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Abstract

With observational data alone, causal structure learning is a challenging problem. The task
becomes easier when having access to data collected from perturbations of the underlying
system, even when the nature of these is unknown. Existing methods either do not allow for
the presence of latent variables or assume that these remain unperturbed. However, these
assumptions are hard to justify if the nature of the perturbations is unknown. We provide
results that enable scoring causal structures in the setting with additive, but unknown
interventions. Specifically, we propose a maximum-likelihood estimator in a structural
equation model that exploits system-wide invariances to output an equivalence class of
causal structures from perturbation data. Furthermore, under certain structural assump-
tions on the population model, we provide a simple graphical characterization of all the
DAGs in the interventional equivalence class. We illustrate the utility of our framework on
synthetic data as well as real data involving California reservoirs and protein expressions.
The software implementation is available as the Python package utlvce.

Keywords: directed acyclic graphs, invariance, structural causal models, equivalence
classes

1. Introduction

Identifying causal relations from observational data alone is challenging. In the context of
(acyclic) structural causal models (Robins et al., 2000; Pearl, 2009), one possibility is to find
the Markov equivalence class (MEC) of the underlying directed acyclic graph (DAG) under
the faithfulness assumption (Verma and Pearl, 1991) or the beta-min condition (van de
Geer and Bühlmann, 2013). Some of the well-known algorithms for structure learning of
MECs with observational data include the constraint-based PC algorithm (Spirtes et al.,
2000), the score-based Greedy Equivalence Search (GES) algorithm (Chickering, 2002), and
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hybrid methods that integrate constraint-based and score-based methods such as ARGES
(Nandy et al., 2018).

In contrast to the purely observational setting, randomized controlled experiments lie at
the opposite pole (Rubin, 2015): they are the gold standard for causal inference but ran-
domizing the treatment is often hindered by cost, feasibility, or ethical concerns. However,
under some assumptions, it is possible to exploit unspecific interventions or perturbations
in the underlying system of interest which may not have been explicitly designed and con-
trolled by a human experimenter. Such interventions arise in many application domains.
For example, in genomics, with the advance of gene editing technologies, high throughput
interventional gene expression data is being produced (Kemmeren et al., 2014; Dixit et al.,
2016; Meinshausen et al., 2016). While there is typically a particular gene that is targeted by
an intervention in a particular experiment, there may be additional off-target effects whose
nature is unknown. In this paper, we assume that we have access to interventional data
from different so-called “environments” where the location and strength of the respective
interventions do not have to be known.

Interventional data can be viewed as perturbations to components of the system and can
offer substantial gain in identifiability: Hauser and Bühlmann (2012) demonstrated that
combining interventional with observational data reduces ambiguity and enhances identifi-
ability to a smaller equivalence class than the MEC, known as the I-MEC (Interventional
MEC). A variety of methods have been proposed for causal structure learning from observa-
tional and interventional data. This includes the modified GES algorithms by Hauser and
Bühlmann (2012); Gamella et al. (2022), permutation-based causal structure learning for
observational data (Wang et al., 2017) and for interventional data (Squires et al., 2020), pe-
nalized maximum-likelihood procedure in Gaussian models (Hauser and Bühlmann, 2015),
the Joint Causal Inference framework based on conditional independence testing (Mooij
et al., 2020), and methods based on a causal invariance framework (Meinshausen et al.,
2016; Peters et al., 2016; Rothenhäusler et al., 2016, 2019, 2021; Ghassami et al., 2017;
Heinze-Deml et al., 2018b; Huang et al., 2020) building on a concept of stability (Dawid and
Didelez, 2010; Dawid, 2021). For a more comprehensive list, see also Drton and Maathius
(2017); Heinze-Deml et al. (2018a) and the references therein.

One reason why randomized controlled experiments are considered to be the gold stan-
dard for causal inference is that the randomization breaks the influence potential hidden
confounders have on both the treatment as well as the response variable of interest. In less
controlled settings, the presence of latent variables, which may be difficult to measure or
are simply unknown, poses a major challenge as the causal graphical model structure is
not closed under marginalization. Therefore, the graphical structure corresponding to the
marginal distribution of the observed variables consists of potentially many confounding
dependencies that are induced due to the marginalization over the latent variables.

In this paper, we propose a modeling framework and estimator that allows for unspecific
interventions on some or all of the variables. Figure 1 demonstrates a toy example of our
setup among 4 observed variables (X1, X2, X3, X4), latent variables H, and the environment
variables E representing exogenous effects (to the graphical structure among observed and
latent variables) that provide additive interventions to the observed and latent variables.
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Figure 1: Toy illustration of the setting considered in this paper where X represent the observed
variables and H represent the latent variables where solid lines are connections among
observed variables and dotted lines are connections between observed and latent variables;
left: without interventions, right: interventions E on all components indicated with red
dotted lines.

Formally, we study a linear structural causal model (SCM) specifying the interventional
model and the relationship between p observed variables X ∈ Rp and h latent variables
H ∈ Rh. Here, the latent variables are assumed to act exogenously on the observed variables,
but unless otherwise specified, no assumption is placed on the dependence structure among
the latent variables. The SCM is parameterized by a connectivity matrix encoding the DAG
structure among the observed variables, a coefficient matrix encoding the latent variable
effects, and parameters involving the noise variances and unknown additive intervention
magnitudes and locations among all of the variables. Using data from this model, our
objective is to estimate the DAG among the observed variables (e.g. the solid dotted lines in
Figure 1) or an equivalence class of DAGs when the underlying structure is not identifiable.

A key property of our modeling framework is that the connectivity matrix and the latent
variable coefficient matrix remain invariant across all the intervention environments. With
this insight, we propose a regularized maximum-likelihood procedure – dubbed (U)nknown
(T)arget (L)atent (V)ariable (C)ausal (E)stimator (UT-LVCE ) – to score any given DAG
and estimate the associated parameters. Using the given DAG structure and the learned
intervention locations on the observed variables, we then provide a simple graphical ap-
proach to identify an equivalence class of DAGs that yield the same fit to the data. We
show that to identify the population DAG among the observed variables, it is necessary to
impose constraints on the latent effects. Otherwise, the problem is ill-posed. Under certain
conditions on the population model, we demonstrate that applying this graphical proce-
dure to the underlying DAG and the intervention locations of the observed variable fully
characterizes, in the infinite data limit, the equivalence class of optimally scoring DAGs.
Furthermore, under sufficiently many interventions, the optimally scoring DAG is uniquely
the population DAG structure among the observed variables. Our characterization of the
optimally scoring DAGs is valid under two types of structural assumptions on the latent
effects: the first assumption is that the number of latent variables is small (compared to
the observed variables) and they affect many observed variables; the second assumption
substantially relaxes the first assumption and requires very mild conditions on the latent
effects at the expense of approximately knowing the magnitude of the latent interventions.

We envision several use cases for UT-LVCE . Firstly, in certain application domains, a
DAG structure may be believed to approximate the underlying phenomenon (for example,
protein expressions as in Section 5). UT-LVCE can be used to learn a latent variable causal
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Figure 2: An illustration comparing the output of our approach UT-LVCE and approaches that
do not impose any constraints on the latent effects such as JCI (Mooij et al., 2020).
a) the setup consisting of five observed variables, one latent variable and interventions
on the latent variable and observed variable X1, b) the interventional equivalence class
that UT-LVCE recovers (under some conditions) consisting uniquely of the subgraph
among observed variables, c) the interventional equivalence class that (Mooij et al., 2020)
recovers where many causal effects are not identified; here, directed edges denote ancestral
relationships and circle marks represent uncertainty about edge marks.

model with respect to this DAG and return an equivalence class of DAGs that fit the data
equally well. Secondly, along similar lines, a set of candidate DAGs, instead of only a
singleton, may be available based on prior knowledge. In such settings, each DAG in this
collection may be scored, and the best scoring ones as well as the DAGs in their respective
equivalence class may be returned as output. Thirdly, the input candidate DAGs may be
viewed as ‘starting points’ that may contain spurious edges (obtained by domain expertise
or by any structure learning algorithm) where the user aims to improve on these DAGs.
Here, we propose to apply UT-LVCE on top of a greedy backward deletion approach to
remove spurious dependencies due to latent confounding and identify an equivalence class
of best scoring DAGs.

1.1 Related work

A large body of causal structure learning methods with latent variables typically characterize
a class of graphical independence models called maximal ancestral graphs (MAGs) (Spirtes
et al., 2000; Richardson and Spirtes, 2002; Jaber et al., 2020; Bhattacharya et al., 2021).
These methods, which allow for arbitrary hidden structure, tend to be overly conservative,
recovering only a small subset of the causal effects. For example, suppose a latent variable
influences many observed variables. Then, the underlying MAG tends to be dense where
many edges cannot be directed. In this work, we take a middle-ground stance and place
assumptions on the latent effects; these assumptions then enable us to direct edges and
learn the sub-graph among observed variables (see the illustration in Figure 2). A similar
perspective was taken in Frot et al. (2019) but without incorporating interventional data.

In the joint observational and interventional setting with unspecified interventions and
latent confounders, several methods exist in the literature for either learning the sub-graph
among the observed variables or the causal parents (among the observed variables) of a
target variable of interest. In particular, with unperturbed latent variables and only so-
called shift interventions on the observed covariates, Causal Dantzig (Rothenhäusler et al.,
2019) consistently estimates the causal effects on a response variable assuming that the
interventions do not directly affect the response variable. Such an assumption is relaxed
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Method Perturbed response Unperturbed latent Perturbed latent

IV, ICP, Causal Dantzig x X single DAG x

backShift X single DAG X single DAG x

UT-LVCE X I-MEC X I-MEC X I-MEC

Table 1: Comparison of UT-LVCE with competing methods in the following settings: response
variable is perturbed, latent variables are unperturbed, and the latent variables are per-
turbed. The methods are Instrumental Variables IV (Angrist et al., 1996), Invariant
Causal Predictions (Peters et al., 2016), Causal Dantzig (Rothenhäusler et al., 2019),
backShift (Rothenhäusler et al., 2016) and our proposal UT-LVCE . Here, we denote an
interventional equivalence class of DAGs by I-MEC.

in the backShift procedure (Rothenhäusler et al., 2016) which still requires that the latent
variables remain unperturbed for identifying the causal structure. Both Causal Dantzig and
backShift yield a single causal structure, even if the underlying model is not fully identifiable.
On the other hand, in addition to allowing for interventions on all the variables, UT-LVCE
produces an equivalence class of DAGs. For a summary of the assumptions for UT-LVCE as
compared to competing methods (including Instrumental Variable Regression (IV, Angrist
et al. 1996), see Table 1. We will also provide more comparisons throughout the paper.

1.2 Notation

We denote the identity matrix by Id, with the size being clear from context. The collection
of d×d symmetric matrices are denoted by Sd and positive-semidefinite matrices by Sd+ and
the collection of strictly positive-definite matrices by Sd++. The collection of positive-definite
diagonal matrices is denoted by Dd++. For two positive semidefinite matrices A and B, we
write B � A if and only if B−A is positive semidefinite. For a positive integer a, we denote
the set {1, 2, . . . , a} by [a]. We denote the index set of the parents of a random variable Xp

by PA(p). We denote MEC(D) to be the Markov equivalence class of D, namely DAGs that
have the same skeleton and v-structures as D. Here a v-structure is a set of three nodes
i, j, k such that there are directed edges from i to k and from j to k, and there is no edge
between i and j. For a DAG D among p variables, and a matrix B ∈ Rp×p, we use the
notation B ∼ D to denote that Bij 6= 0 implies there is a directed edge from node i to j
in the DAG D. For a set of diagonal and positive-definite matrices {Ωe}me=1 ⊆ Dp++ with
positive integer m ≥ 2, we let I({Ωe}me=1) := {j : ∃ e, f such that [Ωe]j,j 6= [Ωf ]j,j}. Finally,
we say that a distribution is faithful with respect to a DAG D if the list of conditional
independence relationships in the distribution are the same as those encoded in D.

2. Modeling framework and maximum-likelihood estimator

In this section, we describe the data generation process associated with the intervention
model sketched in Figure 1. Furthermore, we propose UT-LVCE, a regularized maximum-
likelihood estimator. Given an input DAG, UT-LVCE identifies estimates of the unknown
perturbation effects, the latent effects, and the causal relations among the observed vari-
ables. Finally, we describe a computationally efficient graphical procedure that uses the
estimate obtained from UT-LVCE to find a set of equally scoring DAGs.
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2.1 Modeling framework

We consider a directed acyclic graph whose p + h nodes correspond to random variables
(X,H) ⊆ Rp × Rh, where X are observable and H are latent variables. We denote the
induced subgraph DAG corresponding to the observed variables by D?. We aim to learn D?
or an equivalence class of DAGs when there are not enough interventions on the observed
variables for full identifiability. Our methodology is also applicable in a setting where one
is primarily interested in the causal effects on a particular response variable of interest. As
such, we distinguish Xp as the target or response variable.

We assume that the observed and latent variables satisfy the following linear SCM:

X = B?X + Γ?H + ε. (1)

Here, the connectivity matrix B? ∈ Rp×p contains zeros on the diagonal and is compatible
with D?: B?

ij = 0 if Xj is not a parent of Xi in D?. Thus, the p-th row vector B?
p,: encodes

the (observable) causal parents of the response variable and the magnitude of their effects.
The matrix Γ? in (1) encodes the effects of the latent variables on the observed variables
where Γ?k,j = 0 if the latent variable Hj is not a parent of the node Xk. Further, ε is a
random vector with independent components. We assume that the latent variables H are
exogenous to X, so that ε is independent of H. Unless otherwise specified, no assumptions
are imposed on the causal structure among the latent variables H.

The compact SCM (1) describes the generating process of X in the observational setting
when there are no external perturbations on the system. We next describe how the data
generation process alters due to some type of perturbations to the variables (X,H). We
consider perturbations that directly shift the distributions of the random variables by some
noise acting additively to the system. Specifically, the perturbations E generate the random
pair (Xe, He) for each environment e ∈ E satisfying the following SCM:

Xe = B?Xe + Γ?He + εe + δe, (2)

where for every e ∈ E , εe
dist
= ε, (He, δe, εe) are jointly independent, and the collec-

tion (Xe, He, δe, εe) is independent across e. Further, δe ∈ Rp is a vector that repre-
sents the additive perturbations on the observed variables. Some of the entries of δe

could be identically zero indicating that no interventions occurred; the remaining en-
tries are generated from a random distribution. The intervention targets are denoted by
I? := {j ∈ [p] : var(δej ) 6= 0 for some e ∈ E}1. Importantly, the location of the nonzero

components (i.e. variables that are intervened) is unknown. Finally, He ∈ Rh is a random
vector that represents the intervened latent variables across the environments. That is, the
interventions on the latent variables are absorbed into He. Without loss of generality, we
assume that all variables are centered.

Given data of observed variables Xe across environments e ∈ E , our objective is to develop
a procedure to estimate the unknown intervention effects, the latent effects, and the causal

1. Here, we consider interventions that vary the variance of the noise terms; see Section 2 of Gamella et al.
(2022) for why interventions on the means do not offer any identifiability in linear Gaussian SCMs.
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relations among observed variables. To arrive at an estimator, we model the distribution of
the random vectors He, εe and the nonzero components of δe to be Gaussian. Specifically,
we model the random vectors He as well as the sum εe + δe as follows:

He ∼ N (0,Ψ?
e), Ψ?

e ∈ Sh++,

εe + δe ∼ N (0,Ω?
e), Ω?

e ∈ Dp++, I({Ω?
e}me=1) = I?.

The notations of D·++, S·++, I(·) are defined in Section 1.2. We remark that non-Gaussian
linear structural equation models are generally more identifiable than their Gaussian coun-
terparts (Shimizu et al., 2006). While we develop our procedure based on a Gaussian model,
we will see that the output of our approach is conservative in the sense that the true set of
equivalent DAGs is contained in the estimated set in a non-Gaussian setting.

The compactified SCM (2) characterizes the distribution among all of the observed vari-
ables and encodes system-wide invariances. Specifically, (2) insists that for every k =
1, 2, . . . , p, the regression coefficients when regressing Xe

k on the parent sets {Xe
j : Xj parent

of Xk} and {He
l : Hl parent of Xk} remain invariant for all environments e ∈ E . This is a

point of departure from instrumental variable techniques (Angrist et al., 1996) or Invari-
ant Causal Prediction (Peters et al., 2016) in two significant ways: 1) such methods do
not allow for interventions on the latent variables or the response variable Xp (i.e. they

assume He dist
= H and δep ≡ 0 for all e ∈ E) and 2) they only consider “local” invariances

arising from the distribution Xe
p | {(Xe

j , H
e
l ) parents of Xp}. The virtue of considering a

joint model over all of the variables and exploiting system-wide invariances is that we can
propose a maximum-likelihood estimator UT-LVCE which identifies the population DAG
structure even under interventions on the response variable and the latent variables.

The SCM (2) is similar in spirit to previous modeling frameworks in the literature. The
authors Hauser and Bühlmann (2015) consider jointly observational and interventional
Gaussian data where the interventions are limited to do-interventions and there are no
latent variables. In the context of (2), this means that δe ≡ 0 and Γ? ≡ 0. As such, the
framework considered in this paper is a substantial generalization of Hauser and Bühlmann
(2015). Further, the backShift (Rothenhäusler et al., 2016) procedure considers the linear
SCM (2) with some modifications: i) there are no interventions to the latent variables,

i.e. He dist
= H for all e ∈ E , and ii) D? may be a cyclic directed graph. In addition, the

backShift algorithm relies on exploiting invariances of differences of estimated covariance
matrices across environments. Our UT-LVCE procedure is more in the ”culture of likeli-
hood modeling and inference” and has the advantage that it can cope well with having only
a few observations per environment. This likelihood perspective also fits much more into
the context of inference for mixed models as briefly discussed next.

The framework in (2) bears some similarities to standard random effects mixed models
(McLean et al., 1991). In particular, random effects mixed models are widely employed
to model grouped data, where some parameter components remain fixed and others are
random. In the context of our problem, the fixed parameters are the matrices B?,Γ? and
the random parameters are the shift interventions δe. However, a difference between our
model in (1) and standard mixed models is that the effects of the random parameter δe
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propagate through the structural equations; and in practice, the order of propagation is
usually unknown.

2.2 Scoring DAGs via UT-LVCE

In this section, we propose our method UT-LVCE, which scores a DAG D via regularized
maximum likelihood estimation. As we will discuss, the scores of a candidate set of DAGs
can then be obtained using this procedure to find the best scoring DAG(s). We suppose
that there are m environments |E| = m, and for every environment e = 1, 2, . . . ,m, we have
samples of Xe: {Xe

i }nei=1 for some positive integer ne which are independent and identically
distributed (IID) for each e and independent across e. To obtain a score for a DAG D,
UT-LVCE identifies a causal model that best fits the data. This model is parameterized
by (B,Γ, I,Ωe,Ψe) for all e = 1, 2, . . . ,m, where B is a connectivity matrix, Γ encodes
the latent effects, I is a subset representing the intervention locations, Ωe represents the
noise variances of the observed variables, and Ψe encodes the interventions on the latent
variables (see (2)). The quantities (B,Γ, I,Ωe,Ψe) are unknown and estimated by solving
the following regularized maximum-likelihood estimator for the DAG structure D with h̄
latent variables:

argmin
B∈Rp×p,Γ∈Rp×h̄,I⊆{1,2,...,p}
{Ωe,Ψe}me=1⊆D

p
++×Sh̄++

m∑
e=1

π̂e`(B,Γ,Ωe,Ψe; Σ̂e) + λRγ(D, I).

subject-to: B ∼ D ; I({Ωe}me=1) ⊆ I

(3)

Here, `(·) is the negative Gaussian log-likelihood

`(·) := log det
(
Ωe + ΓΨeΓ

T
)

+ trace
([

Ωe + ΓΨeΓ
T
]−1

(Id−B)Σ̂e(Id−B)T
)
,

where the matrix Σ̂e is the sample covariance of the data {Xe
i }nei=1. The quantity π̂e =

ne/
∑m

e=1 ne represents the estimated mixture components. The constraint B ∼ D ensures
that the connectivity matrix B satisfies the sparsity pattern of the graph D. Further, the
constraint I({Ωe}me=1) ⊆ I on the matrices {Ωe}me=1 and set I ensures that the variances
corresponding to unintervened coordinates (as specified by I) are the same across all en-
vironments. The notations of D·++, S·++, · ∼ ·, I(·) are defined in Section 1.2. Finally,
λRγ(·, ·) represents a regularization term with λ, γ ≥ 0 and Rγ(·, ·) given by:

Rγ(D, I) := (‖D‖`0 + p degree[moral(D)]) + γ|I|.

Here, ‖D‖`0 denotes the number of edges in D. Further, moral(D) denotes the moralization
of D which forms an undirected graph of D by adding edges between nodes that have
common children, and degree[·] computes the maximal degree of the undirected graph.
The sum ‖D‖`0 + p degree[moral(D)] regularizes DAG D’s complexity2; although this term
is a constant in the UT-LVCE estimator (3), it will play a crucial role for comparing
different DAGs that are scored via the UT-LVCE estimator (3). The quantity |I| penalizes

2. One can also add an extra tuning parameter, e.g. ‖D‖`0 + κ degree[moral(D)] for some κ ≥ 0; for
simplicity, we use a fixed value κ = p.
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the number of interventions on the observed variables. Furthermore, the regularization
parameter λ provides overall control of the trade-off between the fidelity of the model to
the data and the complexity of the model. Additionally, the regularization parameter γ
provides a trade-off between the complexity of the DAG and the number of intervention
targets. Overall, Rγ(D, I) is akin to the Akaike Information Criterion (AIC) or Bayesian
Information Criterion (BIC) score as it prevents overfitting by incorporating the denseness
of the DAG D as well as the number of interventions in the likelihood score.

We note that regularization terms controlling for the complexity of estimated DAGs are
commonly employed in causal structural learning (see Drton and Maathius 2017 and the
references therein). Previous work on penalized likelihood scores only contain the regular-
ization term ‖D‖`0 . Thus, our regularization penalty Rγ(D, I) contains the novel terms
degree[moral(D)] and |I|. The quantity degree[moral(D)] is an important addition in our
context to ensure identifiability of the underlying DAG among observed variables in the
presence of latent variables as described in Section 3.2. The quantity |I| is motivated by
the following observation: if the size of the intervention set is not penalized, for any finite
sample size, (3) returns Î = [p]. Intuitively, a model that contains interventions on all of
the variables is in its own equivalence class (we formalize this in Section 3). Thus, without
the penalty on the size of the intervention target, the optimum of (3) may be unique even
if there are multiple DAGs in the equivalence class of the population model.

