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Abstract

The Neyman-Pearson (NP) binary classification paradigm constrains the more severe type
of error (e.g., the type I error) under a preferred level while minimizing the other (e.g.,
the type II error). This paradigm is suitable for applications such as severe disease diag-
nosis, fraud detection, among others. A series of NP classifiers have been developed to
guarantee the type I error control with high probability. However, these existing classifiers
involve a sample splitting step: a mixture of class 0 and class 1 observations to construct
a scoring function and some left-out class 0 observations to construct a threshold. This
splitting enables classifier threshold construction built upon independence, but it amounts
to insufficient use of data for training and a potentially higher type II error. Leveraging
a canonical linear discriminant analysis (LDA) model, we derive a quantitative CLT for a
certain functional of quadratic forms of the inverse of sample and population covariance
matrices, and based on this result, develop for the first time NP classifiers without split-
ting the training sample. Numerical experiments have confirmed the advantages of our new
non-splitting parametric strategy.
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1. Introduction

Classification aims to accurately assign class labels (e.g., fraud vs. non-fraud) to new obser-
vations (e.g., new credit card transactions) on the basis of labeled observations (e.g., labeled
transactions). The prediction is usually not perfect. In transaction fraud detection, two
errors might arise: (1) mislabeling a fraudulent transaction as non-fraudulent and (2) mis-
labeling a non-fraudulent transaction as fraudulent. The consequences of the two errors are
different: while declining a legitimate transaction may cause temporary inconvenience for a
consumer, approving a fraudulent transaction can result in a substantial financial loss for a
credit card company. In severe disease diagnosis (e.g., cancer vs. normal), the asymmetry
of the two errors’ importance is even greater: while misidentifying a healthy person as ill
may cause anxiety and create additional medical expenses, telling cancer patients that they
are healthy may cost their lives. In these applications and beyond, it is critical to prioritize
the control of the more important error (Reeve et al., 2023; Müller et al., 2023).

Most theoretical work on binary classification concerns risk. Risk is a weighted sum of
type I error (i.e., the conditional probability that the predicted label is 1 given that the
true label is 0) and type II error (i.e., the conditional probability that the predicted label
is 0 given that the true label is 1), where the weights are marginal probabilities of the two
class labels. In the context of transaction fraud detection, coding the fraud class as 0, we
would like to control type I error under some small level. The common classical paradigm,
which minimizes the risk, does not guarantee delivery of classifiers that have type I error
bounded by the preferred level. To address this concern, we can employ a general statistical
framework for controlling asymmetric errors in binary classification: the Neyman-Pearson
(NP) classification paradigm, which seeks a classifier that minimizes type II error subject
to type I error ≤ α, where α is a user-specified level, usually a small value (e.g., 5% ). The
NP framework can achieve the best type II error given a high priority on the type I error.

The NP approach is fundamental in hypothesis testing (justified by the NP lemma),
but its use in classification did not occur until the 21st century (Cannon et al., 2002;
Scott and Nowak, 2005; Scott, 2007). In the past ten years, there has been significant
progress in the theoretical/methodological investigation of NP classification. An incomplete
overview includes (i) a theoretical evaluation criterion for NP classifiers: the NP oracle
inequalities (Rigollet and Tong, 2011), (ii) classifiers satisfying this criterion under different
settings (Tong, 2013; Zhao et al., 2016; Tong et al., 2020), and (iii) practical algorithms
for constructing NP classifiers (Tong et al., 2018, 2020), (iv) generalizations to domain
adaptation (Scott, 2019) and to multi-class (Tian and Feng, 2021), and (v) theoretical
results on minimax rates (Kalan and Kpotufe, 2024).

Unlike the oracle classifier under the classical paradigm, which thresholds the regression
function at precisely 1/2, the threshold of the NP oracle is α-dependent and needs to be
estimated when we construct sample-based classifiers. Threshold determination is the key
in NP classification algorithms, because it is subtle to ensure a high probability control on
the type I error under α while achieving satisfactory type II error performance.

For existing NP classification algorithms (Tong, 2013; Zhao et al., 2016; Tong et al.,
2018, 2020), a sample splitting step is common practice: a mixture of class 0 and class 1
observations to construct a scoring function ŝ(·) (e.g., fitted sigmoid function in logistic re-
gression) and some left-out class 0 observations {x0

1, · · · , x0
m} to construct a threshold. Then

under proper sampling assumptions, conditioning on ŝ(·), the set {s1 := ŝ(x0
1), · · · , sm :=
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ŝ(x0
m)} consists of independent elements. This independence is important in the subse-

quent threshold determination and classifier construction. Let us take the NP umbrella
algorithm introduced in Tong et al. (2018) as an example: it constructs an NP classifier
ϕ̂α(·) = 1I(ŝ(·) > s(k∗)), where 1I(·) is the indicator function, s(k∗) is the k∗th order statistic

in {s1, · · · , sm} and k∗ = min
{
k ∈ {1, · · · ,m} :

∑m
j=k

(
m
j

)
(1− α)jαm−j ≤ δ

}
. The small-

est order was chosen to have the best type II error. The type I error violation rate has
been shown to satisfy IP(R0(ϕ̂α) > α) ≤

∑m
i=k∗

(
m
j

)
(1 − α)jαm−j , where R0 denotes the

(population-level) type I error. Hence with probability at least 1− δ, we have R0(ϕ̂α) ≤ α.
Without the independence of {s1, · · · , sm}, the upper bound on the violation rate does not
hold. Therefore, if we used up all class 0 observations in constructing ŝ(·), this umbrella
algorithm fails. The NP umbrella algorithm tends to be conservative in controlling the
type I error and thus may lead to an undesirably large type II error. In other NP works
(Tong, 2013; Zhao et al., 2016; Tong et al., 2020), the independence is necessary in threshold
determination when applying Vapnik-Chervonenkis inequality, Dvoretzky-Kiefer-Wolfowitz
inequality, or constructing classic t-statistics, respectively.

