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Abstract

Multistage design has been utilized across a variety of scientific fields, enabling the
adaptive allocation of sensing resources to effectively eliminate null locations and localize
signals. We present a decision-theoretic framework for multi-stage adaptive testing that
minimizes the total number of measurements while ensuring pre-specified constraints on
both the false positive rate (FPR) and the missed discovery rate (MDR). Our method,
SMART, explicitly addresses the often-overlooked aspect of uncertainty quantification in
machine learning algorithms, incorporating it at every decision stage. This enables SMART
to respond adaptively to important patterns in the data streams, adjusting its decisions
based on the strength of evidence at specific locations. By leveraging technical tools and
key concepts from multiple testing, adaptive thresholding, and compound decision theory,
SMART not only enhances the aggregation of information across individual tests but also
allows for varying thresholds tailored to the observed data, thereby ensuring effective error
rate control and resulting in significant savings on total study costs. Through compre-
hensive analyses of large-scale A/B tests, high-throughput screening, and image analysis,
we demonstrate that our approach yields substantial efficiency gains and improved control
over error rates compared to existing methodologies.

Keywords: Compound Decision Problem; Distilled Sensing; False Discovery Rate; Missed
Discovery Rate; Sequential Probability Ratio Test

1. Introduction

In high-dimensional data analysis, recovering the support of a sparse vector is a fundamental
challenge. We study the problem of estimating the support of a high-dimensional sparse
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vector µµµ = (µ1, µ2, . . . , µp) ∈ Rp using measurements obtained from a set of variables XXX =
(X1, X2, . . . , Xp). Specifically, for the jth measurement of Xi (where i ∈ [p] = {1, 2, . . . , p}),
the observed value xij = µi + εij , where εij denotes the measurement error. Let S = {i :
µi 6= 0} represent the indices of the non-zero entries of µµµ, which constitute the support of the
vector. We focus on a setup where measurements on variables are performed sequentially.
The sequential framework not only facilitates the accumulation of information over time
but also allows for adaptive strategies to enhance recovery accuracy and efficiency.

1.1 A multistage mixture model

We assume that the observed data obey a multistage random mixture model, which can
be described through a hierarchical framework. Let I(·) denote an indicator function, and
define θi = I(µi 6= 0) = I{i ∈ S}. The variable θi follows a Bernoulli distribution:

θi ∼ Bernoulli(π), i = 1, . . . , p, (1.1)

where π = P(µi 6= 0) denotes the expected proportion of non-zero entries within the vector.
The unobserved effect sizes µi are generated conditionally based on the value of θi as follows:

µi =

{
0, if θi = 0,

µi ∼ G(·), if θi = 1,
(1.2)

where G(·) represents the cumulative distribution function (CDF) of non-zero effect sizes.
In our analysis, we do not assume that G(·) is known, nor do we impose any parametric
constraints on it. In Section 3.2, we discuss a nonparametric approach to estimating g(·),
the density function corresponding to G(·). Finally, the observation model is formulated as:

Xij = µi + εij , εij ∼ N (0, σ2), i = 1, . . . , p; j = 1, 2, 3, . . . , (1.3)

where Xij represents the observed measurement for the jth observation of variable i, and
εij denotes the random error associated with that measurement.

We now provide more explanations for the hierarchical mixture model (1.1)-(1.3), where
measurements are collected in stages j = 1, 2, . . . in a sequential manner. The observed
value Xij follows the null distribution F0 = N (0, σ2) if i /∈ S, and the non-null distribution
F1i = N (µi, σ

2) if i ∈ S. The model posits that the null distribution F0 is identical across
all indices i /∈ S, while the non-null distribution F1i can vary across i ∈ S. Allowing het-
erogeneous F1i offers great flexibility in applications where non-zero entries exhibit varying
effect sizes. The fraction π is typically small. This model has been widely used in large-scale
inference problems (e.g. Efron, 2001, 2016) by providing a flexible framework for a range of
estimation and testing problems. In this article, we focus on the sparse recovery problem,
which seeks to accurately identify the subset S ⊂ {1, . . . , p} with negligible decision errors.

1.2 Non-adaptive vs. adaptive designs

Consider a scenario where each measurement incurs a fixed cost, making it prohibitively
expensive to collect repeated measurements across all variables in large-scale studies, partic-
ularly when p is on the order of thousands or even millions. In this context, the fundamental
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principle of an adaptive design is to strategically allocate sensing efforts, thus avoiding the
necessity of evaluating all features at every stage of the process.

Let Aj ⊆ A1 := {1, . . . , p} for j = 1, 2, . . . denote a monotonic sequence of nested sets,
where Aj represents the active set of coordinates at which measurements are conducted
during stage j. This structure enforces the nestedness constraint, whereby Aj ⊆ Aj−1.
The set Aj can be conceptualized as encompassing the locations where there is insufficient
information to make confident decisions regarding the values of θi at stage j. In large-
scale experiments involving millions of features, it is crucial to minimize additional sensing
efforts. To this end, once a coordinate is selected or excluded, the decision remains fixed in
subsequent stages; thus, we do not revisit earlier decisions. This approach effectively reduces
the cognitive burden in the decision-making process and justifies the consideration of nested
sets within the framework of sequential design. For a more comprehensive discussion of the
nestedness constraint, please refer to Section 2.1.

Denote XAj = (Xij : i ∈ Aj) as the collection of observations corresponding to the active
set Aj . In a non-adaptive setting, the observations Xij are sampled at each stage according
to a pre-established policy, whereby each coordinate i is allocated an equal share of the
measurement budget. This approach, while systematic, may not efficiently utilize available
resources. In contrast, an adaptive sampling design (Malloy and Nowak, 2014a,b; Li and
Haupt, 2015; Jain and Chang, 2004) tailors the sampling strategy to different coordinates.
By allowing for flexibility in modifying Aj based on the information gathered from previous
stages, adaptive designs improve the efficacy of the measurement process, particularly in
scenarios where data uncertainty varies significantly across different features.

The adaptive sampling and inference framework provides a powerful approach to sparse
estimation and testing problems. Intuitively, the sensing resources in later stages can be
allocated in a more cost-effective way to reflect our updated contextual knowledge dur-
ing the course of the study; hence greater precision in inference can be achieved with the
same study budgets or computational costs. We discuss this in more detail in Section 1.6.
A plethora of powerful multistage testing and estimation procedures have been developed
under this flexible framework; some recent developments include the hierarchical testing
procedures for pattern recognition (Blanchard and Geman, 2005; Meinshausen et al., 2009;
Sun and Wei, 2015), distilled sensing and sequential thresholding methods for sparse detec-
tion (Haupt et al., 2011; Malloy and Nowak, 2011, 2014a), multi-scale search and open-loop
feedback control algorithms for adaptive estimation (Bashan et al., 2011; Wei and Hero,
2013, 2015) and sequentially designed compressed sensing (Haupt et al., 2012; Malloy and
Nowak, 2014b). These works demonstrate that methodologies adopting adaptive designs
can substantially outperform those developed under non-adaptive settings.

1.3 Applications and statistical challenges

Multistage experiments have been widely used in many scientific fields including large-
scale A/B testing (Johari et al., 2015), environmental sciences (Cormack, 1988; Thompson
and Seber, 1996), microarray, RNA-seq, and protein array experiments (Müller et al., 2004;
Rossell and Müller, 2013), geostatistical analysis (Roesch, 1993; Bloma et al., 2002), genome-
wide association studies (Satagopan et al., 2004; Rothman et al., 2010) and astronomical

3



Wang, Gang and Sun

surveys (Meinshausen et al., 2009). We first describe some applications and then discuss
related statistical issues.

High-throughput screening [HTS, Zhang et al. (1999); Bleicher et al. (2003)]. HTS
is a large-scale hierarchical process that has played a crucial role in fast-advancing fields
such as stem cell biology and drug discovery. In drug discovery, HTS involves testing
a large number of chemical compounds in multiple stages including target identification,
assay development, primary screening, confirmatory screening, and follow-up of hits. The
accurate selection of useful compounds is an important issue at each aforementioned stage
of HTS. For example, at the primary screening stage, a library of compounds is tested to
generate an initial list of active compounds (hits). The goal of this stage is to reduce the size
of the library significantly with negligible false negative rate. In the confirmatory screening
stage, the hits are further investigated to generate a list of confirmed hits (leads), which
will be used to develop drug candidates. As the lab costs for leads generation are very high,
an important task at the confirmatory stage is to construct a subset with negligible false
positive rate while keeping as many useful compounds as possible.

Large-scale A/B testing. A/B testing has begun to be widely deployed by various
high-tech firms for identifying features/designs that work the best among a large number
of potential candidates. It provides a powerful tool for testing new ideas for a wide range
of real-world decision-making scenarios (Kohavi and Longbotham, 2017; Xu et al., 2015;
Fabijan et al., 2018). For example, A/B testing can offer key insights on (a) how to improve
the users’ experiences, (b) what new features should be incorporated into the product to
boost the profits, and (c) which design is the most effective for getting more people click the
sign-up button. A significant challenge in large-scale A/B testing is the multiplicity issue,
i.e. we need to conduct hundreds of experiments simultaneously for a long period, and
each experiment may involve thousands of metrics to be evaluated throughout the entire
duration. An effective multistage design can substantially save study costs, minimize risk
exposures to customers and enable faster decision making.

Ultra-high dimensional testing in astronomical surveys. The fast and accurate
localization of sparse signals poses a significant challenge in Astrophysics (Meinshausen and
Rice, 2006). When many images are taken with high frequencies, the computational cost of
an exhaustive search through every single image and pixel can be prohibitively expensive
as the search often involves testing billions of hypotheses. A multistage decision process
can lead to great savings in total sensing efforts by quickly narrowing down the focus to a
much smaller subset of most promising spots in the images (Djorgovski et al., 2012).

These three applications will be discussed in detail in Section 8. Our goal is to develop
a cost-effective multistage sampling and inference procedure to narrow down the focus in a
sequential manner to identify the vector support reliably. The proposed strategy consists of
(a) a stopping rule for selecting the active coordinates, and (b) a testing rule for deciding
whether a coordinate contains a signal.

1.4 Problem formulation

In the design and analysis of large-scale multistage studies, the inflation of decision errors
and soaring study costs are among the top concerns. First, to identify useful signals ef-
fectively, we need to control the missed discovery rate (MDR) to be small at all stages,
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as missed signals will not be revisited in subsequent stages. Second, to reduce study costs
or increase sampling efficiency, it is desirable to eliminate as many null locations as pos-
sible at each stage. Finally, to avoid misleading scientific conclusions, the final stage of
our analysis calls for strict control of the false positive rate (FPR). Next, we formulate a
decision-theoretic framework that integrally addresses the three issues: MDR control, FPR
control, and sampling efficiency.

When many coordinate-wise sequential decisions are made simultaneously, controlling
inflated decision errors becomes a critical issue. Let δδδ = (δ1, · · · , δp), where δi = 0/1
indicates that i is classified as a null or non-null case. Define the false positive rate (FPR)
and missed discovery rate (MDR) as

FPR(δδδ) =
E {
∑p

i=1(1− θi)δi}
E(
∑p

i=1 δi)
and MDR(δδδ) =

E {
∑p

i=1 θi(1− δi)}
E(
∑p

i=1 θi)
. (1.4)

Remark 1 The FPR is also referred to as the marginal false discovery rate (mFDR; Gen-
ovese and Wasserman, 2002; Sun and Cai, 2007). In the non-sequential setting, the FPR
and the widely used false discovery rate (FDR; Benjamini and Hochberg, 1995) are shown to
be asymptotically equivalent for the Benjamini-Hochberg procedure (Genovese and Wasser-
man, 2002) and a general class of FDR procedures (Proposition 7 in Appendix A.2 of Cai
et al. (2019)). Such asymptotic equivalence requires further research in the sequential set-
ting. The main consideration for using FPR (as opposed to FDR) is to develop optimality
results within a decision-theoretic framework (Berger, 1985). Theorem 6 shows that our
proposed method controls both the FPR and FDR at user-specified levels. An alternative
measure to the MDR is the false negative rate (FNR; Genovese and Wasserman, 2002;
Sarkar, 2004). The concepts of FNR and MDR are different, with the MDR being a more
appropriate error measure in the sparse setting; see Meinshausen and Rice (2006); Haupt
et al. (2011); Cai and Sun (2017) for related discussions.

We define the expected sample size (ESS) per unit as a criterion for comparing the
efficiency of different multistage testing methods:

ESS(NNN) = E
(
p−1

∑p
i=1Ni

)
, (1.5)

where NNN = (N1, · · · , Np), with Ni being the sample size [also referred to as the stopping
time (Berger, 1985; Siegmund, 1985), defined formally in Section 2.1] at coordinate i. Let
α and γ be the user-specified FPR and MDR levels. We study the following constrained
optimization problem:

minimize ESS(NNN) subject to FPR(δδδ) ≤ α and MDR(δδδ) ≤ γ. (1.6)

The formulation (1.6) reflects the key role of adaptive sampling, which effectively reduces
the ESS by allowing one to stop sampling early at certain coordinates.

The formulation (1.6) naturally extends the classical sequential testing problem, con-
sidered in Wald (1945) and Siegmund (1985), to the compound decision setting (Robbins,
1951). Specifically, the sequential sparse recovery problem, which involves adaptive sam-
pling at many coordinates simultaneously, can be viewed as a compound decision prob-
lem. Each component problem corresponds to the sequential testing of a single hypothesis
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H0 : µ = 0 vs. H1 : µ 6= 0 based on a data stream. In the seminal work of Wald (1945), the
following constrained optimization problem is studied:

minimize E(N) subject to PH0(Reject) ≤ α′ and PH1(Accept) ≤ γ′. (1.7)

Here N is the stopping time, and α′ and γ′ are pre-specified Type I and Type II error
rates. E(N), which represents the average sampling costs, characterizes the efficiency of a
sequential procedure. The connection between the sparse recovery problem and sequential
testing becomes clear by comparing (1.7) with (1.6).

The sequential probability ratio test (SPRT) is shown to be optimal (Wald, 1945; Sieg-
mund, 1985) for the single sequential testing problem (1.7) in the sense that it has the
smallest E(N) among all sequential procedures at level (α′, γ′). This theory will be ex-
tended to the multiple sequential testing setup in Section 2.1.

1.5 A preview of the proposed algorithm

We formulate the sparse recovery problem as a sequential testing problem with multiple
data streams. A new adaptive testing procedure is developed under a compound decision-
theoretic framework. The proposed procedure, which employs a simultaneous multistage
adaptive ranking and thresholding (SMART) approach, utilizes all information collected
through multiple stages and exploits the compound structure of the decision problem to
pool information across different coordinates. We show that SMART controls the FPR and
MDR at user-specified levels and achieves the information-theoretic lower bounds. SMART
is simple, fast, and capable of handling millions of tests. Numerical studies confirm the
effectiveness of SMART in controlling error rates and in substantially saving study costs.

A schematic illustration of the SMART algorithm is provided in Figure 1. At each stage,
SMART determines two data-driven thresholds, which divide the ordered test statistics
into three types of decisions. The first type identifies non-null cases, forming the subset of
rejections (the red area at the bottom); the second type eliminates null cases, forming the
subset of acceptances (the blue area at the top); and the third type selects coordinates for
further measurements, forming the active set Aj at stage j (the white area in the middle).
The active set Aj shrinks over the sampling process until it becomes empty. The shaded
areas (blue and red) correspond to the savings in study costs.