In summary, the estimator (3) takes as input the DAG D, the tuning parameters (λ, γ, h̄)
and the observed empirical covariance matrices Σ̂e to obtain a causal model with the fol-
lowing parameters:

Θ̂(D, h̄) := any minimizer (B̂, Γ̂, Î, {Ω̂e, Ψ̂e}me=1) of (3).

Then the score for the DAG D given parameters Θ̂(D, h̄) is computed as:

scoreλ,γ(D, Θ̂(D, h̄)) :=

m∑
e=1

π̂e`(B̂, Γ̂, Ω̂e, Ψ̂e; Σ̂e) + λRγ(D, Î). (4)

We select the parameters (λ, γ, h̄) via cross-validation; see Section 4 for more discussion.
Note that while the minimizer of (3) is not unique, the associated score (4) is the same for
all minimizers of (3).

In comparison to the UT-LVCE procedure, backShift (Rothenhäusler et al., 2016) fits the
SCM (2) (with some restrictions outlined in Section 2.1) by performing joint diagonalization
to the difference of sample covariance matrices. UT-LVCE allows for much more modeling
flexibility. First, in contrast to backShift where the latent effects are subtracted by com-
puting the difference of covariances, UT-LVCE explicitly models these effects. This feature
of UT-LVCE enables the possibility of interventions to the latent variables and a manner
to control the number of estimated latent variables (as opposed to an arbitrary number of
latent variables with backShift). We discuss in Section 3 that controlling the number of
latent variables may lead to identifiability using UT-LVCE with two environments, whereas
backShift is guaranteed to fail. Furthermore, UT-LVCE allows to pool information over
different environments e for the parameter B of interest: this enables UT-LVCE to be used
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with only a few sample points per environment. Finally, UT-LVCE explicitly models the
intervention structure among the observed variables (via the set I). We will see in the
next section that encoding the intervention structure allows for outputting a set of equally
scoring DAGs. The procedure backShift on the other hand returns a single DAG, even if
the underlying model is not identifiable.

2.3 Score equivalent DAGs

The estimator (3) can be used in conjunction with (4) to score a collection of DAGs and find
the ones that best fit the data. Such an approach raises the following question: are there
multiple DAGs that fit the data equally well? In this section, we answer in the affirmative
and provide a procedure to obtain a set of score equivalent DAGs. The set of equally scoring
DAGs is closely related to an interventional equivalence class, which was first introduced
for this model without latent variables in Gamella et al. (2022), and we present it below.

Definition 1 (I-MEC, Gamella et al. (2022)) Let D be a DAG and I ⊆ [p] denotes an
intervention set. Furthermore, let MEC(D) be the standard observational Markov equiva-
lence class of D. Then, we define the following interventional equivalence class:

I-MEC(D) :=
{
D̃ ∈ MEC(D) | PAD̃(i) = PAD(i) for all i ∈ I

}
. (5)

The interventional equivalence class I-MEC(D) is closely related to the notion of transition
pair equivalence, introduced by Tian and Pearl (2001) (see Gamella et al. 2022 for more
discussion). This class is a subset of the standard observational Markov equivalence class
and consists of DAGs that have the same parents as D for variables in the intervention
target set I. Thus, the intervention target set I controls the cardinality of I-MEC(D), i.e.
for any I1 ⊆ I2: {D} ⊆ I2-MEC(D) ⊆ I1-MEC(D) ⊆ MEC(D). As noted in Gamella et al.
(2022), the set I-MEC(D) can be computed efficiently given (D, I) using Meek’s rules with
background knowledge (Meek, 1995). The following theorem statement formally relates the
interventional equivalence class I-MEC(D) to the set of equally scoring DAGs.

Theorem 2 (score equivalent DAGs) Consider an SCM (2) with structure given by
a DAG D and parameter set Θ(D, h̄) := (B,Γ, I, {Ωe,Ψe}me=1). Then, for any DAG D̃ ∈
I-MEC(D), there exists a parameter set Θ̃(D̃, h̄) := (B̃, Γ̃, Ĩ, {Ω̃e, Ψ̃e}me=1) with B̃ ∼ D̃ such
that scoreλ,γ(D,Θ(D, h̄)) = scoreλ,γ(D̃, Θ̃(D̃, h̄)) for all λ, γ ≥ 0.

The proof of Theorem 2 is shown in Appendix Section B and extends the analysis pro-
vided in Gamella et al. (2022) to the setting with latent variables. The results of Theo-
rem 2 enable the characterization of the set of best scoring DAGs. Specifically, let D̂opt

be an optimal scoring DAG with a corresponding intervention set Îopt, i.e. (D̂opt, h̄opt) ∈
argminD,h̄ scoreλ,γ(D, Θ̂(D, h̄)) and Îopt is an intervention set encoded in Θ̂(Dopt, h̄opt).

Then, all the DAGs inside Îopt-MEC(D̂opt) are also optimal.

3. Identifiability guarantees with UT-LVCE

In this section, we analyze the identifiability guarantees of UT-LVCE in the infinite data
limit. Specifically, we analyze the DAGs that minimize the score (4), i.e. are solutions to
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(a) dense latent effects with dim(H)� p (b) approximately known latent interventions

Figure 3: Structural assumptions needed for equivalence class characterization: a) dense latent
effects with a small number of latent variables as compared to the ambient dimension
(Section 3.2) and b) known interventions on the latent variables (indicated by blue dashed
line) and some confounding dependencies induced by the latent variables (Section 3.3).

argminD,h̄ scoreλ,γ(D, Θ̂(D, h̄)) when the sample size ne →∞ for every e ∈ [m] and λ→ 0
(with details on the specific rate described in Appendix C).

In Section 3.1, we show that without imposing any additional structure in the problem,
an optimal scoring DAG may be very different than the population DAG D?; we will
describe how this result is related to the violation of the faithfulness assumption over the
graph of observed and latent variables (see Section 1.2 for formal definition of faithfulness)
that is typically made in the literature of latent variable causal discovery. Hence, since
identifying optimal DAGs is meaningless without any conditions, in Sections 3.2 and 3.3,
we impose structural assumptions on the latent effects and constrain the causal parameters
appropriately; these conditions ensure that an estimated DAG is inside the interventional
equivalence class of the population DAG in the infinite data limit, i.e. for any optimally
scoring DAG D̂opt, we have D̂opt ∈ I?-MEC(D?) with probability tending to one as the
sample size in every environment tends to infinity. In Section 3.2, we assume that the
number of latent variables is small and they affect many observed variables (visualized in
Figure 3a). In Section 3.3, we assume that the latent interventions are approximately known
and the latent variables induce some confounding dependencies (visualized in Figure 3b).
Throughout, we describe quantitative measures that our software outputs to indicate when
deviations from assumptions may have occurred.

We assume that the data is generated according to the intervention model in (2) with
population parameters B?,Γ?, I?, {(Ω?

e,Ψ
?
e)}me=1 (see Section 2.1). We let

D̂all.opt, B̂all.opt, Îall.opt (6)

be the optimally scoring DAGs and associated connectivity matrice(s) and set(s) of inter-
vention targets, which are all solutions to:

argmin
D,h̄

argmin
B,Γ,I

{Ωe,Ψe}me=1

m∑
e=1

π̂e`(B,Γ,Ωe,Ψe; Σ̂e) + λRγ(D, I)

subject-to: B ∼ D ; I({Ωe}me=1) ⊆ I.

(7)

Here, the dimension of the matrices Γ and Ψe are Rp×h̄ and Sh̄, respectively. Compared
to the estimator (3), the estimator (7) searches for the optimal DAG and number of latent
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Figure 4: Two equivalent models with respect to the distribution among the observed vari-
ables; see text.

variables; thus, D̂all.opt = argminD,h̄ scoreλ,γ(D, Θ̂(D, h̄)) and B̂all.opt, Îall.opt are the asso-
ciated model parameters. Throughout, we choose λ → 0, with details on the specific rate
described in Appendix C. We assume that limall ne→∞

ne∑m
e=1 n

e > 0 for all e ∈ [m]. Finally,

for technical reasons, to prove consistency, the parameter space (B,Γ, {(Ωe,Ψe)}me=1) in
(7) is assumed to be compact. Assuming such a compactness constraint enables uniform
convergence of M-estimators (van de Geer, 2000); see again Appendix C for more details.

3.1 Impossibility results without imposing structural assumptions

The problem of identifying the underlying DAG is ill-posed if no assumption is placed
on the latent effects. Specifically, the distribution among the observed variables in every
environment can be expressed as one generated according to an SCM (1) where the graph
among the observed variables is arbitrary. We formalize this next.

Proposition 3 (Equivalent SCMs) Regardless of the intervention set I? and the in-
tervention magnitudes encoded in Ω?

e on the observed variables, for any DAG D and any
connectivity matrix B ∼ D, there exists parameters (Γ, {(Ωe,Ψe)}me=1) such that the associ-
ated SCM specified by these parameters is compatible with the data distribution, and consists
of h = p latent variables.

The proof of Proposition 3 is presented in Appendix D.1. Figure 4 provides an illustration
of this result among three observed variables. Here, Figure 4(a) and Figure 4(b) represent
equivalent models, although the subgraphs among the observed variables are different; see
Appendix D.2 for formal description of the parameters of these models. Note that a typical
assumption in causal structure learning with latent variables is that the joint distribution
of the observed and latent variables is faithful to the graph among these variables. Indeed,
many algorithms such as FCI (Spirtes et al., 2000), RFCI (Colombo et al., 2012), and JCI
(Mooij et al., 2020) rely on this condition for characterizing and learning an equivalence
class of models. The result of Proposition 3 provides a construction of non-faithful models;
see Appendix D.2.

Corollary 4 (Optimally scoring DAGs without structural assumptions) Regardless
of the intervention set I? and the intervention magnitudes encoded in Ω?

e on the observed
variables, the set D̂all.opt is a singleton containing the empty graph.

12
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The proof of Corollary 4 is presented in Appendix D.3. The results of Proposition 4 and
Corollary 4 state that searching for the best scoring DAG is meaningless if no structure is
imposed on the problem.

3.2 Equivalence class characterization under a small number of latent
variables with dense effects

We now analyze the estimates (6) under structural assumptions on the denseness of the
latent effects and sparsity of the underlying DAG where the interventions on the latent
variables may be arbitrary. We substantially relax this assumption in Section 3.3 at the
expense of approximate knowledge of the interventions on the latent variables.

Before proceeding, we present some real-world applications where the assumed structure
may be reasonable. For example, Chandrasekaran et al. (2012) showed that a large frac-
tion of the conditional dependencies among stick returns can be explained by a few latent
variables. In a similar spirit, Taeb et al. (2017) demonstrated that the California reser-
voir network is influenced by a few external latent factors (correlated with environmental
variables), and these have a system-wide effect; we explore this application further in our
experiments. Finally, in an analysis of gene expression data, Zhao et al. (2016) find that
a small number of dense latent factors explain much more variability than sparse latent
factors, and these dense factors correlated well with some known biological and technical
covariates (e.g. batch effects).

How are the aforementioned structural assumptions useful for identifiability? To motivate
the utility of these structural assumptions, we first note that the structural equation model
(2) yields the covariance model of observed variables Σ?

e = (Id−B?)−1(Ω?
e +Γ?Ψ?

eΓ
?T )(Id−

B?)−T for every e ∈ [m]. By the Woodbury Inversion lemma, we obtain the following
decomposition Σ?

e
−1 = S?e − L?e of the precision matrix Σ?

e
−1 for every e ∈ [m]. Here, the

matrix S?e = (Id − B?)TΩ?
e
−1(Id − B?) is the inverse of the conditional covariance of the

observed variables conditioned on the latent variables. The matrix L?e is the rank-h matrix
(Id − B?)TΩ?

e
−1Γ?(Ψ?

e
−1 + Γ?TΩ?

e
−1Γ?)−1Γ?TΩ?

e
−1(Id − B?) that summarizes the effect of

marginalization over latent variables.

Without assuming any additional structure on the population model, the matrices S?e and
L?e are not identifiable from Σ?

e
−1. This lack of identifiability implies Σ?

e
−1 can be modeled

by a different DAG D ∈ D̂all.opt that may be arbitrarily different from D?. Appealing to
the previous literature on sparse-plus-low rank decompositions, the matrices S?e and L?e are
identifiable from their sum if the matrix S?e is sparse and the matrix L?e is low-rank with
its energy spread across the coordinates (Recht et al., 2010; Chandrasekaran et al., 2011;
Candès et al., 2011). It is straightforward to check that the entry [S?e ]i,j is nonzero if the
variables Xi and Xj are connected in the moral graph of D?. Thus, a sparse moral graph
of D? implies that the matrix S?e is sparse. The assumption on L?e can be interpreted as the
number of latent variables being small (as compared to the ambient dimension p) with their
effects spread across all the observed variables. We measure the sparsity of the moral graph
of a DAG D by the maximal degree of the moral graph, denoted by degree[moral(D)]. Thus,
we require degree[moral(D?)] to be small so that no observed variable is directly connected
to “many” other observed variables in the moral graph of D?. To measure the ”diffuseness”
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of the latent effects, we consider the following quantity for any linear subspace T ⊆ Rp
(Candès et al., 2011; Candès and Recht, 2009; Chandrasekaran et al., 2011, 2012):

inc[T ] := max
i
‖PT (ei)‖2,

where PT is the projection onto the subspace T and ei is a standard coordinate basis. The
quantity inc[T ] is also known as the “incoherence parameter” (Candès and Recht, 2009;
Chandrasekaran et al., 2011). It measures how aligned the subspace T is with respect to

standard basis elements and is lower-bounded by
√

dim(T )
p and upper-bounded by one. In

our setting, the relevant subspace is col-space((Id − B?)TΩ?
e
−1Γ?)) which is the column-

space of L?e. A small value of inc[col-space((Id−B?)TΩ?
e
−1Γ?))] ensures the matrix L?e has

small rank and cannot have its support concentrated in a few locations.

In summary, to enable identifiability, the population quantities degree[moral(D?)] and
inc[col-space((Id−B?)TΩ?

e
−1Γ?)] are assumed to be sufficiently small. We will first analyze

the estimates (6) under these assumptions as well as faithfulness and access to an obser-
vational environment. For notational simplicity, we define d? := degree[moral(D?)] and
inc?e := inc[col-space((Id−B?)TΩ?

e
−1Γ?)]. Formally, we assume:

Assumption 1 sparse DAG and incoherent (dense) latent effects across all environments:
32d?inc?e

2 < 1 for all e ∈ [m].

Assumption 2 the distribution Xe|He is faithful with respect to D? for all e ∈ [m].

Assumption 3 observational environment e = 1 with no interventions on the observed
variables: Ω?

e � Ω?
1 for all e ∈ [m].

Assumption 1 ensures that the population model consists of a sufficiently sparse moral
graph and dense latent effects with a small number of latent variables as compared to a
relatively large ambient dimension p. This assumption bears resemblance to conditions for
identifiability in sparse-plus-low rank decompositions (Chandrasekaran et al., 2011, 2012;
Frot et al., 2019), although we demonstrate in Appendix E that our condition is weaker
(in terms of high-dimensional scaling) than those imposed in these previous works. We
also provide in Appendix E examples of SCMs (2) that satisfy Assumption 1. Further,
Assumptions 2-3 are standard conditions for identifiability of an equivalence class of DAGs
both in observational and interventional settings (Chickering, 2002; Hauser and Bühlmann,
2015; Wang et al., 2017). Note that regarding Assumption 3, one does not need to know
a prioi which environment is observational. We will see later that Assumption 3 can be
replaced by conditions on the informativeness of the interventions.

Recall that Proposition 4 and Corollary 4 tells us that solving (7) is meaningless unless
the parameters of the estimated causal models are also appropriately constrained. Thus,
under Assumptions 1-3, we consider the theoretical properties of (6) when the incoherence
of the estimated latent effects is controlled.

Proposition 5 (Equivalence class characterization under incoherent latent ef-
fects) Consider the estimator (7) with the additional constraint that inc[col-space((Id −
B)TΩ−1

e Γ)] ≤ 2inc?e for all e ∈ [m]. Then, under Assumptions 1-3 and γ selected so that
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d? ≥ γ > 0, we have that the estimates (6) satisfy: {D?} ⊆ D̂all.opt ⊆ MEC(D?) with
probability tending to one as the sample size in every environment tends to infinity.

We present the proof of Proposition 5 in Appendix F. This result states that if the latent
effects of the estimated causal models are constrained to be low-dimensional and dense,
in infinite data limit and with probability tending to one, the set of equally scoring latent
variable causal models D̂all.opt are a subset of the Markov equivalence class MEC(D?) and
contain the population DAG D?. In Proposition 5 the interventions on the variables indexed
by I? do not appear to directly constrain the optimal set of solutions. Indeed, we show
in Appendix G.1 that under certain “worst-case configurations” of intervention strengths,
the set D̂all.opt is precisely equal to the Markov equivalence class MEC(D?). Thus, to
improve identifiability, additional assumptions on the informativeness of the interventions
are needed, which we state below:

Assumption 4 interventions on the observed variables are heterogeneous: for every i ∈
I?, there exists e such that [Ω?

e]i,i > [Ω?
1]i,i and [Ω?

eΩ
?
1
−1]i,i 6= [Ω?

eΩ
?
1
−1]j,j for all j 6= i.

Assumption 5 interventions on the observed variables are ”truthful”: for every Markov
equivalent connectivity 3 B to B? w.r.t X1|H1, and (i, j) where i ∈ I?, i  j in D?, [Id −
B]j,: 6∝ [Id−B?]i,:.

Here, the notation v1 6∝ v2 for vectors v1 and v2 means that the vectors v1 and v2 are not
proportional. Further, the notation i j in D? means that the variable Xi is an ancestor
of the variable Xj in the DAG D?. While Assumption 4 ensures that the interventions
on the observed variables are sufficiently diverse 4, Assumption 5 excludes a pathological
configuration of the intervention strengths and the connectivity matrix B? and is similar in
spirit to ”interventional faithfulness” assumptions imposed in previous work (Gamella and
Heinze-Deml, 2020; Squires et al., 2020; Gamella et al., 2022). In summary, Assumptions
4-5 are both rather weak and ensure that interventions on the observed variables improve
identifiability:

Theorem 6 (Equivalence class characterization under incoherent latent effects,
and truthful and heterogeneous interventions) Consider the estimator (7) with the
additional constraint that inc[col-space((Id − B)TΩ−1

e Γ)] ≤ 2inc?e for all e ∈ [m]. Then,
under Assumptions 1-2 and 4-5, and if the parameter d? ≥ γ > 0: {D?} ⊆ D̂all.opt =

I?-MEC(D?), B? ∈ B̂all.opt and Îall.opt = {I?}, all with probability tending to one as the
sample size in every environment tends to infinity.

We present the proof of Theorem 6 in Appendix G.2. Notice that Assumptions 4-5 replace
the need for access to an observational environment in Assumption 3, as I-MEC(D?) ⊆
MEC(D?). Theorem 6 states that I?-MEC(D?) contains the set of optimally scoring DAGs
when the latent effects of the estimated causal models are constrained to be low-dimensional
and dense and the interventions are informative. Importantly, our proposed procedure UT-
LVCE cannot directly control the incoherence of the latent effects. Instead, it can only

3. A Markov equivalent connectivity matrix B w.r.t Xe|He in Assumption 4 satisfies: compatibility with
a DAG D ∈ MEC(D?) and the relation Σ?Xe|He = (Id−B)−1Ω(Id−B)−T for some Ω ∈ Dp++.

4. Assumption 4 can be satisfied even if the interventions occur in different environments.
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constrain the number of latent variables. In the following corollary, we provide sufficient
conditions for when the estimator (7) can obtain a DAG from the set I?-MEC(D?).

Corollary 7 Suppose that Assumptions 1-2 and 4-5 are satisfied. Let d? ≥ γ > 0. Consider
the estimator (7) with the constraint that h̄ ≤ hmax for some non-negative integer hmax ≥
dim(H). Let ν? be a positive integer with ν? ≥ d?. Suppose there exists an estimate
(D̂, B̂, Γ̂, Î, {Ωe, Ψ̂e}me=1) that satisfies 48ν?inc[col-space((Id−B̂)T Ω̂−1

e Γ̂)] < 1 for all e ∈ [m].
Then, Î = I? and Î-MEC(D̂) = I?-MEC(D?) with probability tending to one as the sample
size in every environment tends to infinity.

The proof of Corollary 7 is presented in Appendix G.3. The result in Corollary 7 sug-
gests the following procedure when Assumptions 1-5 are believed to be satisfied and the
user has access to ν? that serves as an upper-bound for the maximal degree of the moral
graph of the underlying DAG: obtain the best latent variable causal model(s) based on
the likelihood score on test data when the regularization parameters λ, h̄ are varied with
h̄ smaller than a pre-specified value hmax. Then, compute the incoherence of the latent
effects of these best scoring models. If for an optimal DAG D̂, the incoherence parameter
multiplied by ν? is sufficiently small for all environments, in large data settings and with
probability tending to one, D? lies inside Î-MEC(D̂). To highlight when such an assump-
tion is far from being satisfied, our software outputs the following quantitative indicator:
maxe degree[moral(D̂)]inc[col-space((Id− B̂)T Ω̂−1

e Γ̂)]. Here, large values (e.g. far above 1)
indicate strong deviations from our assumptions.

3.3 Equivalence class characterization under approximately known latent
interventions

In the previous discussion, a central assumption was that the number of latent variables is
small and their effects are dense. We next consider a setting where the interventions on the
latent variables are approximately known. These assumptions enable an equivalence class
characterization of DAGs without needing Assumption 1, i.e. without imposing conditions
on the number of latent variables and the denseness (incoherence) of their effects. For
technical simplicity, we analyze the setting where the latent variables are independent and
identically distributed, i.e. Ψ?

e = ψ?e Id with ψ?e ∈ R+.

For illustrative purposes, we first start with an extreme setting where the interventions are
exactly known (although the number of latent variables remains unknown) and demonstrate
that identifiability is possible with relatively mild assumptions. We then deviate from this
extreme setting by assuming that the latent interventions are approximately known and
show once again that identifiability is possible under some conditions whose severity depends
on the level of the approximation.

Illustrative setting: known latent interventions Without loss of generality, we can
take ψ?1 = 1 and ψ?e to be known positive values that may be different than ψ?1. Our theo-
retical guarantees require Assumptions 2 and 5 as well as modifications to Assumptions 3
and 4 (dubbed 3’ - 4’). In particular, we assume that there are two observational environ-
ments (e = 1 and e = 2 without loss of generality) with no interventions on the observed
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variables and interventional environments (so that m ≥ 3) with sufficiently heterogeneous
interventions on the observed variables:

Assumption 3’ environments e = 1, 2 with no interventions on the observed variables:
Ω?

