracy of the other parameters is relatively consistent across all the methods. Although
coverage rates are similar to Table 1, we also observe a reduction in the coverage of ρ22.
Equal-tailed credible intervals are a poor choice for capturing ρ12 and if one had prior
knowledge of the behavior of ρ, the highest posterior density interval would be a sensible
choice. The average Rand index for the B, VB, and VEM methods are given by 0.762,
0.762, and 0.760, respectively, again indicating that the methods classify similarly when the
number of edges far exceeds the number of nodes. Additionally, we verify the computational
efficiency of the variational methods by tracking the average completion time for each
algorithm across the 100 network realizations. Indeed, the average time required to draw
5,000 samples from Algorithm 1 is 229.80 seconds with a standard error of 3.61 seconds,
while Algorithms 2 and 3 require on average 5.62 and 3.55 seconds to run with standard
errors of 0.440 and 0.641 seconds, respectively. Naturally, completion times will vary with
the choices of tolerances and other algorithmic parameters; such choices were not necessarily
equated across the methods and the reported times serve as a rough comparison.

Table 4 displays the performance of the model selection criteria presented in Section
4 for the preferential attachment model as in 3. Again, K is initialized at Kinit = 4 for
the fully Bayesian method. Note that, again, the variational methods select the correct
number of classes in each simulation, while the telescoping sampler has a slight tendency to
overfit. The average completion time for Algorithm 4 was 245.12 seconds with a standard
deviation of 16.66 seconds, while the cycles over K through Algorithms 2 and Algorithms 3
terminated at 33.76 and 19.90 seconds with standard deviations of 7.08 and 11.36 seconds,
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Method π1 = 0.8 ρ11 = 0.5 ρ12 = 0.00 ρ21 = 0.05 ρ22 = 0.2

Mean(SE)
B 0.802(0.003) 0.501(0.002) 0.001(0.001) 0.051(0.003) 0.199(0.017)

VB 0.805(0.003) 0.501(0.002) 0.001(0.001) 0.052(0.003) 0.172(0.016)
VEM 0.791(0.011) 0.503(0.003) 0.006(0.003) 0.057(0.005) 0.152(0.017)

% Coverage
B 96 89 0 94 97

VB 55 88 0 85 45

Table 3: Average point estimates and standard errors for 100 networks generated from a PA
model with θ = (0.15, 0.8, 1, 1). Coverage rates for equal-tailed credible intervals
produced by the B and VB methods are also provided.

Method K̂

1 2 3
B 0 77 23

VB 0 100 0
VEM 1 99 0

Table 4: Estimated K from 100 networks generated from a PA model with θ =
(0.15, 0.8, 1, 1) and π and ρ as in Table 4.

respectively. Despite Algorithm 4 evaluating multiple models over a single Gibbs sampler,
the variational methods are still significantly faster than the fully Bayesian method.

5.2 Comparisons to the SBM

In this section, we evaluate the same estimation and model selection procedures on synthetic
networks with a comparably low number of edges relative to the number of nodes. Such
networks serve to highlight the additional difficulties faced by estimating reciprocal PA
models compared to stochastic block models. We simulate 100 preferential attachment
networks of size n = 30,000 from a PA model with θ = (α, β, δin, δout) = (0.75, 0, 0.8, 0.8)
and the reciprocal component governed by

π =

[
0.6
0.4

]
and ρ =

[
0.1 0.4
0.5 0.8

]
.

Wang and Resnick (2023b) have shown that, under suitable conditions, such heterogeneous
reciprocal PA models with β = 0 exhibit networks with out/in-degrees that exhibit a com-
plex extremal dependence structure (see Appendix A for more details). Additionally, since
β = 0, such models allow for the complete observation of the reciprocal edge events as there
are no Jk = 2 edges that could be mistaken as reciprocal edges.

Here we assume K is known. Table 5 displays the average value of the point estimates
of π and ρ for each method, as well as their associated standard errors. Clearly, the fully
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Bayesian method outperforms both the VB and VEM methods by producing accurate point
estimates with lower standard errors. Additionally, the coverage rates for the fully Bayesian
method are near the expected 95% level, while the VB method produces posteriors that do
not reliably capture the true π and ρ. The fully Bayesian method also dominates in terms
of classification, as the average Rand index for the communication types is given by 0.590,
0.583, and 0.552 for the B, VB, and VEM methods, respectively.

The superiority of the fully Bayesian method compared to the variational methods is
unsurprising in this setting. Although variational methods exhibit strong point estimation
for stochastic block models, estimation for PA models with heterogeneous reciprocity is an
inherently harder problem. Namely, in a directed stochastic block model, each node has the
opportunity to connect to every other node in the network. This results in m(m− 1) many
potential edges form many nodes in the network. For the PA model, one expects the number
of potential edges to scale linearly with the number of nodes. Thus, there is inherently less
observed information that can be leveraged to learn the latent communication classes. Such
lack of information induces a multimodal ELBO, and therefore the variational methods
struggle to find a global optimum. The fully Bayesian method is better able to incorporate
this uncertainty since it is sampling from, not optimizing, a multimodal posterior.