Figure 1: A schematic illustration of SMART: the blue, red and white areas respectively represent
the subset of acceptances, rejections and indecisions. The active sampling set Aj shrinks over time.
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1.6 Some theoretical insights

We first review the limits for fixed and adaptive designs in the literature and then compare
them with our new limits derived based on adaptive sampling and SMART. Consider a
two-point normal mixture model under a single-stage design:

Xi
i.i.d.∼ (1− πp)N(0, 1) + πpN(µp, σ

2), (1.8)

where πp = p−β, µp =
√

2r log p, and 0 < β < 1, 0 < r < 1; σ2 is unknown. The
fundamental limits for a range of global and simultaneous inference problems have been
derived under this setup (Donoho and Jin, 2004; Cai et al., 2007; Cai and Sun, 2017). Of
particular interest is the classification boundary (Meinshausen and Rice, 2006; Haupt et al.,
2011; Cai and Sun, 2017), which demarcates the possibility of constructing a subset with
both the FPR and MDR tending to zero. Under model (1.8), the classification boundary is a
straight line r = β in the β-r plane for all values of σ > 0. The goal of R∗ ≡ FPR+MDR→ 0
requires that the signal magnitude µp be at least on the order of

√
log p. This establishes

the fundamental limit of sparse recovery for fixed designs.

The rate
√

log p can be substantially improved in the adaptive setting. For example,
Haupt et al. (2011) proposed the distilled sensing (DS) method, which achieves the classi-
fication boundary with much weaker signals. DS is a multistage testing procedure with a
total measurement budget of 2p. It assumes that observations follow a mixture model with
noise distributed as standard normal. At each stage, DS keeps locations with positive obser-
vations and obtains new observations for these locations in the next stage. It was shown in
Haupt et al. (2011) that after k = max{dlog2 log pe, 0}+ 2 steps, DS successfully constructs
a subset with both FPR and MDR tending to zero, provided that µp diverges at an arbitrary
rate in the dimension p. Malloy and Nowak (2014a) further utilizes the KL divergence and
the average number of measurements per unit τ to characterize the boundary. Let s denote
the cardinality of the support. It was shown that under fixed designs, reliable recovery
requires that τ must be at least on the order of log p, whereas under adaptive designs, the
required τ is on the order of log s, where s = |S| is the cardinality of the support of µ.
This reveals the advantage of adaptive designs, noting that log s = (1 − β) log p under the
calibration πp = p−β. The single sequential thresholding method (SST, Malloy and Nowak,
2014a) is optimal in the sense that it achieves the rate of log s asymptotically.

The theory in Malloy and Nowak (2014a) is developed under the stringent family-wise
error rate (FWER) criterion. However, in large-scale testing problems, it is desirable to use a
less stringent error rate, such as the FPR (1.4). We investigate the upper and lower bounds
under the FPR-MDR paradigm and show that this paradigm requires fewer samples to
guarantee that R∗ → 0. The theory complements the rate obtained by Haupt et al. (2011).
SMART only requires a τ of the order log ξ(p), where ξ(p) is a function that diverges to ∞
at an arbitrarily slow rate, improving the rate of log s achieved by SST.

1.7 Related work and our contributions

The error control in multi-stage testing has been studied extensively (Benjamini and Heller,
2007; Victor and Hommel, 2007; Dmitrienko et al., 2007; Goeman and Mansmann, 2008;
Yekutieli, 2008; Liang and Nettleton, 2010; Benjamini and Bogomolov, 2014). However,

7



Wang, Gang and Sun

existing methods are usually designed for different types of applications and cannot be eas-
ily tailored to the problem at hand. The biggest limitation is that existing works focus
only on controlling false positive errors, whereas the sparse recovery problem also requires
the control of missed discoveries. Moreover, the ranking and stopping rules proposed in
previous studies (Zehetmayer et al., 2008; Posch et al., 2009; Sarkar et al., 2013) are subop-
timal, as the data combination methods that rely on p-values do not fully capitalize on the
information provided by different stages and fail to exploit compound thresholding rules.
Furthermore, recent research on sequential testing using SPRT rules (Bartroff and Song,
2013; Bartroff, 2014; Bartroff and Song, 2016) is impractical for large-scale studies due to
computational complexity. The issue of optimality, in particular, has not been addressed
in the aforementioned studies. SMART incorporates several key features that distinguish
it from existing work. First, we aim to control both the FPR and MDR, unlike methods
designed for smaller-scale studies that primarily target the control of the FWER. Second,
our methodology explicitly tackles the uncertainty quantification of statistical decisions.
The adaptability of our proposed framework, which hinges on evaluating the uncertainties
of simultaneous decisions, represents a crucial statistical perspective that is notably absent
in other machine learning approaches.

SMART offers several advantages over existing sparse recovery methods such as DS and
SST. First, both DS and SST employ fixed thresholding rules that are not adaptive to
the patterns in the observations. Additionally, due to their failure to effectively quantify
the uncertainty of decisions at each stage, the theoretical foundations of DS and SST rely
on strong assumptions about the unknown signal strengths. When signals are weak, both
methods fail to control the error rate. In contrast, our algorithm is data-adaptive, allowing
thresholds to vary according to the observed data. This adaptability enables researchers
to gather additional data sequentially and utilize more stages to strengthen the evidence,
ensuring effective control of error rates. Second, the stopping and testing rules in DS and
SST depend solely on observations from the current stage, neglecting valuable data from
prior stages. This limitation undermines efficiency, as illustrated in our numerical studies.
SMART effectively addresses these shortcomings. We provide a detailed comparison with
different methods in Section 6.2.

1.8 Organization of the paper

The rest of this article is organized as follows. Section 2 develops oracle rules for sparse
recovery that control both the FPR and MDR. Section 3 introduces a data-driven SMART
algorithm and discusses its practical implementation. Methodological insights and asymp-
totic theory are presented in Sections 4 and 5, respectively. Connections to existing work
are explored in Section 6. The numerical performance of SMART is demonstrated using
synthetic data (Section 7) and real-world applications (Section 8). Section 9 concludes with
a discussion of future directions. Proofs are included in Section 10, with additional results
available in the Supplementary Material.
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2. Oracle Rules for Sparse Recovery

The sparse recovery problem in the adaptive setting involves the simultaneous testing of p
hypotheses:

H0,i : µi = 0 vs. H1,i : µi 6= 0, 1 ≤ i ≤ p, (2.1)

based on p streams of observations {(Xi1, Xi2, . . .) : 1 ≤ i ≤ p}. This section derives an
oracle procedure (Section 2.1) and the corresponding thresholds (Section 2.2). Additionally,
the data-driven procedure that mimics the oracle rule is developed in Section 3.

2.1 Oracle procedure

Let Xij be the measurement of variable Xi at stage j andXXXj
i = (Xi1, . . . , Xij) the collection

of measurements for Xi up to stage j. A multistage decision procedure involves choosing a
stopping rule and a testing rule for each location. At location i, the stopping rule τττ i consists
of a series of functions τi1(XXX

1
i ), τi2(XXX

2
i ), . . . , where τij takes values in {0, 1}, with 0 and 1

standing for “taking another observation” and “stopping sampling and making a decision,”
respectively. We consider a class of multistage designs where the focus is sequentially
narrowed down, i.e., the active sets satisfy A1 = {1, . . . , p}, and Aj ⊆ Aj−1 for j = 2, 3, . . ..
At every coordinate i ∈ Aj , there are three possible actions: (i) stop sampling and accept
H0,i as true; (ii) stop sampling and claim H0,i is false; and (iii) do not make a decision and
take another observation.

The monotonicity condition on (Aj : j = 1, 2, . . .) is a natural requirement in multi-
stage analysis and plays a crucial role in resource-sensitive scenarios such as drug discovery
and resume screening. In drug discovery, screening steps aim to shortlist a few candi-
dates from thousands or millions, making the monotonicity condition reasonable. In HTS,
promising compounds are selected for costly further testing to confirm their effectiveness.
The resource-sensitive nature of HTS necessitates the avoidance of revisiting unpromising
compounds to save study costs, thus a monotone structure naturally emerges.

We follow the standard notations under the decision-theoretic framework detailed in
Chapter 7 of Berger (1985). The stopping rule τττ i can be equivalently described by the
stopping time Ni = min{n ≥ 1 : τin(XXXn

i ) = 1}, the final stage at which we stop sampling
and make a decision. If we collect one sample per stage, we use the terms sample size
and stopping time interchangeably. The testing rule δi ∈ {0, 1} is applied at the terminal
sampling stage Ni, where δi = 0 (1) indicates that coordinate i is classified as a null (non-
null) case. A multistage decision procedure is therefore denoted as ddd = (NNN,δδδ), where NNN =
(N1, . . . , Np) and δδδ = (δ1, . . . , δp) are the sample sizes and terminal decisions, respectively.
Consider the following test statistic

T i,jOR = P(θi = 0|XXXj
i ). (2.2)

We view T i,jOR as a significance index reflecting our confidence on claiming that H0,i is
true based on all information available at stage j. Let tl and tu be constants satisfying
0 < tl < tu < 1. Consider a class of sequential testing procedures ddd∗(tl, tu) of the form:

stop sampling for unit i at Ni = min{j ≥ 1 : T i,jOR ≤ tl or T i,jOR ≥ tu},
and decide δi = 1 if T i,jOR ≤ tl and δi = 0 if T i,jOR ≥ tu, (2.3)
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where the superscript ∗ indicates that we are considering the idealized case where T i,jOR is
known. Denote by Dα,γ the collection of all sequential decision procedures that simultane-
ously satisfy

(i) FPR(ddd) ≤ α and (ii) MDR(ddd) ≤ γ.

Let f(XXX1
i |θi) be the conditional density function evaluated at XXX1

i given θi. The following
assumption, which is a standard condition in the sequential analysis literature (cf. Berger,
1985; Siegmund, 1985), requires that f(XXX1

i |θi = 0) and f(XXX1
i |θi = 1) differ with some

positive probability. This ensures that the sequential testing procedure will stop within a
finite number of stages almost surely.

Assumption 1 Pθi

(
log

{
f(XXX1

i |θi=1)
f(XXX1

i |θi=0)

}
= 0

)
< 1 for i = 1, · · · , p.

The next theorem derives an oracle sequential testing procedure that provides the opti-
mal solution to the constrained optimization problem (1.6).

Theorem 2 Consider the multistage model (1.1)–(1.3), and a class of sequential testing
rules dddπ(tl, tu) taking the form of (2.3). Denote QOR(tl, tu) and Q̃OR(tl, tu) the FPR and
MDR levels of dddπ(tl, tu), respectively. Then under Assumption 1, we have

(a). QOR(tl, tu) is non-decreasing in tl for a fixed tu, and Q̃OR(tl, tu) is non-increasing in
tu for a fixed tl.

(b). Let 0 < α, γ < 1. Then there exists a pair of oracle thresholds (tlOR, t
u
OR), based on

which we can define the oracle procedure

dddOR ≡ dddπ(tlOR, t
u
OR) (2.4)

such that dddOR is optimal in the sense that (i) FPR(dddOR) ≤ α; (ii) MDR(dddOR) ≤ γ;
and (iii) ESS(dddOR) ≤ ESS(ddd∗) for all ddd∗ ∈ Dα,γ.

Remark 3 The development of a multiple testing procedure consists of two steps: deriving
the optimal ranking statistic and finding a threshold along the ranking. Under the FPR cri-
terion, the optimal ranking statistic is TOR. The work by Heller and Rosset (2021) indicates
that TOR is also optimal under the FDR criterion. More comparisons and discussions of
the FDR and FPR criteria are provided in Heller and Rosset (2021) and Appendix D.

While the optimality theory in Theorem 2 may seem intuitive and naturally aligns
with concepts presented in earlier works by Berger (1985) and Siegmund (1985), its proof
incorporates several novel techniques that are inherently complex and highly nontrivial. The
main goal of Theorem 2 (as well as some later theorems) is to motivate our methodology
and provide insight into the potential merits of the framework. Similar to the theories in
Johari et al. (2022), we have considered the ideal case with known T i,jOR, and the validity
of the theorems does not depend on a specific family of non-null and null distributions.
We develop data-driven procedures in Section 3.2 for practical implementations where the
non-null density function f(XXX1

i |θi = 1), non-null proportion π, and σ2 must be estimated.
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2.2 Approximation of oracle thresholds and its properties

The oracle procedure dddOR is a thresholding rule based on the oracle statistic TOR and the
oracle thresholds tlOR and tuOR. However, Theorem 2 only establishes the existence of tlOR
and tuOR, which remain unknown in practice. In this section, we derive approximations for
tlOR and tuOR by framing the sparse recovery problem as an m-parallel sequential testing
problems. These approximate thresholds are then refined using a compound thresholding
technique and are subsequently utilized in the prototype algorithm presented in Section 3.1.

If we focus on a single location i, then the sequential probability ratio test (SPRT)

(Wald, 1945) is a thresholding rule based on Li,j =
f(XXXj

i |θi=1)

f(XXXj
i |θi=0)

and of the form

if logLi,j ≤ a, stop sampling and decide H0,i is true;
if logLi,j ≥ b, stop sampling and decide H0,i is false;
if a < logLi,j < b, take another observation.

Let α′ = PH0,i(Reject H0,i) and γ′ = PH1,i(Accept H0,i) be prespecified Type I and Type II
error rates. Applying Wald’s identity, the thresholds a and b can be approximated as:

ã = log
γ′

1− α′
and b̃ = log

1− γ′

α′
. (2.5)

The oracle statistic

T i,jOR := P(θi = 0|XXXj
i ) =

(1− π)f(XXXj
i |θi = 0)

(1− π)f(XXXj
i |θi = 0) + πf(XXXj

i |θi = 1)
=

1− π)

(1− π) + πLi,j
(2.6)

is monotone in Li,j . In multiple hypothesis setting, we can view dddOR = dddπ(tlOR, t
u
OR) as

m parallel SPRTs. The problem then boils down to how to obtain approximate formulas
for the oracle thresholds tlOR and tuOR given pre-specified FPR and MDR levels (α, γ). In
our derivation, we utilize classical techniques [cf. Section 7.5.2 in Berger (1985)], and the
relationships between the FPR and MDR levels (α, γ) and the Type I and Type II error
rates (α′, γ′) are exploited. The key steps in the derivation are provided in Appendix A.
Assume that π < 1/2 and α < 1/2, then approximated thresholds are given by

t̃lOR = α and t̃uOR =
1− π

πγ + 1− π
. (2.7)

The next theorem shows that the pair (2.7) is valid for FPR and MDR control.

Proposition 4 Consider the multistage model (1.1)–(1.3). Denote d̃ddOR = dddπ(t̃lOR, t̃
u
OR)

the thresholding procedure that operates according to (2.3) with upper and lower thresholds
given by (2.7). Then we have

FPR(d̃ddOR) ≤ α, FDR(d̃ddOR) ≤ α and MDR(d̃ddOR) ≤ γ.

Remark 5 In Section 4, we discuss the reasons for not recommending the use of d̃ddOR in
practice, despite its validated efficacy for error rate control, as established in Proposition
4. Specifically, we highlight the overshooting issue associated with d̃ddOR in Section 4.1. To
mitigate this issue, the thresholds derived from d̃ddOR will be refined using a compound thresh-
olding technique, which is detailed shortly in Algorithm 1 in Section 3.1. This refinement
is shown to significantly improve statistical power.
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3. Sparse Recovery via SMART

This section introduces the SMART procedure utilizing compound thresholding to address
the overshooting issue and enhance statistical power. To facilitate understanding, we present
the core concepts of the algorithm upfront, allowing readers to grasp the essential ideas
without delving into complex theoretical considerations. Technical details are provided in
Section 4 for those interested in a more in-depth exploration.

3.1 A prototype algorithm under the oracle setup

This section begins by introducing a prototype algorithm under the oracle setup, which
assumes knowledge of both π and g. Subsequently, we develop a data-driven procedure
that can be implemented in real-world scenarios where π and g are unknown.

The operation of SMART can be described as follows. At stage j, we first calculate the
oracle statistics in the active set Aj and sort them from smallest to largest. Then we carry

out two thresholding procedures along the ranking: part (a) chooses a lower cutoff t̂l,jOR with

selected locations claimed as signals; part (b) chooses an upper cutoff t̂u,jOR with selected
locations claimed as nulls. We stop sampling on locations where definitive decisions are
made, and take new observations on remaining locations for further investigation. The above
steps will be iterated until convergence. The detailed operation is described in Algorithm
1.

Algorithm 1 A Prototype Algorithm

Input Target FPR level α, target MDR level γ, XXXj
i for i = 1, . . . , p, j = 1, . . ., non null

proportion π, conditional densities f(XXXj
i |θi) for θi = 0/1, j = 1, . . .