1 = Ω?
2 and Ω?

e � Ω?
1 for all e = 3, . . . ,m.

Assumption 4’ heterogeneous interventions on observed and latent variables: for every i ∈
I?, j ∈ I? with i 6= j, there exists e such that the collection (ψ?1, ψ

?
2, ψ

?
e) are distinct , [Ω?

e]i,i >
[Ω?

1]i,i and [(Ω?
e − ψ?eΩ?

1) Ω?
1
−1]i,i 6= [(Ω?

e − ψ?eΩ?
1) Ω?

1
−1]j,j.

Assumption 3’ (analogous to Assumption 3) ensures that there are environments where no
interventions act on the observed variables. Assumption 4’ (analogous to Assumption 4)
ensures that the interventions on the latent variables and observed variables are informative
for additional identifiability. One can show that if the parameters Ω?

e,Ω
?
1 and ψ?1, ψ

?
2, ψ

?
e are

drawn from continuous distributions, Assumption 4’ is satisfied almost surely.

Theorem 8 (Equivalence class characterization under known interventions on
the latent variables) Consider the estimator (7) with the additional constraint ψeId =
ψ?e Id for all e ∈ [m]. Suppose Assumptions 2, 5 and Assumptions 3’-4’ are satisfied. Letting

1
|I?| > γ > 0, then {D?} ⊆ D̂all.opt = I?-MEC(D?) with probability tending to one as the
sample size in every environment tends to infinity.

The proof of Theorem 8 is presented in Appendix H. This result highlights that at the
expense of knowing the latent interventions, no assumptions on the incoherence (denseness)
of the latent variables or their number are required for characterizing the equivalence class of
optimally scoring DAGs. We note that when the number of latent variables is unconstrained,
three environments are necessary for improved identifiability. Indeed, in Appendix I, we
show that two environments (regardless of the number of interventions and their strengths)
only offer identifiability up to the Markov equivalence class of D?.

Approximately known latent interventions Knowing the interventions on the latent
variables can be a stringent condition in practice. One can relax this to approximately
knowing the interventions at a pre-specified level Cψ, e.g. |ψ̃e − ψ?e | ≤ Cψ where ψ̃e is
the (approximate) known intervention on the latent variables. A natural choice for the
approximate interventions ψ̃e would be ψ̃e = 1 for all e, encoding no interventions on the
latent variables: the level Cψ then describes the deviation from nointerventions on the latent
variables. This and versions thereof will be discussed in the remarks below.

Remark 2: To account for the latent intervention approximation, the following two assump-
tions ensure equivalence class characterization. The first assumption is that the latent vari-
ables induce some confounding dependencies among the observed variables; this condition
becomes more stringent with larger Cψ (e.g. weaker knowledge of the latent interventions)
although we demonstrate in Appendix J that it is generally far weaker than the incoherence
condition in Assumption 1. The second assumption is that the observed variables in the set
I? receive strong enough interventions, Under these two conditions (as well as assumptions
2,3’,5 and an assumption similar in spirit to 4’), the estimator (7) obtains (in the infinite
data limit) I?-MEC(D?) as the set of optimally scoring DAGs. For a formal description of
the assumptions and the result, we refer the reader to Appendix J. Finally, as a quantitative
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indicator of deviations from assumptions, our software displays the strength of interventions
on each variable, i.e. ξj := 1

m

∑m
e=1([Ω̂e]j,j − 1

m

∑m
e=1[Ω̂e]j,j)

2 for each j ∈ Îopt. Here, ξj
being small for any j ∈ Îopt indicates that the perturbations on the corresponding variable
are weak.

Remark 3: Assuming that the latent variables remain unperturbed across all environments
is a special case of knowing the latent interventions. In such settings, the equivalence class –
when I? ⊂ [p] – can, in general, be very different than I?-MEC(D?) (see Appendix K for a
simple illustration), highlighting that interventions on the latent variables may be beneficial
for improved identifiability. Nevertheless, when I? = [p], similar to the backShift procedure,
UT-LVCE attains full identifiability of the population DAG since I?-MEC(D?) = {D?}.

4. Practical use cases of UT-LVCE

We next describe how UT-LVCE can be used in practice to account for latent effects and
obtain a set of DAGs that fit the data well. In Section 4.1, we propose an alternating
minimization strategy to solve (3) with the DAG, hence also the support of B, being pre-
specified. Building on this, in Section 4.2, we consider the setting where a candidate set of
DAGs are available (for example as for the protein expressions dataset in Section 5) and
describe how UT-LVCE can be used to obtain an optimally scoring equivalence class of
DAGs. Finally, in Section 4.3, we extend our algorithmic framework to the setting when a
set of DAGs represent starting points, and we deploy UT-LVCE to improve on these DAGs
by removing any spurious dependencies. A python package containing the implementation of
all components of UT-LVCE is available at https://github.com/juangamella/ut-lvce.

We remark here that searching for optimally scoring DAGs (according to the score (4))
is a very difficult computational task. In particular, an immediate approach that comes to
mind is to develop a greedy DAG search over the space of equivalent models akin to GES
Chickering (2002). Indeed, Gamella et al. (2022) develops a greedy algorithm to move in
the space of interventionally equivalent DAGs for the model (2) without latent variables.
By employing the UT-LVCE score function (4), one may adapt the method of Gamella
et al. (2022) to incorporate latent effects. However, a significant conceptual challenge is
that the likelihood score (4) is not decomposable according to the DAG structure due
to latent confounding; the lack of score decomposability renders greedy-based techniques
computationally expensive. Thus, our focus in this paper is to demonstrate the utility of
UT-LVCE on the use cases described in the previous paragraph.

4.1 Alternating minimization strategy to compute the UT-LVCE estimator

We first describe an optimization approach for solving UT-LVCE given an input DAG
D and an intervention target set I. While the optimization problem (3) searchers over
intervention target set I when scoring a DAG, in the description in this section, we fix I.
We present an optimization strategy for selecting I in Section 4.2.

Our optimization algorithm is based on the following alternating minimization strategy:
starting with an initialization of all of the model parameters, we fix B and perform gradi-
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ent updates to find updated estimates for the parameters (Γ, {Ωe,Ψe}me=1 where the noise
variances {Ωe}me=1 are compatible with the input intervention set I, and then update B by
solving a convex program to optimality with the remaining parameters fixed. We find that
the alternating method described above is relatively robust to the initialization scheme, but
we nonetheless propose the following concrete strategy:

1) fit B(0) via linear regression with pooled data,

2) Γ(0) = UD1/2 where UDUT is SVD of (Id−B(0))Σ̂pooled(Id−B(0))T ,

3) Ω(0)
e = diag

{
(Id−B(0))Σ̂pooled(Id−B(0))T

}
for every e ∈ [m],

4) Ψ(0)
e = Id for every e ∈ [m],

(8)

where Σ̂pooled is the covariance matrix of the pooled data. The first step follows since the
DAG structure is known. The entire procedure, involving the initialization step and the
parameter updates, is presented in Algorithm 0.

Algorithm 0 Solving UT-LVCE to score a given DAG D for a fixed (λ, γ, h̄) and targets I

1: Input: DAG D; intervention targets I; data Σ̂e, π̂e for e ∈ [m]; regularization params.
λ, γ ≥ 0; # of latent vars. h̄

2: Initialize parameters: via relation (8)

3: Alternating minimization: solve for causal parameters

(a) fixing (Γ(t), {(Ω(t)
e ,Ψ

(t)
e )}me=1), update B(t+1) by solving the convex optimization

program (3) where B(t+1) ∼ D. Fixing B(t+1), perform gradient updates until

convergence to find (Γ(t+1), {(Ω(t+1)
e ,Ψ

(t+1)
e )}me=1) where I({Ω(t+1)

e }me=1) ⊆ I
(b) apply alternating iterates for positive integers t until convergence at iteration T

(c) obtain estimates Θ̂(D, h̄) := (B̂(T ), Γ̂(T ), I, {(Ω̂(T )
e , Ψ̂

(T )
e )}me=1)

4: Output: causal parameters Θ̂(D, h̄) and regularized likelihood scoreλ,γ(D, Θ̂(D, h̄))

Step 3(b) involves two convergence criteria: the convergence of the gradient steps for the

parameters (Γ(t), {(Ω(t)
e ,Ψ

(t)
e )}me=1) as well as the convergence of the alternating procedure.

For the first criterion, we terminate the gradient descent when the relative change in the
likelihood score is below ε1. For the second criterion, we terminate the alternating mini-
mization at step T when ‖B(T )−B(T−1)‖∞ ≤ ε2, where ‖·‖∞ computes the maximum entry
in magnitude of an input matrix. In our experiments, we set ε1 = 10−6 and ε2 = 10−2.

4.2 Using UT-LVCE to identify the best scoring DAGs from a candidate set

Let Dcand be a candidate set of DAGs (potentially a singleton). Building on Algorithm 0,
we present an algorithm to identify an optimally scoring DAG as well as DAGs in its
equivalence class. First, using Algorithm 0, we score each DAG in the candidate set with
I = [p], and obtain an optimally scoring DAG D̂opt with noise variances {Ω̂e}me=1. To
estimate the intervention targets Îopt, we measure the variation in each coordinate of Ω̂e

across the environments as large variations indicate that the corresponding variable has
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received an intervention. To quantify the degree of variation, we compute a “variance like”
metric ξj := 1

m

∑m
e=1([Ω̂e]j,j − 1

m

∑m
e=1[Ω̂e]j,j)

2 for each j ∈ [p] (also defined in Section 3.3),
where large values of ξj provide stronger evidence for the presence of an intervention on
variable Xj . We propose a systematic approach to estimate an intervention set Îopt using
the values ξj : we greedily remove the variable with the smallest variation ξj and compute
the regularized likelihood with the resulting intervention set. We repeat this process until
the likelihood score can no longer be improved. Thus, as output, we return the equivalence
class of optimally scoring DAGs Îopt-MEC(D̂opt). A detailed summary of our procedure is
presented in Algorithm 1.

Algorithm 1 Equivalence class of best scoring DAGs from a candidate set via UT-LVCE

1: Input: candidate DAG(s) Dcand; data Σ̂e, π̂e for e ∈ [m]; regularization params. λ, γ ≥
0; # of latent vars. h̄

2: Obtain likelihood score for each DAG: for each D ∈ Dcand, supply (D, I = [p]) to
Algorithm 0 to obtain the causal parameters Θ̂(D, h̄) and scoreλ,γ(D, Θ̂(D, h̄))

3: Find an optimal scoring DAG: obtain D̂opt = argminD∈Dcand
scoreλ,γ(D, Θ̂(D, h̄))

4: Greedy backward deletion to estimate intervention set: initialize Î = I and
(a) let {Ω̂e}me=1 be noise variance encoded in Θ̂(D̂opt, h̄)
(b) estimate intervention strengths for each j ∈ [p]: ξj := 1

m

∑
e([Ω̂e]j,j− 1

m

∑
e[Ω̂e]j,j)

2

(c) remove weakest intervention: Îopt ← Îopt \ {argminj ξj : j ∈ Îopt}
(d) supply (D̂opt, Îopt) to Algorithm 0 and obtain scoreλ,γ(D̂opt, Θ̂(D̂opt, h̄))
(e) repeat (c,d) until the likelihood score does not improve

5: Output: equivalence class Îopt-MEC(D̂opt) using Definition 1

Remark 4: The guarantees of Corollary 7 can be extended to Algorithm 1. Specifically,
suppose the conditions of this corollary hold and the candidate set of DAGs Dcand contains
a member of the population interventional equivalence class, i.e. Dcand ∩I?-MEC(D?) 6= ∅.
Furthermore, suppose that the alternating minimization technique in Algorithm 0 obtains a
globally optimal solution; a formal characterization of when global optimality holds is non-
trivial, and we leave this open question for future research. Then, we show in Appendix L.1
that in the infinite data limit, the output of Algorithm 1 is consistent, i.e. Îopt = I? and
Îopt-MEC(D̂opt) = I?-MEC(D?) with probability tending to one.

Selecting (λ, γ, h̄) via cross-validation: In Appendix Section M, we propose an approach
to exhaustively search over the equivalence classes indexed by (λ, γ, h̄), and choose an
optimal one based on validation with test data. The complexity of our validation approach
is ≈ t̃((h̄max +1)|Dcand|+p), where h̄max is the maximum number of latent variables allowed
in the model and t̃ represents the time it takes to score a DAG using Algorithm 0. The
value for t̃ depends on the DAG and the data generating mechanism; in our numerical
experiments, this is typically on the order of 5 seconds for p = 20 node graphs.
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4.3 Using UT-LVCE to remove spurious edges from ‘starting point’ DAGs

We next consider settings where the DAGs in a candidate set are viewed as ‘starting points’
and may contain spurious dependencies due to potential latent confounding. Such scenarios
naturally arise in practice. For example, a domain expert may be unsure about some of the
edges in a DAG and may include them in the analysis to be conservative. In other contexts,
the user may have deployed their favorite structure learning algorithm(s) to obtain a set
of DAGs. Since many of the computationally efficient structural learning approaches (e.g.
GES) do not account for the presence of latent variables, the fitted graph may be more
dense than the population DAGs.

Our objective, in contexts where DAGs are viewed as starting points, is to use UT-
LVCE to remove spurious dependencies and return a refined set of equally scoring DAGs.
Our approach is based on the following simple observation: scoring starting point DAGs
using Algorithm 0 may yield connectivity matrices that are more dense than the population
connectivity matrix, although the magnitude of the spurious edges will be small. To remove
these spurious edges, for each DAG in the candidate set, we greedily delete the weakest edge
and compute a regularized likelihood score using Algorithm 0. We repeat this process until
the score can no longer be improved. After pruning, we obtain a refined collection of
candidate DAGs, which are then supplied to Algorithm 1 to identify an optimally scoring
set of DAGs. A summary of the entire procedure is presented in Algorithm 2. Similar
to Algorithm 1, in all our numerical experiments, we choose the regularization parameters
(λ, γ, h̄) via cross-validation; see Appendix Section M. The complexity of our exhaustive
validation approach is ≈ t̃((h̄max + 1)[

∑
D∈D̃cand

‖D‖`0 ] + p).

Algorithm 2 Improving ‘starting point’ DAGs via UT-LVCE

1: Input: data Σ̂e, π̂e for e ∈ [m]; candidate DAG(s) D̃cand; regularization params. λ, γ ≥
0; # of latent vars. h̄

2: Backward deletion to remove spurious edges: initialize Dcand = ∅; for each
D ∈ D̃cand:

(a) supply data and (D, I = [p]) to Algorithm 0 to find score scoreλ,γ(D, Θ̂(D, h̄))
(b) let D be the DAG after deleting the smallest edge in magnitude in D
(c) repeat (a-b) until the likelihood score does not improve; add D to Dcand

3: Output: supply Dcand to Algorithm 1 to find best scoring DAGs

Remark 5: As with Remark 4, the guarantees of Corollary 7 can be extended to Algorithm 2.
In particular, if the candidate set of DAGs D̃cand contains a DAG that is a supergraph of
a DAG in the population interventional equivalence class, then, we show in Appendix L.2
that in the infinite data limit, the output of Algorithm 2 is consistent, i.e. Îopt = I? and
Îopt-MEC(D̂opt) = I?-MEC(D?) with probability tending to one.

5. Synthetic and real experiments

Code to reproduce all the experiments can be found here: https://github.com/juangamella/
ut-lvce-paper.
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5.1 Synthetic experiments: recovering the interventional equivalence class

Setup: We consider a collection of p = 20 observed variables influenced by h = 2 latent
variables. The entries of the latent coefficient matrix Γ? ∈ Rp×h are generated IID from the
distribution N (0, 1/

√
p). The noise term εi for each coordinate i is distributed according to

a zero mean Gaussian with variance chosen uniformly and independently from the interval
[0.5, 0.6]. We suppose there are m = 5 environments, an observation environment e = 1
and four interventional environments e ∈ {2, 3, 4, 5}. For the observational environment,
δe is all zeros and for the interventional environments and every i ∈ I?, δei is a zero mean
Gaussian distribution whose variance will be specified later. Similarly, the distribution
of each latent variable are taken to be Hei ∼ N (0,Unif[0.2, 0.3] + ζei ) for every i ∈ [h],
where ζe=1

i = 0 and is otherwise chosen uniformly and independently from the interval
[0.2, 1]. The population connectivity matrix B?, the choice of intervention targets I?, and
the amount of data in every environment are specified later. In Appendix Section N.1, we
provide additional experiments for the following settings: weaker interventions on observed
variables and stronger latent effects. Finally, in Appendix Section N.2, we illustrate the
performance of our method with a varying number of latent variables (h = 3, 4, 10).

Metrics to assess the quality of an estimated equivalence class: To quantify the
‘closeness’ of an estimated interventional equivalence class Î-MEC(D̂) to the population
interventional equivalence class I?-MEC(D?), we use the following two metrics:

FDP : max
D2∈Î-MEC(D̂)

min
D1∈I?-MEC(D?)

[# edges in D2 not in D1]/[# edges in D2],

TDP : min
D1∈I?-MEC(D?)

max
D2∈Î-MEC(D̂)

[# edges in D1 and in D2]/[# edges in D1].
(9)

The metric FDP is akin to false discovery proportion and measures the ratio of spurious
edges contained in the DAGs of the estimated interventional equivalence class. The metric
TDP is akin to true discovery proportion and measures the proportion of true edges (in
the DAGs of the population interventional equivalence class) that are also DAGs in the
estimated interventional equivalence class. It is straightforward to check that Î-MEC(D̂) =
I?-MEC(D?) if and only if FDP = 0 and TDP = 1.

5.1.1 UT-LVCE with specified input DAGs

UT-LVCE with a candidate set of DAGs: We generate the population DAG as fol-
lows: we first generate an Erdös-Renyi graph with edge probability 0.11 and orient the
edges according to a random total ordering of the variables. The edge strengths are drawn
uniformly at random from the interval [0.5, 0.7]. Let I? be ten indices chosen uniformly at
random. The variance of the interventions on the observed variables δei is taken uniformly
and independently from the interval [6, 12]. The candidate set of DAGs is taken to be
the Markov equivalence class of D?, which by definition is a superset of the interventional
equivalence class I?-MEC(D?). We generate n observations for each environment, where n
is chosen from the set {100, 500, 1000, 10000}. To illustrate the effectiveness of the scoring
function, we supply the data and each candidate DAG, with I = [p] to Algorithm 0. The
left plot in Figure 5a displays the proportion of instances, across 50 independent trials, that
the best scoring DAG is inside I?-MEC(D?). Note that 1/3 of the graphs in the candidate
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Figure 5: a) proportion of instances, among 50 independent trials, that the best scoring DAG
in Step 3 of Algorithm 1 is in I?-MEC(D?) and average FDP and TDP of the esti-
mated Îopt-MEC(D̂opt); b) performance of Algorithm 2 with the ‘starting point’ DAGs
MEC(D?) + 20 random edges.

set of DAGs are also in I?-MEC(D?). We observe that as the sample size increases, the
scoring function becomes more accurate and correctly outputs a member of the interven-
tional equivalence class. To obtain an equivalence class of best scoring DAGs, we apply
Algorithm 1. As shown in the right plot in Figure 5a, the estimated equivalence class is
close to the true equivalence class, even when n = 500.

UT-LVCE with ‘starting point’ DAGs: We consider the setting described above and
generate two different population DAGs D?: a chain graph and an Erdös-Renyi graph with
edge probability 0.11, with the edge strengths of each graph drawn uniformly at random
from the interval [0.5, 0.7]. In each case, the ‘starting point’ DAGs are taken to be ones
in MEC(D?) with 20 edges added at random to each graph (picked uniformly, without
replacement, from all valid edge additions). We supply the data and the starting point
DAGs to Algorithm 2. Ideally, Algorithm 2 removes spurious edges and improves upon the
original set of DAGs to identify a class of best-scoring DAGs that is close to the population
interventional equivalence class. Figure 5b confirms this to be the case. In particular, we
observe that the estimated interventional equivalence class, averaged across 50 independent
trials, has a small average FDP and large average TDP. Furthermore, we see that as
compared to the ‘starting point’ DAGs, Algorithm 2 produces an estimate with substantially
smaller false discoveries without much loss in power.

5.1.2 UT-LVCE as a structure learning procedure and comparisons to other
methods

A set of input DAGs may not be available a priori and must be learned from data. Thus,
we use GES to obtain a collection of DAGs, although, in principle, any structural learn-
ing algorithm may be deployed. Since GES does not account for latent confounding, its
output DAGs are typically dense and contain many spurious edges. Thus, as prescribed
in Section 4.3, we apply Algorithm 2 to prune GES DAGs and return an interventional
equivalence class. We compare the performance of our algorithm to three causal learn-
ing methods that account for latent effects: causal Dantzig (Rothenhäusler et al., 2019),
backShift (Rothenhäusler et al., 2016), and LRpS-GES (Frot et al., 2019). We note here
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Figure 6: Performance of Algorithm 2 with GES starting DAGs and comparisons with other meth-
ods for different size of intervention targets |I?|; the left two plots are performances over
the entire graph and the right three graphs are performances locally for a target vari-
able. Here, for assessing the quality of local structure recovery, we use the metrics in (9)
restricted to the parental set(s) of the target variable.

that the first two methods exploit interventional data while LRpS-GES only operates with
observational data. Furthermore, causal Dantzig performs local structural learning around
a target variable of interest while the other two methods yield a causal model over the
entire graph. Throughout, we consider the synthetic setup at the beginning of this section
and generate 50 Erdös-Renyi DAGs with edge probability 0.11 and edge strengths drawn
uniformly at random from the interval [0.5, 0.7]; we illustrate the robustness of our method
to varying graph sparsity and varying number of latent variables in Appendix Section N.2.
Furthermore, the magnitude of the interventions ξei are taken uniformly and independently
from the interval [3, 6]. Finally, we generate n observations for each environment where n
is chosen from the set {100, 500, 1000}.