In general, setting aside part of class 0 sample lowers the quality of the scoring function
ŝ(·), and therefore makes the type II error deteriorate. This becomes a serious concern
when the class 0 sample size is small. A more data-efficient alternative is to use all data to
construct the scoring function, but this would lose the critical independence property when
constructing the threshold. Innovating a non-splitting strategy has long been on the “wish
list.” This is an important but challenging task. For example, the NP umbrella algorithm,
which has no assumption on data distribution and adapts all scoring-type classification
methods (e.g., logistic regression, neural nets) to the NP paradigm universally via the non-
parametric order statistics approach, has little potential to be extended to the non-splitting
scenario, simply because there is no way to characterize the general dependence. To address
it, we need to start from tractable distributional assumptions.

Among the commonly used models for classification is the linear discriminant analysis
(LDA) model (Hastie et al., 2009; James et al., 2014; Fan et al., 2020), which assumes
that the two class-conditional feature distributions are Gaussian with different means but a
common covariance matrix: N (µ0,Σ) and N (µ1,Σ). Classifiers based on the LDA model
have been popular in the literature (Shao et al., 2011; Fan et al., 2012; Witten and Tib-
shirani, 2012; Mai et al., 2012; Hao et al., 2015; Pan et al., 2016; Wang and Jiang, 2018;
Cai and Zhang, 2019; Li and Lei, 2018; Sifaou et al., 2020). Hence, it is natural to start
our inquiry with the LDA model. However, even this canonical model demands novel in-
termediate technical results that were not available in the literature. For example, we will
need delicate expansion results of quadratic forms of the inverse of sample and population
covariance matrices, which we establish for the first time in this manuscript.

As the first effort to investigate a non-splitting strategy under the NP paradigm, this
work addresses basic settings. We only work in the regime that p/n → [0, 1), where p is
the feature dimensionality and n is the sample size. We take minimum assumptions on Σ
and µd := µ1 − µ0: µ>d Σ−1µd is bounded from below. We do not have specific structural
assumptions on Σ or µd such as sparsity. With these minimal assumptions, we propose
our new classifier eLDA (where e stands for data efficiency) based on a quantitative CLT
for a certain functional of quadratic forms of the inverse of sample and population covari-
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ance matrices and show that eLDA respects the type I error control with high probability.
Moreover, if p/n → 0, the excess type II error of eLDA, that is the difference between the
type II error of eLDA and that of the NP oracle, diminishes as the sample size increases;
if p/n → r0 ∈ (0, 1), the excess type II error of eLDA diminishes if and only if µ>d Σ−1µd
diverges. We note in particular that this work is the first one to establish lower bound
results on excess type II error under the NP paradigm.

Table 1: eLDA vs. pNP-LDA vs. NP-sLDA

eLDA pNP-LDA NP-sLDA

type I error .0314 .0037 .0215
type II error .4478 .7638 .6102

In addition to enjoying good
theoretical properties, eLDA has
numerical advantages. Here we
take a toy example: Σ = I, µd =
(1.2, 1.2, 1.2)> and µ0 = (0, 0, 0)>.
The sample sizes n0 and n1 for
classes 0 and 1 respectively are both 50. We set the type I error upper bound α = 0.05
and the type I error violation rate target δ = 0.1. In this situation, if we were to use the
NP umbrella algorithm, we would have to reserve at least 45 (i.e., dlog δ/ log(1− α)e) class
0 observations for threshold determination, and thus at most 5 class 0 observations can be
used for scoring function training. With the default setting of a 50-50 split of n0 in the
umbrella algorithm, only 25 observations would be reserved for estimating the threshold,
rendering the NP umbrella algorithm not applicable. Even if we skew the split ratio and al-
locate 90% of n0 to construct the threshold, the performance of the NP umbrella algorithm
would not be desirable. Concretely, we present the results in Table 1, which compares the
performance of NP-sLDA (NP umbrella algorithm with sparse LDA scoring function) with
two other methods that do not explicitly require a minimum n0: the newly proposed eLDA,
and pNP-LDA, another LDA-based classifier introduced in Tong et al. (2020) that relies on
sample splitting and explicit parametric assumptions for threshold determination. In Table
1, the type I and type II errors are averaged over 1,000 repetitions and evaluated on a
large test set (50,000 observations from each class) that approximates the population. The
results clearly demonstrate that our new non-splitting eLDA classifier outperforms the split-
ting pNP-LDA classifier by achieving a significantly smaller type II error. This observation
is not coincidental. When the more generic nonparametric NP umbrella algorithm is not
applicable due to sample size limitations, eLDA typically outperforms pNP-LDA. The results
also highlight the advantage of eLDA over NP-sLDA (a skewed 90% − 10% split version) by
achieving a much smaller type II error.

This point is further substantiated by an extensive real data analysis conducted in
this paper. We consider a wide range of datasets, including medical datasets with small
sample sizes, as well as image and cybersecurity datasets commonly studied in the machine
learning community. Our findings demonstrate that although eLDA is developed based on a
seemingly restrictive LDA model, its performance surpasses that of its existing competitors
in small sample regimes. In these medical datasets, it is evident that the NP umbrella
algorithm fails to meet the sample size requirement under specified α and δ, while eLDA not
only functions effectively but also clearly outperforms pNP-LDA in terms of type II error.
In the case of the spam email dataset, where the selected covariates have significantly
non-Gaussian distributions, eLDA consistently outperforms its competitors in controlling
type I errors, demonstrating the robustness of eLDA beyond the LDA model. In summary,
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the applicability of eLDA extends beyond the Gaussian model and theories on which it is
developed.