Preliminary Step Define the lower and upper thresholds t̃lOR = α and t̃uOR = 1−π
πγ+1−π .

Let Aj be the active set at stage j, j = 1, 2, · · · .
Iterate Steps 1 to 3 until Aj = ∅.
Step 1 (Ranking). For all i ∈ Aj , compute T i,jOR using (2.6) and sort them in ascending
order
T
(1),j
OR ≤ T (2),j

OR ≤ · · · ≤ T (kj),j
OR , where kj = Card(Aj).

Step 2 (Thresholding).

(a) (Signal discovery). Let ksj = max{r : r−1
∑r

i=1 T
(i),j
OR ≤ t̃lOR} and t̂l,jOR = T

(ksj ),j

OR .

Define Ssj = {i ∈ Aj : T i,jOR ≤ t̂
l,j
OR}. For all i ∈ Ssj , stop sampling and let δi = 1.

(b) (Noise elimination). Let kej = max{r : r−1
∑r−1

i=0 (T
(kj−i),j
OR ) ≥ t̃uOR} and t̂u,jOR =

T
(kj−kej+1),j

OR .

Define Sej = {i ∈ Aj : T i,jOR ≥ t̂
u,j
OR}. For all i ∈ Sej , stop sampling and let δi = 0.

Step 3 (Updating). Let Aj+1 = Aj \ (Ssj ∪ Sej ). Take new observations on Aj+1.
Output Estimated non-null positions {i : δi = 1}.

The SMART algorithm uses stage-wise thresholds t̂l,jOR and t̂u,jOR. The operation of the

algorithm implies that we always have t̂l,jOR ≥ t̃lOR and t̂u,jOR ≤ t̃uOR for all j. Hence SMART

always uses fewer samples than d̃ddOR. The next theorem shows that SMART is valid for
FPR and MDR control.

12
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Theorem 6 Denote dddSM the SMART procedure described in Algorithm 1 with pre-specified
FPR and MDR levels (α, γ). Then

FPR(dddSM ) ≤ α, FDR(dddSM) ≤ α and MDR(dddSM) ≤ γ.

3.2 Numerical implementation of SMART

In practice the oracle statistic TOR is unknown and needs to be estimated from data. This
subsection develops an algorithm for computing TOR based the model in introduced in
Section 1.1, which is summarized in Algorithm 2. Note that the model in Section 1.1 can
be equivalently written as

µi ∼ (1− π)δ0(·) + πg(·), Xij ∼ N(µi, σ
2), i = 1, . . . , p, j = 1, 2, . . . (3.8)

In this subsection we assume g is mixture of point masses g(·) =
∑m1

s=1wsδηs(·). Conse-

quently, the oracle statistics T i,jOR can be written as

T i,jOR := P(θi = 0|XXXj
i ) =

(1− π)
∏j
t=1 φ(xit, 0, σ

2)

(1− π)
∏j
t=1 φ(xit, 0, σ2) + π

∑m1
s=1ws

∏j
t=1 φ(xit, ηs, σ2)

, (3.9)

where φ(·, µ, σ2) is the density function of N(µ, σ2).

In the preliminary estimation step, we propose to use the method in Jin and Cai (2007)
to estimate the unknown mixing proportion π. Next, the estimation of (1 − π)δ0 + πg(·),
referred to as the deconvolution problem, has been studied intensively in the Empirical
Bayes literature (Koenker and Gu (2017), Efron (2016), Jiang and Zhang (2009)). The
GLmix function in the R package REBayes, which is employed in our algorithm, is shown
to deliver excellent performance in practice. GLmix first discretizes (1 − π)δ0 + πg(·) as
a mixture of point masses and then assigns weights to each point mass to approximate
(1− π)δ0 + πg(·). To get the final estimate of g, we first calculate the minimum detectable
signal strength using the classification boundary in Cai et al. (2011), i.e. calibrate β̂ = − log π̂

log p

and set Aκ = max{
√

2β̂ log p, κ}, where κ is a pre-specified constant (empirically, the choice
of κ = 1.5 works well in practice and has been used across all simulations). Then we filter
out the locations with absolute signal amplitudes smaller than Aκ. Finally, we update ĝ by
re-weighting the remaining locations so that the sum of point mass probabilities equals 1.
In later stages j = 2, 3, · · · , we sequentially update T̂ i,jOR using ĝ and π̂ that are estimated
based on data collected at stage 1.

The asymptotic properties of π̂ and ĝ(·) have been investigated in Jin and Cai (2007)
and Saha and Guntuboyina (2020), respectively. The numerical experiments in Jin and
Cai (2007) and Koenker and Mizera (2014) suggest these estimators perform quite well in
practice. Together with the next proposition, the data-driven SMART provides a reasonable
and sensible algorithm for the sparse recovery problem.

Proposition 7 Suppose g(·) =
∑m1

s=1wsδηs(·) is a finite mixture of point masses, with
supp(g)∩ [−a, a] = ∅ for some a > 0 and ws > ε for all s and some fixed ε. Further assume
that ĝ(·) =

∑m2
s=1 ŵsδη̂s(·) with ŵs > ε for all s, and for every ηs there exist η̂k such that

13
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|ηs− η̂k| < a/2− ε. Let T i,jOR be as defined in (3.9) and T̂ i,jOR as defined in Algorithm 2, then
for any α, there exist Kα such that

P
{
∀j > Kα, |T i,jOR − T̂

i,j
OR| < e−cj

}
> 1− α,

where c > 0 is a constant depends on α, π, π̂, σ, σ̂, a.

Proposition 7 establishes, with high probability, that T̂ i,jOR converges to 0 or 1 at a rate of
O(e−cj). As a result, the number of iterations is at most log p. Therefore, the computational
complexity for Algorithm 2 does not exceed O(p(log p)2). The proof of Proposition 7,
provided in Section 10, employs techniques from Howard et al. (2021), which establish a
time-uniform confidence sequence for the sample mean of subgaussian distributions. Our
work builds upon this result, leveraging (a) the one-to-one correspondence between the
oracle statistic T i,jOR and the likelihood ratio Li,j , and (b) the fact that, given ĝ and σ̂, the
likelihood ratio is a function of the sample mean. If the noise does not follow a Gaussian
distribution but some subgaussian distribution Φσ instead, then we can replace the Gaussian
density function φ(·, ·, σ) in Algorithm 2 with ϕ(·, ·, σ), where ϕ is the density function of
Φσ, and Proposition 7 remains valid.

Algorithm 2 The data-driven SMART algorithm.

Input Target FPR & MDR levels (α, γ), sequentially collected data
The preliminary estimation step (j = 1):
Step 1 Estimate π and σ2. Denote the estimated value as π̂ and σ̂2 respectively.
Step 2 Use GLmix in R package REBayes to estimate ψ(µ) = (1− π)δ0 + πg(·).

Step 3 Calibrate β̂ = − log π̂
log p , then set A1.5 = max{

√
2β̂ log p, 1.5}.

Step 4 Define g̃(µ) = ψ(µ)I(|µ| ≥ A1.5). Set ĝ(µ) =
g̃(µ)∫∞

−∞ g̃(µ)dµ
=
∑m

s=1wsδηs(·).

Step 5 Define the lower and upper thresholds t̃lOR = α and t̃uOR =
1− π̂

π̂γ + 1− π̂
.

The SMART procedure (j > 1): Iterate Step 6 to Step 9 until Aj = ∅.

Step 6 (Estimation). Compute T̂ i,jOR :=
(1− π̂)

∏j
t=1 φ(xit, 0, σ̂

2)

(1− π̂)
∏j
t=1 φ(xit, 0, σ̂2) + π̂

∏j
t=1 φ(xit, µ̂

j
i , σ̂

2)
,

where µ̂ji :=
∑m

s=1
ws

∏j
t=1 φ(xit,ηs,σ̂

2)∑m
k=1 wk

∏j
t=1 φ(xit,ηk,σ̂

2)
ηs and φ(xit, ηs, σ̂

2) = 1√
2πσ̂

exp
(
− (xit−ηs)2

2σ̂2

)
.

Step 7 (Thresholding).

(a) (Signal discovery) Let kdj = max{r : r−1
∑r

i=1 T̂
(i),j
OR ≤ t̃lOR} and t̂l,jOR = T̂

(kdj ),j

OR .

Define Sdj = {i ∈ Aj : T̂ i,jOR ≤ T̂
(kdj ),j

OR }. For all i ∈ Sdj , stop sampling and let δi = 1.

(b) (Noise elimination) Let kej = max{r : 1
r

∑r
i=1 T̂

(kj−i),j
OR ≥ t̃uOR} and t̂u,jOR = T̂

(kj−kej+1),j

OR .

Define Sej = {i ∈ Aj : T̂ i,jOR ≥ T̂
(kej ),j

OR }. For all i ∈ Sej , stop sampling and let δi = 0.

Step 8 (Updating). Let Aj+1 = Aj\(Sdj
⋃
Sej ). Take new observations on Aj+1.

Output Estimated non-null locations {i : δi = 1}.
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Remark 8 We have assumed that g(·) is a mixture of point masses. This assumption is
mild, as a mixture of point masses is sufficiently complex to represent the underlying process
that generates our observed data. The classical Carathéodory theorem establishes that the
optimal Ĝ must be atomic, which is a discrete distribution with fewer than n atoms. The
assumption that supp(g) ∩ [−a, a] = ∅ for some a > 0 is reasonable, since the difference
between the means of the signal and noise must exceed a certain threshold for the problem
to be meaningful. Additionally, we assume that ĝ is a finite mixture of point masses, which
is a standard assumption in the deconvolution literature (Efron, 2016; Koenker and Mizera,
2014). The support of ĝ, represented by {η̂1, . . . , η̂m2}, is typically a pre-specified grid on
the real line. If a lower bound a is known, a sufficiently dense grid can be chosen in
[minXi1,maxXi1]\(−ã, ã) such that our condition is satisfied.

Remark 9 Developing a consistent algorithm for estimating g while fully exploiting the
information from all samples is a non-trivial question in itself and requires further investi-
gation. Such a method could be impractical for several reasons. Firstly, estimating g requires
solving a complicated optimization problem that can be computationally intensive. Updating
g at each stage would result in an algorithm that is prohibitively slow. Secondly, existing
deconvolution techniques (Koenker and Mizera, 2014; Efron, 2016; Jiang and Zhang, 2009)
require the mean parameters µi to be independent and identically distributed (i.i.d.) from g.
However, once a location is identified as signal or noise, the SMART algorithm no longer
samples from that location. Consequently, the samples collected in subsequent stages only
reflect a biased portion of g.

4. The Overshooting Problem and Compound Thresholding

In the thresholding step, SMART determines the lower and upper cutoffs using the moving
averages of selected oracle statistics. We refer to SMART as a compound thresholding
procedure because its stage-wise cutoffs, t̂l,jOR and t̂u,jOR, are jointly derived from data across

multiple locations. In contrast, we classify d̃ddOR, as defined in Theorem 4, as a simple
thresholding rule since the decision at location i relies solely on its own data. A key finding
from Robbins (1951) demonstrates that compound rules generally outperform simple rules,
even when observations across different units are independent. Additionally, in the context
of multiple testing, Sun and Cai (2007) showed that pooling information from independent
tests leads to more powerful FDR procedures. In light of these results, this section elucidates
why SMART offers advantages over d̃ddOR.

4.1 The overshooting problem

The approximations used in Equation (2.7) result in conservative FPR and MDR levels.
This is primarily due to a phenomenon known as “overshooting.” Specifically, the SPRTs
can be conceptualized as a Brownian motion with an average step size determined by
Eθi [log{f1(Xik)/f0(Xik)}]. Figure 2 displays sample paths for units with both large and
small step sizes, illustrating how SPRT statistics fluctuate under the null and alternative
hypotheses. The SPRT reaches a decision when logLij exits the interval (a, b). To derive
t̃lOR and t̃uOR, we have employed Wald’s approximation, assuming that the two boundaries
are precisely hit by logLij . However, this assumption is highly idealized, as evidenced
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Figure 2: The sample paths for two SPRTs, with the null being N(0, 1), and alternative being
N(1, 1) (dashed lines, smalle steps) and N(2, 1) (solid lines, large steps), respectively. Lij change
drastically with large steps, accentuating the overshooting issue.

by the sample paths in Figure 2, where the boundaries are seldom hit. This tendency
toward overshooting often leads to an overestimation of true error probabilities and results
in conservative error control, as outlined by Theorem 12 in Section 7.5.3 of Berger (1985).
Our simulations show that the FPR of SPRTs based on Wald’s approximations can be
as low as 0.01 when the nominal FPR level is 0.05. Such conservativeness can lead to a
substantial loss of efficiency, particularly in high-dimensional settings where most locations
are only tested once or twice (i.e., when the SPRTs exhibit “large step sizes”). These
concerns motivated us to develop new methodologies in Section 3.

4.2 Compound thresholding and knapsack problems

By adopting a compound thresholding scheme and pooling information across parallel
SPRTs, SMART overcomes the overshoot problem of individual SPRTs. To illustrate the
core idea, consider the following toy example.

Example 4.1 Let the FDR level α = 0.05. Suppose at stage j the ordered TOR values are
{0.01, 0.055, 0.07, 0.10, · · · }. If we use the simple thresholding rule d̃ddOR with t̃lOR = α = 0.05,

then we can reject one hypothesis with T
(1),j
OR = 0.01; the gap between T

(1),j
OR and α is 0.04.

By contrast, the moving average of the top three statistics is 0.045 < α; hence SMART
rejects three hypotheses. The gap between the moving average and the threshold is only
0.005. Thus the boundary α can be approximated more precisely by the moving average.
In large-scale testing problems, the gap is almost negligible, implying very accurate error
rate control; this has been corroborated by our simulation studies.
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We provide further insights by viewing the decision process of SMART as a 0-1 knapsack
problem with varying FPR capacities (Gang et al., 2023). Let k∗j = max{1 ≤ i ≤ m :

T
(i),j
OR ≤ α}. Then the discovery step in Algorithm 1 can be written as∑ksj

i=k∗j+1

(
T
(i),j
OR − α

)
≤
∑k∗j

i=1

(
α− T (i),j

OR

)
. (4.1)

If we view the nominal FPR level α as the initial capacity in a knapsack problem, then
Equation 4.1 shows that every time we reject a hypothesis with T i,jOR < α, we will increase

the capacity of the knapsack, enabling one to reject hypotheses with T i,jOR > α. Hence the
approximation errors (overshooting) can be effectively mitigated by aggregating the gaps
between TOR and α to increase the capacity and make more discoveries.

4.3 Connection to compound sequential decision theory

The sparse recovery problem (1.6) is closely related to compound sequential decision theory.
Suppose we are interested in classifying θi based on observed data. Consider the following
loss function:

Lλ1,λ2(θθθ,ddd) = λ1 {
∑p

i=1(1− θi)δi}+ λ2 {
∑p

i=1 θi(1− δi)}+
∑p

i=1Ni, (4.2)

where λ1 and λ2 are the relative costs. The sum of the first two terms in (4.2) corresponds
to the total decision errors, and the last term gives the total sampling costs. The optimal
solution to this weighted classification problem is the Bayes sequential procedure dddπ that
minimizes the expected loss

E{Lλ1,λ2(θθθ,dddπ)} = infdddE{Lλ1,λ2(θθθ,ddd)}. (4.3)

Our oracle procedure in Theorem 2 is inspired by a classical result in Berger (1985) which
states that dddπ is a thresholding rule based on T i,jOR. The intuition is that with appropriately
selected tuning parameters λ1 and λ2 the FPR/MDR problem in (1.6) is equivalent to
the problem in (4.2). A proof that the FDR control problem is equivalent to a weighted
classification problem can be found in Sun and Cai (2007).