Evaluating performance over the entire graph: We consider two settings: |I?| ∈
{10, 20}. Figure 6 shows the average FDP and TDP, averaged across all the 50 DAGs and
10 runs for each DAG, for the outputs of UT-LVCE , backShift and LRpS-GES. As observed
in Figure 6, UT-LVCE yields an estimated equivalence class with small average FDP and a
large TDP, and performs more favorably compared to the other methods, especially in the
setting with partial interventions. We also observe that LRpS-GES produces substantially
larger false discoveries as it does not exploit interventional data for improved identifiability,
and that backShift yields poor estimates since there are interventions on the latent variables.
We note that the performance of UT-LVCE is naturally affected by the ‘goodness’ of the
input GES DAGs. In particular, we show in Appendix Section N.3 that if any of the
GES DAGs is a supergraph of a DAG in I?-MEC(D?), the performance of UT-LVCE
substantially improves. Finally, as announced earlier, our procedure UT-LVCE can take as
input DAGs produced by any structural learning algorithm. As an example, the user may
take the DAGs obtained by GES as well as those from backShift and LRpS-GES as input
to Algorithm 2, although we do not explore this in our experiments.

Evaluating local structure recovery: We consider a similar setting as above and
let Xp be the target variable of interest. When generating our Erdös-Renyi DAGs, we
discard DAGs where the target variable has less than two parents and obtain a total of
50 DAGs. We additionally consider the setting with |I?| = 19 where all but the target
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variable has received an intervention. We observe that for |I?| = 10, Causal Dantzig has
very low power, which can be attributed to yielding a single estimate even if the parental set
is unidentifiable and requiring interventions on all but the target variable for consistency.
When |I?| = 19, Causal Dantzig obtains accurate recovery of the parental set even though
there are interventions on the latent variables. In Appendix Section N.4, we observe that
when the magnitude of the latent interventions are made to be stronger, Causal Dantzig
performs poorly as compared to UT-LVCE . Finally, when |I?| = 20, Causal Dantzig yields
inaccurate estimates since there are interventions on the target variable of interest.

5.2 Analysis on real data

5.2.1 Protein expressions

We next analyze the protein mass spectroscopy dataset (Sachs et al., 2005). This dataset
(downloaded from https://www.bnlearn.com/research/sachs05/index.html) contains
a large number of measurements of the abundance of 11 phosphoproteins and phospholipids
recorded under different experimental conditions in primary human immune system cells.
The different experimental conditions are characterized by associated reagents that inhibit
or activate signaling nodes, corresponding to interventions at different points of the protein-
signaling network. Following the previous works (Mooij and Heskes, 2013; Meinshausen
et al., 2016), we take 8 environments consisting of an observational environment and 7
interventional environments.

Multiple papers have applied their structural learning algorithm to identify the causal
relationships among the 11 proteins (Sachs et al., 2005; Eaton and Murphy, 2007; Mooij and
Heskes, 2013; Meinshausen et al., 2016). Each proposed method returns a DAG (potentially
multiple due to non-identifiability) with some commonalities among the output structures,
but also many differences. Naturally, the following questions arise: i) how well does each
DAG fit the data, and which one is most representative of the data? ii) are there other
DAGs in the equivalence class of the best scoring DAG that fit the data equally well? and
iii) can any spurious edges in the DAGs be removed to obtain a better fit to data? As
outlined next, our procedure UT-LVCE is useful for addressing these questions.

Best scoring among reported DAGs in the literature: We use Algorithm 1 to
score the DAGs obtained by previous methods. We keep 0.05% of the data for computing
test performance. Of the remaining 0.95% of the data, we take 70% for training and the
remaining 30% for validation. The number of latent variables h̄ and the regularization
parameters λ, γ are selected via holdout validation. We obtain a causal model associated
with each DAG and evaluate the corresponding negative log-likelihood score on the test
set. For reproducibility, we repeat this experiment with 50 different random splits of train-
ing/validation datasets. Figure 7a presents the box-plot of the test scores for each DAG.
Several remarks are in order. First, the top three best scoring DAGs (displayed alongside
with the other 13 DAGs in Appendix Section O) are produced by a method that accounts
for latent variables (Meinshausen et al., 2016); the other structural learning procedures as-
sume all relevant variables are observed. Related to the previous point, we find that there
are strong latent effects on the protein network. As an example, for the best scoring DAG,
our algorithm finds on average 1.16 latent variables. Furthermore, for the top three scoring
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Figure 7: Performance of Algorithms 1 and 2 on the protein expressions dataset with 50 random
splits of the data: a) test score of each DAG produced in the literature using Algorithm 1
and the average edges pruned (shown below for each DAG) using Algorithm 2; b) edge
strengths of the best scoring DAG “Causal Dantzig 11”.

DAGs, we also find that many of the proteins have received a strong intervention; this is
likely due to off-target effects that were also reported in Eaton and Murphy (2007). The
presence of interventions on many of the variables implies that the equivalence class of all
of these top three DAGs are singletons. Finally, in Figure 7b, we present a boxplot of the
edge strengths for the top scoring DAG.

Removing spurious edges: We next explore whether any spurious edges can be re-
moved from these DAGs. To that end, we apply Algorithm 2 to each DAG. We observe that
the top scoring DAGs produced by Meinshausen et al. (2016) are rather stable as compared
to the other DAGs, with ≈ 1 edges removed on average by our procedure. This is consistent
with the fact that Meinshausen et al. (2016) accounts for latent confounding and thus is
likely to contain fewer spurious edges. We note that for the best scoring DAG, the edge that
is removed most often is JNK → PKC; indeed, this edge has weak strength (see Figure 7b)
and has not been reported in any other DAG in the literature.

5.2.2 California reservoirs

The California reservoir network consists of ≈ 1530 reservoirs that act as buffers against
severe drought conditions and are a major source of water for agricultural use, hydropower
generation, and industrial use. Water managers of these reservoirs have to assess the likeli-
hood of system-wide failure and the effectiveness of potential policies. Due to similarities in
hydrological attributes (e.g. altitude, drainage area, spatial location), the reservoir network
is highly interconnected. Thus, effective reservoir management requires an understanding of
reservoir interdependencies. Taeb et al. (2017) used historical data of volumes of the largest
55 reservoirs to obtain an undirected graphical model of the California reservoir network.
This previous analysis, however, does not provide causal implications: namely, how change
in the management of one reservoir (i.e. an intervention) affects the entire system. To
that end, we explore the utility of UT-LVCE for learning causal relationships among the
reservoirs.
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We consider the 10 largest reservoirs (with respect to capacity) in California, where
daily volume data (downloaded from https://github.com/armeentaeb/WRR-Reservoir)
are available during the period of study (January 2003–December 2015). Following the
preprocessing steps in Taeb et al. (2017), we average the data from daily down to 156
monthly observations. A seasonal adjustment step is performed to remove predictable
seasonal patterns. The resulting data was demonstrated in Taeb et al. (2017) to be well-
approximated by a multivariate Gaussian distribution.

The reservoir data is not IID as its distribution varies depending on the severity of the
drought. In particular, during a drought period, a reservoir manager may decide to reduce
the outflow of water, and thus effectively decrease the variability in the reservoir volume;
this is in contrast to a wet period where more outflow is allowed, as the reservoir is expected
to be replenished. Based on the intuition described above, we organize our reservoir data
into four ‘environments’ or time-blocks based on the severity of the drought conditions: an
environment during a normal period (2003-2006, 2010-2012) with no drought conditions, an
environment associated to an abnormally dry period (2007, 2013), an environment associ-
ated to a moderate drought period (2008-2009), and an environment associated to a severe
drought period (2014-2015).

Unlike the protein expression dataset, no candidate DAGs are available a priori for the
reservoir dataset. Thus, we employ GES on the first environment (normal period) to obtain
a collection of ‘starting point’ DAGs. These DAGs are then supplied to Algorithm 2, where
the number of latent variables h̄ as well as the regularization parameters λ, γ are selected
via holdout validation with a (70%, 30%) training and validation set split for 10 different
random splits. For each split, we obtain a causal model and a corresponding equivalence
class and then choose the model that obtains the best likelihood score on the overall data.
The optimally scoring model consists of two latent variables (h̄ = 2) and an interventional
equivalence class presented in Figure 8a. The connections in the learned DAG are between
pairs of reservoirs with at least one of these commonalities: i) similar hydrological attributes
(e.g. hydrological zone and elevation) and ii) coordinated management by a district or a
state-wide project. For example, the reservoirs New Melones (NML), Don Pedro (NP), New
Exchequer (EXC), and Pine Flat (PNF) are all in the San Joaquin district. Further, Shasta
(SHA), Trinity (CLE), Oroville (ORO), and Folsom (FOL) are in the network of Central
Valley and State Water projects and their reservoir operations are coordinated.

We next analyze the estimated locations and magnitudes of the interventions. Recall
that the locations are encoded in the estimate Îopt and the strength of the interventions are
computed via the metric ξj for every j ∈ Îopt (see Section 4.2). Our model identifies inter-
ventions on all reservoirs except Pine Flat. The strongest estimated intervention is on Lake
Almanor, which is consistent with the fact that during the 2014-2015 drought period, there
was little to no outflow of water in this reservoir. Finally, aside from the reservoirs {‘ALM’,
‘BER’, ‘FOL’}, the intervention strengths on the remaining reservoirs are rather small (i.e.
below the level ξj ≤ 0.01). However, likely due to the small sample size, these reservoirs
were included in the list of intervention targets after validation. Note that overestimat-
ing the list of intervention targets may lead to discarding plausible causal mechanisms,
as more identifiability is claimed than present in the data. To remain ‘conservative’, in
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(a) output of Algorithm 2

CLE
SHA
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ORO
FOL

BER
NML

DNP
EXC

PNF

(b) ‘conservative’ equivalence class (see text)

Figure 8: Graphical structure of the 10 largest reservoirs in California (with respect to capacity): a)
equivalence class consisting of a unique DAG obtained by Algorithm 2; b) conservative
equivalence class consisting of multiple DAGs (obtained from directing the red edges)
after identifying strong interventions (shown in orange) from the output of Algorithm 2.

Figure 8b, we present the interventional Markov equivalence class Îopt-MEC(D̂opt), where
Îopt = {‘ALM’, ‘BER’, ‘FOL’} and D̂opt is the DAG in Figure 8a. The resulting structure
highlights that certain edges (shown in red) may not be identifiable.

6. Discussion and Future Work

In this paper, we proposed a framework to model unspecific interventional data among a
collection of observed and latent variables. This framework allows for additive interventions
on all components of the system, including a response variable of interest or the latent vari-
ables. Further, we presented an algorithm UT-LVCE to fit DAGs to this model and obtain
an equivalence class of DAGs that best explains the data. There are several interesting
directions for further investigation that arise from our work. In Section 4.3, we discussed
the setting where no DAGs are available a-priori and proposed using any structural learning
algorithm to obtain a set of ‘starting point’ DAGs; these are then subsequently pruned by
Algorithm 2 to arrive at an estimate for the interventional equivalence class. While the
empirical results in Section 5 support the utility of our heuristics, there is much room for
more rigorous optimization techniques to search over the space of equivalent DAGs with
respect to the scoring function (4) (e.g. provably consistent greedy methods). Further, the
interventional model (2) assumes a linear relationship between the observed and latent vari-
ables. It would be of practical interest to explore extensions of our framework to non-linear
settings, or alternatively, characterize the extent to which linear models capture the causal
effects.
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Supplementary Material

Appendix A. Notations

For a matrix M ∈ Rd1×d2 , we denote ‖M‖2 to be largest singular value. For a symmetric
matrix M ∈ Sd, we denote λmax(M) and λmin(M) to be the maximum and minimum
eigenvalue of M, respectively. For a symmetric matrix M ∈ Sd, we denote degree(M) to
be the maximum number of nonzero elements in any row (or equivalently column) of the
matrix. Recall that for an undirected graph G, we denote degree[G] to be the maximal
degree of G.

Appendix B. Proof of Theorem 2

The proof of this theorem relies on some lemmas:

Lemma 9 (A property of (Id−B̃)−1(Id−B)−1 (Gamella et al., 2022)) Let B, B̃ ∈ Rp×p
be two matrices that can be made to be lower-triangular with zeros on the diagonal after
row and column permutations (or equivalently, the matrices correspond to two DAGs). If
for Ω̃,Ω ∈ Dp++, (Id − B)−1Ω(Id − B)−T = (Id − B̃)−1Ω̃(Id − B̃)−T , then the following
statements are equivalent:

p1) support(B̃i,:) = support(Bi,:).

p2) [(Id− B̃)(Id−B)−1]i,: = eTi .

p3) [(Id− B̃)(Id−B)−1]:,i = ei.

Proof For completeness, we include the proof in Gamella et al. (2022). We break down
the proof in the following steps:

p1⇔ p2: The direction p2⇒ p1 follows immediately. For the direction p1⇒ p2, define the
variables X̄ via the following structural equation model

X̄ = BX̄ + ε , ε ∼ N (0,Ω). (10)

Since (Id−B)−1Ω(Id−B)−T = (Id− B̃)−1Ω̃(Id− B̃)−T , we have that equivalently:

X̄ = B̃X̄ + ε̃ , ε̃ ∼ N (0, Ω̃). (11)

Let S = support(Bi,:) = support(B̃i,:). Then, equations (10) and (11) imply that Bi,: and
B̃i,: are both the regression coefficients from regressing X̄S onto X̄i. Thus, B̃i,: = Bi,:.

p2⇒ p3 The property (Id − B)−1Ω(Id − B)−T = (Id − B̃)−1Ω̃(Id − B̃)−T means that

(Id− B̃)(Id−B)−1 has orthogonal row vectors. Since eTi (Id− B̃)(Id−B)−1 = eTi , it then
follows that [(Id− B̃)(Id−B)−1]:,i = ei.

p3⇒ p1 Notice that:

(Id− B̃)(Id−B)−1Ω(Id−B)−T (Id− B̃)T = Ω̃,

which can be rewritten as:

(Id− B̃) = Ω̃(Id− B̃)−T (Id−B)TΩ−1(Id−B). (12)
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Let Ω−1
i,i = α and Ω̃i,i = β, where α, β 6= 0. Property p2 implies that eTi (Id − B̃)−T (Id −

B)T = eTi . Thus, relation (12) lets us conclude that:

eTi (Id− B̃) = αβeTi (Id−B),

and thus property p1.

Lemma 10 (equivalent covariance models without latent variables) Consider an
SCM (2) with structure given by a DAG D, with no latent confounders (i.e. h = 0),
connectivity matrix B, noise variances {Ωe}me=1 and intervention targets I. For any DAG
D̃ ∈ I-MEC(D), there exists a connectivity matrix B̃ ∼ D̃ and noise variances {Ω̃e}me=1 ⊆
Dp++ such that (Id − B)−1Ωe(Id − B)−T = (Id − B̃)−1Ω̃e(Id − B̃)−T for every e = [m].

Furthermore, I({Ω̃e}me=1) = I.

Proof Decompose Ωe as: Ωe = Ω0 + ∆Ωe where Ω0 ∈ Dp++ and [∆Ωe]i,i = 0 for all

e = 1, 2, . . . ,m and i 6∈ I. Note that for any D̃ ∈ I-MEC(D), there exists a B̃ ∼ D̃
and Ω̃0 ∈ Dp++ such that (Id − B)−1Ω0(Id − B)−T = (Id − B̃)−1Ω̃0(Id − B̃)−T . Since

support(B̃i,:) = support(Bi,:) for all i ∈ I, we have by Lemma 9 that [(Id−B̃)(Id−B)−1]:,i =
ei and [(Id − B̃)(Id − B)−1]i,: = eTi for all i ∈ I. Then, set ∆Ω̃e = ∆Ωe and note that
(Id − B̃)(Id − B)−1∆Ωe(Id − B)−T (Id − B̃)T = ∆Ω̃e. Defining Ω̃e = Ω̃0 + ∆Ω̃e, we have
that (Id−B)−1Ωe(Id−B)−T = (Id− B̃)−1Ω̃e(Id− B̃)−T for all e = 1, 2, . . . ,m as desired.
Furthermore, since Ω̃e = (Id−B̃)(Id−B)−1Ωe(Id−B)−T (Id−B̃)T and Ωe is positive-definite
matrix, we conclude that Ω̃e is positive-definite. Finally, the property I({Ω̃e}me=1) = I
follows by construction.

Lemma 11 (Sufficient condition for equally scoring parameters sets) Let Θ =
(B,Γ, I, {Ωe,Ψe}me=1) and Θ̃ = (B̃, Γ̃, Ĩ, {Ω̃e, Ψ̃e}me=1) be a set of parameters that satisfy for
every e = 1, 2, . . . ,m:

(Id−B)−1(Ωe + ΓΨeΓ
T )(Id−B)−T = (Id− B̃)−1(Ω̃e + Γ̃Ψ̃eΓ̃

T )(Id− B̃)−T ,

with I = I({Ωe}me=1) and Ĩ = I({Ω̃e}me=1). Furthermore, suppose that |Ĩ| = |I|, ‖D‖`0 =
‖D̃‖`0, moral(D) = moral(D̃) where B ∼ D and B̃ ∼ D̃. Then, scoreλ,γ(D,Θ) = scoreλ,γ(D̃, Θ̃)
for every λ, γ ≥ 0.

Proof The parameters Θ and Θ̃ specify the precision matrices for every e = 1, 2, . . . ,m:

Ke = (Id−B)T (Ωe + ΓΨeΓ
T )−1(Id−B),

K̃e = (Id− B̃)T (Ω̃e + Γ̃Ψ̃eΓ̃
T )−1(Id− B̃).

Furthermore, the regularized likelihood score for each model is given by:

scoreλ,γ(D,Θ) =
m∑
e=1

π̂e(− log det(Ke) + trace(KeΣ̂e)) + λRγ(D, I),

scoreλ,γ(D̃, Θ̃) =

m∑
e=1

π̂e(− log det(K̃e) + trace(K̃eΣ̂e)) + λRγ(D̃, Ĩ).
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By the assumptions of the lemma, Ke = K̃e for every e = 1, 2, . . . ,m, and Rγ(D̃, Ĩ) =
Rγ(D, I). Thus, scoreλ,γ(D,Θ) = scoreλ,γ(D̃, Θ̃).

We are now ready to prove Theorem 2.

Proof [Proof of Theorem 2]Take any D̃ ∈ I-MEC(D). By Lemma 10, we have that that
there exists a connectivity matrix B̃ ∼ D̃ and {Ω̃e}me=1 ⊆ Dp++ with I = I({Ω̃e}me=1) such that

(Id−B)−1Ωe(Id−B)−T = (Id− B̃)−1Ω̃e(Id− B̃)−T for every e = 1, 2, . . . ,m. Furthermore,
let Γ̃ = (Id − B̃)(Id − B)−1Γ and Ψ̃e = Ψe for every e = 1, 2, . . . ,m. It is straightforward
to show that the parameters Θ̃ = (B̃, Γ̃, I, {Ω̃e, Ψ̃e}me=1) satisfy the condition of Lemma 11
and we can conclude that scoreλ,γ(D,Θ) = scoreλ,γ(D̃, Θ̃) for every λ, γ ≥ 0.

Appendix C. Characterization of optimally scoring DAGs via UT-LVCE
in the infinite sample regime

Throughout, we consider the asymptotic regime where p/ne → 0 as ne → ∞ for all
e ∈ [m]. For every D ∈ I?-MEC(D?), let (B,Γ, {Ωe,Ψe}me=1) be any set of parame-
ters with B ∼ D that specify the population covariance matrix Σ?

e in environment e,
i.e. Σ?

e = (Id − B)−1(Ωe + ΓΨeΓ)−1(Id − B)−T . In our analysis, the parameter space
(B,Γ, {Ωe,Ψe}me=1) is assumed to be compact. For notational ease, we denote the constraint
set for the parameters (B,Γ, {Ωe,Ψe}me=1) as F . Assuming such a compactness constraint
enables uniform convergence of M-estimators (van de Geer, 2000). As an example of a com-
pactness constraint, let τ1, τ2, τ3 > 0 be scalars where for every such (B,Γ, {Ωe,Ψe}me=1),
‖(Id − B)‖F ≤ τ1, mine σmin(Ωe + ΓΨeΓ

T ) ≥ τ2, and maxe σmax(Ωe + ΓΨeΓ
T ) ≤ τ3. Here,

σmax(·) and σmin(·) denote maximum and minimum singular values of an input matrix, re-
spectively. Then, the space of connectivity matrices and noise variances has the additional
constraints ‖(Id−B)‖F ≤ τ1, mine σmin(Ωe+ΓΨeΓ

T ) ≥ τ2, and maxe σmax(Ωe+ΓΨeΓ
T ) ≤ τ3

in the score function (7). As before, we denote the score of a DAG D with a pre-specified
number of latent variables h̄ when constrained to the compact parameter space F as
scoreλ,γ(D, h̄).

With this setup, we have the following characterization of the optimally scoring models,
scored according to (7).

Proposition 12 (Characterization of optimally scoring DAGs) Suppose that the set
of parameters is constrained to be in the compact space F . Suppose that ne → ∞, γ is set
to be any bounded scalar, and that λ→ 0 while satisfying

λ�
∣∣∣∣∣ max
(B,Γ,{Ωe,Ψe}me=1)∈F

m∑
e=1

tr((Id−B)T (Ωe + ΓΨeΓ
T )−1(Id−B)(π̂eΣ̂e − π?eΣ?

e))

∣∣∣∣∣ ,
+

∣∣∣∣∣ max
(B,Γ,{Ωe,Ψe}me=1)∈F

m∑
e=1

(π̂e − π?e) log det(Ωe + ΓΨeΓ
T )

∣∣∣∣∣ ,
where Σ?

e represents the true covariance in environment e and π?e = limall ne→∞
ne∑m
e=1 ne

.

Then, with probability tending to one, the set of optimally scoring models (according to (7))

32



Learning and scoring latent variable causal models

are solution to the following optimization problem:

argmin
D,h̄,B,Γ,I,{Ωe,Ψe}me=1

Rγ(D, I)

subject-to : B ∼ D, I = I({Ωe}me=1), and

Σ?
e = (Id−B)−1(Ωe + ΓΨeΓ

T )−1(Id−B)−T for every e ∈ [m].

(13)

The proof of Proposition 12 relies on the following lemma:

Lemma 13 The minimizers of the following optimization

argmin
D,h̄,I

argmin
(B,Γ,{Ωe,Ψe}me=1)∈F

m∑
e=1

π?e

(
log det(Ωe + ΓΨeΓ

T )

+ tr((Id−B)T (Ωe + ΓΨeΓ
T )−1(Id−B)Σ?

e)
)

subject-to: B ∼ D ; I({Ωe}me=1) ⊆ I

are given by parameters D, h̄, B,Γ, I, {Ωe,Ψe}me=1 that satisfy:

B ∼ D, I ⊆ I({Ωe}me=1), and

Σ?
e = (Id−B)−1(Ωe + ΓΨeΓ

T )−1(Id−B)−T for every e ∈ [m].