The rest of the paper is organized as follows. In Section 2, we introduce the essential
notations and assumptions. In Section 3, we derive the efficient non-splitting NP classifier
eLDA and its close relative feLDA, where f stands for fixed feature dimension, and show their
main theoretical results. Technical preliminaries are presented in Section 4.1, followed by
key technical results in Section 4.2 and the proof of the main theorem in Section 4.3. In
Section 5, we present simulation and real data studies. We provide a short discussion in
Section 6. In addition, in Appendix A, we make further remarks on our assumptions. The
proofs of other theoretical results except for the main theorem are relegated to Appendix B.
In Appendix C, we provide the proofs of the technical preliminaries in Section 4.1, followed
by the proofs of the key lemmas in the proof of the main theorem in Appendix D. Finally,
Appendix E collects additional numerical results.

2. Model and Setups

Let φ : X ⊂ Rp → {0, 1} denote a mapping from the feature space to the label space. The
level-α NP oracle φ∗α(·) is defined as the solution to the program minR0(φ)≤αR1(φ), where
R0(φ) = IP{φ(x) 6= Y

∣∣Y = 0} and R1(φ) = IP{φ(x) 6= Y
∣∣Y = 1} denote the (population-

level) type I and type II errors of φ(·), respectively. We assume the linear discriminant
analysis (LDA) model, i.e., (x|Y = 0) ∼ N (µ0,Σ) and (x|Y = 1) ∼ N (µ1,Σ), where
µ0,µ1 ∈ Rp and the common positive definite covariance matrix Σ ∈ Rp×p. Under the LDA
model, the level-α NP oracle classifier can be derived explicitly as

φ∗α(x) = 1I
(

(Σ−1µd)
>x >

√
µ>d Σ−1µd Φ−1(1− α) + µ>d Σ−1µ0

)
, (2.1)

in which µd = µ1−µ0, and Φ−1(1−α) denotes the (1−α)-th quantile of standard normal
distribution.

For readers’ convenience, we introduce a few notations together. For any k ∈ N, let
Ik denote the identity matrix of size k, 1k denote the all-one column vector of dimension
k. For arbitrary two column vectors u,v of dimensions a, b, respectively, and any a × b
matrix M , we write (M)uv as the quadratic form u>Mv. Moreover, we write Mij or
(M)ij for i ∈ {1, · · · , a} and j ∈ {1, · · · , b} as the (i, j)-th entry of M . We use ‖A‖ to
denote the operator norm for a matrix A and use ‖v‖ to denote the `2 norm of a vector
v. For two positive sequences An and Bn, we adopt the notation An � Bn to denote
C−1An ≤ Bn ≤ CAn for some constant C > 1. We will use c or C to represent a generic
positive constant which may vary from line to line.

In the methodology and theory development, we assume that we have access to i.i.d.
observations from class 0, S0 = {X0

1 , · · · , X0
n0
}, and i.i.d. observations from class 1,

S1 = {X1
1 , · · · , X1

n1
}, where the sample sizes n0 and n1 are non-random positive integers.

Moreover, the observations in S0 and S1 are independent. We also assume the following
assumption unless specified otherwise.

Assumption 1 (i) (On feature dimensionality and sample sizes): the dimension of features
p and the sample sizes of the two classes n0, n1 satisfy n0/n > c0, n1/n > c1 for some positive
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constants c0 and c1, and
r ≡ rn := p/n→ r0 ∈ [0, 1)

as the sample size n = n0 + n1 →∞.
(ii) (On Mahalanobis distance): we assume that

∆d := µ>d Σ−1µd ≥ c2 (2.2)

for some positive constant c2 > 0.

Assumption 1 is quite natural and almost minimal to the LDA model about Σ, µ0, and
µ1. First, our theory strongly depends on the analysis of population and sample covariance
matrices. To make the inverse sample covariance matrix Σ̂−1 well-defined, we have to restrict
the ratio p/n strictly smaller than 1. Moreover, the sample size for either class needs to be
comparable to the total sample size; otherwise, the class with a negligible sample size would
be treated as noises. Second, since the Mahalanobis distance characterizes the difference
between the two classes, we adopt the common regularity condition in the literature that it
is bounded from below by some positive constant.

To create a sample-based classifier, the most straightforward strategy is to replace the
unknown parameters in (2.1) with their sample counterparts. However, this strategy is not
appropriate for our inquiry for two reasons: (i) it is well-known that direct substitutions
can result in inaccurate estimates when p/n→ r0 ∈ (0, 1); (ii) we aim for a high probability
control on the type I error of the constructed classifier, and for that goal, a naive plug-in will
not even work for fixed feature dimensionality. These two concerns demand that delicate
refinements and corrections be made to the sample counterparts.

Before diving into the classifier construction in the next section, we introduce the no-
tations for sample covariance matrix Σ̂ and sample mean vectors µ̂a, a = 0, 1, and express
them in forms that are more amenable in our analysis. Recall that

Σ̂ =
1

n0 + n1 − 2

∑
a=0,1

na∑
i=1

(Xa
i − µ̂a)(Xa

i − µ̂a)> , µ̂a =
1

na

(
Xa

1 + . . .+Xa
na

)
, a = 0, 1 .