Remark 10 As pointed out by an insightful reviewer, Ouhamma et al. (2021) considered
the following loss function

LT =

p∑
i=1

aiI(θi 6= δi), (4.4)

where the subscript T denotes the total budget. The loss (4.4) is similar to (4.2) in that
the weight ai can be selected to reflect the relative severity of making a false positive and
a false negative decision. However, (4.4) is designed for the “fixed budget” regime, which
aims to minimize the total number of errors while adhering to a budget constraint of T .
Under such a constraint, it may be infeasible to achieve the objective of simultaneously con-
trolling both the FPR and MDR at user-specified levels. In contrast, the loss function (4.2)
considers the trade-off between the total sampling cost

∑p
i=1Ni and the total decision errors

λ1 {
∑p

i=1(1− θi)δi}+ λ2 {
∑p

i=1 θi(1− δi)}. This explicit trade-off is crucial in deriving the
SMART algorithm, and it has not been reflected in Equation (4.4).
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To gain more insights on the overall structure of the problem, we rewrite (4.2) as the
sum of stage-wise losses:

Lλ1,λ2(θθθ,ddd) =

N∑
j=1

∑
i∈Sj

{λ1(1− θi)δi + λ2θi(1− δi)}+ Card(Aj)

 , (4.5)

where N = max{Ni : 1 ≤ i ≤ p} is the total number of stages and Sj = {i : Ni = j} is
the subset of coordinates at which we stop sampling and make terminal decisions at stage
j; the remaining locations will become the active set for the next stage Aj+1 = Aj \ Sj ,
on which new observations are taken. We then proceed to make further decisions on Aj+1.
The process will be continued until the active set becomes empty. This view from the
simultaneous testing perspective motivates us to employ the idea of ranking and thresholding
in designing the SMART procedure in Algorithm 1. Ranking and selection has been widely
used in the multiple testing literature. For example, the Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995) first orders all p-values from the smallest to largest, and
then uses a step-up method to choose a cutoff along the p-value ranking.

Remark 11 We mention a few important distinctions between the methodology presented
by Sun and Cai (2007) and our adaptation. Firstly, while Sun and Cai’s focus is on control-
ling the FDR, the objective of our SMART algorithm is signal recovery. Specifically, Sun
and Cai (2007) aims to maximize the power subject to constraints on the FDR, whereas
SMART aims to minimize the expected sample sizes (ESS) subject to constraints on both
the FPR and MDR. Secondly, SMART is a multi-stage method that is more intricate than
Sun and Cai’s one-stage approach. While Sun and Cai’ method only conducts signal selec-
tion, SMART involves both noise elimination and signal selection. Finally, the optimality
theories developed in Sun and Cai (2007) and our paper differ substantially. Sun and Cai
(2007) demonstrated that their procedure has the largest power asymptotically amongst all
FDR procedures at the nominal level α for static data. However, in the sequential setting
with dynamic data streams, our primary focus is to optimize sampling efficiency, measured
by ESS, subject to the FPR and MDR constraints. This has necessitated the development
of new techniques for deriving a new optimality theory, which presents significantly greater
theoretical challenges than those encountered by Sun and Cai (2007).

5. Asymptotic Bounds and Optimality of SMART

This section discusses the notion of fundamental limits in sparse inference for both fixed
and adaptive settings. The discussion serves two purposes. First, since the limits reflect the
challenges of support recovery under different conditions, they demonstrate the advantages
of using adaptive designs over fixed designs. Second, these limits provide an optimality
benchmark for what can be achieved asymptotically by any inference procedure in the
form of a lower bound; thus, we can establish the optimality of an inference procedure by
demonstrating its capability of achieving this limit.

5.1 The fundamental limits in adaptive designs

In signal recovery with thousands, and even millions, of variables, we assume that p → ∞
in the asymptotic analysis, where the FPR and MDR levels are denoted as αp and γp.

18



SMART

The basic setup assumes that the null and alternative distributions F0 and F1 are identical
across all locations. Let G and H be two distributions with corresponding densities g and
h. Define

D(G‖H) =

∫ ∞
−∞

g(x) log

(
g(x)

h(x)

)
dx.

Consider a general multistage decision procedure ddd. The performance of ddd is characterized
by its total risk

R∗(ddd) = FPR(ddd) + MDR(ddd).

Recall ESS(ddd) is the average number of measurements allocated to each unit. Intuitively,
D(F0‖F1) and ESS(ddd) together characterize the possibility of constructing a ddd such that
R∗(ddd) → 0. The fundamental limit described in the next theorem gives the minimum
condition under which the goal R∗(ddd)→ 0 can be achieved.

Theorem 12 Fundamental limits (lower bound). Let ddd be a multistage adaptive test-
ing rule. Assume that π < 1

2 . If

τ ≡ ESS(ddd) ≤ log(1/4η)

max{D(F0‖F1), D(F1‖F0)}
,

then we must have R∗(ddd) ≥ η for all η > 0.

Remark 13 The restrictive model with identical F0 and F1 is only for theoretical analysis,
while our proposed SMART procedure works under the more general model given by equations
(1.1)-(1.3), which allows F1i to vary across testing units.

In asymptotic analyses we typically take an η that converges to 0 slowly. Theorem 12
shows that any adaptive procedure with total risk tending to zero must at least have an
ESS (or the average sample size per dimension) in the order of log{(4η)−1}. This limit can
be used as a theoretical measure to assess the efficiency of a multistage procedure.

Theorem 12 is closely related to Theorem 1 in Malloy and Nowak (2014a). Let S =
{i : θi = 1} and Ŝ = {i : δ = 1}. Denote m the average number of samples per index and
Pe = P(S 6= Ŝ). With these definitions in place, we present below a reformulation of the
theory in Malloy and Nowak (2014a) using our notation system.

Theorem 1 in Malloy and Nowak (2014a). Any uniform coordinate-wise sequential

thresholding procedure with m ≤
log s+ log( 1

4δ )

max{D(F0‖F1), D(F1‖F0)}
must have Pe ≥ 1− e−δ ≈ δ.

This fundamental limit for signal recovery was established under the FWER criterion,
which can be too conservative for large-scale testing problems. Our Theorem 14 introduces
a more appropriate framework for modern data applications. Specifically, our extension is
based on a new statistic and a new criterion, resulting in a novel bound that accurately
reflects the potential of reliable signal recovery at a reduced sampling cost, under the less
conservative FPR and MDR paradigm.
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Denote dddSM = (NNNSM , δδδSM ) the SMART procedure described in Algorithm 1. As we
proceed, we need the following assumption that is essentially equivalent to Condition (8) in
Malloy and Nowak (2014a):

E(T i,Ni

OR |T
i,Ni

OR > tu) ≤ tu
(1− tu)e−C1 + tu

, (5.1)

E(T i,Ni

OR |T
i,Ni

OR < tl) ≥
tl

(1− tl)eC2 + tl
(5.2)

for all possible thresholds tl < tu. The condition is satisfied when logLi,1 follows a bounded
distribution such as Gaussian and exponential distributions. A more detailed discussion on
this issue can be found in Ghosh (1960). The following theorem derives the upper bound.

Theorem 14 Asymptotic optimality (Upper bound). Consider the SMART proce-
dure described in Algorithm 1 with lower and upper thresholds

t̃lOR =
1

ξ(p)1+ε
and t̃uOR =

(1− π)ξ(p)1+ε

π + (1− π)ξ(p)1+ε
,

where ε > 0 is an arbitrarily small constant and ξ(p) is a function of p that grows to
infinity at an arbitrarily slow rate. Then under (5.1)-(5.2), the SMART procedure satisfies
limp→∞R

∗(δδδSM ) = 0 and

lim sup
p→∞

(
ESS(NNNSM )− (1 + ε) log ξ(p)

min{D(F0‖F1), D(F1‖F0)}

)
≤ 0.

Consider the asymptotic regime presented in Model (1.8), where F0 = N(0, 1), F1 =
N(µp, σ

2), πp = p−β and µp =
√

2r log p. Some calculations reveal that

D(F0‖F1) = log σ +
1 + µ2p

2σ2
− 1

2
and D(F1‖F0) = − log σ +

σ2 + µ2p
2

− 1

2
,

both of which are of order µ2p. Theorem 14 shows that SMART is capable of achieving the
limit given in Theorem 12 up to a constant multiple. If we take η = 1/ξ(p) with ξ(p)→∞
slowly, then the rates in Theorems 12 and 14 would match. Theorems 12 and 14 together
show that SMART provides a good solution to Problem (1.6) under the asymptotic setup.

Remark 15 Theorem 12 is a necessary intermediate step for establishing the optimality of
SMART. The proofs of Theorems 12 and 14 adopt the theoretical framework in Malloy and
Nowak (2014a) and mirror their approach. Malloy and Nowak (2014a) showed that when
DS or SST are considered, the minimum condition under which R∗(ddd)→ 0 requires the ESS
per unit to be of the order of log s, where s is the number of signals. In the asymptotic setup
where s → ∞ as p → ∞, the result from Malloy and Nowak (2014a) effectively imposes a
lower bound on the rate of the required ESS necessary for R∗(ddd) → 0. Our theory shows
that, when the goal is to control FPR and MDR, it is possible to achieve R∗(ddd) → 0 with
the ESS being of the order of ξ(p), which is allowed to converge to infinity at an arbitrarily
slow rate. This rate can be, of course, slower than log s. Our theory is corroborated by
numerical results that demonstrate the efficiency gain of SMART over DS and SST under
the FPR-MDR paradigm, characterized by the ESS per unit, in many settings.
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6. Connection to Existing Works

In this section we compare SMART with existing works on sequential analysis.

6.1 Comparison with distilled sensing and single sequential thresholding

The distilled sensing (DS, Haupt et al. (2011)) and single sequential thresholding (SST,
Malloy and Nowak (2014a)) methods provide efficient adaptive sampling schemes for sparse
recovery. Both works consider the following setup:

Xij = µi + γ
−1/2
ij εij , i = 1, . . . , p, j = 1, 2, . . . ,

where γij may be conceptualized as the “sample size” collected at location i stage j. In
the setting of our paper, γij = 0 or 1, where γij = 0 indicates that no observation is
collected at (i, j). Both DS and SST aim to recover the support under the budget constraint∑n

j=1

∑p
i=1 γij ≤ R(p), where R(p) is an increasing function of p that represents the total

measurement budget. A prototype DS algorithm operates as follows: it starts with the
full set A1 = {1, · · · , p}, then performs k stages of distillation, where k is determined by
a pre-specified R(p). At stage j, xij = µi + εij is observed and the active set is updated
as Aj+1 ← {i ∈ Aj : xij > 0}. This simple operation indicates that only locations with
positive observations are kept. The DS algorithm outputs Ak as the final “discovery set”.
If the signals are sparse, then each stage eliminates about half of the null locations. The
operation of SST is similar: at each step the procedure takes R(p)/(2p) samples from each
active location. The summary statistic at location j is obtained as the sum of R(p)/(2p)
observations. If the sum is less than zero, then no observation will be collected for that
coordinate in subsequent passes. In both DS and SST, the observations from previous
stages are abandoned and the compound structure of the problem is ignored, which leads
to efficiency loss.

SMART employs an adaptive sampling strategy that is equipped with a simultaneous
inference framework to control user-specified error rates. It improves DS and SST in several
ways. First, as opposed to DS and SST, which use a fixed thresholding rule I(xij > 0) at
all units and through all stages, SMART uses data-driven thresholds that are adaptive to
both data and pre-specified FPR and MDR levels. Second, the sampling and inference rules
in DS and SST only use observations at the current stage. By contrast, the building block
of SMART is T i,jOR, which uses all observations collected up to the current stage. This can
greatly increase the signal to noise ratio and lead to more powerful testing and stopping
rules. Third, SMART uses the powerful compound thresholding idea to exploit the multiple
hypothesis structure, which can greatly improve the accuracy of inference and lead to more
precise error rates control. Finally, DS and SST only have a stopping rule to eliminate
null locations. Intuitively, such a scheme is inefficient as one should also stop sampling at
locations where the evidence against the null is extremely strong. The proposed scheme
in Step 2 of SMART involves two algorithms that can simultaneously identify signals and
eliminate noise. In other words, SMART stops sampling once a definitive decision (δi = 0
or δi = 1) is reached; this more flexible operation is desirable and would further save study
budgets.
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6.2 Comparison with Bartroff and Song (2013)

We provide a description of the sequential procedure by (Bartroff and Song, 2013), denoted
BS, and contrast it with the SMART algorithm. As the BS procedure is a bit complicated,
we only discuss high level ideas and omit some technical details below.

Let Λij denote the test statistic for coordinate i at stage j, 1 ≤ i ≤ p, j = 1, 2, · · · . BS
first assigns a sequence of critical values

Ai1 ≤ Ai2 ≤ . . . ≤ Aip ≤ Bi
p ≤ Bi

p−1 ≤ . . . ≤ Bi
1 (6.3)

to each location i. Then the BS procedure conducts simultaneous tests at all coordinates
in a sequential manner. It stops sampling until Λij /∈ (Ai1, B

i
s) or Λij /∈ (Ais, B

i
1); a re-

jection/acceptance decision is made if some Λij crosses a certain critical value: if Λji /∈
(Aj1, B

j
s)[or Λji /∈ (Ajs, B

j
1)], i.e. Λji crosses Bj

s [or Ajs] first, then the null hypothesis is rejected
[or accepted]. The sequence of critical values Ai1 ≤ Ai2 ≤ . . . ≤ Aip ≤ Bi

p ≤ Bi
p−1 ≤ . . . ≤ Bi

1

is assigned in such a way so that the decision rule describe above controls both Type I
and Type II error probabilities. Bartroff and Song (2013) recommends using Monte Carlo
simulation for computing the sequence of critical values.

Bartroff and Song (2013) employ a strategy that combines several techniques such as (a)
the thresholds in the step-up procedure by Benjamini-Hochberg, (b) sequential (or group
sequential) MC sampling methods of Gaussian data, and (c) the utilization of limiting
distributions of the signed roots of complicated equations, for computing these critical
values. It turns out that the computation of the sequence (6.3) can be quite complicated
and intensive. As the computational burden is in the order of O(p3), the simulation study
in Bartroff and Song (2013) only considers p = 20 data streams.

In contrast, SMART is built upon the compound decision theory and local false discovery
rate (Efron, 2001; Sun and Cai, 2007) ideas. Its operation is fundamentally different from
existing SPRTs, and is particularly suitable for large-scale testing problems. The thresholds
can be computed quickly using a simple step-up procedure that employs elegant ideas
similar to those in Sun and Cai (2007). This step-up algorithm, which involves ranking and
thresholding, has computational complexity of O(p log(p)). Hence SMART is capable of
handling millions of data streams. The thresholds lead to effective error rates control and
substantially outperform competing methods in expected sample size (power).

6.3 Connection to e-values

In various statistical applications, e-variables (Shafer, 2021; Wang and Ramdas, 2022) natu-
rally arise as sequential likelihood ratios under the null: Li,j = f(XXXj

i |θi = 1)/f(XXXj
i |θi = 0).

One potential solution to our problem is to incorporate e-variables into sequential testing
by using the e-BH procedure (Wang and Ramdas, 2022). However, this approach comes
with limitations that require further investigation in future research. Firstly, the power of
e-BH may be significantly lower than that of the SMART approach, which is likely due to
the robustness of e-BH, which remains valid under arbitrary dependence. Secondly, e-BH
only controls the FDR, while the signal recovery problem requires the control of both the
FPR and MDR, with the latter being an unresolved issue under the e-value framework.
Lastly, theoretical bounds on signal recovery using e-values require further exploration.
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6.4 Connection to multi-armed bandits

We discuss a related line of research on multi-armed bandits. Both multi-armed bandits
and SMART algorithms aim to efficiently identify a small number of arms/units from many
potential candidates. The multi-arm bandits problem has many variations that require
different approaches. For instance, should the focus be on “exploring” or “exploiting”? If
the goal is to “explore,” should the emphasis be on finding the top M arms or identifying
arms with mean parameters that exceed some threshold? Is the agent given a fixed budget
beforehand, or is the aim to identify “good” arms with high probability? While these prob-
lems may seem similar, each has its unique nuances. Adapting solutions from one problem
to another is a highly non-trivial task. Consequently, we find that solutions developed for
fixed budget settings or identifying the top M arms are unsuitable for our problem without
significant modification. In what follows, we discuss several important differences between
our work and existing literature on the problem.