Under suitable conditions on the data-generating parameters, which are satisfied by the
current choices of θ, π and ρ, Wang and Resnick (2023b) show that, for large enough
networks, total degrees drawn from a heterogeneous reciprocal PA model have a power law
tail. More specifically, the empirical total degree distribution tends towards a mass function
which is regularly varying (see Bingham et al., 1989, for more on regular variation). Wang
and Resnick (2023b) find that the tail index is given by

ι ≡ 1 + ρ? + δ

λ1
,

where λ1 is the largest eigenvalue among the matrices

Am =

[
α αρm•

γρ•m γ

]
,

and ρm• =
∑K

r=1 ρm,rπr and ρ•m =
∑K

r=1 ρr,mπr for m = 1, . . . ,K. Additionally, as n→∞,

|E(n)|
n
− 1

a.s.−→ ρ?.

Since the tail index ι is an important parameter in the study of scale-free networks, we
employ it to examine the efficiency of the Bayesian sampler. Suppose that ι(1), . . . , ι(2500)

are draws from the posterior constructed by using the draws of π and ρ from Algorithm
1 after discarding the burn-in and assuming that θ is known. We evaluate the effective
sample size of the Monte Carlo estimator 2500−1

∑2500
i=1 ι

(i) of the posterior mean of ι. The
effective sample size quantifies the extent to which correlation results in a loss of efficiency
when estimating the posterior mean of ι (Roy, 2020). For each PA network realization
used in Table 5, we estimate the effective sample size using the mcse() function in R’s
mcmcse package (Flegal et al., 2017). In particular, we employ the overlapping batch means
estimator with batch size 25001/3. The average effective sample size across all simulations
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Method π1 = 0.6 ρ11 = 0.1 ρ12 = 0.5 ρ21 = 0.4 ρ22 = 0.8

Mean(SE)
B 0.604(0.015) 0.102(0.011) 0.500(0.018) 0.400(0.016) 0.800(0.020)

VB 0.587(0.028) 0.168(0.058) 0.523(0.035) 0.331(0.0216) 0.718(0.082)
VEM 0.599(0.073) 0.121(0.005) 0.441(0.091) 0.286(0.077) 0.686(0.074)

% Coverage
B 95 93 98 93 92

VB 19 0 6 11 0

Table 5: Average point estimates and standard errors for 100 networks generated from a PA
model with θ = (0.75, 0, 0.8, 0.8). Coverage rates for equal-tailed credible intervals
produced by the B and VB methods are also provided.

Method K̂

1 2 3 4
B 0 86 11 3

VB 0 94 6 0
VEM 100 0 0 0

Table 6: Estimated K from 100 networks generated from a PA model with θ =
(0.75, 0, 0.8, 0.8) and π and ρ as in Table 5.

is 225.38 with a standard error of 6.587. Hence we may determine that the autocorrelations
in the Markov chains drawn from Algorithm 1 are not overly onerous and that we may
efficiently estimate the functionals of interest.

Table 6 displays the performance of the model selection criteria for 100 networks gener-
ated under the same PA model. For the fully Bayesian method, we initialize at Kinit = 1.
Despite the poor performance of the VB method at the parameter estimation, it captures
the true K = 2 the most often, indicating that the ELBO is a good model selection criterion.
The VEM algorithm always chooses K = 1, though we expect that this is again due to the
lack of information in the data. The likelihood associated with π has a much larger role
in the ICL for PA models than in stochastic block models. This, combined with the poor
estimation of the classes for known K, results in the poor performance of the ICL criteria.

6. Data Examples

In this section we fit the heterogeneous reciprocal PA model to two real-world networks: the
Facebook wall post data and the Reddit comment data. Although Facebook wallposts are
now defunct, the network was also analyzed in Cirkovic et al. (2023a) using a homogeneous
reciprocal PA model and allows us to highlight the remarkable improvement in the fit
provided by modeling heterogeneous reciprocity. The Reddit network, on the other hand,
provides user interaction dynamics that are reflective of those seen on present-day social
media platforms.
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We will use the VEM, VB, and fully Bayesian methods to fit the PA model with hetero-
geneous reciprocity to both real networks. Before introducing each network and evaluating
the model fits, we state the inputs chosen for each algorithm; both are analyzed using the
same inputs. For the VEM algorithm, we terminate the variational E-step when the in-
crease in the ELBO is less than ε = 0.1 and terminate the overall algorithm once the largest
absolute difference in the estimated components of π and ρ between M-steps falls below
κ = 0.001. For the Bayesian methods, we again assume non-informative priors on π and ρ.
Analogous to the VEM algorithm, we terminate the VB procedure once the change in the
ELBO falls below ε = 0.1. Both the VEM and VB methods are fit for K = 1, . . . , 10. The
telescoping sampler for the fully Bayesian method is run for M = 100,000 MCMC iterates,
where the first 90,000 iterates are discarded as burn-in. Within the telescoping sampler, we
set Kmax = 20.