We set the p by n data matrix by X = (xij)p,n := (X0, X1), where

Xa :=
1

(np)1/4
Σ−

1
2 (Xa

1 − µa, · · · , Xa
na
− µa), a = 0, 1 .

Note that all entries in the p × n matrix X are i.i.d. Gaussian with mean 0 and variance
1/
√
np. The scaling 1/(np)1/4 is to ensure that the spectrum of XX> has asymptotically a

fixed diameter, making it a convenient choice for technical derivations. We define two unit
column vectors of dimension n:

e0 :=
1
√
n0

(1>n0
, 0, · · · , 0)> , e1 :=

1
√
n1

(0, · · · , 0,1>n1
)> . (2.3)

With the above notations, we can rewrite the sample covariance matrix Σ̂ as

Σ̂ =

√
np

n− 2
Σ

1
2X
(
In − EE>

)
X>Σ

1
2 , where E := (e0, e1) . (2.4)
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For the sample means, we can rewrite them as

µ̂a =

√
n

na
r

1
4 Σ

1
2Xea + µa , a = 0, 1 . (2.5)

Furthermore, we write the sample mean difference vector as

µ̂d := µ̂1 − µ̂0 = r
1
4 Σ

1
2Xv1 + µd , where v1 :=

(
−
√
n

n0
1n0√

n
n1

1n1

)
= −

√
n

n0
e0 +

√
n

n1
e1 .

(2.6)

3. New Classifiers and Main Theoretical Results

In this section, we propose our new NP classifier eLDA and establish its theoretical properties
regarding type I and type II errors. We also construct a variant classifier feLDA for fixed
feature dimensions.

To motivate the construction of eLDA, we introduce an intermediate level-α NP oracle

φ̃∗α(x) = 1I
(
Â>x >

√
Â>ΣÂΦ−1(1− α) + Â>µ0

)
, (3.1)

where Â = Σ̂−1µ̂d is a shorthand notation we will frequently use in this manuscript. One
can easily deduce that the type I error of φ̃∗α(·) in (3.1) is exactly α. Note that φ̃∗α(·) involves
unknown parameters Σ and µ0, so it is not a sample-based classifier. However, it is still of
interest to compare the type II error of φ̃∗α(·) to that of the level-α NP oracle in (2.1).

Lemma 1 Let φ̃∗α(·) be defined in (3.1). Under Assumption 1, the type I error of φ̃∗α(·)
is exactly α, i.e., R0(φ̃∗α ) = α . Further if r = p/n → 0, then for any ε ∈ (0, 1/2), when
n > n(ε), we have with probability at least 1− n−1 , the type II error satisfies

R1(φ̃∗α )−R1(φ∗α ) ≤ C
(
r + n−

1
2

+ε
)√

∆d exp
(
− c∆d

2

)
for some constants C, c > 0, where C may depend on c0,1,2 and α, and ∆d is defined in
(2.2).

Lemma 1 indicates that R1(φ̃∗α)− R1(φ∗α) goes to 0 under Assumption 1 and p/n→ 0.
This prompts us to construct a fully sample-based classifier by modifying the unknown
parts of φ̃∗α(·). Towards that, we denote the threshold of Â>x in φ̃∗α(·) by

F (Σ,µ0) :=
√
Â>ΣÂΦ−1(1− α) + Â>µ0 , (3.2)

and denote a sample-based estimate of F (Σ,µ0) by F̂ (Σ̂, µ̂0), whose exact form will be
introduced shortly. By studying the difference between F (Σ,µ0) and F̂ (Σ̂, µ̂0), we will
construct a statistic Ĉpα based on F̂ (Σ̂, µ̂0) (where the superscript p stands for parametric)
that is slightly larger than F (Σ,µ0) with high probability. The proposed classifier eLDA will
then be defined by replacing F (Σ,µ0) in (3.1) with Ĉpα.
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Concretely, suppose we hope that the probability of type I error of eLDA no larger than
α is at least around 1− δ, for some small given constant δ ∈ (0, 1). We define

F̂ (Σ̂, µ̂0) :=

√
Â>Σ̂Â

1− r
Φ−1(1− α) + Â>µ̂0 −

√
n

n0

r

1− r
v>1 e0 , (3.3)

Ĉpα := F̂ (Σ̂, µ̂0) +

√(
(1− r)Â>Σ̂Â− r‖v1‖2

)
V̂

n
Φ−1(1− δ) , (3.4)

in which V̂ =
∑3

i=1 V̂i and

V̂1 :=
(
(1− r)Â>Σ̂Â− r‖v1‖2

)
C2Φ2

α

2(1 + r)

(1− r)7
,

V̂2 := C2Φ2
α‖v1‖2

4r(1 + r)

(1− r)7
+

n

n0(1− r)3
+ 2CΦα‖v1‖

√
n1

n0

2r

(1− r)5
,

V̂3 :=
‖v1‖2

(1− r)Â>Σ̂Â− r‖v1‖2
(
C2Φ2

α‖v1‖2
2r2(1 + r)

(1− r)7
+

(n+ n1)r

n0(1− r)3
+ 2CΦα‖v1‖

√
n1

n0

2r2

(1− r)5

)
,

(3.5)

where C := (1− r)(µ̂>d Σ̂−1µ̂d)
− 1

2 /2 , Φα := Φ−1(1− α) and Â := Σ̂−1µ̂d .