Proof [Proof of Lemma 13] Let M(B,Γ, I,Ωe,Ψe) denote a model associated with each
equation in the SCM (2) (main paper). For notational convenience, we use the short-hand
notation Me for this model. We let Σ(Me) = (Id− B)−1(Ωe + ΓΨeΓ

T )(Id− B)−T be the
associated covariance model parameterized by the parameters (B,Γ, I,Ωe,Ψe). The optimal
solutions of the optimization problem in Lemma 13 can then be equivalently reformulated
as:

argmin
{Me}me=1

m∑
e=1

π?eKL(Σ?
e,Σ(Me)), (14)

where KL(·, ·) represents the Gaussian KL-divergence. Notice that for the decision variables
M?

e = (B?,Γ?, I?,Ω?
e,Ψ

?
e) for each e = 1, 2, . . . ,m, (14) achieves zero loss. Hence, any other

optimal solution of (14) must yield zero loss, or equivalently, Σ(Me) = Σ?
e for any optimal

collection {Me}me=1.

Proof [Proof of Proposition 12] For a fixed D, number of latent variables h̄, and set of
intervention targets I, we let Sλ,γ(D, h̄, I) be the following score:

Sλ,γ(D, h̄, I) := min
(B,Γ,{Ωe,Ψe}me=1)∈F

m∑
e=1

π̂e

(
log det(Ωe + ΓΨeΓ

T )

+ tr((Id−B)T (Ωe + ΓΨeΓ
T )−1(Id−B)Σ̂e)

)
+ λRγ(D, I).

subject-to: B ∼ D ; I({Ωe}me=1) ⊆ I
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Notice the score Sλ,γ(D, h̄, I) is related to the the score scoreλ,γ(D, Θ̂(D, h̄)) in (4) via the

following simple relation: scoreλ,γ(D, Θ̂(D, h̄)) = minI Sλ,γ(D, h̄, I), and thus:

min
D,h̄

scoreλ,γ(D, Θ̂(D, h̄)) = min
D,h̄,I

Sλ,γ(D, h̄, I). (15)

We define the population analogue of the score Sλ,γ(D, h̄, I) below:

S?(D, h̄, I) := min
(B,Γ,{Ωe,Ψe}me=1)∈F

m∑
e=1

π?e

(
log det(Ωe + ΓΨeΓ

T )

+ tr((Id−B)T (Ωe + ΓΨeΓ
T )−1(Id−B)Σ?

e)
)
.

subject-to: B ∼ D ; I({Ωe}me=1) ⊆ I,
where Σ?

e represents the true covariance in environment e and π?e = limall ne→∞
ne∑m
e=1 ne

.

First, we show that for every D, h̄, I, the score function Sλ,γ(D, h̄, I)
p→ S?(D, h̄, I) as

ne →∞ for every e ∈ [m]. This follows by the compactness of the parameter space leading
to uniform convergence of M-estimators, and that λ → 0 and bounded γ (van de Geer,
2000). For more details, note that:

Sλ,γ(D, h̄, I)− λRγ(D, I) = min
(B,Γ,{Ωe,Ψe}me=1)∈F

m∑
e=1

π?e

(
log det(Ωe + ΓΨeΓ

T )

+ tr((Id−B)T (Ωe + ΓΨeΓ
T )−1(Id−B)Σ?

e)
)

+ tr((Id−B)T (Ωe + ΓΨeΓ
T )−1(Id−B)(π̂eΣ̂e − π?eΣ?

e))

+ (π̂e − π?e) log det(Ωe + ΓΨeΓ
T ).

From there, we have

Sλ,γ(D, h̄, I) ≥ S?(D, h̄, I)

− min
(B,Γ,{Ωe,Ψe}me=1)∈F

m∑
e=1

tr((Id−B)T (Ωe + ΓΨeΓ
T )−1(Id−B)(π̂eΣ̂e − π?eΣ?

e))

− min
(B,Γ,{Ωe,Ψe}me=1)∈F

(π̂e − π?e) log det(Ωe + ΓΨeΓ
T ) + λRγ(D, I),

Sλ,γ(D, h̄, I) ≤ S?(D, h̄, I)

+ max
(B,Γ,{Ωe,Ψe}me=1)∈F

m∑
e=1

tr((Id−B)T (Ωe + ΓΨeΓ
T )−1(Id−B)(π̂eΣ̂e − π?eΣ?

e))

+ max
(B,Γ,{Ωe,Ψe}me=1)∈F

(π̂e − π?e) log det(Ωe + ΓΨeΓ
T ) + λRγ(D, I).

By the compactness constraint,

min
(B,Γ,{Ωe,Ψe}me=1)∈F

m∑
e=1

tr((Id−B)T (Ωe + ΓΨeΓ
T )−1(Id−B)(π̂eΣ̂e − π?eΣ?

e))→ 0,

min
(B,Γ,{Ωe,Ψe}me=1)∈F

(π̂e − π?e) log det(Ωe + ΓΨeΓ
T )→ 0,
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as ne → ∞. Furthermore, since λ → 0 as ne → ∞ for every e ∈ [m], and Rγ(D, I) is
bounded for a finite γ, we have that λRγ(D, I)→ 0. We can thus conclude Sλ,γ(D, h̄, I)→
S?(D, h̄, I) in the infinite data limit for every environment.

With the choice of λ in Proposition 12, we have that it is above fluctuations due to
sampling error; it follows that for two population score equivalent models (D1, h̄1, I1) and
(D2, h̄2, I2) with S?(D1, h̄1, I1) = S?(D2, h̄2, I2), if Rγ(D1, I1) < Rγ(D2, I2), then, there
exists N such that for ne ≥ N for every e, Sλ,γ(D1, h̄1, I1) < Sλ,γ(D2, h̄2, I2). This allows
us to conclude that:

P
(
argminSλ,γ(D, h̄, I) = argminRγ(D, I) subject-to D, h̄, I ∈ argminS?(D, h̄, I)

)
→ 1,

as ne → ∞ for every e ∈ [m]. In other words, we can conclude that in the infinite data
regime, minimizers of (7) converge (with probability tending to one) to

argmin
D,h̄,B,Γ,I,{Ωe,Ψe}me=1∈Θopt

Rγ(D, I), (16)

where

Θopt := argmin
D,h̄,I

argmin
(B,Γ,{Ωe,Ψe}me=1)∈F

m∑
e=1

π?e

(
log det(Ωe + ΓΨeΓ

T )

+ tr((Id−B)T (Ωe + ΓΨeΓ
T )−1(Id−B)Σ?

e)
)

subject-to: B ∼ D ; I({Ωe}me=1) ⊆ I.

By Lemma 13, we then conclude that with probability tending to one, the minimizers of
(7) in the infinite data limit are:

argmin
D,h̄,B,Γ,I,{Ωe,Ψe}me=1

Rγ(D, I)

subject-to : B ∼ D, I({Ωe}me=1) ⊆ I, and

Σ?
e = (Id−B)−1(Ωe + ΓΨeΓ

T )−1(Id−B)−T for every e ∈ [m].

Finally, note that Rγ(D, I) is monotonic in the size of I, we can replace the constraint
I({Ωe}me=1) ⊆ I with I({Ωe}me=1) = I and attain the desired result.

Appendix D. Equivalent causal models

D.1 Proof of Proposition 3

Consider a causal model (B,Γ, {Ωe,Ψe}me=1) specifying the SCM (2) for the data among
observed variables (these parameters can for example be the population parameters), so
that:

Σ?
e = (Id−B)−1(Ωe + ΓΨeΓ

T )−1(Id−B)−T for every e ∈ [m].
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We will construct an equivalent SCM with parameters (B̃, Γ̃, {Ω̃e, Ψ̃e}me=1) where the con-
nectivity matrix B̃ can be arbitrary and compatible with any DAG, and the coefficient
matrix Γ̃ is any arbitrary p× p and invertible matrix.

Specifically, Let D̃ be any DAG and B̃ be any connectivity matrix associated with D̃. Let
Γ̃ ∈ Rp×p be an arbitrary invertible matrix. For every e ∈ [m], choose a diagonal positive
matrix Ω̃e ∈ Dp++ such that:

(Id−B)−1(Ωe + ΓΨeΓ
T )(Id−B)−T � (Id− B̃)−1Ω̃e(Id− B̃)−T .

Notice that such a matrix exists since (Id− B̃)(Id−B)−1(Ωe+ΓΨeΓ
T )(Id−B)−T (Id− B̃)T

is a positive definite matrix. Define then for every e ∈ [m]:

Ψ̃e = Γ̃−1
[
(Id−B)−1(Ωe + ΓΨeΓ

T )(Id−B)−T − (Id− B̃)−1Ω̃e(Id− B̃)−T
]

Γ̃−T .

By construction, Ψ̃e � 0 and (Id − B)−1(Ωe + ΓΨeΓ
T )(Id − B)−T = (Id − B̃)−1(Ω̃e +

Γ̃Ψ̃eΓ̃
T )(Id− B̃)−T for every e ∈ [m]. We have thus shown that:

Σ?
e = (Id− B̃)−1(Ω̃e + Γ̃Ψ̃eΓ̃

T )−1(Id− B̃)−T for every e ∈ [m].

That is, the model specified by the parameters (B̃, Γ̃, {Ω̃e, Ψ̃e}me=1) specifies an SCM that is
compatible with the underlying data distributions.

Figure 4 displays the two equivalent models. Figure 4(a) can be taken for example to be
the population model with a single latent variable. Figure 4(b) is a model with three latent
variables that is an equally good representation of the data among the observed variables.

D.2 Connection to violation of faithfulness via an illustration

For simplicity, we first consider the scenario without any interventions, e.g. there are no
nodes E in Figure 4. Suppose that the graphical models in Figure 4(a) and Figure 4(b)
specify the distribution among the observed variables. Notice that Figure 4(a) implies
that X1 ⊥ X3, while the same conclusion cannot be made in Figure 4(b). In other words, if
the model in Figure 4(b) is the population DAG, the conditional independence relationships
among the observed variables in Figure 4(b) are not encoded in the data distribution. Thus,
the faithfulness assumption is not satisfied.

Now we consider the scenario where there are interventions E . In our modeling assump-
tion, we assume that the interventions are independent among the observed variables, that
is the matrix Ωe encoding noise variances among the observed variables is diagonal. Then,
again, Figure 4(a) concludes that X1 ⊥ X3, while Figure 4(b) does not.

D.3 Proof of Corollary 4

Let (B,Γ, {Ωe,Ψe}me=1) be the population parameters. Consider the construction in the
proof of Proposition 3. Let D̃ be the empty graph and B̃ = 0. Let Ω̃e = αId, where α is
chosen such that:

(Id−B)−1(Ωe + ΓΨeΓ
T )(Id−B)−T � α(Id− B̃)−1(Id− B̃)−T .
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Setting Γ̃ and Ψ̃e as in the proof of Proposition 3, we have that (B̃, Γ̃, {Ω̃e, Ψ̃e}me=1) is an
equivalent model. We have found a model satisfying the constraint in the optimization
(16). By the construction of Ω̃e, we have that the set of intervention targets encoded by
this equivalent model is empty, i.e. Ĩ = I({Ω̃e}) = ∅. Furthermore, Rγ(D̃, Ĩ) = 0, which is
the minimal value the regularization function Rγ(·, ·) can attain for any value of γ. We thus
conclude from Proposition 12 that the constructed model with an empty graph is optimal.

Appendix E. Discussions of Assumption 1

E.1 When is the incoherence parameter inc?e small?

Recall that Assumption 1 states that the product of an incoherence parameter inc?e (cap-
turing the denseness of the latent effects) and the degree of the moral graph is O(1). We
provide a simple illustration of a model (2) for which the incoherence parameter inc?e is

small in that it is close to its lower-bound
√

h
p .

Illustration: We consider a model (2) where there is one latent variable (i.e. h = 1) and
the latent coefficient matrix Γ ∈ Rp×1 has identical entries so that the effect of the latent
variable on the observed variables is equally spread out. Let k be the maximum number
of parents for any node in the DAG D? among the observed variables. Let cond(Ω?

e) =
maxi[Ω

?
e ]i,i

mini[Ω?e ]i,i
represent the condition number of the noise variance matrix Ω?

e. Suppose that

the edge weights of the DAG D?, i.e. the nonzero entries of B? are sufficiently small, i.e. are
smaller in magnitude than 1/(k cond(Ω?

e)). Then, some manipulations yield the following
bound for inc?e:

inc?e = inc[col-space((Id−B?)TΩ?
e
−1Γ?] =

maxi |
[
(Id−B?)TΩ?

e
−1Γ?

]
i,1
|

‖(Id−B?)TΩ?
e
−1Γ?‖2

≤
maxi |

[
(Id−B?)TΩ?

e
−1Γ?

]
i,1
|

√
pmini |

[
(Id−B?)TΩ?

e
−1Γ?

]
i,1
| ≤

√
h

p

cond(Ω?
e)(1 + k‖B?‖∞)

1− k‖B?‖∞cond(Ω?
e)

.

Then, supposing that the noise variances on each observed variable are not too different,

i.e. cond(Ω?
e) = O(1), we have that inc?e = O

(√
h
p

)
.

We have shown via the above illustration that when the effect of the latent variables
is spread out among all the observed variables, the incoherence parameter is small with

inc?e = O
(√

h
p

)
.

E.2 Examples of models (2) that satisfy Assumption 1

Throughout, we consider models in which the low-rank matrix L?e is almost maximally

incoherent (dense), that is inc[col-space(L?e)] = O
(√

h
p

)
so the effect of marginalization

over the latent variables is diffuse across all the observed variables (see Section E.1). We
will suppress the constants involved in Assumption 1 and focus on the trade-off between
inc[col-space(L?e)] and maximal degree of the moral graph of D? represented by the quantity
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degree[moral(D?)]. So we study models (2) in which:

inc[col-space(L?e)]
2degree[moral(D?)] = O

(
h

p
degree[moral(D?)]

)
= O(1). (17)

As we describe next, there are nontrivial classes of models in which the above condition
holds.

Bounded degree: the first class of models that we consider are the moral graph of the
DAG D? among the observed variables has constant degree:

degree[moral(D?)] = O(1) ; h = O(p).

Here, consistent estimation of the underlying equivalence class of DAGs is possible even
when the number of latent variables is on the same order as the number of observed variables.

Polynomial degree: The next class of models we consider are those in which the degree
of the moral graph of D? grows polynomially with p:

degree[moral(D?)] = O(pq) ; h = O
(
p

pq

)
,

where q ∈ (0, 1). Here, according to the theorems in Section 3.2, consistent estimation of
the underlying equivalence class of DAGs is possible with the number of latent variables
growing with p.

E.3 Comparison to assumptions in Chandrasekaran et al. (2011, 2012); Frot
et al. (2019)

Building on the methodology and results of Chandrasekaran et al. (2011, 2012), Frot et al.
(2019) impose a similar but more stringent condition (than Assumption 1) on the denseness
of the latent effects for equivalence class recovery in observational settings. In particular,
Frot et al. (2019) provide guarantees for models in which:

inc[col-space(L?)]degree[moral(D?)] = O
(√

h

p
degree[moral(D?)]

)
= O(1), (18)

where L? is the matrix L?e for an observational environment e. Comparing (17) with (18),
we see that our guarantees are applicable to a broader class of models 5. Furthermore,
as described in the main text, the method in Frot et al. (2019) is only appropriate for
observational settings, whereas our method also exploits interventional data for additional
identifiability.

5. The method in Frot et al. (2019) uses a nuclear norm penalty to induce low-rank structure; due to the
facial structure of the nuclear norm ball, the incoherence condition that they impose is more stringent
than the one in our paper.
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Appendix F. Proof of Proposition 5

The proof relies on a few lemmas. We first state a known result (see Chandrasekaran et al.
(2011)) on the spectral norm of a sparse matrix. For completeness, we include a proof.

Lemma 14 (spectral norm of a low-degree matrix) Let N ∈ Sp and degree(N) be the
maximum number of non-zeros in any column of N . Then, ‖N‖2 ≤ degree(N)‖N‖∞.

Proof Let v ∈ Rp with ‖v‖2 = 1. Notice that for any standard basis element ei:

|eTi Nv|∞ ≤ ‖eTi N‖2
√ ∑
j:Ni,j 6=0

v2
j

≤
√

degree(N)‖N‖∞
√ ∑
j:Ni,j 6=0

v2
j .

Combining this with the inequality
∑p

i=1

∑
j:Ni,j 6=0 v

2
j ≤ degree(N), ‖Nv‖22 is bounded as

follows:

‖Nv‖22 ≤
p∑
i=1

degree(N)‖N‖2∞
∑

j:Ni,j 6=0

v2
j

= degree(N)‖N‖2∞

 p∑
i=1

∑
j:Ni,j 6=0

v2
j


≤ degree(N)2‖N‖2∞.

Since v was arbitrary, we arrive at the desired result.

Lemma 15 (sparse/low rank incoherence) Let K ∈ Sp and L ∈ Sp. If degree(K)inc[
col-space(L)]2 < 1, then, K = L if and only if K = L = 0.

Proof The proof follows very similarly to the proof of Lemma 2 in Chandrasekaran et al.
(2011). Let Ω be the following subspace induced by K:

Ω = {M ∈ Sp : Mij = 0 if Kij = 0}.

Let T be the following subspace induced by L:

T = {Pcol-space(L)MPcol-space(L) for M symmetric and non-singular}.

It suffices to show that under the condition stated above Ω ∩ T = {0}. Note that:

max
‖N‖2=1,N∈T

‖PΩ(N)‖2 < 1⇒ Ω ∩ T = {0},
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since if N ∈ Ω ∩ T with ‖N‖2 = 1, ‖PΩ(N)‖2 = ‖N‖2 = 1, leading to a contradiction.
Furthermore, by Lemma 14, we have that:

max
‖N‖2=1,N∈T

‖PΩ(N)‖2 ≤ degree(K) max
‖N‖2=1,N∈T

‖PΩ(N)‖∞

≤ degree(K) max
‖N‖2=1,N∈T

‖N‖∞

= degree(K) max
‖N‖2=1,N∈T

max
i,j
|eTi Pcol-space(L)NPcol-space(L)ej |

≤ degree(K) max
i
‖Pcol-space(L)(ei)‖22

= degree(K)inc[col-space(L)]2.

Lemma 16 (Sum of incoherent matrices) Let L1, L2 ∈ S with column spaces C1 and
C2, respectively. Then:

inc[col-space(L1 + L2)] ≤ 2 min{inc[C1], inc[C2]}+ max{inc[C1], inc[C2]}.

Proof Without loss of generality, let inc[C1] ≤ inc[C2]. First, notice that for any v ∈
col-space(L1 + L2), we have that v = span(u1, u2) where u1 ∈ C1 and u2 ∈ C2. Notice that:

inc[col-space(L1 + L2)] = max
i

max
v∈col-space(L1+L2)

|vT ei|/‖v‖2

= max
i

max
u1∈C1,u2∈C2,‖u1‖2=‖u2‖2=1

v=c1u1+c2u2

|vT ei|/‖v‖2

= max
i

max
u1∈C1,u2∈C2,‖u1‖2=‖u2‖2=1

u3=u2−(uT2 u1)u1
v=c1u1+c2u3

|vT ei|/‖v‖2

≤ max
i

max
u1∈C1,u2∈C2,‖u1‖2=‖u2‖2=1

u3=u2−(uT2 u1)u1
v=c1u1+c2u3

|c1|√
c2

1 + c2
2

|uT1 ei|+
|c2|√
c2

1 + c2
2

|uT3 ei|

≤ max
i

[
max

u1∈C1,‖u1‖2=1
2|uT1 ei|+ max

u2∈C2,‖u2‖2=1
|uT2 ei|

]
≤ 2 min{inc[C1], inc[C2]}+ max{inc[C1], inc[C2]}.
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Proof [Proof of Proposition 5] Consider the optimization problem

argmin
D,h̄,B,Γ,I,{Ωe,Ψe}me=1

Rγ(D, I)

subject-to : B ∼ D, I = I({Ωe}me=1), and

Σ?
e = (Id−B)−1(Ωe + ΓΨeΓ

T )−1(Id−B)−T for every e ∈ [m]

inc(col-space((Id−B)TΩ−1
e Γ)) ≤ 2inc?e for every e ∈ [m],

(19)

Where compared to (16), we have added the incoherence constraint inc(col-space((Id −
B)TΩ−1

e Γ)) ≤ 2inc?e. Following exactly similar logic as proof of Proposition 12, one can
show that with probability tending to one, the optimal solutions of (7) with the incoher-
ence constraint equal to the optimal solution of (19). Thus, we will analyze the estimates
produced by (19).

Let
(D, B,Γ, I, {Ωe,Ψe}me=1)

be any optimal set of parameters in (19). Since the parameters (D?, B?,Γ?, I?, {Ω?
e,Ψ

?
e}me=1)

are feasible in (19), we have that:

p degree[moral(D)] + ‖D‖`0 + γ|I| ≤ pd? + ‖D?‖`0 + γ|I?|.

Since ‖D?‖`0 ≤ pd?, |I?| ≤ p, and γ ∈ (0, d?], we have the inequality degree[moral(D)] ≤
3d?. Again, by the feasibility of the parameters (D, B,Γ, I, {Ωe,Ψe}me=1) in (19), we have
that

(Id−B)−1(Ωe+ΓΨeΓ
T )(Id−B)−T = (Id−B?)−1(Ω?

e+Γ?Ψ?
eΓ

?T )(Id−B?)−T for all e ∈ [m].

Equivalently, taking the inverse of both sides in the previous equation, and using the Wood-
bury Inversion Lemma, we have for e = 1, 2, . . . ,m

(Id−B)TΩ−1
e (Id−B)− (Id−B)TΩ−1

e Γ(Ψ−1
e + ΓTΩ−1

e Γ)−1ΓTΩ−1
e (Id−B)

= (Id−B?)TΩ?
e
−1(Id−B?)− (Id−B?)TΩ?

e
−1Γ?(Ψ?

e
−1
e + Γ?TΩ?

e
−1Γ?)−1Γ?TΩ?

e
−1(Id−B?).

(20)
Define for every e = 1, 2, . . . ,m the following quantities:

Ke := (Id−B)TΩ−1
e (Id−B),

K?
e = (Id−B?)TΩ?

e
−1(Id−B?),

Le := (Id−B)TΩ−1
e Γ(Ψ−1

e + ΓT Ω̂−1
e Γ)−1ΓTΩ−1

e (Id−B),

L?e := (Id−B?)TΩ?
e
−1Γ?(Ψ?

e
−1 + Γ?TΩ?

e
−1Γ?)−1Γ?TΩ?

e
−1(Id−B?).

(21)

Notice that degree(K?
e ) = d?. Since degree[moral(D)] ≤ 3d?, we have that degree(Ke) ≤

3d?. Furthermore, by the constraint on the optimization (19), inc[col-space(Le] ≤ 2inc?e.