6.1 Facebook Wallposts

Now we apply the heterogeneous reciprocal PA model to the Facebook wall post data from
KONECT analyzed in Viswanath et al. (2009) and Cirkovic et al. (2023a). The Facebook
wall post data tracks a group of users in New Orleans and their wall posts from September
9th, 2004 to January 22nd, 2009. The network is temporal: when user u posts to user v’s
wall, a directed edge (u, v) is generated, and the timestamp of the post is recorded. The full
dataset consists of 876,933 wall posts and 46,952 users. In Figure 1, we display the out/in-
degree of each user in a trimmed version of the network; we postpone the discussion of
the data cleaning procedure to the following paragraph. Note that upon first observation,
the degree distribution indicates the existence of two populations that exhibit differing
reciprocal behavior. The first group, concentrated on the out-degree axis, mostly posted
on other users’ walls while not receiving any posts on their own. The second group both
sends and receives wall posts at a commensurate rate. Further, the marginal out/in-degree
distributions exhibit power law tails as indicated by Figure 2 where, on the log-log scale,
the empirical tail functions seem to scale linearly with large degrees.

In Cirkovic et al. (2023a), the Facebook wall post data was analyzed assuming that
each user exhibited homogeneous reciprocal behavior. In the wording of Section 2.1, it
was assumed that π ≡ 1 and ρ ≡ ρ ∈ R. In doing so, the users concentrated on the
out-degree axis in Figure 1 were excluded from the analysis as the homogeneous model
could not model the observed heterogeneous reciprocal behavior. Additionally, by extreme
value-based methods being sensitive to the choice of seed graph, Cirkovic et al. (2023a)
also removed nodes that became inactive as the graph evolved, a phenomenon not modeled
by the proposed PA model. The likelihood-based methodology in Cirkovic et al. (2023a)
returned a homogeneous reciprocity estimate of ρ̂ = 0.28. The flexibility provided by
the heterogeneous reciprocal PA model aims to capture the additional, intricate dynamics
underlying the Facebook wall post data not previously considered in Cirkovic et al. (2023a).

According to the analysis of the Facebook wallpost data in Viswanath et al. (2009),
there is a sudden uptick in the number of wall posts from July 2008 and onwards. They
conjecture that this uptick is likely due to a Facebook redesign, introduced in July, that
allowed users to interact with more wall posts through friend feeds. This likely results in a
distributional shift in the network’s evolution, and thus we discard the portion of the network
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Figure 1: Out/in-degree plot for the Facebook wallpost data

Figure 2: Plot of empirical tail probability function for the Facebook wallpost degrees on a
log base 10 scale
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observed beyond June 2008, resulting in a network with 22,286 nodes and 165,776 edges.
This observation, however, may lead to additional analyses via changepoint detection (see
Banerjee et al., 2023; Bhamidi et al., 2018; Cirkovic et al., 2023b, for example). Additionally,
the evolution of the PA network specified in Section 2.1 posits that every new edge must
attach to at least one node that was previously observed in the network evolution. To better
adhere to this assumption we define a sequence of networks by first selecting the node with
the largest total degree and pairing it with the first node it makes a connection with to
create a seed graph G(0). Then, we only retain the edges (u, v) that are (i) observed after
the introduction of the seed graph and (ii) u ∈ V (k − 1) or v ∈ V (k − 1). This trimming
procedure results in a connected network of 16,099 nodes and 123,920 edges that could have
realistically been generated by a heterogeneous reciprocal PA model.

The reciprocal PA model assumes that reciprocal edges (tk, sk) are generated instanta-
neously with their parent edge (sk, tk). However, in the Facebook wall post network, it is
likely that in the time between reciprocated wall posts, wall posts between other users have
been generated. Thus, similar to Cirkovic et al. (2023a), we employ window estimators to
identify reciprocal edges. That is, if ek = (sk, tk) has a reciprocal counterpart (tk, sk) appear
in 24 hours, we attribute the event Rk = 1 to the edge ek, redefine ek := ek ∪ (tk, sk) and
drop (tk, sk) from the edgelist. This results in an edgelist that is in alignment with Section
2.1. We note that this is only one way to define reciprocal pairs. More complex models
would account for reciprocation triplets, quadruplets and so on that could potentially be
modeled via a geometric distribution.