To construct F̂ (Σ̂, µ̂0) and Ĉpα, we start with the analysis of the quadratic forms Â>ΣÂ,
Â>µ0 as well as their fully plug-in counterparts Â>Σ̂Â, Â>µ̂0. Once we obtain their
expansions (Lemma 3) and compare their leading terms, we have the estimator F̂ (Σ̂, µ̂0)
in (3.3). However, only having F̂ (Σ̂, µ̂0) close to F (Σ,µ0) in (3.2) is not enough for the
construction of an NP classifier. Note that the sign of F̂ (Σ̂, µ̂0)− F (Σ,µ0) is uncertain. If
the error is negative, directly using F̂ (Σ̂, µ̂0) as the threshold can actually push the type
I error above α, which violates our top priority to maintain the type I error below the
pre-specified level α. To address this issue, we further study the asymptotic distribution
of F̂ (Σ̂, µ̂0)−F (Σ,µ0) and involve a proper quantile of this asymptotic distribution in the
threshold. This gives the expression of Ĉpα in (3.4). By this construction, we see that Ĉpα
is larger than F (Σ,µ0) with high probability so that the type I error will be maintained
below α with high probability. Thanks to the closeness of Ĉpα to F (Σ,µ0), the excess type
II error of our new classifier eLDA shall be close to that of φ̃∗α(·). Further by Lemma 1, we
shall expect the excess type II error of eLDA be close to that of φ∗α(·), at least when p/n→ 0
.

Now with the above definitions, we formally introduce the new NP classifier eLDA:

φ̂α(x) = 1I
(
Â>x > Ĉpα

)
,

whose theoretical properties are described in the next theorem.

Theorem 1 Suppose that Assumption 1 holds. For any α, δ ∈ (0, 1), let φ̂α(x) = 1I
(
Â>x >

Ĉpα
)

, where Ĉpα is defined in (3.4). Recall ∆d in (2.2). Then there exist a positive constant

C1, such that for any ε ∈ (0, 1/2), when n > n(ε), it holds with probability at least 1− δ −
C1n

− 1
2

+ε,
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(i) the type I error satisfies: R0(φ̂α) ≤ α;

(ii) for the type II error, if r = p/n→ 0,

R1(φ̂α)−R1(φ∗α) ≤ C
(
r + n−

1
2

+ε
)√

∆d exp
(
− c∆d

2

)
, (3.6)

for some constants C, c > 0, where C may depend on c0,1,2 and α; if r = p/n→ r0 ∈ (0, 1),

L ≤ R1(φ̂α)−R1(φ∗α) ≤ U ,

where

L :=
1√
2π

exp
(
− 1

2

(
Φα − δ1

√
∆d

)2)
(1−

√
1− r − n−

1
2

+ε)
√
∆d ,

U :=
1√
2π

exp
(
− 1

2

(
Φα − δ2

√
∆d

)2)(
1−
√

1− r
σ

+ n−
1
2

+ε
)√

∆d ,

for Φα = Φ−1(1− α), and some σ > 1, δ1 ∈ (
√

1− r , 1), δ2 ∈ (
√

1− r/σ , 1).

Remark 1 We comment on the excess type II error in Theorem 1. When p/n → 0, the

upper bound can be further bounded from above by a simpler form C
(
r + n−

1
2

+ε
)
∆
−β/2
d for

arbitrary β ≥ 1. This simpler bound clearly implies that if ∆d = O(1), the excess type II
error goes to 0, while if ∆d diverges, the excess type II error would tend to 0 at a faster
rate compared to the bounded ∆d situation. In contrast, when p/n→ r0 ∈ (0, 1), we provide
explicit forms for both upper and lower bounds of the excess type II error. One can read
from the lower bound L that if ∆d is of constant order, the excess type II error will not decay
to 0 since L � 1. Nevertheless, if ∆d diverges, then U → 0 and eLDA achieves diminishing
excess type II error. In addition, our Assumption 1 coincides with the previous margin
assumption and detection condition (Tong, 2013; Zhao et al., 2016; Tong et al., 2020) for
an NP classifier to achieve a diminishing excess type II error. The detailed discussion can
be found in Appendix A.

Next we develop feLDA, a variant of eLDA, for bounded (or fixed) feature dimensionality
p. In this case, thanks to r = O(1/n), we can actually simplify eLDA. Concretely, let
Ṽ = Φ2

α/2 + n/n0. Further define

F̃ (Σ̂, µ̂0) :=
√
Â>Σ̂ÂΦ−1(1− α) + Â>µ̂0 , (3.7)

C̃pα := F̃ (Σ̂, µ̂0) +
√
Â>Σ̂Â

√
Ṽ

n
Φ−1(1− δ) . (3.8)

Then, we can define an NP classifier feLDA: φ̂fα(x) = 1I
(
Â>x > C̃pα

)
, and we have the

following corollary.

Corollary 1 Suppose that Assumption 1 holds. Further, we assume that p = O(1). For

α, δ ∈ (0, 1), let φ̂fα(x) = 1I
(
Â>x > C̃pα

)
, where C̃pα is defined in (3.8). Then there exist a

9
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constant C1, such that for any ε ∈ (0, 1/2), when n > n(ε), it holds with probability at least

1− δ − C1n
− 1

2
+ε,

R0(φ̂fα) ≤ α , and R1(φ̂fα)−R1(φ∗α) ≤ Cn−
1
2

+ε
√
∆d exp

(
− c∆d

2

)
for some constants C, c > 0, where C may depend on c0,1,2 and α, and ∆d is defined in
(2.2).

Note that there is no essential difference between eLDA and feLDA. The definitions of
F̃ (Σ̂, µ̂0) and C̃pα are merely simplified counterparts of (3.3) and (3.4) by neglecting terms
related to r; they are negligible due to the approximate O(1/n) size of r. The proof of
Corollary 1 is relegated to Appendix B.