Notice that (20) can be equivalently written for every e = 1, 2, . . . ,m:

Ke −K?
e = Le − L?e. (22)

41



Taeb, Gamella, Heinze-Deml, Bühlmann

Since degree(A + B) ≤ degree(A) + degree(B) for matrices A,B ∈ Sp, degree(Ke −K?
e ) ≤

4d? for every e. Furthermore, by Lemma 16, we have that inc[col-space(Le − L?e)] ≤
4inc?e for every e = 1, 2, . . . ,m. Thus, by Assumption 1, we have that: degree(Ke −
K?
e )inc[col-space(Le−L?e)] < 1 for all e = 1, 2, . . . ,m. Hence, by Lemma 15, Ke−K?

e = 0 or
equivalently (Id−B)−1Ωe(Id−B)−T = (Id−B?)−1Ω?

e(Id−B?)−T for every e = 1, 2, . . . ,m.

Let Dall.opt, Iall.opt be the collection of optimal DAGs and intervention targets in the
optimization (19). Letting Σ?

Xe|He be the covariance of Xe|He, the analysis above allows
us to conclude that:

(Dall.opt, Iall.opt) = argmin
D,I

Rγ(D, I)

subject-to there exists B ∼ D : I({Ωe}me=1) = I
Σ?
Xe|He = (Id−B)−1Ωe(Id−B)−T for all e = 1, 2, . . . ,m.

(23)

We first show that for any feasible I in (23), |I| = |I?|. For simplicity, let e = 1 be the
observational environment. Then, the relations Σ?

Xe|He = (Id−B)−1Ωe(Id−B) for all e =
1, 2, . . . ,m imply for every e = 2, 3, . . . ,m

(Id−B?)−1 [Ω?
e − Ω?

1] (Id−B?)−T = (Id−B)−1 [Ωe − Ω1] (Id−B)−T .

Since Ω?
e − Ω?

1 � 0 by Assumption 3, the relation above lets us conclude that Ωe − Ω1 � 0.
Hence, |I?| = rank (

∑m
e=2 Ω?

e − Ω?
1) and |I| = rank (

∑m
e=2 Ωe − Ω1). Finally, again by the

relation Σ?
Xe|He = (Id−B)−1Ωe(Id−B)−T for all e = 1, 2, . . . ,m, we have that:

(Id−B?)−1

[
m∑
e=2

Ω?
e − Ω?

1

]
(Id−B?)−T = (Id−B)−1

[
m∑
e=2

Ωe − Ω1

]
(Id−B)−T ,

which lets us conclude that rank (
∑m

e=2 Ω?
e − Ω?

1) = rank (
∑m

e=2 Ωe − Ω1) and consequently
|I| = |I?|.

Next, we show that any optimal DAG in (23) must be in the Markov equivalence class
of D?. Consider the distribution Xe|He which is specified by the covariance Σ?

Xe|He . For

any DAG D compatible6 with Xe|He, the following are satisfied:

{(i, j, S) : Xe
i ⊥⊥ Xe

j |Xe
S , H

e for some set S} ⊆ {(i, j, S) : XS d-separates Xi and Xj in D},
{(i, j) : Xe

i ⊥⊥ Xe
j |Xe

\{i,j}, H
e} ⊆ {(i, j) : Xe

i and Xe
j are not connected in moral(D)},

(24)
where set equality in the relations above hold if Xe|He is faithful with respect to the DAG
D. By Assumption 2 (i.e. faithfulness of Xe|He for every environment with respect to the
DAG D?), and relation (24), we have for any DAG D consistent with Xe|He:

‖D?‖`0 ≤ ‖D‖`0 ; moral(D?) ⊆ moral(D), (25)

6. By compatible, we mean that there exists B compatible with D and Ω ∈ Dp++ such that Σ?Xe|He =

(Id−B)−1Ω(Id−B)−T .
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where equality holds if and only if D ∈ MEC(D?). Combining this fact with |I| = |I?| for
any feasible I in (23), we conclude that Dall.opt ⊆ MEC(D?).

Appendix G. Uninformative interventions and proof of Theorem 6

G.1 Worst-case interventions

In Section F, we proved that in the setting of Proposition 5, the optimal DAGs Dall.opt in
the optimization (19) satisfy Dall.opt ⊆ MEC(D?). We next show that there are worst-case
intervention configurations such that Dall.opt = MEC(D?). As an example, suppose for
every e, e′ ∈ 1, 2, . . . ,m, there exists αe,e′ > 0 such that

Ω?
e = αe,e′Ω

?
e′ . (26)

By our construction (26), ΣXe|He = αe,e′ΣXe′ |He′ . Recall that the optimal DAGs satisfy

the relation (23). However, since ΣXe|He = αe,e′ΣXe′ |He′ , it is straightforward to see that

when (26) is satisfied, there is no additional information gained over just data in a single
environment, i.e. (23) is simplified to:

Dall.opt = argmin
D

Rγ(D, {1, 2, . . . , p})

subject-to there exists B ∼ D,Ω ∈ Dp++ such that

Σ?
X1|H1 = (Id−B)−1Ω(Id−B)−T .

(27)

Since Xe|He is faithful with respect to D?, following relation (25), we conclude that
Dall.opt = MEC(D?).

G.2 Proof of Theorem 6

The proof of this theorem relies on two lemmas.

Lemma 17 Let B, B̃ ∈ Rp×p be two matrices that can be made to be lower-triangular
with zeros on the diagonal after row and column permutations (or equivalently, the matrices
correspond to two DAGs). Suppose that there exists Ω̃,Ω ∈ Dp++ such that (Id−B)−1Ω(Id−
B)−T = (Id − B̃)−1Ω̃(Id − B̃)−T . Then, if for some α 6= 0, [(Id − B̃)−1(Id − B)]:,i = αej,
then [Id−B]i,: ∝ [Id− B̃]j,:.

Proof [Proof of Lemma 17] By the condition of the lemma, we have that: αeTj (Id −
B̃)−T (Id−B)T = eTi and that (Id− B̃) = Ω(Id− B̃)−T (Id−B)TΩ−1(Id−B). Combining
these two, it follows that for some constant β 6= 0, eTj (Id− B̃) = αβeTi (Id−B).

Lemma 18 (Equivalent characterization of I?-MEC(D?)) Under Assumptions 4 and
5, the following statements are equivalent for D ∈ MEC(D?):
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p1) There exists a connectivity matrix B compatible with D and {Ωe}me=1 ⊆ D++
p such that

(Id−B?)−1Ω?
e(Id−B?)−T = (Id−B)−1Ωe(Id−B)−T for all e = 1, 2, . . . ,m

p2) D ∈ I?-MEC(D?)
Proof [Proof of Lemma 18] The direction p2⇒ p1 follows from Lemma 10. We next prove
p1 ⇒ p2. In particular, we must show that if for a D ∈ MEC(D?) with a compatible
connectivity matrix B satisfying (Id−B?)−1Ω?

e(Id−B?)−T = (Id−B)−1Ωe(Id−B)−T for
all e = 1, 2, . . . ,m, then the parents of nodes indexed by I? in D are fixed to be the same
as parents of D?. More concretely, we will show that:

Bi,: = B?
i,: for all i ∈ I?.

We define the following parameters:

M := (Id−B)(Id−B?)−1 ; Ne := (Id−B)(Id−B?)−1Ω?
e , e = 1, 2, . . . ,m.

Notice that the condition of p1 implies

Mk,: ⊥ [Ne]l,: for k 6= l. (28)

Since the rows of the matrix M are linearly independent, the relation (28) implies that for
every k = 1, 2, . . . , p, the vectors {[Ne]k,:}me=1 live in a one-dimensional null space of the
matrix formed by concatenating the vectors {Ml,:}l 6=k, i.e.

dim (span ({[Ne]k,:}me=1)) = 1. (29)

We focus on a particular i ∈ I?. Take an environment e satisfying Assumption 4 for
i ∈ I?. Then, (29) implies that for every k, there exists a constant ck 6= 0 (nonzero since
the matrix Ne′ is non-singular for every e′) such that [N1]k,: = ck[Ne]k,: or equivalently
Mk,:Ω

?
1 = ckMk,:Ω

?
e. Thus, combining this fact with Assumption 3, we conclude that:

for every k = 1, 2, . . . , p,

[M ]k,i = 0 OR [M ]k,i has one nonzero and [M ]k,{1,2,...,p}\i = 0.
(30)

Combining (30) with the fact that the rows of M are linearly independent, we conclude
that:

:,i = αej for some standard basis element ej and α 6= 0. (31)

Appealing to Lemma 17, we conclude that (31) can be equivalently written as:

i,: = αeTj for some standard basis element ej and α 6= 0. (32)

We consider two scenarios. Scenario 1 is when j 6= i in (31) and Scenario 2 is when j = i.
Our proof strategy is to show that under Assumption 5, Scenario 1 cannot occur, implying
that only Scenario 2 is possible. For Scenario 2, we conclude that Bi,: = B?

i,:.

Scenario 1: j 6= i in (32) Since B is a connectivity matrix associated with a DAG D ∈
MEC(D?), by Assumption 4, this case is not allowed.
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Scenario 2: j = i in (31) Here, we have that [M ]:,i = αei for nonzero α. Hence, Mi,i 6= 0.

By (30), we then conclude that Mi,: = αeTi , or equivalently [Id−B]i,: = α[Id−B?]i,:. Since
Id−B and Id−B? have ones on the diagonal, α = 1 and thus Bi,: = B?

i,:.
We repeat the above arguments for every i ∈ I? to conclude that Bi,: = B?

i,:.

Proof [Proof of Theorem 6] Let Dall.opt, Ball.opt, Iall.opt be the collection of optimal DAGs
and intervention targets in the optimization (19). From (23) and Proposition 5, we have
that any D ∈ Dall.opt ⊆ MEC(D?) with an associated connectivity matrix B and noise
variances Ωe satisfies:

(Id−B)(Id−B?)−1Ω?
e(Id−B?)1(Id−B)T = Ωe e = 1, 2, . . . ,m,

where {Ωe}me=1 are diagonal and I = I({Ωe}me=1). By Lemma 18, we have that D ∈
I?-MEC(D?). Thus, the associated connectivity matrix B satisfies for every i ∈ I?:
support(Bi,:) = support(B?

i,:). Then, appealing to Lemma 9, we conclude that [Ω?
e]i,i =

[Ωe]i,i for every i ∈ I? and e ∈ [m]. Further, since the matrix (Id − B)(Id − B?)−1 is
invertible, we have that rank(Ω?

e−Ω?
f ) = rank(Ωe−Ωf ). Combining the previous two facts,

we conclude that I = I? so that Iall.opt = {I?}. Appealing to Lemma 18, we conclude that
(23) can be equivalently expressed as:

Dall.opt = arg min
DAG D

Rγ(D, I?) subject-to D ∈ I?-MEC(D?).

Since I?-MEC(D?) ⊆ MEC(D?), the regularizer Rγ(D, I?) = Rγ(D?, I?) for all D ∈
I?-MEC(D?). We thus conclude that Dall.opt = I?-MEC(D?). Finally, since the popu-
lation parameters are feasible in the optimization (19) and that D? and I? achieve the
optimum loss Rγ(·, ·), we conclude that B? ∈ Ball.opt.

G.3 Proof of Corollary 7

Consider the optimization problem

argmin
D,h̄,B,Γ,I,{Ωe,Ψe}me=1

Rγ(D, I)

subject-to : B ∼ D, I = I({Ωe}me=1), and

Σ?
e = (Id−B)−1(Ωe + ΓΨeΓ

T )−1(Id−B)−T for every e ∈ [m]

h̄ ≤ hmax,

(33)

Where compared to (16), we have added a constraint h̄ ≤ hmax on the number of latent
variables included in the model. Following exactly similar logic as proof of Proposition 12,
one can show that with probability tending to one, in the infinite data regime, the optimal
solutions of (7) with the constraint on the number of latent variables equal to the optimal
solution of (19). Thus, we will analyze the estimates produced by (33).

We follow a very similar proof technique as proof of Theorem 6. Specifically, let (D, B,Γ, I,
{Ωe,Ψe}me=1) be any optimal set of parameters in (33). Then, we can arrive at the equality
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(22) where the matrices Ke,K
?
e , Le, L

?
e are defined in (21). Note that from Lemma 15 that

for all e = 1, 2, . . . ,m:

degree(Ke −K?
e )inc[col-space(Le − L?e)]2 < 1⇒ Ke = K?

e . (34)

In this analysis, we show that under the conditions described in Corollary 7, degree(Ke −
K?
e )inc[col-space(Le − L?e)]2 < 1, allowing us to conclude that Ke = K?

e . Following then
an exact line of reasoning as the last paragraph of proof of Theorem 6, we conclude that
Dall.opt = I?-MEC(D?), B? ∈ Ball.opt and Iall.opt = {I?}, where Dall.opt, Ball.opt, Iall.opt is
the collection of optimal DAGs, connectivity matrices and intervention sets, respectively,
in the optimization (33).

Notice that degree(Ke−K?
e ) ≤ degree[moral(D)]+d?. Further, by Lemma 16, inc[col-space(Le−

L?e)] ≤ 2(inc[col-space(Le)] + inc?e). Thus, it suffices to show for all e ∈ [m] that:

4(degree[moral(D)] + d?)(inc[col-space(Le)]
2 + (inc?e)

2) < 1. (35)

Since the population parameters satisfy the constraint of the optimization problem (33),
we have that Rγ(D, I) ≤ Rγ(D?, I?). Thus, we can conclude with the choice of γ that
degree[moral(D)] ≤ 3d?. Therefore, the following conditions are satisfied for every e =
1, 2, . . . ,m due to Assumption 1, the conditions of Corollary 7, and the bound d? ≤ ν?:

degree[moral(D)]inc[col-space(Le)]
2 ≤ 3ν?inc[col-space(Le)]

2 < 1/16,

degree[moral(D)]inc[col-space(L?e)]
2 ≤ 3ν?inc[col-space(L?e)] < 1/16,

d?inc[col-space(Le)]
2 ≤ ν?inc[col-space(Le)]

2 < 1/16,

d?(inc?e)
2 < 1/16.

Combining these relations, we arrive at the inequality in (35).

Appendix H. Proof of Theorem 8 with known latent interventions

Consider the optimization problem

argmin
D,h̄,B,Γ,I,{Ωe,Ψe}me=1

Rγ(D, I)

subject-to : B ∼ D, I = I({Ωe}me=1), and

Σ?
e = (Id−B)−1(Ωe + ΓΨeΓ

T )−1(Id−B)−T for every e ∈ [m]

Ψe = ψ?e Id for every e ∈ [m],

(36)

Where compared to (16), we have added the known latent interventions constraint Ψe =
ψ?e Id. Following exactly similar logic as proof of Proposition 12, one can show that with
probability tending to one, the optimal solutions of (7) with the known latent interventions
constraint equal to the optimal solution of (36). Thus, we will analyze the estimates pro-
duced by (36). We will let Dall.opt, Ball.opt, Iall.opt be optimal DAGs, connectivity matrices,
and intervention sets according to the optimization (36).
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Consider any optimal set of parameters (D, B,Γ, {Ωe,Ψe) of (36). Then for every e =
1, 2, . . . ,m

(Id−B?)−1(Ω?
e + ψ?eΓ

?Γ?T )(Id−B?)−T = (Id−B)−1(Ωe + ψ?eΓΓT )(Id−B)−T . (37)

The relations (37) imply:

(Id−B?)−1 (Ω?
2 − ψ?2/ψ?1Ω?

1) (Id−B?)−T = (Id−B)−1 (Ω2 − ψ?2/ψ?1Ω1) (Id−B)−T ,

(Id−B?)−1 (Ω?
e − ψ?e/ψ?1Ω?

1) (Id−B?)−T = (Id−B)−1 (Ωe − ψ?e/ψ?1Ω1) (Id−B)−T .
(38)

Appealing to Assumption 3’, the first relation in (38) yields:

(Id−B?)−1Ω?
1(Id−B?)−T =

1

(1− ψ?2/ψ?1)
(Id−B)−1 (Ω2 − ψ?2/ψ?1Ω1) (Id−B)−T . (39)

Relation (39) states that B is an equivalent connectivity with respect to distribution X1|H1

in the sense Σ?
X1|H1 = (Id − B)−1Ω(Id − B)−T for some Ω ∈ Dp++. Due to Assumption 2

(faithfulness condition), we appeal to relation (25), and conclude that: ‖D?‖`0 ≤ ‖D‖`0
and moral(D?) ⊆ moral(D), where equality holds if and only if D ∈ MEC(D?). Thus, since
γ ≤ 1

|I?| , the following holds:

for any DAG D with a connectivity matrix B satisfying (39) where D 6∈ MEC(D?),
⇒,
Rγ(D, I) > Rγ(D?, I?) for all I ⊆ [p].

The relation above allows us to conclude that D ∈ MEC(D?).
We will next show that Bi,: = B?

i,: for all i ∈ I?. Consider a particular i ∈ I?. Let e

be the environment satisfying Assumption 4’. Let M := (Id − B)−1(Id − B?) and N1 :=
M(Ω?

2 − ψ?2/ψ?1Ω?
1) = (1 − ψ?2/ψ?1)Ω?

1, N2 := M(Ω?
e − ψ?e/ψ?1Ω?

1). From Assumption 4’, we
have that N1, N2 are non-singular. Further, from (38):

Mk,: ⊥ [N1]l,: and Mk,: ⊥ [N2]l,: for k 6= l.

Since the rows of the matrix M are linearly independent, we have for every k = 1, 2, . . . , p:
[N1]k,: and [N2]k,: are linearly independent. Thus, there exists constant c 6= 0 such that
c(1− ψ?2/ψ?1)Mk,:Ω

?
1 = Mk,:(Ω

?
e − ψ?e/ψ?1Ω?

1). Suppose Mk,i 6= 0. We will argue that Mk,j =
0 for all j 6= i. Specifically, suppose Mk,j 6= 0 for j 6= i. We would have that [Ω?

e −
ψ?e/ψ

?
1Ω?

1]i,i[Ω
?
1]−1
j,j = [Ω?

e − ψ?e/ψ
?
1Ω?

1]j,j [Ω
?
1]−1
j,j . However, we arrive at a contradiction by

Assumption 4’. We have thus argued that the matrix M has the structure described in
(31). Furthermore, going through the scenarios described in the proof of Lemma 18 and
appealing to the intervention truthfulness condition in Assumption 5 (using relation (39)),
we conclude that Bi,: = B?

i,: for all i ∈ I?. In other words, we have now shown that
Dopt ⊆ I?-MEC(D?).

We must now show that for all D ∈ I?-MEC(D?), D ∈ Dopt. Let (D̃, B̃, Γ̃, Ĩ, {Ω̃e, Ψ̃e}me=1)
be any optimal set of parameters of (36) where we have shown that D̃ ∈ I?-MEC(D?). By
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Lemma 10, there exists a connectivity matrix B ∼ D, and noise variances Ωe such that for
all e = 1, 2, . . . ,m

Id− B̃)−1Ω̃e(Id− B̃)−T = (Id−B)−1Ωe(Id−B)−T . (40)

Furthermore, let Γ = Γ̃ and Ψe = ψ?e Id. We then have that the model (D, B,Γ, I, {Ωe,Ψe}me=1)
is feasible in (36). It remains to check that Rγ(D, I) = Rγ(D̃, Ĩ). Since D and D̃ are in
the same Markov equivalence class, it suffices to show that I = Ĩ. Since D and D̃ are both
in the set I?-MEC(D?), we have that B̃i,: = Bi,: for every i ∈ Ĩ. From Lemma 9, we have
that: [Ωe]i,i = [Ω̃e]i,i for every i ∈ Ĩ. Let I = I({Ωe}me=1). We have shown that Ĩ ⊆ I.
Suppose that there exists j ∈ I \ Ĩ. Then, there must exist e, f such that [Ωe]j,j = [Ωf ]j,j .
From (40), we have that:

Id− B̃)−1(Ω̃e − Ω̃f )(Id− B̃)−T = (Id−B)−1(Ωe − Ωf )(Id−B)−T . (41)

We have that [Ω̃e]i,i− [Ω̃f ]i,i = 0 for every i 6∈ Ĩ. We also have that [Ω̃e]i,i− [Ω̃f ]i,i = [Ωe]i,i−
[Ωf ]i,i for every i ∈ I. Since [Ωe]j,j−[Ωf ]j,j 6= 0, we have that rank(Ωe−Ωf ) > rank(Ω̃e−Ω̃f )
which is a contradiction given (41). Therefore, we conclude that I = Ĩ.

Appendix I. Three environments are required if the number of latent
variables is not constrained

Without imposing a condition on the number of latent variables, two environments can only
offer identifiability up the Markov equivalence class, even if all the variables are perturbed.
To offer some intuition, we sketch a quick argument below. Consider the setting in Sec-
tion 3.3 where the number of latent variables is allowed to be arbitrary. For simplicity, we
assume there are two environments with no interventions on the latent variables and param-
eters (B?,Γ?, {Ω?

e}2e=1) where B? represents the connectivity matrix, Γ? encodes the effect of
latent variables, and Ω?

e is a diagonal matrix encoding the noise terms on the observed vari-
ables for environments e = 1, 2. Here, for example, Ω?

1 is the noise variance associated with
an observational environment and Ω?

2 is the noise term associated with an interventional
environment with Ω?

2 � Ω?
1 (since there are interventions on all variables). Any compatible

causal model, parameterized by (B,Γ, {Ωe}2e=1) must entail the same covariance model, i.e.
for e = 1, 2:

(Id−B?)−1(Γ?Γ?T + Ω?
e)
−1(Id−B?)−T = (Id−B)−1(ΓΓT + Ωe)

−1(Id−B)−T . (42)

An equivalent reformulation of (42) is:

(Id−B?)−1(Ω?
2 − Ω?

1)(Id−B?)−T = (Id−B)−1(Ω2 − Ω1)(Id−B)−T ,

(Id−B?)−1(Ω?
1 + Γ?Γ?T )(Id−B?)−T = (Id−B)−1(ΓΓT + Ω1)−1(Id−B)−T .

(43)

It is straightforward to check that for any DAG in the Markov equivalence class of the
population DAG, there exists a connectivity matrix B and diagonal matrix D such that
(Id − B?)−1(Ω?

2 − Ω?
1)(Id − B?)−T = (Id − B)−1D(Id − B)−T . Let Ω1 be any positive

definite diagonal matrix such that (Id − B)(Id − B?)−1(Ω?
2 − Ω?