First, we have tackled the problem from a statistical perspective; the focus has been on
the risk quantification of sequential decisions, and particularly the control of the error rates
in multiple hypothesis testing. By contrast, the multi-armed bandits formulation solves the
problem from an operational perspective. For example, the algorithms in Degenne et al.
(2019); Chen and Li (2015); Karnin et al. (2013); Mason et al. (2020); Katz-Samuels and
Jamieson (2020) focus on identifying the top M arms, while the associated error rates or
statistical risks in sequential decisions are not investigated along the way. In Hong et al.
(2022) the objective is to minimize regret by emphasizing “exploitation”. Our goal is to
efficiently identify non-null locations while providing theoretical guarantees on both the
FPR and MDR control. It is unclear how the algorithm and theory presented in Hong et al.
(2022) can be adapted to address our specific problem. Moreover, under the fixed budget
regime (Malloy and Nowak (2014a); Locatelli et al. (2016); Mukherjee et al. (2017)), an
upper bound on the number of samples is pre-specified, and the theoretical analyses focus
on whether it is possible to develop an algorithm that can identify arms above a certain
threshold effectively. In contrast, we adopt the setup in sequential hypothesis testing, where
the sampling process continues until definitive decisions are reached at all locations. An
important feature of our algorithm is that the error rates (FPR and FNR) are guaranteed
to fall below the target levels asymptotically in the entire sampling-decision process.

Second, the error rates considered in the two lines of works are different. The analysis
of multi-armed bandits algorithms focuses on (a) the probability of finding the best arm
(Chen and Li, 2015), (b) the probability of finding all “good” arms (Mason et al., 2020),
or (c) the probability that all identified arms are “good” and none are “bad” (Locatelli
et al., 2016; Katz-Samuels and Jamieson, 2020). However, the goals in (b) and (c) can be
too stringent for the large-scale setting. It is extremely difficult to identify all good arms
or providing guarantees that all arms are good when thousands or more arms are being
considered. Concretely, in large-scale testing problems, researchers are happy as long as
most, say 90% of the good arms (missed discovery rate MDR is controlled at 0.1) can be
identified correctly, or 90% of the arms that we identified are good (false positive rate FPR
is controlled at 0.1). In such scenarios the FPR and MDR adopted in our formulation seem
to provide more appropriate error rate targets.
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Finally, the operational characteristics of the algorithms in the two lines of works are
different. Under the conventional framework of multi-armed bandits, it is difficult to tailor
algorithms according to user-specified error rates/probabilities. By contrast, we develop a
convenient user interface where data-driven thresholds can be determined adaptively ac-
cording to user-specified error rates. Our algorithms aim to control the error rates below
the pre-specified levels at all decision points, while minimizing the total study budget (in
terms of the total samples to be collected).

7. Simulation

This section is organized as follows. Section 7.1 compares SMART with simultaneous SPRTs
(with single thresholding) to illustrate the advantage of compound thresholding. Section 7.2
and 7.3 compare the ranking efficiency of SMART vs. existing methods for sparse recovery
and error rate control. We show that SMART achieves the same FPR and MDR levels with
a much smaller study cost. Section 7.4 investigates the robustness of SMART for error rate
control under a range of dependence structures. Section 7.5 illustrates the use of SMART
as a global testing procedure.

7.1 Simple thresholding vs. compound thresholding

This simulation study compares the following methods:

(a) the simple thresholding procedure d̃ddOR presented before Theorem 4, which assumes
an oracle knows the true parameters (OR.ST);

(b) the SMART procedure with known parameters (OR.SM);

(c) the simple thresholding procedure with estimated parameters (DD.ST), where DD
refers to “data-driven”;

(d) the SMART procedure with estimated parameters (DD.SM).

We generate data according to the following mixture model

Xij ∼ (1− π)N(0, 1) + πN(µi, 1),

for i = 1, . . . , p and j = 1, 2, . . ., where π and µi will be specified shortly. The number of
locations is p = 105. Let (α, γ) = (0.05, 0.05) be pre-specified FPR and MDR levels. The
following settings are considered:

• Setting 1: Set π = 0.01 and µi = µ for all i. Vary µ from 2 to 4 with step size 0.2.

• Setting 2: Set π = 0.05 and µi = µ for all i. Vary µ from 2 to 4 with step size 0.2.

• Setting 3: Draw µi randomly from a uniform distribution U(2, 4). Vary π from 0.05
to 0.2 with step size 0.01.

We apply the four methods to the simulated data. The FPR, MDR and ESS (expected
sample size) are computed based on the average of 100 replications, and are plotted as
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functions of varied parameter values. The results are summarized in Figure 3. In Setting
3, the two oracle methods (OR.ST and OR.SM) are not implemented as recursive formulae
for T i,jOR are unavailable.

We can see that all four methods control the FPR at the nominal level. However, the
two single thresholding methods (OR.ST and DD.ST) are very conservative (the actual
FPR is only about half of the nominal level). Similarly, both OR.ST and DD.ST are
very conservative for MDR control. Specifically, OR.ST and DD.ST operate as p parallel
SPRTs and suffer from the overshoot problem. The approximation errors of SPRTs can be
greatly reduced by SMART that employs the compound thresholding strategy. We can see
that the SMART procedures (OR.SM and DD.SM) control the error rates more accurately
and require smaller sample sizes. When signals are sparse and weak (top middle panel), the
MDR level of DD.SM is slightly higher than the nominal level. This is due to the estimation
errors occurred at stage 1. It is of interest to develop more accurate estimation procedures
in such settings. The FDR and FPR levels are similar for OR.SM and DD.SM. See Figure
2 in the supplement for details.

7.2 SMART vs. Distilled Sensing

This simulation study compares the efficiency performance of SMART vs DS (Haupt et al.,
2011). As DS does not provide precise error rates control, the simulation is designed in the
following way to make the comparison on an equal footing: we first run DS with up to 10
stages and record its FDR and MDR levels. Then we apply SMART at the corresponding
FDR and MDR levels so that the two methods have roughly equal error rates. The ESS is
used to compare the efficiency.

The data are generated from the same model as that in Section 7.1. The number of
locations is p = 105. The following two settings are considered:

• Setting 1: Let π = 0.05 and µi = µ for all i. Vary µ from 2 to 4 with step size 0.2.

• Setting 2: Draw µi randomly from U(2, 4). Vary π from 0.05 to 0.2.

In both settings, the FDR, MDR and ESS are computed by averaging over 100 replica-
tions, and are plotted as functions of varied parameter values. The results are summarized
in Figure 4.

We can see that the error rates of both OR.SM and DD.SM match well with those of DS,
but they require fewer samples. OR.ST and DD.ST also outperform DS, achieving lower
error rates with fewer samples. DD.SM controls the error rates more accurately compared
to DD.ST, and requires fewer samples.

7.3 SMART vs. the Hunt procedure

This section conducts simulation studies to compare SMART with the multi-stage testing
procedure proposed in Posch et al. (2009), which is denoted “Hunt” subsequently. We set
the nominal FDR and MDR levels to be 0.05 and generate m = 105 observations from the
model in Section 7.1 We consider two settings:

• Setting 1: Vary π from 0.05 to 0.2 and generate µi ∼ U(2, 4).
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Figure 3: SMART vs. single thresholding: the displayed procedures are DD.SM, OR.SM,
DD.ST, OR.ST.

• Setting 2: Fix π = 0.05. Let µi = µ, vary µ from 2 to 4.

We apply Hunt and data-driven SMART and compute the FDR, MDR and the total
sample size by averaging results in 100 replications. The Hunt method operates under
a fixed stage regime; we fix the number of stages to be 2 for illustration. The sample
size required for the Hunt procedure is always 2m = 2 × 105. The simulation results are
summarized in Figure 5. We can see that SMART effectively controls both the FDR and
MDR. By contrast, Hunt controls the FDR but does not control the MDR. This is because
Hunt is not designed to control the missed discovery rates. Moreover, SMART requires a
smaller sample size to achieve effective error rate control. The intuition is that the group
sequential design adopted by Hunt does not eliminate the null coordinates in the first stage;
this leads to loss in efficiency and higher study costs.
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Figure 4: Comparison with DS. SMART outperforms DS in the sense that it achieves the
same FDR and MDR levels with much smaller sample sizes.

7.4 Robustness of SMART under dependence

Our method and theory assume independence of observations across the coordinates. How-
ever, the independence assumption may be violated in practice. This section carries out
additional numerical studies with correlated error terms across locations to investigate the
robustness of the proposed SMART algorithm.

For the sequential testing setup, we first generate non-null effects from U(2, 4) at p = 104

locations. Then we apply the single thresholding procedure DD.ST and SMART procedure
DD.SM to simulated data with correlation structures described in Settings 1-3 below. We
use the computational algorithm described in Section 3.2. The FPR, MDR and ESS (ex-
pected sample sizes) are then calculated based on averaging results from 200 data sets,
and finally plotted as functions of the non-null proportion π. The simulation results are
summarized in Fig. 2.

• Setting 1 (Gaussian process): the error terms are generated from a zero-mean Gaussian
process with the covariance functions

C(r) = e−r
2
, with r ≥ 0 being the distance between two locations.
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Figure 5: SMART vs Hunt. Top and bottom rows correspond to Settings 1 & 2.

• Setting 2 (Tridiagonal): the error terms are generated from a multivariate normal
distribution with the following covariance matrix Σ:

Σi,i = 1, i = 1, · · · , p,
Σi,i+1 = 0.5, i = 1, · · · , p− 1,

Σi−1,i = 0.5, i = 2, · · · , p,
Σi,i+2 = 0.4, i = 1, · · · , p− 2,

Σi−2,i = 0.4, i = 3, · · · , p.

All other entries equal to zero.

• Setting 3 (Autoregressive model): the error terms are generated from a multivariate
normal distribution with the following covariance matrix Σ:

Σi,j = 0.5|i−j|, i, j = 1, · · · , p.

We observe some similar patterns as before. SMART (DD.SM) roughly controls the
FPR at the nominal level when moderate correlations are present between locations. The
single thresholding procedures with parallel SPRTs (DD.ST) are too conservative for error
rates control in all settings. The resulting ESS of DD.ST is significantly larger than that is
needed by DD.SM. In Setting 2 the FPR of SMART can be higher than the nominal level
0.05 but seems to be acceptable. SMART controls the MDR under the nominal level in all
settings. Our simulation studies suggest that SMART has robust performance under a range
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Figure 6: Dependent tests: Settings 1-3 are described in the main text. SMART controls
the error rates at the nominal levels in most settings.
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of dependence structures. However, the scope of our empirical studies is limited and more
numerical and theoretical support are needed for making definitive conclusions. Finally, we
stress that it is still an open issue to develop multiple testing methods that incorporates
informative correlation structures to improve efficiency Sun and Cai (2009); Sun et al.
(2015). The modeling of spatial dependence in the sequential setting is complicated because
we have a lot of missing data in later stages.

7.5 SMART for signal detection

SMART can be employed as a method for signal detection Donoho and Jin (2004). The
goal is to test the global null hypothesis

Hp
0 : {X1, · · · , Xp} ∼ F0 vs. Hp

1 : {X1, · · · , Xp} ∼ (1− π)F0 + πF1i (7.1)

for some π > 0. This is a global inference problem that is very different from the simulta-
neous inference problem we have considered in previous sections. Comparing the detection
boundaries derived in Donoho and Jin (2004) with the upper limit in Theorem 5, we can
see that SMART requires fewer samples than non-adaptive testing schemes for separating
Hp

0 and Hp
1 with negligible testing errors. Similar findings have been reported by Haupt

et al. (2011).

This section carries out simulation studies to investigate the performance of SMART as
a signal detection procedure. Specifically, SMART (Algorithm 1) eliminates noise locations
stage by stage. If all coordinates are eliminated as noise locations eventually, then we do
not reject the global null. If any coordinate is selected as signal, then we reject the global

null. Under the global null π = 0, the false discovery proportion (FDP(δδδ) =
∑p

i=1(1−θi)δi
max{(

∑p
i=1 δi),1}

)

only takes two possible values: 0 (if no coordinate is selected as signal) and 1 (if at least
one coordinate is selected as signal). It was argued by Benjamini and Hochberg (1995) that
under the global null, the FPR cannot be controlled, whereas it is always possible to control
the FDR. In our simulation, the FDR is calculated as the average of the FDPs over 200
replications; the average may be conceptualized as an estimate of the Type I error rate for
testing the global null, i.e. the relative frequency for incorrectly rejecting the global null
when π = 0 among all repeated experiments.

Figure 7: SMART for signal detection: the FDR is used as the Type I error rate.
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We apply SMART by setting α = γ = 0.05. The data are generated using the same
models as those in previous sections except that we now let π = 0. We vary the dimension
p from 100 to 5,000 and plot the corresponding FDRs. It can be seen that SMART controls
the FDR at the nominal level 0.05 in all settings. The MDR and ESS are also reported. (If
no true signals are discovered, then the MDR will be set as 0.) We conclude that SMART
controls the Type I error rate for testing the global null.

8. Real Data Applications

In this section we apply the SMART procedure to A/B testing (Section 8.1), high-throughput
screening (HTS, Section 8.2) and satellite image analysis (Section 8.3).

8.1 A/B Testing

A/B testing has become the gold standard for testing new ideas and building product launch
plans in high-tech firms. This section illustrates the application of our SMART procedure
to A/B testing using a real-world experiment at Snap Inc.. The quantity of interest is the
average treatment effect (ATE) between the control and treatment arms (each arm consists
of several hundred users). The ATEs are calculated on a daily basis for thousands of metrics.
To save the study costs and speed up the decision process, we adopt an adaptive design
to gradually narrow down (day by day) the set of metrics to be investigated. To check
whether this application provides a suitable scenario for applying our SMART procedure,
note that (a) it is reasonable to assume that the expected value of the ATE for a given
metric is fixed over time, and (b) the ATEs, which are allowed to vary across testing units,
are approximately normally distributed according to the central limit theorem. We conclude
that the conditions (fixed µi over different stages and asymptotic normality of the summary
statistic) required by our methodology have been fulfilled.

We analyze a data set from a multi-stage experiment with a running duration of 22
days. As the data are collected on a daily basis, it is natural to view that the experiment
has 22 stages. At every stage, the ATEs are computed for a total of 1702 metrics and
standardized as z-scores. We set the null distribution of the ATE statistic as N(0, 1).
Under the alternative, the ATE statistic at unit i has mean µi. We assume that µi is
fixed at all stages j = 1, 2, · · · , and allow µi to vary across i. The sparsity parameter π̂ is
estimated to be π̂ ≈ 0.15 by applying Jin and Cai’s method (Jin and Cai, 2007) to the data
collected on Day 1. The pre-specified FDR and MDR levels are 0.05 and 0.2, respectively.

The solution path of the SMART procedure is shown in Figure 8. We can see that
by using the adaptive design, definitive decisions on a large number of metrics can be
made during earlier periods of the multi-stage experiment. This translates directly to great
savings in data storage and pipeline calculations. Specifically, under the traditional A/B
testing paradigm, one needs to collect data on 1,702 metrics throughout the 22-day duration.
This requires a total of 44,252 measurements (each measurement corresponds to the cost
of measuring one metric per day). By contrast, the SMART procedure only requires 3,541
measurements to localize important metrics with effective error rates control. We conclude
that the new algorithm promises to save the study costs and greatly speed up the decision
making process. Such benefits enable the company to quickly narrow down the list; hence
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Figure 8: The solution path of our SMART procedure (data source: Snap Inc.): δ = 1/0/ − 1
respectively indicates rejected/accepted/undecided hypotheses.

the efforts and resources can be focused on improving a few core metrics that are pivotal
for business.

8.2 Applications to HTS studies

The goal of the HTS study conducted by McKoy et al. (2012) is to identify novel inhibitors
of the amyloid beta peptide (Aβ), whose aggregation is believed to be a trigger of the
Alzheimer’s disease. In the study, a total of p = 51, 840 compounds are tested, with three
measurements recorded for each compound. We use the observed data set as a pilot data set
and simulate observations in later stages to illustrate how to design a multistage sampling
and inference procedure for identifying useful compounds.