4. Theoretical Results

4.1 Technical Preliminaries

In this section, we collect a few basic notions in random matrix theory and introduce some
preliminary results that serve as technical inputs in our classifier construction process.

Recall the p× n data matrix X whose entries are i.i.d. Gaussian with mean 0, variance
1/
√
np. We introduce its sample covariance matrix H := XX> and the matrix H := X>X

which has the same non-trivial eigenvalues as H. Their Green functions are defined by

G1(z) := (H − z)−1 , G2(z) := (H− z)−1 , z ∈ C+ := {x+ iy | y > 0;x, y ∈ R} .

Besides, we denote the normalized traces of G1(z) and G2(z) by

m1n(z) :=
1

p
TrG1(z) =

∫
1

x− z
dF1n(x) , m2n(z) :=

1

n
TrG2(z) =

∫
1

x− z
dF2n(x) ,

where F1n(x), F2n(x) are the empirical spectral distributions of H and H respectively, i.e.,

F1n(x) :=
1

p

p∑
i=1

1I(λi(H) ≤ x) , F2n(x) :=
1

n

n∑
i=1

1I(λi(H) ≤ x) .

Here we used λi(H) and λi(H) to denote the i-th largest eigenvalue of H andH, respectively.
Observe that λi(H) = λi(H) for i = 1, · · · , p.

It is well-known that F1n(x) and F2n(x) converge weakly (a.s.) to the Marchenko-Pastur
laws νMP,1 and νMP,2 (respectively) given below

νMP,1(dx) :=
1

2πx
√
r

√(
(λ+ − x)(x− λ−)

)
+

dx+ (1− 1

r
)+δ(dx) ,

νMP,2(dx) :=

√
r

2πx

√(
(λ+ − x)(x− λ−)

)
+

dx+ (1− r)+δ(dx) , (4.1)

where λ± :=
√
r + 1/

√
r ± 2. Note that here the parameter r may be n-dependent. Hence,

the weak convergence (a.s.) shall be understood as
∫
g(x)dFan(x)−

∫
g(x)νMP,a(dx)

a.s.−→ 0
for any given bounded continuous function g : R→ R, for a = 1, 2. Note that m1n and m2n

10
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can be regarded as the Stieltjes transforms of F1n and F2n, respectively. We further define
their deterministic counterparts, i.e., Stieltjes transforms of νMP,1, νMP,2, by m1(z),m2(z),
respectively, i.e., ma(z) :=

∫
(x − z)−1νMP,a(dx), for a = 1, 2. From the definition (4.1), it

is straightforward to derive

m1(z) =
r−1/2 − r1/2 − z + i

√
(λ+ − z)(z − λ−)

2r1/2z
,

m2(z) =
r1/2 − r−1/2 − z + i

√
(λ+ − z)(z − λ−)

2r−1/2z
, (4.2)

where the square root is taken with a branch cut on the negative real axis. Equivalently, we
can also characterize m1(z),m2(z) as the unique solutions from C+ to C+ to the equations

zr1/2m2
1 + [z − r−1/2 + r1/2]m1 + 1 = 0 , zr−1/2m2

2 + [z − r1/2 + r−1/2]m2 + 1 = 0 .
(4.3)

In later discussions, we need the estimates of the quadratic forms of Green functions.
Towards that, we define the notion stochastic domination which was initially introduced in
(Erdős et al., 2013). It provides a precise statement of the form “XN is bounded by YN up
to a small power of N with high probability”.

Definition 1 (Stochastic domination) Let

X =
(
XN (u) : N ∈ N, u ∈ UN

)
and Y =

(
YN (u) : N ∈ N, u ∈ UN

)
be two families of random variables, Y is nonnegative, and UN is a possibly N -dependent
parameter set. We say that X is stochastically dominated by Y, uniformly in u, if for all
small % > 0 and large φ > 0, we have

sup
u∈UN

IP
(
|XN (u)| > N%YN (u)

)
≤ N−φ

for large N ≥ N0(%, φ). Throughout the paper, we use the notation X = O≺(Y) or X ≺ Y
when X is stochastically dominated by Y uniformly in u. Note that in the special case when X
and Y are deterministic, X ≺ Y means for any given % > 0, |XN (u)| ≤ N%YN (u) uniformly
in u, for all sufficiently large N ≥ N0(%).

Definition 2 Two sequences of random vectors, XN ∈ Rk and YN ∈ Rk, N ≥ 1, are
asymptotically equal in distribution, denoted as XN ' YN , if they are tight and satisfy
limN→∞

(
Ef(XN )− Ef(YN )

)
= 0, for any bounded continuous function f : Rk → R.

Further, we introduce a basic lemma based on Definition 1.

Lemma 2 Let Xi = (XN,i(u) : N ∈ N, u ∈ UN ) , Yi = (YN,i(u) : N ∈ N, u ∈ UN ), i = 1, 2,
be families of random variables, where Yi, i = 1, 2, are nonnegative, and UN is a possibly
N -dependent parameter set. Let Φ = (ΦN (u) : N ∈ N, u ∈ UN ) be a family of deterministic
nonnegative quantities. We have the following results:

(i) If X1 ≺ Y1 and X2 ≺ Y2 then X1 + X2 ≺ Y1 + Y2 and X1X2 ≺ Y1Y2.
(ii) Suppose X1 ≺ Φ, and there exists a constant C > 0 such that |XN,1(u)| ≤ NC a.s.

and ΦN (u) ≥ N−C uniformly in u for all sufficiently large N . Then IEX1 ≺ Φ.