1)(Id − B?)−T (Id − B)T �
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Ω1. Furthermore, let Γ be any matrix square root of (Id − B)(Id − B?)−1(Ω?
2 − Ω?

1)(Id −
B?)−T (Id−B)T−Ω1. Finally, let Ω2 = Ω1+D. Notice that by construction, the parameters
(B,Γ, {Ωe}2e=1) satisfy the relations in (43). In other words, we have shown that even though
all observed variables have received an intervention, we are not able to attain any additional
identifiability than the Markov equivalence class. A similar analysis can also be done in the
case where there are interventions on the latent variables.

Appendix J. Approximately known latent interventions

In this section, we relax the assumption of knowing the latent interventions to having access
to approximate values, where the level of approximation is given by Cψ. In particular, we
are given approximations ψ̃1, ψ̃2, . . . , ψ̃m where max{ψ̃e−ψ?e , |1/ψ̃e−1/ψ?e |} ≤ Cψ for every
e = 1, 2, . . . ,m. We then apply UT-LVCE with the additional constraint that: max{|1/ψe−
1/ψ̃e|, |ψe − ψ̃e|} ≤ Cψ for every e = 1, 2, . . . ,m. Having only an approximation to the
latent interventions comes at the expense of additional assumptions for partial identifiability.
Specifically, we assume that the interventions on the observed variables in I? are sufficiently
strong as compared to the approximation error in the latent interventions. Furthermore, we
assume that the latent effects induce some confounding dependencies among the observed
variables, although this assumption is generally far weaker than the incoherence condition
in Assumption 1 (see Section 3.2).

We impose the following assumptions where as introduced in the main paper, d? = degree
[moral(D?)]:

Assumption 1’ latent effects induce some confounding dependencies: for every i ∈ I? and
|κ| ≤ 4Cψ

maxe,e′ ψ
?
e′/ψ

?
e−1 , κ 6= 0, |δ| ≤ Cψ, there exists e ∈ [m] such that the following conditions

hold: i) [Ω?
e]i,i > [Ω?

1]i,i, ii) degree
(
(Id−B?)T (Ω?

e − Ω?
1(ψ?e + δ) + κΓ?Γ?T )−1(Id−B?)

)
≥

3d? and iii) degree
(
(Id−B?)T (Ω?

1 + κΓ?Γ?T )−1(Id−B?)
)
≥ 3d?.

Assumption 4” heterogeneous interventions on observed and latent variables: i) for ev-

ery e 6= e′ ∈ [m],max
{
ψ?e
ψ?
e′
,
ψ?
e′
ψ?e

}
> 1 +

Cψ(λmax(Ω?1)+‖Γ?‖22)
λmin(Ω?1) , ii) for every i, j ∈ I?, i 6=

j, there exists e ∈ [m] such that [Ω?
e]i,i > [Ω?

1]i,i and[
(Ω?

e − ψ?eΩ?
1) (Ω?

1)−1
]
i,i
6=
[
(Ω?

e − ψ?eΩ?
1) (Ω?

1)−1
]
j,j

.

Assumption 6 sufficiently strong interventions on the observed variables in I?: for every
i ∈ I?, there exists e ∈ [m] such that [Ω?

e]i,i > (2ψ?e + 1)[Ω?
1]i,i.

Assumption 1’ ensures that the latent effects induce some confounding dependencies.
This condition is far weaker than an incoherence-type assumption such as Assumption 1;
for a comprehensive discussion, see Section J.1. Assumption 4” (analogous to Assumption 4)
ensures that the interventions on the latent variables and observed variables are informative
for additional identifiability. One can show that if the parameters Ω?

e,Ω
?
1 and ψ?1, ψ

?
2, ψ

?
e are

drawn from continuous distributions, Assumption 4” is satisfied almost surely. Finally,
Assumption 6 requires that the interventions on the observed variables in I? are sufficiently
strong.
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Theorem 19 (Equivalence class characterization under approximately known
latent interventions) Consider the estimator (6) with Ψe = ψeId and the constraints
max{|ψ̃e − ψe|, |1/ψ̃e − 1/ψe|} ≤ Cψ where Cψ is chosen conservatively so that max{|ψ̃e −
ψ?e |, |1/ψ̃e − 1/ψ?e |} ≤ Cψ. Suppose Assumptions 1’,2,3’,4”, and 6 are satisfied. Letting

1
|I? > γ > 0, then D̂all.opt = I?-MEC(D?) with probability tending to one.

To prove Theorem 19, we consider the optimization problem

argmin
D,h̄,B,Γ,I,{Ωe,ψeId}me=1

Rγ(D, I)

subject-to : B ∼ D, I = I({Ωe}me=1), and

Σ?
e = (Id−B)−1(Ωe + ψeΓΓT )−1(Id−B)−T for every e ∈ [m]

max{|ψ̃e − ψe|, |1/ψ̃e − 1/ψe|} ≤ Cψ

(44)

Where compared to (16), we have added the constraint Ψe = ψeId (the latent variables are
iid), and the constraint max{|ψ̃e − ψe|, |1/ψ̃e − 1/ψe|} ≤ Cψ that controls the deviation to
which we know the interventions on the latent variables. Following exactly similar logic as
proof of Proposition 12, one can show that with probability tending to one, the optimal
solutions of (7) with the constraint on the number of latent variables equal to the optimal
solution of (44). Thus, we will analyze the estimates produced by (44).

The proof of Theorem 19 relies on the following lemmas:

Lemma 20 Let D and B be any DAG and associated connectivity matrix that is optimal
with respect to (44). Suppose there exists a non-singular diagonal matrix Ω ∈ Dp satisfying
the following relation for any e ∈ [m], |κ| ≤ 4Cψ/maxe,e′(ψ

?
e′/ψ

?
e − 1), |δ| ≤ Cψ:

(Id−B?)−1(Ω?
e − Ω?

1(ψ?e + δ)− κΓ?Γ?T )(Id−B?)−T = (Id−B)−1Ω(Id−B)−T . (45)

Then, under Assumption 1’, κ = 0.

Lemma 21 (Sufficient conditions for estimated and true latent interventions to
be equal) Under Assumptions 1’,2,3’,4” and 6, we have that for any optimal solution
(B,Γ, I, {Ωe,Ψe}me=1) of (44), ψ1 = ψ?1, ψ2 = ψ?2. Furthermore, for any i ∈ I?, letting
e ∈ [m] be the environment satisfying Assumption 4”, we have that ψe = ψ?e .

Proof [Proof of Theorem 19] We appeal to Lemma 21 to conclude that for any optimal
solution (B,Γ, I, {Ωe,Ψe}me=1), ψ1 = ψ?1, ψ = ψ?2 and for every e satisfying Assumption 6
on the intervention on the observed variables, ψ?e = ψe. We then follow a similar strategy
to the proof of Theorem 8 to conclude the desired result.

Proof [Proof of Lemma 20] Taking matrix inverses of both sides of the equation in the
lemma, we have that:

(Id−B?)T (Ω?
e − Ω?

1(ψ?e + δ)− κΓ?Γ?T )−1(Id−B?) = (Id−B)TΩ−1(Id−B). (46)

By Assumption 1’ and the relation (46), we have that degree[moral(D)] ≥ 3d?. We arrive
at a contradiction with D being optimal however since for any I,

Rγ(D, I) > degree[moral(D)] ≥ 3d? ≥ Rγ(D?, I?).
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Proof [Proof of Lemma 21] Let (B,Γ, I, {Ωe, ψeId}me=1) be any optimal parameters of (44).
Then, by feasibility, we have for every e ∈ [m]

(Id−B?)−1(Ω?
e + ψ?eΓ

?Γ?T )(Id−B?)−T = (Id−B)−1(Ωe + ψeΓΓT )(Id−B)−T . (47)

Notice that without loss of generality, ψ1 = 1 as Γ can be appropriately scaled. We will
first show that the assumptions imply that ψ?2 = ψ2. We prove ψ2 = ψ?2 both in the settings
where ψ?2 > ψ?1 and ψ?2 < ψ?1.

Scenario ψ?2 > ψ?1: The relation (47) implies that:

(Id−B?)−1
(

(1− ψ?2)Ω?
1 + (ψ?2 − ψ2)(Γ?Γ?T + Ω?

1)
)

(Id−B?)−T

= (Id−B)−1 (Ω2 − ψ2Ω1) (Id−B)−T .
(48)

By Assumption 4”, we have that the matrix (1 − ψ?2)Ω?
1 + (ψ?2 − ψ2)(Γ?Γ?T + Ω?

1) is non-
singular and ψ2 6= 1. Rearranging the left-hand side of (48), we have that:

(Id−B?)T
(

Ω?
1 − (ψ?2 − ψ2)/(ψ2 − 1)Γ?Γ?T

)−1
(Id−B?)

= (ψ2 − 1)(Id−B)T (Ω2 − ψ2Ω1)−1 (Id−B).
(49)

Let κ := (ψ?2−ψ2)/(ψ2−1). By the constraint on how close ψe is to ψ?e in (44), we have that
|κ| ≤ 2Cψ/ψ

?
2 − 1. Appealing to Lemma 20, we have that κ = 0 or equivalently ψ?2 = ψ2.

Scenario ψ?2 < ψ?1: The relation (47) implies that:

(Id−B?)−1
(

(1/ψ?2 − 1)Ω?
2 + (1/ψ?2 − 1/ψ2)(Γ?Γ?T − Ω?

2)
)

(Id−B?)−T

= (Id−B)−1 (Ω1 − 1/ψ2Ω2) (Id−B)−T .
(50)

By Assumption 4”, we have that that the matrix (1/ψ?2−1)Ω?
2 +(1/ψ?2−1/ψ2)(Γ?Γ?T −Ω?

2)
is non-singular and ψ2 6= 1. Rearranging the left-hand side of (50), we have that:

(Id−B?)−1
(

Ω?
1 − (1/ψ?2 − 1/ψ2)/(1/ψ2 − 1)Γ?Γ?T

)
(Id−B?)−T

=
1

1/ψ2 − 1
(Id−B)−1 (Ωe1 − 1/ψ2Ω2) (Id−B)−T .

(51)

Let κ := (1/ψ?2 − 1/ψ2)/(1/ψ2 − 1). By the constraint on how close ψe is to ψ?e in (44),
we have that |κ| ≤ 2Cψ/(1/ψ

?
2 − 1). Appealing to Lemma 20, we have that κ = 0 or

equivalently ψ?2 = ψ2.

Consider any hi ∈ I? and let e be an environment satisfying Assumption 4”, i.e. the
observed variable Xi receives strong heterogeneous interventions at environment e. We will
show that ψ?e = ψe. Again, we consider two settings: ψ?e > ψ?1 and ψ?e < ψ?1 (notice that
ψ?1 6= ψ?e by Assumption 4”):
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ψ?e > ψ?1: The relation (47) implies that:

(Id−B?)−1
(

Ω?
e − ψ?eΩ?

1 − (ψ?e − ψe)(Γ?Γ?T + Ω?
1)
)

(Id−B?)−T

= (Id−B)−1 (Ωe − ψeΩ1) (Id−B)−T .
(52)

Letting σmin(·) be the minimum singular value of an input matrix, we have by Assumption
6 that:

σmin(Ω?
e − ψ?eΩ?

1) ≥ min{|1− ψ?e |σmin(Ω?
1), (1 + ψ?e)σmin(Ω?

1)} ≥ |1− ψ?e |σmin(Ω?
1). (53)

By Assumption 4”, we have that: (Ω?
e − ψ?eΩ?

1 − (ψ?e − ψe)(Γ?Γ?T + Ω?
1) is non-singular.

Therefore, re-arranging (52), we have that:

(Id−B?)T
(

Ω?
e − Ω?

1ψe − (ψ?e − ψe)Γ?Γ?T
)−1

(Id−B?) = (Id−B)T (Ωe − ψeΩ1)−1 (Id−B).

(54)
Let κ := (ψ?e − ψe). By the constraint on how close ψe is to ψ?e in (44), we have that
|κ| ≤ 2Cψ/ψ

?
e − 1. Appealing to Lemma 20, we have that κ = 0 or equivalently ψ?e = ψe.

ψ?e < ψ?1: The relation (47) implies that:

(Id−B?)−1
(

Ω?
e/ψ

?
e − Ω?

1 + (1/ψ?e − 1/ψe)(Γ
?Γ?T − Ω?

e)
)

(Id−B?)−T

= (Id−B)−1 (Ω1 − 1/ψeΩe) (Id−B)−T .
(55)

We have by Assumption 6 that:

σmin(1/ψ?eΩ
?
e − Ω?

1) ≥ min{|1/ψ?e − 1|σmin(Ω?
1), (1/ψ?e + 1)σmin(Ω?

1)} ≥ |1/ψ?e − 1|σmin(Ω?
1)

(56)
By Assumption 4”, we have that that the matrix

(
Ω?
e/ψ

?
e − Ω?

1 + (1/ψ?e − 1/ψe)(Γ
?Γ?T − Ω?

e)
)

is non-singular and ψe 6= 0. Rearranging the left-hand side of (50), we have that:

(Id−B?)−1
(

Ω?
e − Ω?

1ψe − ψe(1/ψ?e − 1/ψe)Γ
?Γ?T

)
(Id−B?)−T

= ψe(Id−B)−1 (Ωe/ψe − Ω1) (Id−B)−T .
(57)

Let κ := (1/ψ?e − 1/ψe)/(1/ψe). By the constraint on how close ψe is to ψ?e in (44), we have
that |κ| ≤ 2Cψ/(1/ψ

?
e − 1). Appealing to Lemma 20, we have that κ = 0 or equivalently

ψ?e = ψe.

J.1 Assumptions 1’ is weaker than an incoherence-type condition on the
latent effects

We first show that Assumption 1’ is generally satisfied even when the number of latent
variables is large, whereas the incoherence-type assumption requires that the number of
latent variables is far smaller than the ambient dimension. Specifically, using the Woodbury
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inversion lemma, consider the following decomposition of (Id − B?)T (Ω?
e − Ω?

1(ψ?e + δ) +
κΓ?Γ?T )−1(Id−B?) (which appears in Assumption 1’ ) when κ 6= 0

(Id−B?)T (Ω?
e − Ω?

1(ψ?e + δ) + κΓ?Γ?T )−1(Id−B?) = Se − Le,

where
Se = (Id−B?)T (Ω?

e − Ω?
1(ψ?e + δ))−1(Id−B?),

Le = (Id−B?)T (Ω?
e − Ω?

1(ψ?e + δ))−1Γ?(κId + Γ?T

(Ω?
e − Ω?

1(ψ?e + δ))−1Γ?)−1Γ?T (Ω?
e − Ω?

1(ψ?e + δ))−1(Id−B?).

Assumption 1’ imposes a lower-bound on the degree of the matrix sum Se − Le, which
we show is not very stringent and holds even when the number of latent variables is large.
Specifically, notice that degree(Se) ≤ degree[moral(D?)]. Furthermore, generally, even when
the number of latent variables is large, degree(Le) is large relative to the ambient dimen-
sion. Due to the basic inequality degree(Se + Le) ≥ degree(Le) − degree(Se), it is then
straightforward to see that the condition in Assumption 1’ is generally satisfied.

Furthermore, even in settings where the number of latent variables is far smaller than
the ambient dimension, Assumption 1’ can be far weaker than the incoherence condition
in Assumption 1’. For illustration, we consider a simple setting when the number of la-
tent variables is equal to one and show that an incoherence-type condition implies the
condition degree(Se + Le) ≥ 3degree[moral(D?)] in Assumption 1’. Specifically, some lin-
ear algebraic manipulations yield that for any rank-1 symmetric matrix M , degree[M ] ≥
1/inc[col-space(M)]2. Employing this inequality in conjunction with the bound degree(Se+
Le) ≥ degree(Le)− degree(Se), we find that

degree(Se + Le) ≥ 1/inc[col-space(Le)]
2 − degree[moral(D?)]

= degree[moral(D?)](1/(inc[col-space(Le)]
2degree[moral(D?)])− 1).

The above inequality suggests than the incoherence-type condition inc[col-space(Le)]
2degree

[moral(D?)] < 4 would imply the condition in Assumption 1’ .

Appendix K. Illustration with unperturbed latent variables

We consider the following illustration to show that if no constraints are imposed on the
number of latent variables, the equivalence class of optimally scoring DAGs when |I?| < p
could be very different than I?-MEC(D?). In this section, we will construct a simple example
where the equivalence class of optimally scoring DAGs is the empty graph, even when the
population graph has multiple edges. Specifically, consider the following structural equation
model (specialization of (2)) among DAG of three nodes and a single normally distributed
latent variable for all environments e ∈ E :

Xe
1 = c1H + ε1,

Xe
2 = c2H + ε2,

Xe
3 = c3H + αXe

1 + ε3 + δe.

(58)
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Here, ε1, ε2, ε3 ∼ N (0, 1) and δe is identically zero for environment e = 1 (observational)
and δe ∼ N (0, we) for e > 1. Note that by construction, I? = {3}. The SCM (58) is then
parameterized by the following quantities:

B? =

1 0 0
β 1 0
α 0 1

 ; Ω?
1 = Id ; Ω?

e = Ω?
1 + diag

(
0 0 we

)
for e > 1

Γ? =
(
c1 c2 c3

)T
.

(59)

We then have the following theorem statement:

Proposition 22 (Equivalence class with unperturbed latent variables) Consider
the SCM (58). In population, for any γ > 0, Dγregul.opt is the empty graph.

Proof We will construct Γ,Ωe such that together with the connectivity matrix associated
to an empty DAG, they entail the same covariance model as the population. Specifically,
consider the following set of parameters:

B = 0 ; Ω1 = λmin(Σ?
e)/2Id ; Ωe = Ω1 + diag

(
0 0 we

)
for e > 1 ;

Γ = matrix square root of Σ?
e − λmin(Σ?

e)/2Id,
(60)

where Σ?
e is the population covariance. Thus, the intervention set encoded by the model

(60) is I = {3}. It is straightforward to see that the parameters (B,Γ,Ωe) entail the same
covariance as the population model, that is:

(Id−B)−1(Ωe + ΓΓT )(Id−B)−T = Σ?
e for all e ∈ E .

Note that the graph encoded by B is the empty graph. Furthermore, note that any model
that yields the same covariance as the population must contain at least a single intervention
target since Σ?

e − Σ?
1 has rank-1. We have concluded the result.

Appendix L. Consistency guarantees of Algorithm 1 and Algorithm 2

Throughout, we assume that for a given DAG D, number of latent variables h̄ and interven-
tion targets I, Algorithm 0 obtains the global optimum solution. As required in Corollary 7,
we will assume that the input number of latent variables h̄ is greater than the true number
of latent variables, i.e. h̄ ≥ dim(H).

L.1 Consistency guarantees of Algorithm 1

We will denote the output Θ̂(D̂opt, h̄) of Algorithm 1 by (D̂opt, B̂opt, Γ̂opt, {Ω̂opt,e, Ψ̂opt,e}me=1).
We also take λ→ 0 with the rate given in Proposition 12, and assume that the parameters
are in a compact space F for technical reasons; see Section C. We will prove the following
formal statement, where recall that d? := degree[moral(D?)].
Theorem 23 Consider a set of candidate DAGs Dcand and suppose ∃D ∈ Dcand with the
following two properties:
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1. there are parameters (B,Γ, {Ψe,Ωe}me=1) with B ∼ D and Σ?
e = (Id − B)−1(Ωe +

ΓΨeΓ
T )−1(Id−B)−T for every e ∈ [m].

2. degree[moral(D)] + ‖D‖`0 ≤ degree[moral(D?)] + ‖D?‖`0
Suppose that Assumptions 1-2 and 4-5 are satisfied. Let d? ≥ γ > 0. Let ν? be a positive
integer with ν? ≥ d?. Suppose that 48ν?inc[col-space((Id − B̂opt)

T Ω̂−1
opt,eΓ̂opt)] < 1 for all

e ∈ [m]. Then, Îopt = I? and Îopt-MEC(D̂opt) = I?-MEC(D?) with probability tending to
one.

We immediately have the following corollary noting that DAGs in the same Markov equiv-
alence class have the same moral graph and the same number of edges.

Corollary 24 Suppose that Dcand∩I?-MEC(D?) 6= ∅. Then, Îopt = I? and Îopt-MEC(D̂opt) =
I?-MEC(D?) with probability tending to one.

Proof [Proof of Theorem 23] The proof will rely on the following fact about the can-
didate set of DAGs Dcand: there exists a DAG D ∈ Dcand and associated parameters
(B,Γ, {Ωe,Ψe}me=1) with B ∼ D that is compatible with the data distribution, i.e. Σ?

e =
(Id−B)−1(Ωe + ΓΨeΓ

T )−1(Id−B)−T for every e ∈ [m]. Indeed, By the assumption of the
theorem, we have that Dcand contains at least one of the DAGs in I?-MEC(D?). We will
denote this DAG by D̃?. By Theorem 2, we have that there exists a model associated with
the DAG D̃? that is compatible with the data distributions.

We will analyze different components of Algorithm 1.

Steps 2-3 of Algorithm 1: As described in these steps in the main text, we take I = [p].
Step 2 of Algorithm 1 scores different DAGs in the candidate set, with the score:

Sλ,γ(D, h̄, I) := min
(B,Γ,{Ωe,Ψe}me=1)∈F

m∑
e=1

π̂e

(
log det(Ωe + ΓΨeΓ

T )

+ tr((Id−B)T (Ωe + ΓΨeΓ
T )−1(Id−B)Σ̂e)

)
+ λRγ(D, I).

subject-to: B ∼ D, I({Ωe}me=1) ⊆ I

Notice the score Sλ,γ(D, h̄, I) is the same as the score scoreλ,γ(D, Θ̂(D, h̄)) in (4). We
define the population analogue of the score Sλ,γ(D, h̄, I) below:

S?(D, h̄, I) := min
(B,Γ,{Ωe,Ψe}me=1)∈F

m∑
e=1

π?e

(
log det(Ωe + ΓΨeΓ

T )

+ tr((Id−B)T (Ωe + ΓΨeΓ
T )−1(Id−B)Σ?

e)
)
.

subject-to: B ∼ D, I({Ωe}me=1) ⊆ I

Under the rate of regularization λ described in Proposition 12, following very similar proof
strategy to that of Proposition 12, we conclude that Sλ,γ(D, h̄, I) → S?(D, h̄, I) in the
infinite data limit. As described earlier, we have that there exists a model associated with
the DAG D̃? that is compatible with the data distributions. By Lemma 13, we have that
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that the minimizers of argminD S
?(D, h̄, I) are precisely models that are compatible with

the data distributions; that is:

(B,Γ, {Ωe,Ψe}me=1) optimal ⇔ Σ?
e = (Id−B)−1(Ωe+ΓΨeΓ

T )−1(Id−B)−T for every e ∈ [m],

where optimal here means that they result in the smallest score according to S?(·, ·, ·). Since
the DAG D̃? attains optimal score, any candidate DAG that is selected in this step must
also attain this optimal score.