We compare the performances of different methods in two ways: (i) the total sample
sizes needed to achieve pre-specified error rates, and (ii) the actual error rates achieved
for a fixed total sample size. We first obtain z-scores based on the average of the three
measurements and then estimate the non-null proportion and null distribution using the
method in Jin and Cai (2007). The estimated non-null proportion is π̂ ≈ 0.0007, and the
estimated null distribution (referred to as the empirical null distribution, Efron (2004)) is
N(µ̂0, σ̂

2
0) with µ̂0 = 0.2459, σ̂0 = 0.6893. Next, we choose the largest 100π̂% of the data

and use their average as the signal amplitude µ̂ = 3.194. The observations in later stages
will be generated based on the estimated parameters.

We set both the FDR and MDR at level 0.1, apply SMART and record the total sam-
ple size. We then apply DS with the recorded sample size by SMART. The results are
summarized below. Since DS always eliminates half of the locations at each step, for this
particular instance DS requires at least 1.5p observations. We can see that with the sample
size of 1.5p, the DS method does not offer proper error rate control. The false discovery
proportion (FDP) is much higher than the nominal level.

Methods FDP MDP Total Observation

SMART 0.083333 0.1081081 56926

DS 0.9971195 0 77641
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Next, we run DS up to 10 stages. The recorded FDP and missed discovery proportion

(MDP(δδδ) =
∑p

i=1 θi(1−δi)
(
∑p

i=1 θi)
) levels are 0.23 and 0.027, respectively. Next we apply SMART

by setting the nominal FDR and MDR levels as 0.23 and 0.027 and compare the required
sample sizes. The results are summarized below. We can see that SMART control the FDP
and MDP below those of DS. Meanwhile, the required sample size is significantly smaller
compared to DS.

Methods FDP MDP Total Observation

DS 0.2340426 0.02702703 104308

SMART 0.1487284 0.02162162 67850

8.3 Application to the Phoenix Deep Survey

In astronomical surveys, a common goal is to separate sparse targets of interest (stars,
supernovas, or galaxies) from background noise. We consider a dataset from Phoenix Deep
Survey (PDS), a multi-wavelength survey of a region over 2 degrees diameter in the southern
constellation Phoenix. The data set is publicly available. Fig. 5(a) shows a telescope image
from the PDS. It has p = 616×536 = 330, 176 pixels, among which 1131 pixels exhibit signal
amplitude of at least 2.98. In practice we monitor the same region for a fixed period of
time. After taking high resolution images, it is of interest to narrow down the focus quickly
using a sequential testing procedure so that we can use limited computational resources
to explore certain regions more closely. The image is converted into gray-scale with signal
amplitudes standardized. Fig. 5(b) depicts a contaminated image with simulated Gaussian
white noise.

For the first comparison, we apply SMART by setting both the FPR and MDR at 5%.
The total number of measurements is recorded as 368,796. As a comparison, we apply
DS with the recorded sample size, which is approximately 1.5p. We can see that SMART
control the error rates precisely. The resulting images for SMART and DS are demonstrated
in Fig. 5(c) and (d), respectively. We can see SMART produces much sharper images than
DS.

Methods FDP MDP Total Observation

SMART 0.06321335 0.05658709 368796

DS 0.9864338 0.00265252 495866

For the second comparison, we first implement DS up to 12 stages. The corresponding
FDP and MDP levels are recorded as 0.07 and 0.014. We then apply SMART by setting
the nominal FPR and MDR at these recorded error rates. The corresponding true error
rates and required sample sizes of the two methods are summarized below.

Methods FDP MDP Total Observation

DS 0.07237937 0.01414677 670331

SMART 0.03192407 0.00795756 479214
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We can see that SMART controls both the FDP and MDP below the nominal levels
(0.07 and 0.014). The required sample size is also much smaller than DS. The resulting
images for SMART and DS are shown in Fig. 5(e) and (f), we can see SMART produces
slightly sharper images than its competitor DS.

(a) Original Data (b) Noisy Observation

(c) SMART result 1 (d) DS result 1

(e) SMART result 2 (f) DS result 2

Figure 9: SMART and DS comparison. Fig. (a) and (b) show the original radio telescope
image and tainted image with white noise, respectively. Fig. (c) and (d) compare SMART
and DS when the total number of observations are about the same. Fig. (f) shows the
resulting image when implementing DS for 12 stages, whereas Fig. (e) shows the image
produced by SMART when using the recorded error rates from the 12-stage DS.
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9. Discussion

We mention some potential limitations of the proposed SMART procedure and discuss
directions for future research. First, SMART assumes the effect size at a certain coordinate
is fixed over time. This is a reasonable assumption for the three applications we considered
in this article, where repeated measurements are taken on the same unknown effect sizes
over time. However, in application scenarios such as multiple stage clinical trials, the end
points or treatment effect sizes may vary from one stage to another. Second, the issue
on multiple testing dependence needs much research. Our limited simulation results show
that SMART remains to be valid under weak and positive dependences. It would be of
great interest to justify such results theoretically. Moreover, the optimality issue under
dependence remains unknown. We hope to pursue these directions in future research.

The accuracy and effectiveness of sparse recovery, which involves both the FPR and
MDR control, is a complicated issue that depends on several factors jointly. First, the
reliable estimation of the stage-wise FPR/MDR requires a relatively large number of rejec-
tions, which in turn requires that the signals cannot be too sparse or too weak. Second,
the consistent estimation of the non-null proportion (sparsity level) requires that the de-
tection and discovery boundaries (Cai and Sun, 2017) must be achieved. The impact of
sparsity on the finite sample performance of SMART is investigated in Appendix B of the
Supplementary Material. Finally, the quality of density estimators depends on the sample
size and smoothness of the underlying function. Our algorithm is designed to capitalize on
copious data in ways not possible for procedures intended for moderate amounts of data,
and SMART is most useful in large-scale testing scenarios where the structural information
can be learned from data with good precision. An important future research direction is
the development of precise estimation methods, which are instrumental for constructing
powerful multi-stage testing procedures.

If we allow multiple samples at each stage and the number of samples are prefixed, then
SMART operates essentially in the same way, and the theory on FPR and MDR control
for the oracle SMART procedure still holds. However, the problem becomes complicated
when the number of samples is allowed to be data-driven. Hence the optimal policy must
be cast as a dynamic programming problem. We conjecture that the open-loop feedback
control (OLFC) algorithm (Wei and Hero, 2013) may be incorporated into SMART but more
research is needed. However, there are two complications. First, OLFC aims to optimize
the estimation accuracy, whereas we aim to minimize the total sensing efforts subject to
the constraints on the FPR and MDR. Second, OLFC can only handle two-stage designs
and the extension to more stages is non-trivial.

10. Proofs

10.1 Proof of Theorem 2

Proof . Part (a) According to Assumption 1, Pθi(Ni < ∞) = 1 for all i; see Berger
(1985) for a proof. Since Pθi(Ni <∞) = 1 for all i, and p is finite, we claim that P(maxNi <
∞) = 1, i.e. the oracle procedure has a finite stopping time. Denote dddπ(tl, tu) = {(Ni, δi) :
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1 ≤ i ≤ p}. Using the definition of T i,Ni

OR , we have

E

{
p∑
i=1

(1− θi)δi

}
= EXXXEθθθ|XXX

{
p∑
i=1

(1− θi)δi

}
= EXXX

(
p∑
i=1

T i,Ni

OR δi

)
.

Then the FPR is QOR(tl, tu) = E
(∑p

i=1 T
i,Ni

OR δi

)
/E (

∑p
i=1 δi). It follows that

E

[
p∑
i=1

{
T i,Ni

OR −QOR(tl, tu)
}
I
(
T i,Ni

OR ≤ tl
)]

= E

 ∑
i:T

i,Ni
OR ≤tl

{
T i,Ni

OR −QOR(tl, tu)
} = 0.

(10.1)
The above equation implies that QOR(tl, tu) ≤ tl; otherwise every term on the LHS must
be negative, resulting in a contradiction.

Next we prove that for a fixed tu, QOR(tl, tu) is non-decreasing in tl. Let QOR(tl,j , tu) =
αj for j = 1, 2. We only need to show that if tl,1 < tl,2, then α1 ≤ α2. Denote Ni,1 and
Ni,2 the stopping times for location i corresponding to thresholds (tl,1, tu) and (tl,2, tu),
respectively. If tl,1 < tl,2, then it is easy to see that for any particular realization of the
experiment, we must have Ni,1 ≥ Ni,2.

We shall show that if tl,1 < tl,2 and α1 > α2, then we will have a contradiction. To see
this, note that(

T
i,Ni,2

OR − α2

)
I
(
T
i,Ni,2

OR ≤ tl,2
)

=
(
T
i,Ni,2

OR − α2

)
I
(
T
i,Ni,2

OR ≤ tl,1
)

+
(
T
i,Ni,2

OR − α2

)
I
(
tl,1 < T

i,Ni,2

OR ≤ tl,2
)

=
(
T
i,Ni,1

OR − α2

)
I
(
T
i,Ni,1

OR ≤ tl,1
)

+
(
T
i,Ni,2

OR − α2

)
I
(
tl,1 < T

i,Ni,2

OR ≤ tl,2
)

≥
(
T
i,Ni,1

OR − α1

)
I
(
T
i,Ni,1

OR ≤ tl,1
)

+ (α1 − α2)I
(
T
i,Ni,1

OR ≤ tl,1
)

+
(
T
i,Ni,2

OR − α1

)
I
(
tl,1 < T

i,Ni,2

OR ≤ tl,2
)
.

The second equality holds because if T
i,Ni,2

OR < tl,1, then we must have Ni,1 = Ni,2. Taking
expectations on both sides, we have

E

{
p∑
i=1

(
T
i,Ni,2

OR − α2

)
I
(
T
i,Ni,2

OR ≤ tl,2
)}

= 0, and

E

{
p∑
i=1

(
T
i,Ni,1

OR − α1

)
I
(
T
i,Ni,1

OR ≤ tl,1
)}

= 0.

However, since α1 > α2 by assumption and α1 ≤ tl,1 as shown previously (right after (10.1)
together with the definition of α1 and tl,1) we must have

E

{
p∑
i=1

(α1 − α2)I
(
T
i,Ni,1

OR ≤ tl,1
)}

> 0, and

E

{
p∑
i=1

(
T
i,Ni,2

OR − α1

)
I
(
tl,1 < T

i,Ni,2

OR ≤ tl,2
)}

≥ 0.
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This leads to a contradiction. Therefore, we conclude that QOR(tl, tu) is non-decreasing in
tl for a fixed tu.

Next, we prove that Q̃OR(tl, tu) is non-increasing in tu for a fixed tl. By the definition
of MDR and similar arguments for the FPR part, we have

E

[
p∑
i=1

(
1− T i,Ni

OR

){
I
(
T i,Ni

OR ≥ tu
)
− Q̃OR(tl, tu)

}]
= 0.

Since our model has a finite stopping time, naturally we have{
i : T i,Ni

OR ≥ tu
}
∪
{
j : T

j,Nj

OR ≤ tl
}

= {1, 2, 3, · · · , p} .

It follows that

E
[∑{

i:T
i,Ni
OR ≥tu

} (1− T i,Ni

OR

){
1− Q̃OR(tl, tu)

}]
= E

{∑{
j:T

j,Nj
OR ≤tl

} (1− T j,Nj

OR

)
Q̃OR(tl, tu)

}
.

We have

1− Q̃OR(tl, tu)

Q̃OR(tl, tu)
=

E
{∑{

j:T
j,Nj
OR ≤tl

} (1− T j,Nj

OR

)}
E
{∑{

i:T
i,Ni
OR ≥tu

} (1− T i,Ni

OR

)} . (10.2)

Consider two thresholds tu,1 > tu,2. Denote Ni,1 and Ni,2 the corresponding stopping
times at location i. The operation of the thresholding procedure implies that Ni,1 ≥ Ni,2,{
i : T

i,Ni,1

OR ≥ tu,1
}
⊂
{
i : T

i,Ni,2

OR ≥ tu,2
}

, and
{
j : T

j,Nj,2

OR ≤ tl
}
⊂
{
j : T

j,Nj,1

OR ≤ tl
}

. There-

fore,

E
{∑{

i:T
i,Ni,2
OR ≥tu,2

} (1− T i,Ni,2

OR

)}
=E

{∑{
i:T

i,Ni,2
OR ≥tu,1

} (1− T i,Ni,2

OR

)}
+ E

{∑{
i:tu,1>T

i,N2
OR ≥tu,2

} (1− T i,Ni,2

OR

)}
≥E

{∑{
i:T

i,Ni,1
OR ≥tu,1

} (1− T i,Ni,1

OR

)}
.

We have shown that
{
j : T

j,Nj,2

OR ≤ tl
}
⊂
{
j : T

j,Nj,1

OR ≤ tl
}

. Moreover, on the set
{
j : T

j,Nj,2

OR ≤ tl
}

,

we have Ni,1 = Ni,2. It follows that

E
{∑{

j:T
j,Nj,1
OR ≤tl

} (1− T j,Nj,1

OR

)}
≥ E

{∑{
j:T

j,Nj,2
OR ≤tl

} (1− T j,Nj,2

OR

)}
.

Combining the above results, we have

E
{∑{

j:T
j,Nj,1
OR ≤tl

} (1− T j,Nj,1

OR

)}
E
{∑{

i:T
i,Ni,1
OR ≥tu,1

} (1− T i,Ni,1

OR

)} ≥ E
{∑{

j:T
j,Nj,2
OR ≤tl

} (1− T j,Nj,2

OR

)}
E
{∑{

i:T
i,Ni,2
OR ≥tu,2

} (1− T i,Ni,2

OR

)} .
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Hence if tu,1 > tu,2, then it follows from (10.2) that

1− Q̃OR(tl, tu,1)

Q̃OR(tl, tu,1)
≥ 1− Q̃OR(tl, tu,2)

Q̃OR(tl, tu,2)
.

Therefore Q̃OR(tl, tu,1) ≤ Q̃OR(tl, tu,2). We conclude that Q̃OR(tl, tu) is non-increasing in
tu for a fixed tl.

Part (b). The proof is divided into two parts. The first part describes a process
that identifies a unique pair of oracle thresholds (tlOR, t

u
OR). The second part shows that

dddπ(tlOR, t
u
OR) has the largest power among all eligible procedures.

(1). Oracle thresholds. Let QOR(1, 1) = ᾱ be the theoretical upper bound corresponding
to the FPR when all hypotheses are rejected. A prespecified FPR level α > 0 is called eligible
if α < ᾱ. Let Rα = {tu : QOR(tu, tu) > α}. We can see that Rα is nonempty if α is eligible,
since QOR(0, 0) = 0 and QOR(1, 1) = ᾱ. Consider tu ∈ Rα. Note that QOR(0, tu) = 0 for
all tu, the following threshold is well defined:

tlOR(tu) = sup{tl : QOR(tl, tu) ≤ α}. (10.3)

We claim that Q{tlOR(tu), tu} = α.

We prove this by contradiction. We first note QOR(tl, tu) is continuous in tl and tu. To
see that, note Xij follows a continuous distribution and T i,jOR is a continuous function of

Xij . Therefore, the distribution of T i,jOR is also continuous. By definition δi = I(T i,jOR ≤ tl).

Hence E(δi) = P(T i,jOR ≤ tl) is a continuous function of tl. Next, the distribution of T i,jORδi
is proportional to the distribution of T i,jOR truncated at tl. Since T i,jOR follows a continuous

distribution, it follows that E(T i,jORδi) is also continuous in tl. Continuity of QOR(tl, tu) in tu
can be shown similarly. Now, according to the continuity of QOR(tl, tu), for every tu ∈ Rα,
we can find t∗l (tu) such that Q (t∗l (tu), tu) = α [since QOR(0, tu) = 0 and QOR(tu, tu) > α].
If not, the equality does not hold, i.e. we have

Q{tlOR(tu), tu} < α,

then the monotonicity of QOR(tl, tu) implies that t∗l (tu) > tlOR(tu), which contradicts the
definition of tlOR(tu). The above construction shows that, for every tu ∈ Rα, we can always
identify a unique tlOR(tu) such that QOR

{
tlOR(tu), tu

}
= α.