11
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We introduce the following domain. For a small fixed τ , we define

D0 ≡ D(τ)0 := {z ∈ C+ : −τ < <z < τ, 0 < =z ≤ τ−1} . (4.4)

Conventionally, for a = 1, 2, we use G`a and G(`)
a to represent `-th power of Ga and the

`-th derivative of Ga with respect to z, respectively. With these notations, we introduce
the following proposition which is known as local laws and shall be regarded as slight
adaptations of the results in (Bloemendal et al., 2014), in the Gaussian case.

Proposition 1 Let τ > 0 be a small but fixed constant. Under Assumption 1, for any given
l ∈ N, we have∣∣∣(G(l)

1 (z)
)
ij
−m(l)

1 (z)δij

∣∣∣ ≺ n− 1
2 r

1+l
2 ,

∣∣∣(zG2(z)
)(l)
i′j′
−
(
zm2(z)

)(l)
δi′j′

∣∣∣ ≺ n− 1
2 r

1+l
2 , (4.5)∣∣∣(X>G(l)

1 (z)
)
i′i

∣∣∣ ≺ n− 1
2 r

1
4

+ l
2 ,

∣∣∣(X(zG2(z)
)(l))

ii′

∣∣∣ ≺ n− 1
2 r−

1
4

+ l
2 , (4.6)∣∣m(l)

1n(z)−m(l)
1 (z)

∣∣ ≺ n−1r
l
2 ,

∣∣(zm2n(z)
)(l) − (zm2(z)

)(l)∣∣ ≺ n−1r
1+l
2 , (4.7)

uniformly in z ∈ D0 and for any i, j ∈ {1, · · · , p} and i′, j′ ∈ {1, · · · , n}. For l = 0, the
second estimates in (4.6) and (4.7) can be improved to∣∣∣(X(zG2(z)

))
ii′

∣∣∣ ≺ n− 1
2 r

1
4 ,

∣∣(zm2n(z)
)
−
(
zm2(z)

)∣∣ ≺ n−1r . (4.8)

Remark 2 By the orthogonal invariance of Gaussian random matrix, we get from Propo-
sition 1 that for u,v, any complex deterministic unit vectors of proper dimensions,

|〈u,G(l)
1 (z)v〉 −m(l)

1 (z)〈u,v〉| ≺ n−
1
2 r

1+l
2 , |〈u,

(
zG2(z)

)(l)
v〉 −

(
zm2(z)

)(l)〈u,v〉| ≺ n− 1
2 r

1+l
2 ,

(4.9)

|〈u, X>G(l)
1 (z)v〉| ≺ n−

1
2 r

1
4

+ l
2 , |〈u, X

(
zG2(z)

)(l)
v〉| ≺ n−

1
2 r

1
4

+ l
2 , (4.10)

uniformly for z ∈ D0. We further remark that the estimates above and the ones in Propo-
sition 1 also hold at z = 0 with error bounds unchanged by the Lipschitz continuity of
G1, zG2(z), m1(z), and zm2(z). And we will use (4.7), (4.9), and (4.10) frequently in tech-
nical proofs not only for z ∈ D0 but also at z = 0.

4.2 Key Technical Results

In this section, we prove our main theorem, i.e., Theorem 1. To streamline the proof, we
first present two technical results and their proof sketches.

Lemma 3 Suppose that Assumption 1 holds. Recall the definition of ∆d in (2.2). Let
Â = Σ̂−1µ̂d, then we have

Â>ΣÂ =
r

(1− r)3
‖v1‖2 +

1

(1− r)3
∆d +O≺

(
n−

1
2∆d

)
, (4.11)

Â>Σ̂Â =
r

1− r
‖v1‖2 +

1

1− r
∆d +O≺

(
n−

1
2∆d

)
, (4.12)

Â>µd =
1

1− r
∆d +O≺

(
n−

1
2∆d

)
, (4.13)

Â>µ̂0 − Â>µ0 =

√
n

n0

r

1− r
v>1 e0 +O≺

(
n
− 1

2
0 ∆

1
2
d

)
. (4.14)

12
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Moreover, counterparts of (4.14) also hold if the triple (µ0, µ̂0,
√
n/n0 e0) is replaced by

(µ1, µ̂1,
√
n/n1 e1) or (µd, µ̂d,v1).

Remark 3 Lemma 3 hints that we can use Â>Σ̂Â/(1 − r)2 to estimate Â>ΣÂ and use

Â>µ̂0 −
√

n
n0

r
1−rv

>
1 e0 to approximate Â>µ0. Therefore, we construct F̂ (Σ̂, µ̂0), whose

definition is explicitly given in (3.3). Moreover, when p is fixed, i.e., r = O(1/n), we get
the following simplified estimates

Â>ΣÂ = ∆d +O≺(n−
1
2∆d) , Â>Σ̂Â = ∆d +O≺(n−

1
2∆d) , (4.15)

Â>µd = ∆d +O≺(n−
1
2∆d) , Â>µ̂0 − Â>µ0 = O≺(n

− 1
2

0 ∆
1
2
d ) . (4.16)

We provide a proof sketch of Lemma 3, while a formal proof is presented in the Sup-
plementary Materials. Our starting point is to expand Σ̂−1 in terms of Green function
G1(z) = (XX> − z)−1 at z = 0 since all the quadratic forms in Lemma 3 can be rewritten
as certain quadratic forms of Σ̂−1 according to the representations (2.4)-(2.6). Working
with Green functions makes the analysis much easier due to the useful estimates in local
laws, i.e., Proposition 1 and its variants (4.9), (4.10). In this expansion, we will need some
elementary linear algebra (e.g., Woodbury matrix identity) to compute matrix inverse and
local laws (4.7), (4.9) and (4.10) to estimate the error terms. Next, with the expansion
of Σ̂−1 plugged in, all the quadratic forms we want to study in Lemma 3 can be further
simplified to linear combinations of quadratic forms of Ga1 (0), Ga1 (0)X, and X>Ga1 (0)X, for
a = 1, 2. Then, further derivations with the aid of local laws (4.7), (4.9) and (4.10) lead to
the ultimate expressions. All these derivations only need the first order expansion since we
focus on the leading terms.