To conclude our exploratory data analysis, we study the tail behavior of the out/in-
degrees for the trimmed Facebook network. We employ the minimum distance procedure
(Clauset et al., 2009) on the total degrees to obtain a threshold beyond which a power-
law tail for the in/out-degree can be safely assumed. The minimum distance procedure
computes a tail threshold of 51. Note that computing the tail threshold on the total degree
implicitly assumes that the out/in-degree tails have the same power-law index. We find this
to be a reasonable assumption as indicated by the similarity of the empirical tail functions
in Figure 2. In fact, using a threshold of 51, the tail index estimates for the out/in-degrees
are 2.212 and 2.231, respectively. Further observation of Figure 1 indicates that, beyond
this threshold, there is an extremal dependence structure in the out/in-degree distribution;
nodes with a total degree larger than 51 tend to cluster around multiple lines through the
origin. This extremal dependence structure is further analyzed in Appendix A.

The global PA parameters θ are estimated by maximizing the likelihood p(· | θ). Max-
imum likelihood returns (α̂, β̂, δ̂in, δ̂out) = (0.071, 0.829, 1.756, 1.571). The small values of
δ̂in and δ̂out indicate that preferential attachment is indeed a viable mechanism to describe
how users send and receive wall posts. Analyzing the reciprocal component of the model,
the VEM algorithm identifies 3 classes, while the VB and fully Bayesian algorithms identify
6 and 11 clusters, respectively. Figure 3 displays the ICL, ELBO, and posterior of K for
the VEM, VB, and fully Bayesian methods. The ICL criterion clearly identifies K = 3
as the choice that optimally balances model parsimony with fidelity to the data. Though
the VB method chooses K = 6, we note that the ELBO for the VB method becomes very
flat at K = 4, indicating that perhaps a simpler model may fit the data nearly as well as
the model with K = 6 mixture components. Further, the telescoping sampler seems to
overfit the number of classes by producing classes whose mixture weights have small pos-
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Figure 3: ICL, ELBO, and posterior on K from the VEM, VB, and fully Bayesian methods.
For the VEM and VB algorithms, we consider K = 1, . . . , 10.

terior means. We suspect that the fully Bayesian method overfits the number of mixture
components due to model misspecification. It is unlikely that the Facebook wall post data
exactly follows the specification in Section 2.1. For example, there is empirical evidence that
the degree of each node may influence reciprocal behavior (Cheng et al., 2011). There is
strong evidence that mixtures of finite mixtures do not reliably learn the number of mixture
components under model misspecification (Cai et al., 2021; Miller and Dunson, 2018).

The estimates of π and ρ from the VEM and VB algorithms are

π̂VEM =

0.538
0.251
0.211

 , ρ̂VEM =

 0.242 0.273 0.001
0.597 0.650 0.001
0.0701 0.053 0.001



π̂VB =



0.122
0.285
0.153
0.060
0.197
0.184

 , ρ̂VB =



0.088 0.094 0.084 0.038 0.001 0.083
0.383 0.427 0.431 0.182 0.001 0.375
0.670 0.699 0.718 0.433 0.001 0.641
0.467 0.464 0.499 0.214 0.002 0.437
0.089 0.089 0.059 0.036 0.005 0.082
0.206 0.225 0.230 0.098 0.001 0.201


Note that both the VEM and VB methods identify a group of nodes that receives nearly no
reciprocal edges as indicated by a column of near-zero estimates in ρ. The fully Bayesian
methods agree; class 1 has class probability 0.195 and, on average, receives a reciprocal edge
with probability 0.002 as estimated by the posterior means of π1 and ρ•,1 =

∑11
m=1 πmρm,1,

respectively. Additionally, the VEM algorithm seems to indicate that reciprocity on Face-
book is receiver-dependent; we estimate that ρm,1 ≈ ρm,2 for m = 1, 2, indicating reciprocity
does not tend vary depending on who sends the initial message.

Figure 4 displays the degree distribution of the trimmed Facebook wall post network,
grouped by the VEM class estimates. The VEM algorithm clearly identifies class 3 as nodes
that do not receive reciprocal edges. This class may very well correspond to bot users who
regularly post spam messages that most users ignore. Despite class 2 having a heavier tail,
classes 1 and 2 tend to concentrate in similar regions of R+. Further, the similarity of the
estimates ρ̂VEM indicate that classes 1 and 2 engage in similar reciprocal behavior.
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Figure 4: Reciprocal components identified by the VEM algorithm

Figure 5: Density plots for last appearance time (by class) of each node that posted more
than once in the network

These visual measures warrant further inspection of the differences between classes 1
and 2. Figure 5 displays the discrete time of the last post made by each node in the network
that posts more than once. Note that nodes in class 1 are more likely to become inactive
in the early period of the network evolution. These inactive nodes were noted by Cirkovic
et al. (2023a) and Viswanath et al. (2009) as well. The lighter tails of class 1 thus can be
explained by the relatively short lifetimes of the nodes, as such nodes do not have as long
enough time to send and receive wall posts. The VEM algorithm may have picked up on
this inactivity by proxy. However, such observations warrant extension to a preferential
attachment model that incorporates nodes that become inactive over time.
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Figure 6: Out/in-degree plot for the Reddit data