We say (α, γ) constitute an eligible pair of prespecified error rates if α is eligible, and
for this α, γ satisfies

0 < γ < sup
{
Q̃OR

(
tlOR(tu), tu

)
: tu ∈ Rα

}
.

In the above definition, the eligibility of (α, γ) only depends on the model, but not any
given tu. Now consider an eligible pair (α, γ). The continuity of Q̃u(tu) ≡ Q̃{tlOR(tu), tu}
implies that we can find t∗u such that Q̃

{
tlOR(t∗u), t∗u

}
= γ. Let

tuOR = inf{tu ∈ Rα : Q̃OR(tlOR(tu), tu) = γ}.
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The pair of oracle thresholds are thus given by

(tlOR, t
u
OR) ≡ {tlOR(tuOR), tuOR}.

(2). Proof of optimality. Denote ddd∗ = (NNN∗, δδδ∗) a sequential procedure that satisfies
FPR(ddd∗) = α∗ ≤ α, MDR(ddd∗) = γ∗ ≤ γ, where NNN∗ = (N1

∗ , · · · , N
p
∗ ) and δδδ∗ = (δ1∗ , · · · , δ

p
∗)

are the corresponding stopping times and decision rules. Denote ESS(ddd∗) the expected
average stopping times. By definition, we have

E

{
p∑
i=1

(T
i,N i
∗

OR − α∗)δ
i
∗

}
= 0, E

{
p∑
i=1

(1− T i,N
i
∗

OR )(1− δi∗ − γ∗)

}
= 0.

Next we present a hypothetical scenario to justify the operational characteristics of
all sequential rules and a mechanism aimed at enhancing any suboptimal rule that does
not adhere to the desired order. Specifically, we demonstrate that if decisions on any
two coordinates are inconsistent with the specified order, those decisions can be uniformly
improved by swapping them.

Suppose we sort T
i,N i
∗

OR as

T
(1),N

(1)
∗

OR ≤ T (2),N
(2)
∗

OR ≤ · · · ≤ T (p),N
(p)
∗

OR

with their corresponding decisions δ
(1)
∗ , δ

(2)
∗ , · · · , δ(p)∗ . If δδδ∗ does not take the following form

of decision rule

there exists a k, such that δ
(i)
∗ =

{
1 i ≤ k
0 k < i ≤ p

, (10.4)

then we can always modify δ∗δ∗δ∗ into such a form with the same ESS and smaller FPR and

MDR. Specifically, suppose that there exists l1 < l2 such that δ
(l1)
∗ = 0 and δ

(l2)
∗ = 1, then

we swap these two decisions. Such operation can be iterated until the decision rule takes the

form as (10.4). Denote the new decision rule by ddd′∗ = (NNN∗, δδδ
′
∗). Since T

(l1),N
(l1)
∗

OR ≤ T (l2),N
(l2)
∗

OR

in each swapping, we can reduce the FPR and MDR:

α′∗ =

∑p
i=1

(
T
i,N i
∗

OR δ′i∗

)
E (
∑p

i=1 δ
′i
∗ )

≤

∑p
i=1

(
T
i,N i
∗

OR δi∗

)
E (
∑p

i=1 δ
i
∗)

= α∗,

γ′∗ =

∑p
i=1

{
(1− T i,N

i
∗

OR )(1− δ′i∗ )
}

pπ

≤

∑p
i=1

{
(1− T i,N

i
∗

OR )(1− δi∗)
}

pπ
= γ∗.

Expressing ddd′∗ in the form of (2.3), we can find t′l and t′u such that

δi,Ni =

{
1 T i,Ni

OR ≤ t′l
0 T i,Ni

OR ≥ t′u
,
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where QOR(t′l, t
′
u) = α′∗, Q̃OR(t′l, t

′
u) = γ′∗.

Now we claim that t′l ≤ tlOR(tuOR) and t′u ≥ tuOR. We prove this by contradiction. First,
if we have tuOR > t′u, then by the definition of tuOR, we have

Q̃OR

(
tlOR(t′u), t′u

)
> γ, QOR

(
tlOR(t′u), t′u

)
= α.

However, we also have Q̃OR (t′l, t
′
u) = γ′∗ ≤ γ. By the definition of Q̃OR(tl, tu), with

the same tu, only a larger tl could result in a strictly smaller MDR level. Together
with the monotonicity of Q̃OR(tl, tu) for a fixed tu, we claim that tlOR(t′u) < t′l. Since
QOR(tl, tu) is non-decreasing in tl for a fixed tu as shown in part (a) of the theorem, we
have Q

(
tlOR(t′u), t′u

)
= α. It follows that QOR (t′l, t

′
u) > α, contradicting the fact that

QOR(t′l, t
′
u) = α′∗ ≤ α. Therefore we must have t′u ≥ tuOR.

Next, assume that t′l > tlOR(tuOR). Then by the definition of tlOR(tu) and monotonicity
of QOR(tl, tu), we have Q (t′l, t

u
OR) > α. Given the fact that QOR(t′l, t

u
OR) ≤ t′l, we must

have α < t′l, claiming that t′l is always bounded below by α regardless of α′∗, which leads
to a contradiction since we always have QOR(t′l, t

′
u) = α′∗ < t′l. Hence we must have

t′l ≤ tlOR(tuOR). Therefore

ESS(ddd′∗) = ESS(ddd∗) ≥ ESS(dddOR)

and the desired result follows.

10.2 Proof of Proposition 4

Proof . The goal is to show that the pair tlOR = α and tuOR = 1−π
πγ+1−π control the FPR

and MDR. The FPR part is straightforward since according to the definition of T i,Ni

OR , we
have

FPR(d̃ddOR) =
E
{∑p

i=1 T
i,Ni

OR I(T i,Ni

OR ≤ α)
}

E
{∑p

i=1 I(T
i,Ni

OR ≤ α)
} ≤

E
{∑p

i=1 α · I(T
i,Ni

OR ≤ α)
}

E
{∑p

i=1 I(T
i,Ni

OR ≤ α)
} = α.

Similarly for the FDR control, we have

FDR(d̃ddOR) = E

{∑p
i=1 T

i,Ni

OR I(T i,Ni

OR ≤ α)∑p
i=1 I(T

i,Ni

OR ≤ α) ∨ 1

}
≤

E
{∑p

i=1 α · I(T
i,Ni

OR ≤ α)
}

E
{∑p

i=1 I(T
i,Ni

OR ≤ α) ∨ 1
} ≤ α.

Remark 16 From the proof we can see that the choice of tlOR = α, derived based on Wald’s
approximation, can be conservative in practice.

To show the MDR part, we first carry out an analysis of the false negative rate (FNR),
which is defined as

FNR(d̃ddOR) =
E {
∑p

i=1 θi(1− δi)}
E {
∑p

i=1(1− δi)}
. (10.5)
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According to the operation of d̃ddOR, the FNR can be further calculated as

FNR(d̃ddOR) =
E
{∑p

i=1(1− T
i,Ni

OR )I(T i,Ni

OR ≥ tu)
}

E
{∑p

i=1 I(T
i,Ni

OR ≥ tu)
} (10.6)

≤ 1− tu =
πγ

πγ + 1− π
.

Denote d̃dd
i

OR = (Ñ i
OR, δ̃

i
OR). We have shown that FPR(d̃ddOR) ≤ α. Suppose the actual FPR

level is α̃ ≤ α. Then E
{∑p

i=1(1− θi)δ̃iOR
}

= α̃(
∑p

i=1 δ̃
i
OR). It follows that

(1− α̃)E
(∑p

i=1 δ̃
i
OR

)
= E

{∑p
i=1 θiδ̃

i
OR

}
. (10.7)

Meanwhile, our analysis of the FNR ((10.5) and (10.6)) shows that

E

{
p∑
i=1

θi(1− δ̃iOR)

}
≤ πγ

πγ + 1− π
· E

{
p∑
i=1

(1− δ̃iOR)

}
. (10.8)

Combining (10.7) and (10.8), we obtain

(πγ + 1− π)
{
pπ − (1− α̃)E

(∑p
i=1 δ̃

i
OR

)}
≤ πγ

{
p− E

(∑p
i=1 δ̃

i
OR

)}
.

It follows that

E

(
p∑
i=1

δ̃iOR

)
≥ pπ(1− π)(1− γ)

−πγα̃+ (1− π)(1− α̃)
≥ pπ(1− γ)

(1− α̃)

Using (10.7) and pπ = E(
∑

i θi), we have

E(
∑p

i=1 θiδ̃
i
OR) ≥ E(

∑p
i=1 θi)− γE(

∑p
i=1 θi).

Therefore E{
∑p

i=1 θi(1− δ̃iOR)} ≤ γE(
∑p

i=1 θi) and the desired result follows.

10.3 Proof of Theorem 6

Proof . Part (i). The FPR and FDR control. To show the validity of SMART for
FPR control, we use the idea in Efron (2008); Cai and Sun (2009) for group-wise testing.
Define stage-wise false positive rate sFPRj as

sFPRj :=
E
{∑

i∈Sj (1− θi)δi
}

E
∑

i∈Sj δi
,

where sFPRj is the ratio of the expected number of false rejections at stage j over the
expected number of all rejections at stage j. The first step is to show that SMART controls
all stage-wise FDRs at level α. The second step is to show that the global FDR is controlled
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at level α by combining hypotheses rejected from all stages. By our definition of sFPRj ,
we have

sFPRj =
E
(∑ksj

i=1 T
(i),j
OR

)
E
(
ksj

) ≤
E
(
ksjα

)
E
(
ksj

) = α.

Therefore SMART controls the sFPR at level α across all stages.

Next we show that if sFPRj is controlled universally at pre-specified levels across all
stages, then the global FPR will be controlled at the same level. Let NSM denote the total
number of stages that dddSM has. It follows that

FPR(dddSM ) =
E
{∑NSM

j=1

∑
i∈Sj (1− θi) δiSM

}
E
(∑NSM

j=1

∑
i∈Sj δ

i
SM

)
≤

E
(∑NSM

j=1 α
∑

i∈Sj δ
i
SM

)
E
(∑NSM

j=1

∑
i∈Sj δ

i
SM

) = α.

Consider the quantity E
{∑NSM

j=1

∑
i∈Sj (1− θi) δiSM

}
. Note that i ∈ Sj indicates that

(i) a total of j data points xxxji = (x1i , · · · , x
j
i ) are eventually collected for the ith unit and

(ii) a decision for unit i is made at stage j. It follows that δδδiSM only depends on xxxji and can
be factored out:

E


NSM∑
j=1

∑
i∈Sj

(1− θi) δiSM

 = E


NSM∑
j=1

∑
i∈Sj

E
[
(1− θi) δiSM |xxx

j
i

]
= E


NSM∑
j=1

∑
i∈Sj

δiSME
[
(1− θi) |xxxji

]
According to the definition of the oracle statistic, We have

E


NSM∑
j=1

∑
i∈Sj

(1− θi) δiSM

 = E


NSM∑
j=1

∑
i∈Sj

δiSMT
i,j
OR

 ≤ E


NSM∑
j=1

α
∑
i∈Sj

δiSM

 .

The last inequality is due to the operation of SMART, which ensures that at every stage j,
we always have

∑
i∈Sj T

i,j
ORδ

i
SM ≤ α

∑
i∈Sj δ

i
SM . Therefore we have

FPR(dddSM ) ≤
E
(∑NSM

j=1 α
∑

i∈Sj δ
i
SM

)
E
(∑NSM

j=1

∑
i∈Sj δ

i
SM

) = α.
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Similarly, we can prove the global FDR control by jointly evaluating the performance
SMART at separate stages

FDR(dddSM ) = E

{∑NSM
j=1

∑
i∈Sj (1− θi) δiSM

(
∑NSM

j=1

∑
i∈Sj δ

i
SM ) ∨ 1

}

= E

 ∑NSM
j=1

∑
i∈Sj T

i,j
ORδ

i
SM(∑NSM

j=1

∑
i∈Sj δ

i
SM

)
∨ 1

 ≤ α
The last inequality is due to the operation of SMART.

Part (ii). MDR control. Unlike the FDR analysis, stage-wise MDR control does not
imply global MDR control. We introduce an intermediate quantity, the false non-discovery
rate (FNR) and divide the proof into two steps: the first step shows that stage-wise FNR
control implies global FNR control; the second step establishes the relationship between the
global MDR and global FNR.

Define stage-wise false non-discovery rate sFNRj as

sFNRj :=
E
{∑

i∈Sj θi(1− δi)
}

E
∑

i∈Sj (1− δi)
,

where sFNRj is the ratio of the expected number of false non-discoveries over the expected
number of all non-discoveries. It follows that

sFNRj =
E
{∑kej−1

i=0

(
1− T kj−i,jOR

)}
E
(
kej

) ≤
E
(
kej

πγ
πγ+1−π

)
E
(
kej

) =
πγ

πγ + 1− π
.

Therefore SMART controls the sFNR at level πγ
πγ+1−π across all stages. Next, we show that

if sFNRj is controlled universally at pre-specified levels across all stages, then the global
FNR will be controlled at the same level.

FNR =
E
{∑N

j=1

∑
i∈Sj θi

(
1− δiSM

)}
E
{∑N

j=1

∑
i∈Sj

(
1− δiSM

)}
≤

E
{∑N

j=1
πγ

πγ+1−π
∑

i∈Sj
(
1− δiSM

)}
E
{∑N

j=1

∑
i∈Sj

(
1− δiSM

)}
=

πγ

πγ + 1− π
.

Finally, according to the proof of Theorem 2, the MDR and FNR satisfy the following
relationship

MDR ≤ γ if FNR ≤ πγ
πγ+1−π .

We conclude that the MDR is controlled at level γ, completing the proof.
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10.4 Proof of Theorem 12

Proof For a symmetric decision procedure ddd, denote its Type I and Type II errors on
unit i by α′ = PHi,0(Reject Hi,0) and γ′ = PHi,1(Accept Hi,0). It can be shown that the
corresponding global error rates are given by

FPR(ddd) =
(1− π)α′

(1− π)α′ + π(1− γ′)
and MDR(ddd) = γ′, (10.9)

respectively. Our result largely follows from the lower bound derived in Malloy and Nowak
(2014a) on family-wise error rate (FWER); we only highlight the main steps on how to go
from the FWER paradigm to the FPR/MDR paradigm, which essentially involves exploiting
the relationship (10.9). From Thm. 2.39 in Siegmund (1985), we have

τ1 ≥
α′ log( α′

1−γ′ ) + (1− α′) log(1−α
′

γ′ )

D(F0||F1)
and

τ2 ≥
(1− γ′) log ( (1−γ

′

α′ ) + γ′ log ( γ′

1−α′ )

D(F1||F0)
,

where τ1 and τ2 are the expected stopping times for null and non-null locations, respectively.
Furthermore, from Malloy and Nowak (2014a), we have

τ1 ≥
(1− α′) log(γ′)−1 − log 2

D(F0||F1)
, τ2 ≥

(1− γ′) log(α′)−1 − log 2

D(F1||F0)
.

Using the definition of KL divergence DKL(F0, F1) = max {D(F0|F1), D(F1|F0)}, the aver-
age stopping time of all locations satisfies

τ =
(p− pπ)τ1 + pπτ2

p

≥ (1− π)(1− α′) log(γ′)−1 + π(1− γ′) log(α′)−1 − log 2

DKL(F0, F1)
. (10.10)

We consider two situations. If α′ ≤ γ′, then

τ ≥ (1− π)(1− γ′) log(γ′)−1 + π(1− γ′) log(γ′)−1 − log 2.

Note that for 0 ≤ x ≤ 1, {x log x : x ∈ (0, 1)} reaches its minimum when x = e−1. It follows

that 2−1 < e−1/e ≤ γ′γ
′
≤ 1. Therefore

(1− γ′) log(γ′)−1 ≥ log(2γ′)−1.