With the choice of λ in Proposition 12, we have that it is above fluctuations due to
sampling error; it follows that for two population score equivalent models (D1, h̄, I) and
(D2, h̄, I) with S?(D1, h̄, I) = S?(D2, h̄, I), if Rγ(D1, I) < Rγ(D2, I), then, there exists N
such that for ne ≥ N , Sλ,γ(D1, h̄, I) < Sλ,γ(D2, h̄, I). Thus, in the infinite data limit, with
probability tending to one, the output of steps 3 of Algorithm 1 is with probability tending
to one the minimizer of the following optimization problem with I = [p]

argmin
D∈Dcand,B,Γ,{Ωe,Ψe}me=1

Rγ(D, I)

subject-to : B ∼ D, I({Ωe}me=1) ⊆ I and

Σ?
e = (Id−B)−1(Ωe + ΓΨeΓ

T )−1(Id−B)−T for every e ∈ [m].
(61)

Let D̂opt be the output of Step 3 of Algorithm 2. From the analysis above, we have that in the
infinite data limit and with probability tending to one, D̂opt and its associated parameters
of minimizers of (61). Furthermore, since D̃? and its associated parameters are feasible in
(61), we can make two conclusions with probability tending to one:

1. p degree[moral(D̂opt)] + ‖D̂opt‖`0 ≤ pd? + ‖D?‖`0 ,
2. S?(D̂opt, h̄, [p]) = min

D,I
S?(D, h̄, I).

(62)

Here, the first fact is based on every member of the Markov equivalence class having the
same moral graph and the same number of edges. The second fact is based on noting that
the population score S?(·, ·, ·) is minimized by models that are compatible with the data
distribution, and for any DAG D, S?(D, h̄, I1) ≤ S?(D, h̄, I2) with I1 ⊇ I2.

Step 4 of Algorithm 1: Recall that Step 4 of Algorithm 1 takes the best scoring model
(among the candidate sets). With this best model, it greedily removes intervention targets
until the score of the resulting model does not improve any further. From the analysis
of Steps 2-3, we have with probability tending to one that the best scoring DAG D̂opt is
a minimizer of the optimization (61). As we described in property 2 of (62), this model
minimizes the population score argminD,I S

?(D, h̄, I). Furthermore, recall that for any

I, Sλ,γ(D̂opt, h̄, I) → S?(D̂opt, h̄, I). Therefore, at every step of the greedy algorithm, an
intervention target can only be removed if the resulting intervention targets I satisfies:
S?(Dopt, h̄, I) = S?(Dopt, h̄, [p]). Since the model obtained after step 3 is already opti-
mally scoring (i.e. minimizing S?(·, ·, ·) with probability tending to one), we have that
every iteration of step 4, the associated model (B,Γ, {Ωe,Ψe}me=1) satisfies the condition
Σ?
e = (Id−B)−1(Ωe + ΓΨeΓ

T )−1(Id−B)−T for every e ∈ [m], with B ∼ D̂opt.
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Putting things together: For notational ease, let (B,Γ, {Ωe,Ψe}me=1) be the output of Algo-
rithm 1. From the analysis above we have that:

(Id−B)−1(Ωe+ΓΨeΓ
T )(Id−B)−T = (Id−B?)−1(Ω?

e+Γ?Ψ?
eΓ

?T )(Id−B?)−T for all e ∈ [m].

Equivalently, taking the inverse of both sides in the previous equation, and using the Wood-
bury Inversion Lemma, we have for e = 1, 2, . . . ,m

(Id−B)TΩ−1
e (Id−B)− (Id−B)TΩ−1

e Γ(Ψ−1
e + ΓTΩ−1

e Γ)−1ΓTΩ−1
e (Id−B)

= (Id−B?)TΩ?
e
−1(Id−B?)− (Id−B?)TΩ?

e
−1Γ?(Ψ?

e
−1 + Γ?TΩ?

e
−1Γ?)−1Γ?TΩ?

e
−1(Id−B?).

Define for every e = 1, 2, . . . ,m the following quantities:

Ke := (Id−B)TΩ−1
e (Id−B),

K?
e = (Id−B?)TΩ?

e
−1(Id−B?),

Le := (Id−B)TΩ−1
e Γ(Ψ−1

e + ΓT Ω̂−1
e Γ)−1ΓTΩ−1

e (Id−B),

L?e := (Id−B?)TΩ?
e
−1Γ?(Ψ?

e
−1 + Γ?TΩ?

e
−1Γ?)−1Γ?TΩ?

e
−1(Id−B?).

Note that from Lemma 15, we have the following implication for any e ∈ [m]

degree(Ke −K?
e )inc[col-space(Le − L?e)]2 < 1⇒ Ke = K?

e . (63)

In this analysis, we show that under the conditions described in Theorem 23, degree(Ke −
K?
e )inc[col-space(Le − L?e)]

2 < 1, allowing us to conclude that Ke = K?
e . Notice that

degree(Ke−K?
e ) ≤ degree[moral(D)]+d?. Further, by Lemma 16, inc[col-space(Le−L?e)] ≤

2(inc[col-space(Le)] + inc[col-space(L?e)]). Thus, it suffices to show for all e ∈ [m] that:

4(degree[moral(D)] + d?)(inc[col-space(Le)]
2 + inc[col-space(L?e)]

2) < 1. (64)

From the property 1 in (62), we have that degree[moral(D)] ≤ 2d?. Therefore, the following
conditions are satisfied for every e ∈ [m] due to Assumption 1, the conditions of Corollary 7,
and the bound d? ≤ ν?:

degree[moral(D)]inc[col-space(Le)]
2 ≤ 3ν?inc[col-space(Le)]

2 < 1/16,

degree[moral(D)]inc[col-space(L?e)]
2 ≤ 3ν?inc[col-space(L?e)] < 1/16,

d?inc[col-space(Le)]
2 ≤ ν?inc[col-space(Le)]

2 < 1/16,

d?inc[col-space(L?e)]
2 < 1/16.

Combining these relations, we arrive at the inequality in (64). We have thus concluded

(Id−B)(Id−B?)−1Ω?
e(Id−B?)1(Id−B)T = Ωe e = 1, 2, . . . ,m,

Following the same steps as proof of Theorem 6, we conclude that I({Ωe}me=1) = I? and
D̂opt ∈ I?-MEC(D?). Finally, it remains to check that the output of the intervention targets
Îopt is equal to I?. Since, Îopt ⊇ I({Ωe}me=1), we clearly have that Îopt ⊇ I?. Suppose that
there exists a j ∈ Îopt\I?. Notice that S?(D̂opt, h̄, Îopt\{j}) = argminD,I S

?(D, h̄, I). With
the choice of λ in Proposition 12, we have that it is above fluctuations due to sampling error;
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this, if follows that for two population score equivalent models (D̂opt, h̄, I1) and (D̂opt, h̄, I2)
with S?(D̂opt, h̄, I1) = S?(D̂opt, h̄, I2), if Rγ(D̂opt, I1) < Rγ(D̂opt, I2), then, there exists N
such that for ne ≥ N , Sλ,γ(D̂opt, h̄, I1) < Sλ,γ(D̂opt, h̄, I2). Letting I1 = Îopt\{j}, I2 = Îopt,
we can conclude that the target j could have been removed to improve the score. Repeating
this argument, we can conclude that Îopt = I?.

L.2 Consistency guarantees of Algorithm 2

We will denote the output Θ̂(D̂opt, h̄) of Algorithm 2 by (D̂opt, B̂opt, Γ̂opt, {Ω̂opt,e, Ψ̂opt,e}me=1).
We also take λ→ 0 with the rate given in Proposition 12, and assume that the parameters
are in a compact space F for technical reasons; see Section C. We will prove the following
formal statement, where recall that d? := degree[moral(D?)].

Theorem 25 Consider a set of candidate DAGs D̃cand and suppose ∃D̄ ∈ D̃cand, D̄? ∈
I?-MEC(D?) such that D̄ ⊇ D̄?. Suppose that Assumptions 1-2 and 4-5 are satisfied. Let
d? ≥ γ > 0. Let ν? be a positive integer with ν? ≥ d?. Suppose that 48ν?inc[col-space((Id−
B̂opt)

T Ω̂−1
opt,eΓ̂opt)] < 1 for all e ∈ [m]. Then, Îopt = I? and Îopt-MEC(D̂opt) = I?-MEC(D?)

with probability tending to one.

Proof Recall that Algorithm 2 starts with a candidate set of ‘starting point’ DAGs D̃cand

and greedily deletes spurious edges in each DAG to obtain a modified set of candidate DAGs
Dcand. Our proof proceeds by showing that with probability tending to 1, the candidate set
of DAGs Dcand contains a DAG D with associated parameters (B,Γ, {Ψe,Ωe}me=1) such that
i) Σ?

e = (Id−B)−1(Ωe + ΓΨeΓ
T )−1(Id−B)−T for every e ∈ [m], and ii) degree[moral(D)] +

‖D‖`0 ≤ degree[moral(D?)] +‖D?‖`0 . Then, we appeal to Theorem 23 to obtain the desired
result.

Step 2a of Algorithm 2: Recall the scores Sλ,γ(D, h̄, I) and its population analogue S?(D, h̄, I)
defined in the proof of Theorem 23. Step 2a computes the score Sλ,γ(D, h̄, I). Under the
rate of regularization λ described in Proposition 12, following very similar proof strategy
to that of Proposition 12, we can conclude that Sλ,γ(D, h̄, I) → S?(D, h̄, I) in the infi-
nite data limit for every D, I, h̄. Let D̄ ∈ D̃cand be a DAG in the original candidate set
that is a supergraph of a DAG in I?-MEC(D?). By Theorem 2, we have that there exists
a model associated with the DAG D̄ that is compatible with the data distributions. By
Lemma 13, we have that that the minimizers of argminD S

?(D, h̄, I) are precisely models
that are compatible with the data distributions; that is:

(B,Γ, {Ωe,Ψe}me=1) optimal ⇔ Σ?
e = (Id−B)−1(Ωe+ΓΨeΓ

T )−1(Id−B)−T for every e ∈ [m],

where optimal here means that they result in the smallest score according to S?(·, ·, ·).

Step 2b of Algorithm 2: Since the DAG D̄ attains optimal score, any removal of the edges

that is selected in this step must also attain this optimal score. Let D̂ be the DAG after
removing spurious edges. Then, the associated model is also compatible with the data
distribution.
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Suppose that D̂ is a strict supergraph of D̄? (see theorem statement for definition). We
will show that the score of D̂ will be larger than that of D̄?, so we conclude that the output
of Step 2 must be a DAG D̂ that is a subgraph of D̄? and thus p degree[moral(D̂)]+‖D̂‖`0 <
p degree[moral(D̄)] + ‖D̄‖`0 .

To show the above statement, let (i, j) be a pair of edges that are connected in D̂
but are not connected in D̄?. Since the DAG D̂ \ (i → j) that is obtained by remov-
ing the edge between the pair (i, j) from D̂ is still a supergraph of D̄?, we have that
S?(D̂ \ (i → j), h̄, [p]) = argminD,I S

?(D, h̄, I). With the choice of λ in Proposition 12, we
have that it is above fluctuations due to sampling error; it follows that for two popula-
tion score equivalent models (D1h̄, [p]) and (D2, h̄, [p]) with S?(D1, h̄, [p]) = S?(D2, h̄, [p]),
if Rγ(D1, [p]) < Rγ(D2, [p]), then, there exists N such that for ne ≥ N , Sλ,γ(D1, h̄, [p]) <
Sλ,γ(D2, h̄, [p]). Furthermore for DAGs D1,D2 with D1 strict subgraph of D2, we have

that p degree[moral(D1)] + ‖D1‖`0 < p degree[moral(D2)] + ‖D2‖`0 . Letting D2 = D̂ and
D1 = D̂ \ (i → j), we can conclude that the edge between the pair (i, j) could have been
removed to improve the score. Repeating this argument, we can conclude the desired result.

Appendix M. Selecting a cross-validated causal model

The regularization parameters (λ, γ) and the number of latent variables h̄ in Algorithm 1
and Algorithm 2 are generally unknown. Here, we will propose an efficient cross-validation
approach to select a causal model (and the associated interventional equivalence class). Our
approach is based on the following reparameterization of the regularization parameters:
λB := λ, λI := λγ, so that we must select h̄, λB, λI . This particular reparameterization
and the nature of the procedures in Algorithm 1 and Algorithm 2 lead to the following
important simplifications: for a given h̄, we can first do a 1-dimensional grid search for λB
to choose a DAG and another 1-dimensional grid search for λI to choose an intervention
set. Furthermore, building on the previous simplification, the regularization parameter
λB selects a DAG D from a finite set of available DAGs Dset; these are all the candidate
DAGs and all the pruned DAGs (according to the greedy backward deletion). Similarly, the
regularization parameter λI selects intervention targets from a finite collection of available
sets Iset; these are the collection of intervention targets according to the greedy backward
deletion. Thus, choosing an optimal λB, λI based on validation is equivalent to choosing an
optimal DAG and optimal intervention targets from the sets Dset and Iset.

With the observations above, we can propose an efficient cross-validation approach to
select a causal model for both Algorithms 1 and 2. For simplicity, we assume that the data
is split into a training set and two test sets. The first test data will be used to determine
the number of latent variables and the DAG (among the candidate set), and the second test
data will be used to select the intervention set I. The training data is parameterized by
the covariance matrices Σ̂train

e and mixture values π̂train
e for every e = 1, 2, . . . ,m; similarly,

the test data is parameterized by Σ̂test1
e , Σ̂test2

e and mixture values π̂test1
e ,π̂test2

e . We measure
the likelihood of a given causal model Θ̂ = (B̂, Γ̂, {Ωe,Ψe}me=1) on the first split of the test

59



Taeb, Gamella, Heinze-Deml, Bühlmann

is:

score-test(Θ̂) :=

m∑
e=1

π̂test1
e `(B̂, Γ̂, Ω̂e, Ψ̂e; Σ̂test1

e ).

A similar measure can be defined to quantify the likelihood on the second split of the test
data.

We are now ready to state a cross-validated version of Algorithm 1, which is presented
below.

Algorithm 3 Equivalence class of best scoring DAGs from a candidate set via cross-
validated UT-LVCE

1: Input: candidate DAG(s) Dcand; training dataset and and two test datasets; max # of
latent vars. hmax; initial intervention set I = [p]

2: Causal parameters for each DAG and # latent vars.: for each D ∈ Dcand and
h̄ ≤ h̄max, supply training data as well as D, h̄, and I to Algorithm 0 to obtain the
causal parameters Θ̂I(D, h̄)

3: Find an optimal DAG and # latent variables using test data: use the first
test dataset to obtain the best DAG and number of latent variables (D̂opt, h̄opt) =
arg minD∈Dcandh̄≤h̄max

score-test(Θ̂I(D, h̄))

4: Updating intervention targets I using test data: initialize Iset = {I} and
(a) let {Ω̂e}me=1 be noise variance encoded in Θ̂(D̂opt, h̄opt)
(b) estimate intervention strengths via ξj := 1

m

∑m
e=1([Ω̂e]j,j − 1

m

∑m
e=1[Ω̂e]j,j)

2 for
each j ∈ [p]

(c) remove the variable with weakest estimated intervention: I ← I \{arg minj∈Î ξj};
add {I} to Iset and use Algorithm 0 to obtain the causal parameters Θ̂I(D̂opt, h̄opt)

(d) obtain optimal intervention set: Iopt = arg minI∈Iset score-test(Θ̂I(D̂opt, h̄opt))

5: Output: equivalence class Îopt-MEC(D̂opt)

Here, we start with a candidate set of DAGs and a starting intervention set that is taken
to be the full set of targets [p]. Step 2 of the algorithm scores all DAGs in the candidate set
with the number of latent variables varied between 0, 1, . . . , hmax. Step 3 of the algorithm
then computes the likelihood of each of these causal models on test data and chooses the
best DAG and number of latent variables. For this selected DAG and the number of latent
variables, Step 4 of the algorithm uses the second test set to choose the intervention targets.
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Algorithm 4 Improving ”starting point” DAGs via cross-validated UT-LVCE

1: Input: candidate DAG(s) D̃cand; training dataset; max # of latent vars. hmax; initial
intervention set I = [p]

2: Backward deletion to remove spurious edges: initialize Dcand = D̃cand; for each
D ∈ D̃cand and h̄ ≤ h̄max:

(a) supply data and Î = [p] to Algorithm 0 to obtain Θ̂I(D, h̄)
(b) let D be the DAG after deleting smallest edge in magnitude in D; add D to Dcand

(c) repeat (a-b) until DAG D is empty

3: Output: supply Dcand to Algorithm 3 to obtain an equivalence class Îopt-MEC(D̂opt)

Here, as with Algorithm 3, we start with a candidate set of DAGs and a starting inter-
vention set that is taken to be the full set of targets [p]. For every DAG in the candidate
set and the number of latent variables varied between 0, 1, . . . , hmax, step 2 scores the DAG
and removes the weakest edge greedily until the DAG is empty. Each DAG along the path
is included in the candidate set Dcand. We then feed the candidate set Dcand to Algorithm 3
to obtain an output equivalence class.

Appendix N. Additional synthetic experiments

N.1 Robustness to the strength of interventions on observed and latent
variables

We explore the robustness of UT-LVCE as a structural learning algorithm to different
strengths of interventions on the observed variables and latent variables. In particular, we
consider the setting described at the beginning of Section 5.1 and different configurations
for the strengths of interventions on observed and latent variables:

Soft interventions on the observed variables: variance of δei in the interval [3, 6] for all i ∈ I?,
Strong interventions on the observed variables: variance of δei in the interval [6, 12] for all i ∈ I?,
Soft interventions on the latent variables: ξei chosen uniformly and independently from [0.1, 1],

Strong interventions on the latent variables: ξei chosen uniformly and independently from [1, 5].
(65)

Figure 9 shows the performance of UT-LVCE using GES starting points as well as LRpS
(Frot et al., 2019) for four settings: i) soft interventions on the observed and latent vari-
ables, i) soft interventions on the observed variables and hard interventions on the latent
variables, iii) hard interventions on the observed variables and soft interventions on the
latent variables, and iv) hard interventions on both the observed and the latent variables.
In all settings, |I?| = 10. We notice that the performance of UT-LVCE is robust across all
the settings.

N.2 Effect of graph density and number of latent variables on performance

We explore the effect that different generating-graph densities and the number of latent
variables have on the performance of UT-LVCE and the other methods. In particular, we
consider the setting from the leftmost panel in Figure 6, and vary the edge probability of
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avg. FDP
0

0.2

0.4

0.6

0.8

1

av
g.

TD
P

Soft interventions on latents

0 0.25 0.5 0.75 1
avg. FDP

0

0.2

0.4

0.6

0.8

1

av
g.

TD
P

avg. FDP

S
oftinterventions

on
observed

variables
S

trong
interventions

on
observed

variables

Strong interventions on latents

0 0.25 0.5 0.75 1
avg. FDP

LRPS+GES
GES+UT-LVCE
n = 100
n = 500
n = 1000

Figure 9: Performance of UT-LVCE as a structural learning procedure with GES initializa-
tion for different strengths of interventions on the observed and latent variables
as outlined in (65).

the data generating graph (0.10, 0.13, 0.16) and the number of hidden variables (2, 3, 4, 10).
Figure 10 shows the performance of UT-LVCE using GES starting points as well as LRpS
(Frot et al., 2019) and Backshift (Rothenhäusler et al., 2016), for each combination of edge
probability and number of latents. The performance of both methods slowly deteriorates
as the number of hidden variables increases.

N.3 Goodness of GES input DAGs and performance of UT-LVCE

We explore how the performance of UT-LVCE is affected by the quality of the input GES
DAGs. To that end, we consider the synthetic setting in Section 5.1.2 for both |I?| ∈
{10, 20}. Among the 50 randomly generated DAGs and 5 runs, we bin the GES input
solution into two categories: a category where there exists a DAG in the GES equivalence
class that is a supergraph of a member of I?-MEC(D?), and another category where no
DAG in the GES equivalence class is a supergraph of a member of I?-MEC(D?). Figure 11
shows the performance of UT-LVCE for these two categories. We observe that there is a
substantial improvement in the performance of UT-LVCE if the GES initialization contains
a DAG that is a supergraph of a member of I?-MEC(D?). Interestingly, we also observe
that as the number of interventions increases, GES input DAGs are more likely to meet the
aforementioned criteria.

N.4 Violations of Causal Dantzig and comparisons to UT-LVCE

We next explore the performance of Causal Dantzig (Rothenhäusler et al., 2019) under
latent interventions of different strengths. Specifically, we consider soft interventions on
the observed variables and both soft and harder interventions on the latent variables (see
(65)). Further, we consider the size of interventions to be |I?| ∈ {19, 20}. Figure 12
shows the performance of Causal Dantzig and UT-LVCE with GES initialization. Here, the

62



Learning and scoring latent variable causal models

0

0.2

0.4

0.6

0.8

1

av
g.

T
D

P
n. latents = 2 n. latents = 3 n. latents = 4

edge
prob.

=
0.10

n. latents = 10

0

0.2

0.4

0.6

0.8

1

av
g.

T
D

P
edge

prob.
=

0.13

0 0.25 0.5 0.75 1

avg. FDP

0

0.2

0.4

0.6

0.8

1

av
g.

T
D

P

0 0.25 0.5 0.75 1

avg. FDP

0 0.25 0.5 0.75 1

avg. FDP

LRPS+GES

backShift

GES+UT-LVCE

n = 100

n = 500

n = 1000

0 0.25 0.5 0.75 1

avg. FDP

edge
prob.

=
0.16

Figure 10: Performance of UT-LVCE as a structural learning procedure with GES initial-
ization for different numbers of latent variables and edge probabilities in the
data-generating graph.
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performance is with respect to accurate recovery of the parental sets, and the average FDP
and TDP are taken over 50 DAGs and 5 runs per DAG. We observe that when there is
an intervention on the target variable or when there are strong interventions on the latent
variables, Causal Dantzig performs poorly as compared to UT-LVCE . This is consistent with
the fact that the assumptions for consistency with Causal Dantzig require interventions on
all observed variables except the target variable as well as no interventions on the latent
variables.
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Figure 12: Performance of Causal Dantzig and UT-LVCE for different intervention
strengths on the latent variables and for |I?| ∈ {19, 20}.
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Appendix O. DAGs for the protein expressions dataset
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