6.2 Reddit replies

We additionally analyze Reddit user replies from December 11th, 2005 to December 31st,
2006 (Hessel et al., 2016; Liu et al., 2019). Here an edge (u, v) indicates that user u
commented on user v’s comment or post. The network is temporal; each edge has an
associated timestamp. Following the analysis in Section 6.1, we trim the Reddit network by
defining the first comment containing the user with maximum total degree as the seed graph
and retaining any newer comments that have at least one user that has already commented
in the trimmed network. By trimming the network in such a fashion, we obtain a graph
that mimics the evolution of the reciprocal PA process. The resulting network contains
14,080 users and 197,719 comments.

As displayed by Figure 6, the degree distribution for the trimmed Reddit is heteroge-
neous. A significant segment of users post and receive comments at a common rate, while
a smaller portion of users rarely comment but generate an exceptional amount of inter-
action. Additionally, Figure 7 indicates that the marginal out/in-degree distributions can
be suitably modeled via power-law tails since, on the log-log scale, the empirical tail func-
tion and large degrees are approximately linearly related. Here, large degrees refer to the
degrees that surpass the threshold chosen by the minimum distance procedure applied to
total degrees. The threshold, 231, is computed using the total degree since marginal the
out/in-degree tail indices are close; using a threshold of 231, the estimated tail indices for
the out/in-degrees are 3.01 and 2.87, respectively. Thus the heterogeneous, power-law tails
of the degree distribution lead us to expect that the reciprocal PA model would provide a
good fit to the Reddit data.

We fit the heterogeneous reciprocal PA model to the Reddit network using the VEM,
VB, and fully Bayesian methods. Each method maximizes the likelihood p(· | θ) in order
estimate θ. Maximum likelihood returns global parameter estimates of θ̂ = (α̂, β̂, δ̂in, δ̂out) =
(0.048, 0.919, 1.291, 0.717). Relative to δ̂in, the smaller value of δ̂out indicates that the extent
to which users reply to comments more heavily depends on their tendency to have already
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Figure 7: Plot of empirical tail probability function for the Reddit degrees on a log base 10
scale

replied to comments in the past. In comparison, receiving many replies is less impactful on
the ability of users to continue receiving replies in the future. Independently, however, the
small values of δ̂in and δ̂out indicate that preferential attachment tends to govern comment
behavior on Reddit.

We now analyze the reciprocity component of the model. Figure 8 displays the ICL,
ELBO, and posterior of K for the VEM, VB, and fully Bayesian methods. The ICL criterion
chooses K = 2 as the optimal number of reciprocal components, though K = 3 results in
a similar ICL. The maximal ELBO occurs for K = 8, though marginal gains are made in
the ELBO for K > 3. For the fully Bayesian method, we estimate that the posterior places
maximal probability mass on K = 17. As in Section 6.1, we suspect that the large number
of communication classes inferred by the fully Bayesian method is a result of its sensitivity
to model misspecification.

We report the estimates of π and ρ for VEM and VB algorithms below:

π̂VEM =

[
0.210
0.790

]
, ρ̂VEM =

[
0.318 0.205
0.052 0.040

]

π̂VB =



0.602
0.020
0.040
0.021
0.044
0.015
0.219
0.040


, ρ̂VB =



0.055 0.020 0.026 0.017 0.017 0.061 0.030 0.030
0.395 0.534 0.561 0.214 0.397 0.731 0.470 0.552
0.224 0.402 0.328 0.150 0.226 0.321 0.292 0.340
0.094 0.152 0.125 0.483 0.085 0.435 0.120 0.128
0.188 0.308 0.287 0.184 0.218 0.408 0.225 0.312
0.092 0.129 0.149 0.082 0.098 0.561 0.100 0.210
0.092 0.178 0.127 0.092 0.097 0.177 0.120 0.130
0.126 0.203 0.266 0.125 0.162 0.399 0.170 0.210


.

As evidenced by class 2 for the VEM algorithm and class 1 for the VB algorithm, both
methods identify a large contingent of individuals who do not tend to reply to comments.
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Figure 8: ICL, ELBO, and posterior on K from the VEM, VB, and fully Bayesian methods
for the Reddit network. For the VEM and VB algorithms, we consider K =
1, . . . , 10.

The fully Bayesian also arrives at the same conclusion as it reports that class 7, a class
with estimated class probability 0.201, tends to reply to comments with probability 0.032
as estimated by the posterior mean of ρ7,• =

∑17
m=1 πmρ7,m. Further, both the VB and

fully Bayesian methods identify classes with very low-class probabilities, indicating that the
methods may be overfitting the number of communication classes.