Together with (10.10), we have τ ≥ log (4γ′)−1

DKL(F0,F1)
. According to our constraint on τ , we

conclude that

log(4η)−1 ≥ τDKL(F0, F1) ≥ log(4γ′)−1.

Therefore, γ′ ≥ η and R∗(ddd) ≥ η.
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If γ′ ≤ α′, then we can similarly show that

τ ≥ (1− α′) logα′−1 − log 2

DKL(F0, F1)
≥

log 1
2α′ − log 2

DKL(F0, F1)
≥

log 1
4α′

DKL(F0, F1)
.

It follows that

log

(
1

4η

)
≥ τDKL(F0, F1) ≥ log

(
1

4α′

)
,

which implies α′ ≥ η. Under the assumption that π < 1
3 and η ≤ 1

2 , we have η ≤ 1
2 ≤

1−2π
1−π .

Consider the function k(x) = (1−π)x
(1−π)x+π . It is easy to see that k(x) is monotonically increasing

in x. Hence

R∗(ddd) ≥ (1− π)α′

(1− π)α′ + π(1− γ′)
≥ (1− π)α′

(1− π)α′ + π

≥ (1− π)η

(1− π)η + π
≥ (1− π)η

(1− π)1−2π1−π + π
= η,

completing the proof.

10.5 Proof of Theorem 14

Proof In Theorem 6 we have already shown that when tl = α and tu = 1−π
πγ+1−π , the

SMART procedure controls the FDR and MDR at level α and γ, respectively. Let

α = γ =
1

ξ(p)1+ε
.

With the choice of tl and tu mentioned above, we have

lim
p→∞

R∗(ddd) = lim
p→∞

2

ξ(p)1+ε
= 0,

which proves the first part of the theorem.

Next we establish the upper bound. Consider p simultaneous SPRTs with the same
threshold tl and tu. The operation of our SMART procedure uses these thresholds for the
moving averages; hence the SPRT approach with the same tl and tu will always take more
samples. It is sufficient to show that the result holds for simultaneous SPRTs.

We first use the relationship (A.1) to convert thresholds tl and tu to the thresholds for
SPRTs:

A =
(1− π)(1− tu)

πtu,
, B =

(1− π)(1− tl)
πtl

.

Under our specifications, we further have

A =
γ(1− π)

πγ + 1− π
, B =

(1− π)(1− α)

πα
.
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From Siegmund (1985) (Equations 9-10, P10), we have

α′ ≤ B−1(1− γ′) ≤ B−1,
γ′ ≤ A(1− α′) ≤ A.

According to Assumption (5.1), we have

E(logLi,Ni | logLi,Ni < logA) ≥ logA− C1,

E(logLi,Ni | logLi,Ni > logB) ≤ logB + C2

for some positive constants C1 and C2. Consider Eθi=0 (logLi,Ni). Then

−Eθi=0 (logLi,Ni)

= −(1− α)Eθi=0 (logLi,Ni | logLi,Ni < logA)− αEθi=0(logLi,Ni | logLi,Ni > logB)

≤ (1− α)(logA−1 + C1)− α logB

≤ (1− α)(logA−1 + C1) ≤ logA−1 + C1.

Likewise, we can show that

Eθi=1(logLi,Ni) ≤ logB + C2.

Let C3 = (1−π)C1 +πC2. According to Wald’s identity (P490, Berger (1985)), we have

Eθi=1(Ni) =
Eθi=1 (logLi,Ni)

Eθi=1 (logLi,1)
=

Eθi=1 (logLi,Ni)

D(F1|F0)
,

Eθi=0(Ni) =
Eθi=0 (logLi,Ni)

Eθi=0 (logLi,1)
=
−Eθi=0 (logLi,Ni)

D(F0|F1)
.

It follows that

lim sup
p→∞

τ

log ξ(p)
= lim sup

p→∞

(1− π)Eθi=0(Ni) + πEθi=1(Ni)

log ξ(p)

≤ lim sup
p→∞

(1− π)(logA−1 + C1)

log ξ(p)D(F0|F1)
+ lim sup

p→∞

π(logB + C2)

log ξ(p)D(F1|F0)

= lim sup
p→∞

(1− π) log πγ+1−π
γ(1−π) + π log (1−π)(1−α)

πα + C3

log ξ(p) min {(D(F0|F1), D(F1|F0)}
(10.11)

= lim sup
p→∞

(1− π) log(γ−1) + π log (1−π)
πα + C3

log ξ(p) min {(D(F0|F1), D(F1|F0)}
(10.12)

= lim sup
p→∞

log(α−1)

log ξ(p) min {(D(F0|F1), D(F1|F0)}
(10.13)

=
1 + ε

min {(D(F0|F1), D(F1|F0)}
.

From (10.11) to (10.12), we have used the fact α and γ are error rates converging to zero;
hence

πγ + 1− π
γ(1− π)

=
1

γ
{1 + o(1)}

(1− π)(1− α)

πα
=

(1− π)

πα
{1 + o(1)}.
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Equation (10.13) uses the fact that α = γ. The desired result follows.

10.6 Proof of Proposition 7

Let φ(·, µ, σ2) be the density function of N(µ, σ2). Observe that∏j
t=1 φ(xit, ηk, σ̂

2)∏j
t=1 φ(xit, 0, σ̂2)

= exp

{
1

2σ̂2

[
jηk(2x̄

j
i − ηk)

]}
,

where x̄ji = 1
j

∑j
t=1 xit. We first consider the case xit ∼ N(µi, σ

2), Howard et al. (2021)
proves the following result:

P
(
∀ j : |x̄ji − µi| < V (j, α)

)
> 1− α, (10.14)

where

V (j, α) = 1.7

√
σ

log log(2j) + 0.72 log(5.2/α)

j
.

Hence, if |ηk − µi| < |µi|/2− ε and ηkµi > 0 then ∃K depending on α such that

P

(
∀ j > K :

∏j
t=1 φ(xit, ηk, σ̂

2)∏j
t=1 φ(xit, 0, σ̂2)

> exp(cαj)

)
> 1− α, (10.15)

for some cα depends on σ, σ̂, α. Recall g(·) =
∑m1

s=1wsδηs(·), we have

T i,jOR := P(θi = 0|XXXj
i ) =

(1− π)
∏j
t=1 φ(xit, 0, σ

2)

(1− π)
∏j
t=1 φ(xit, 0, σ2) + π

∑m1
s=1ws

∏j
t=1 φ(xit, ηs, σ2)

.

Since ws > ε for some ε, and µi = ηs for some ηs, by (10.14) we have

P
(
∀ j > K : T i,jOR < exp(−cαj)

)
> 1− α, (10.16)

Let ĝ(·) =
∑m2

s=1 ŵsδη̂s(·). Note that µ̂ji can be written as

µ̂ji =

m∑
s=1

pjsη̂s, where pjs =
ŵs
∏j
t=1 φ(xit, η̂s, σ̂

2)∑m2
k=1 ŵk

∏j
t=1 φ(xit, η̂k, σ̂2)

.

Let η̂s be the point in {η̂1, . . . , η̂m2} that is closest to µi then use similar argument as above,
we can show that there exist K ′ depending on α such that

P
(
∀ j > K : |1− pjs| < exp(−cαj)

)
> 1− α.

As a result, there exist K such that

P
(
∀ j > K : |µ̂ji − µi| < |µi|/2− ε

)
> 1− α.
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Recall

T̂ i,jOR :=
(1− π̂)

∏j
t=1 φ(xit, 0, σ̂

2)

(1− π̂)
∏j
t=1 φ(xit, 0, σ̂2) + π̂

∏j
t=1 φ(xit, µ̂

j
i , σ̂

2)
.

By (10.15) we also have there ∃K depending on α such that

P
(
∀ j > K : T̂ i,jOR < exp(−cαj)

)
> 1− α.

Combine this with (10.16) we have the desired result. The case for xit ∼ N(0, σ2) is similar.
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Appendix A. Derivation of thresholds

In this section we provide details about the derivations of the approximation formulae in
(2.7). The derivation in this section is less formal. We need the following assumption in our
derivation. The assumption has been commonly adopted in the literature on SPRT (e.g.
Berger (1985); Siegmund (1985)).

Assumption 2 Let Zi,1 = log
f(Xi1|θi = 1)

f(Xi1|θi = 0)
. For all i, we have Pθi(Zi,1 = 0) < 1,

Pθi(|Zi,1| < ∞) = 1, Pθi(Zi,1 < 0) > 0, and Pθi(Zi,1 > 0) > 0. Moreover, Mθi(t) =
Eθi [etZi,1 ] exists for all t.

We start our derivation by noting that T i,jOR is a monotone function of the likelihood
ratio statistic Li,j :

T i,jOR = P
(
θi = 0|XXXj

i

)
= 1/

(
1 +

π

1− π
Li,j
)
. (A.1)

Hence dddπ(tl, tu) can be expressed as a thresholding rule based on Li,j :

stops sampling for unit i at time Ni = min {j ≥ 1 : Li,j ≤ A or Li,j ≥ B},
deciding δi,Ni = 0 if Li,j ≤ A and δi,Ni = 1 if Li,j ≥ B.

We first solve (A,B) for a given pair (α, γ), then transform (A,B) to (tl, tu). The tech-
nique used in our derivation is similar to the classical ideas when deriving the upper and
lower thresholds for SPRT. Since all testing units operate independently and have the same
thresholds, it is sufficient to focus on the operation of SPRT on a generic testing unit.
Hence, for simplicity, we drop index i and denote Li,Ni , θi and Zi,k as LN , θ and Z·,k,
respectively.

Under the random mixture model, the FPR and MDR of the SPRT with thresholds
(A,B) can be calculated as

FPR =
(1− π)P (LN > B|θ = 0)

P (LN > B)
, MDR = P (LN < A|θ = 1) .

Let SN =
∑N

k=1 Z·,k = logLN . Denote a = logA and b = logB. Under Assumption 2,
Pθ(N < ∞) = 1 and all moment of N exist. There exists a unique nonzero number tθ for
which Mθ(tθ) = 1 (Berger (1985)). This fundamental identity then implies

1 = Eθ
{

exp(tθSN )Mθ(tθ)
−N} (A.2)

= Eθ {exp(tθSN )}
≈ exp(tθa)Pθ (SN ≤ a) + exp(tθb)Pθ (SN ≥ b) .
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In the above approximation, we ignore the overshoots and pretend that SN hits the bound-
aries a and b exactly. In reality, Eθ {exp(tθSN )|SN ≤ a} ≤ exp(tθa) and Eθ {exp(tθSN )|SN ≥ b} ≥
exp(tθb). Despite this fact, our approximation works well in all our simulation settings. In
this idealized situation, SN has a two-point distribution P∗θ:

P∗θ(SN = a) = Pθ(SN ≤ a),

P∗θ(SN = b) = Pθ(SN ≥ b).

Moreover, Assumption 2 implies that

1 = Pθ(N <∞) = Pθ(LN ≤ A) + Pθ(LN ≥ B)

= Pθ(SN ≤ a) + Pθ(SN ≥ b).

Thus we can solve from the above that

Pθ(LN ≥ B) = Pθ(SN ≥ b) ≈
1− exp(tθa)

exp(tθb)− exp(tθa)
.

According to Assumption 2, Pθ(|Z.,k| < ∞) = 1 for θ = 0, 1. Then tθ=0 = 1, tθ=1 = −1
(P493, Berger (1985)). It follows that

FPR ≈
(1− π) 1−A

B−A
P (LN ≥ B)

=
(1− π) 1−A

B−A

(1− π) 1−A
B−A + π 1−1/A

1/B−1/A

=
1− π

1− π + πB
,

MDR ≈ 1− 1− exp(−a)

exp(−b)− exp(−a)
= 1− 1− 1/A

1/B − 1/A

=
A(B − 1)

B −A
.

Setting FPR = α, MDR = γ and solving for A and B, we have

A ≈ (α−1 − 1)(1− π)γ

(α−1 − 1)(1− π)− π + πγ
, B ≈ (α−1 − 1)(1− π)

π
.

The relationship (A.1) implies that

A =
(1− π)(1− tu)

πtu
, B =

(1− π)(1− tl)
πtl

. (A.3)

Transforming from Li,j to T i,jOR, the corresponding thresholds can be obtained as:

tlOR = α and tuOR =
παγ + 1− π − α
πγ + 1− π − α

.

To ensure an effective MDR control, we choose a more stringent upper threshold:

tuOR =
1− π

πγ + 1− π
≥ παγ + 1− π − α

πγ + 1− π − α
, ∀α ≥ 0.
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Appendix B. The impact of sparsity levels on SMART

This section conducts simulation studies to investigate the effectiveness of FPR/MDR con-
trol at different sparsity levels. The numerical results suggest that sparsity has substantial
impact on the finite-sample performance of the data-driven procedure.

Consider the two group mixture model (1 − p)N(0, 1) + pN(µ, 1) with µ = 3.5. We
generate m = 100, 000 observations and vary p from 0.01 to 0.1 with step-size 0.01. The
FDR and MDR are computed by averaging the results in 100 data sets. The FPR, MDR and
total sample sizes are at varied sparsity levels are displayed in 1. the estimation accuracy
is negatively affected when signals become more sparse: SMART has mildly inflated FPR,
conservative MDR, and requires a larger sample size to effectively recover the signals.

Finally, we emphasize that the conclusions from numerical studies are limited and pre-
liminary. The effectiveness of FPR/MDR control is a complicated issue that depends on
several factors jointly.

(i) The reliable estimation of the stage-wise FPR/MDR requires a relatively large number
of rejections, which in turn requires that the signals cannot be too sparse or too weak.

(ii) The consistent estimation of the non-null proportion requires that the detection and
discovery boundaries must be achieved.

(iii) The quality of density estimators depends on the sample size and smoothness of the
underlying function.

We conclude that an important future research direction is the development of precise
estimation methods, which is instrumental for constructing powerful multi-stage testing
procedures.

Figure 1: Error rates and total samples for data-driven and oracle SMART procedures with
varying sparse signal proportions.

Appendix C. Comparison of realized FPR and FDR levels

We present the comparison of the realized FPR and FDR levels for the settings in Section
5.1. We can see that the FDR and FPR for each method (OR.SM and DD.SM) are very
similar in all scenarios. However, the FPR and FDR can be very different when signals are
rare and weak. See discussions in the next section.
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Figure 2: Dependent tests: Settings 1-3 are described in the main text. SMART controls
the error rates at the nominal levels in most settings.
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Appendix D. Some further investigations of FPR and FDR

We compare the FPR and FDR under the setting where signals are sparse and weak. We
simulate 100 data sets, each with m = 10000 observations obeying the following two-group
mixture model Xi ∼ (1 − p)N(0, 1) + pN(µ, 1). In Setting 1, we fix p = 0.05 and vary µ
from 0 to 2 with step size 0.1. In Setting 2, we vary p from 0.01 to 0.2 with step size 0.01
and fix µ = 1. The range of 0 to 2 is considered as the “weak” signal setting (r < 0.5)..

We apply the BH procedure at α = 0.05 at varied sparsity levels and inspect the corre-
sponding mFDR and FDR levels. Let Rk and V k be the number of rejections and number
of false positives in data set k, k = 1, · · · , 100. Then the FDR and mFDR are estimated

as F̂DR = 1
100

∑100
k=1

Vk
Rk∨1 ; m̂FDR =

∑100
k=1 Vk∑100
k=1Rk

. The simulation results are summarized in

Figure 3, where we also display the total number of rejections (
∑100

k=1Rk) and total number
of false positives (

∑100
k=1 Vk). The following observations can be made.

(a) The FDR levels are equal to the nominal level approximately in all settings. The
mFDR is very different from FDR when the signals are sparse and weak.

(b) From the left parts of the two panels on the right column, we can see that almost all
rejections made by BH in the 100 data sets are false positives when signals are weak
and sparse. However, this is not reflected by the FDR since P (FDP = 0) is high. By
contrast, the mFDR correctly reveals that most of our discoveries are false.

Figure 3: Comparison of the mFDR and FDR.
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