Given that the ICL for K = 2, 3 are comparable and the ELBO becomes relatively flat
after K = 3, we set K = 3 as a consensus choice and employ Algorithm 1 to refit the
heterogeneous reciprocal PA model. As displayed in Section 5, the fully Bayesian method
allows superior uncertainty quantification of π and ρ while the ICL and ELBO criteria more
consistently capture the correct number of communication classes. Thus, we recommend
this melding of methods as a computationally efficient, robust alternative for real-world
network analysis. As before, we run Algorithm 1 for M = 100,000 MCMC iterates, where
the first 90,000 iterates are discarded as burn-in.

Estimates of the marginal posteriors of π and ρ from Algorithm 1 are provided in
Figure 9. Note that Algorithm 1 identifies a large contingent of nodes that do not tend
to reciprocate incoming edges. This is supported by the fact that the estimated posterior
mean of class 1’s average reply probability, ρ1,• ≡

∑K
m=1 πmρ1,m, is given by 0.022. It also

identifies a small group of users that engage in high levels of reciprocity, most of which
occurs within the same communication class. We additionally observe that the reciprocal
behavior between classes is asymmetric. For example, a 95% credible interval for ρ2,3/ρ3,2
is given by (1.956, 2.157), indicating that class 2 is approximately twice as likely to reply to
a comment from class 3 than class 3 is to reply to a comment from class 2.

Lastly, we evaluate the ability of the consensus method to capture the heterogeneity
of the Reddit degree distribution. The degree distribution of the Reddit data is plotted
by estimated class in Figure 10. Here, the estimated class corresponds to the maximum a
posteriori class as estimated by the posterior samples from the Gibbs sampler. Algorithm 1
clearly isolates the nodes that concentrate along the in-degree axis as class 1. Additionally,
when compared to class 3, class 2 consists of nodes with out/in-degree pairs that concentrate
more heavily on a line through the origin. For higher levels of reciprocity, we expect that
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Figure 9: Marginal posterior density estimates for π and ρ from the Reddit network using
Algorithm 1 with K = 3.
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Figure 10: Reciprocal components as identified by Algorithm 1 with K = 3.

the out- and in-degree of a given node will be highly correlated, whereas for lower levels of
reciprocity, the degree distribution will diffuse as in class 3.

7. Conclusion

In this paper, we outline a preferential attachment model with heterogeneous reciprocity
and offer three methods for fitting the model to both simulated and real-world networks.
Through simulations, we find that when analyzing networks that have many edges com-
pared to the number of nodes, the variational alternatives offer similar performance to the
fully Bayesian method in terms of point estimation at less computational cost. However,
the credible intervals generated by the fully Bayesian method more reliably capture the true
data-generating parameters. We also compare the ability of each method to select the num-
ber of communication classes in heterogeneous reciprocal PA networks. Generally speaking,
when the number of edges is again large compared to the number of nodes, all three meth-
ods consistently choose the true number of classes, with the fully Bayesian method having
a slight tendency to overfit. We then showcase the ability of the heterogeneous reciprocal
PA model to capture non-uniform reciprocal behavior across users in the Facebook wallpost
and Reddit comment networks. The proposed model offers the additional flexibility needed
to model such data.

Upon analyzing the Facebook wallpost network, we find that the VEM algorithm un-
covered two reciprocal classes that engage in somewhat similar reciprocal behavior, though
one of the classes consisted of more inactive users. The propensity of some users to become
inactive in a network as it evolves is a common feature of many networks. It warrants
the extension of the preferential attachment model to account for such behavior. In future
work, we will also consider models allowing users to become inactive as the network grows
over time.
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Additionally, we believe that a powerful way to model both the Facebook and Reddit
data is to assume that each user is embedded with their own reciprocity parameter which
is drawn from some prior distribution. Such a model would account for individual het-
erogeneity in reciprocal behavior. For the Facebook and Reddit networks in particular,
a spike-and-slab prior with a point mass at zero would capture the users that do not re-
ciprocate edges while also allotting a sufficient amount of flexibility to take into account
individual effects. We intend to explore such a model in future work.
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Appendix A: Statistical Tools for Multivariate Extremes

Here we detail, in a non-technical fashion, some tools used to analyze data subject to
extremal observations. For more rigorous treatments, we refer to the works of Beirlant
et al. (2004) and Resnick (2007). A central goal in the study of multivariate extremes is
to identify how extremes cluster. In other words, if one or more components of a random
vector are large, how likely is it that the other components of the random vector will also be
large? For PA models with homogeneous reciprocity, Cirkovic et al. (2023a) proved that the
extremal out/in-degrees tend to cluster on a line through the origin. With heterogeneous
reciprocity, Wang and Resnick (2023b) proved that the model with β = 0 generates extreme
out/in-degrees that concentrate on multiple lines through the origin.

An exploratory tool used to identify where such extremes cluster in R2
+ is the angular

density, a plot of the angles

Θr ≡
{
Dout
v (n)/(Dout

v (n) +Din
v (n)) : v ∈ V (n), Dout

v (n) +Din
v (n) > r

}
for some large threshold r. Intuitively, if the angular density concentrates mass around
some point in (0, 1), then one would expect extremes to cluster on a line through the origin.
On the other hand, if the angular density only places mass on the set {0, 1}, then the
out/in-degrees are asymptotically independent ; a large in-degree does not necessarily imply
a large out-degree, and vice versa. Figure 11 displays the angular density for the Facebook
wallpost and Reddit comment data analyzed in Section 6.1.

When the angular density concentrates mass on the set {0.5, 1}, it indicates the existence
of two extremal populations: one that has approximately equal in/out-degree, and another
that has high out-degree but small in-degree. The threshold for Θr was chosen as r = 51
by the minimum distance method applied to the total degrees (Clauset et al., 2009). The
minimum distance method chooses a threshold that minimizes the Kolmogorov-Smirnov
distance between a power-law tail and the empirical tail of the observations above the
threshold. Note that the angular density is naturally sensitive to the choice of r. If r is
chosen too large, some extremal features of the data may be passed over, while if r is chosen
too small, the extremal behavior will be corrupted by non-extremal observations.
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Figure 11: Angular density for the Facebook wallpost and Reddit comment data with
thresholds chosen via the minimum distance method.

We now have the tools to describe the initialization of the VEM algorithm for a fixed
K presented in Section 3.2.2. First, the set Θr is constructed via threshold r chosen by
the minimum distance method available in R package igraph (Csardi et al., 2006). We
then employ K-means on the set Θr to determine an initial clustering of nodes. Note that
this only clusters nodes with a total degree larger than r. This clustering is then used
to compute empirical class probabilities (π̂r)

K
r=1 and empirical reciprocities (ρ̂m,r)

K
m,r=1.

Note that (ρ̂m,r)
K
m,r=1 is computed only on edges that connect nodes which both have total

degree larger than r. (π̂r)
K
r=1 and (ρ̂m,r)

K
m,r=1 are thus used as initial parameter values

and the initial (τw,`)w∈V (n),`∈{1,...,K} are chosen according to a uniform distribution on the
K-simplex. The full initialization algorithm is given in Algorithm 5.

Appendix B: Sample Derivations for the VEM Algorithm

In this appendix, we present some sample derivations for the variational EM algorithm
presented in Section 3.2.2. We note that the derivations are very similar to those of Daudin
et al. (2008) and Latouche et al. (2012), though we reformulate them in our setting for
convenience. The same type of calculations can be employed to derive the variational Bayes
algorithm.

Derivation of the ELBO

In this section, we derive (11). Recall that we posit the mean-field variational family on the
communication types W (n) given by

q(W (n)) =
∏

v∈V (n)

qv(Wv).
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Algorithm 5 Initialization of VEM for heterogeneous reciprocal PA

Input: Graph G(n), # communication types K
Output: Initial variational EM estimates π̂VEM and ρ̂VEM

1. Compute the tail threshold r according to the minimum distance procedure.
2. Construct the sets

ℵr =
{
v ∈ V (n) : Dout

v (n) +Din
v (n) > r

}
Θr =

{
Dout
v (n)/(Dout

v (n) +Din
v (n)) : v ∈ ℵr

}
3. Employ K-means on Θr to form initial communication class estimates Ŵv for v ∈ ℵr
4. Form initial VEM estimates via
for m = 1 to K do

π̂m =
1

|ℵr|
∑
v∈ℵr

1{Ŵv=m}

for r = 1 to K do

ρ̂m,r =

∑
k:Ŵsk

=r,Ŵtk
=m 1{Rk=1}∣∣∣{k : Ŵsk = r, Ŵtk = m

}∣∣∣
end for

end for
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Then, the ELBO is given by

ELBO(q,π,ρ) = Eq [log p (W (n), (ek)
n
k=1 | π,ρ)]− Eq [log q(W (n))] .

Focusing on the first term, recall that the log-likelihood is given by

log p (W (n), (ek)
n
k=1 | π,ρ)

=
n∑
k=1

K∑
r=1

(
1{Jk=1}1{Wsk

=r} + 1{Jk=3}1{Wtk
=r}

)
+

n∑
k=1

K∑
r=1

K∑
m=1

1{Rk=1}1{Wsk
=r}1{Wtk

=m} log ρm,r

+
n∑
k=1

K∑
r=1

K∑
m=1

1{Rk=0}1{Wsk
=r}1{Wtk

=m} log(1− ρm,r).

Taking an expectation with respect to q gives that

Eq [log p (W (n), (ek)
n
k=1 | π,ρ)]

=

n∑
k=1

K∑
r=1

(
1{Jk=1}Eq

[
1{Wsk

=r}

]
+ 1{Jk=3}Eq

[
1{Wtk

=r}

])
+

n∑
k=1

K∑
r=1

K∑
m=1

1{Rk=1}Eq

[
1{Wsk

=r}1{Wtk
=m}

]
log ρm,r

+

n∑
k=1

K∑
r=1

K∑
m=1

1{Rk=0}Eq

[
1{Wsk

=r}1{Wtk
=m}

]
log(1− ρm,r),
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and employing the mean-field family assumption,

Eq [log p (W (n), (ek)
n
k=1 | π,ρ)]

=

n∑
k=1

K∑
r=1

(
1{Jk=1}Eq

[
1{Wsk

=r}

]
+ 1{Jk=3}Eq

[
1{Wtk

=r}

])
+

n∑
k=1

K∑
r=1

K∑
m=1

1{Rk=1}Eq

[
1{Wsk

=r}

]
Eq

[
1{Wtk

=m}

]
log ρm,r

+
n∑
k=1

K∑
r=1

K∑
m=1

1{Rk=0}Eq

[
1{Wsk

=r}

]
Eq

[
1{Wtk

=m}

]
log(1− ρm,r)

=

n∑
k=1

K∑
r=1

(
1{Jk=1}τsk,r + 1{Jk=3}τtk,r

)
+

n∑
k=1

K∑
r=1

K∑
m=1

1{Rk=1}τsk,rτtk,m log ρm,r

+

n∑
k=1

K∑
r=1

K∑
m=1

1{Rk=0}τsk,rτtk,m log(1− ρm,r).

Finally, the entropy term is given by

Eq [log q(W (n))] =Eq

 ∑
v∈V (n)

K∑
r=1

1{Wv=r} log τv,r


=
∑

v∈V (n)

K∑
r=1

Eq
[
1{Wv=r}

]
log τv,r

=
∑

v∈V (n)

K∑
r=1

τv,r log τv,r.

Derivation of the E-Step

In this section, we derive the E-step of the variational EM algorithm (Step 1 of Algorithm
3). Recall that the E-step maximizes the ELBO for the variational density q. We perform
this optimization with a coordinate ascent. From Blei et al. (2017), for every ` = 1, . . . ,K,
the optimal qw(Ww) satisfies

τw,` = q?w (Ww = `) ∝ exp
{
Eq−w [log p (Ww = ` | (Wv)v 6=w, (ek)

n
k=1,π,ρ)]

}
,

which, by definition of conditional density, is proportional to

∝ exp
{
Eq−w [log p (Ww = `, (Wv)v 6=w, (ek)

n
k=1 | π,ρ)]

}
.
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Here, q−w denotes the variational density on (Wv)v 6=w. Up to some constant C not depend-
ing on w, the log-likelihood term is given by

log p (Ww = `, (Wv)v 6=w, (ek)
n
k=1 | π,ρ) = log π` +

K∑
m=1

log ρm,`
∑

k:sk=w

1{Wtk
=m}1{Rk=1}

+
K∑
m=1

log(1− ρm,`)
∑

k:sk=w

1{Wtk
=m}1{Rk=0}

+

K∑
r=1

log ρ`,r
∑

k:tk=w

1{Wsk
=r}1{Rk=1}

+
K∑
r=1

log(1− ρ`,r)
∑

k:tk=w

1{Wsk
=r}1{Rk=0} + C,

and taking an expectation with respect to q−w gives

log p (Ww = `, (Wv)v 6=w, (ek)
n
k=1 | π,ρ) = log π` +

K∑
m=1

log ρm,`
∑

k:sk=w

τtk,m1{Rk=1}

+
K∑
m=1

log(1− ρm,`)
∑

k:sk=w

τtk,m1{Rk=0}

+
K∑
r=1

log ρ`,r
∑

k:tk=w

τsk,r1{Rk=1}

+

K∑
r=1

log(1− ρ`,r)
∑

k:tk=w

τsk,r1{Rk=0} + C.

Hence,

τw,` = q?w (Ww = `) ∝ exp
{
Eq−w [log p (Ww = `, (Wv)v 6=w, (ek)

n
k=1 | π,ρ)]

}
∝π`

K∏
m=1

ρ

∑
k:sk=w τtk,m1{Rk=1}

m,` (1− ρm,`)
∑

k:sk=w τtk,m1{Rk=0}

×
K∏
r=1

ρ

∑
k:tk=w τsk,r1{Rk=1}

`,r (1− ρ`,r)
∑

k:tk=w τsk,r1{Rk=0} .

(12)

Thus, in the E-step, one cycles through (12) for each w ∈ V (n) until the ELBO no longer
meaningfully increases.
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