Next, we describe the difference between F̂ (Σ̂, µ̂0) and F (Σ,µ0) by a quantitative CLT.

Proposition 2 Let F (Σ,µ0) and F̂ (Σ̂, µ̂0) be defined in (3.2) and (3.3), respectively. Un-
der Assumption 1, we have

F̂ (Σ̂, µ̂0)− F (Σ,µ0) =

√
(1− r)µ̂>d Σ̂−1µ̂d − n2r

n0n1√
n

Θα +O≺

(
n−1

(
r

1
2 +∆

1
2
d

))
, (4.17)

and the random part Θα satisfies

Θα ' N (0, V̂ ) ,

where V̂ was defined in (3.5). Furthermore, the convergence rate of Θα to N (0, V̂ ) is

O≺(n−1/2) in Kolmogorov-Smirnov distance, i.e., supt

∣∣∣IP(Θα ≤ t
)
− IP

(
N (0, V̂ ) ≤ t

)∣∣∣ ≺
n−1/2 , where we simply use N (0, V̂ ) to denote a random variable with distribution N (0, V̂ ).

We state the sketch of the proof of Proposition 2 as follows. First, we express F̂ (Σ̂, µ̂0)−
F (Σ,µ0) in terms of Green functions G1(z) = (XX>− z)−1 and (zG2(z)) = z(X>X − z)−1

at z = 0 (Lemma D.1 in Appendix D). Different from the derivations of the expansions of
the quadratic forms in Lemma 3, here we need to do second order expansions for Σ̂−1 and
quadratic forms of Ga1 (0), Ga1 (0)X and X>Ga1 (0)X, for a = 1, 2. Because the leading terms
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of F̂ (Σ̂, µ̂0) and F (Σ,µ0) cancel out with each other due to their definitions and Lemma 3,
higher order terms are needed to study the asymptotic distribution. The error terms in the
expansions can be estimated with the help of local laws (4.7), (4.9) and (4.10). It turns out
that the leading terms of F̂ (Σ̂, µ̂0)−F (Σ,µ0) in Lemma D.1 are given by linear combinations

of certain quadratic forms of G(`)
1 −m

(`)
1 , (zG2)(`) − (zm2)(`) and G(`)

1 X where we omit the
argument z in G1, G2 at z = 0. This inspires us to study the joint asymptotic distribution
of these quadratic forms. To derive a multivariate Gaussian distribution, it is equivalent
to show the asymptotically Gaussian distribution for a generic linear combination P of
the quadratic forms appeared in the Green function representation formula; see equation
(D.21) in Appendix D for the specific expression of P. Next, we aim to derive a differential
equation of the characteristic function of P, denoted by φn(·). Concretely, we show that for

|t| � n
1
2 , ϕ′n(t) = −V tϕn(t)+O≺((|t|+1)n−

1
2 ) , where V is some deterministic constant that

indicates the variance of P. The above estimate has two implications. First, it indicates
the Gaussianity of P. Second, applying Esseen’s inequality, we can obtain its convergence
rate as well. The proof of the above estimate relies on the technique of integration by parts
and local laws. More details can be found in the proof of Proposition D.1 in Appendix D .

Remark 4 In the case that p is fixed, or r ≡ rn = O≺(1/n), we have the simplified version
of Proposition 2 where F̃ (Σ̂, µ̂0) defined in (3.7) is involved:

F̃ (Σ̂, µ̂0)− F (Σ,µ0) =
1√
n

√
µ̂>d Σ̂−1µ̂d Θ̃α +O≺

(
n−1∆

1
2
d

)
, (4.18)

and the random part Θ̃α satisfies Θ̃α ' N (0, Ṽ ) with rate O≺(n−1/2). We also remark that
the proof of this simplified version is similar to that of Proposition 2 by absorbing some
terms containing r into the error thanks to r = O(1/n). Hence, we will omit the proof.

4.3 Proof of Main Theorem

With the help of Lemma 3 and Proposition 2, we are now ready to prove the main theorem
(c.f. Theorem 1).

Proof [Proof of Theorem 1] Recall that φ̂α(x) = 1I
(
Â>x > Ĉpα

)
. If we can claim that

Ĉpα ≥ F (Σ,µ0) (4.19)

with high probability, then immediately, we can conclude that with high probability,

R0(φ̂α) = IP
(
Â>x > Ĉpα

∣∣∣x ∼ N (µ0,Σ)
)
≤ IP

(
Â>x > F (Σ,µ0)

∣∣∣x ∼ N (µ0,Σ)
)

= R0(φ∗α) = α.

In the sequel, we establish inequality (4.19) with high probability. By the definition of Ĉpα
in (3.4) and the representation (4.17), we have

Ĉpα − F (Σ,µ0) = F̂ (Σ̂, µ̂0)− F (Σ,µ0) +

√(
(1− r)Â>Σ̂Â− r‖v1‖2

)√ V̂

n
Φ−1(1− δ)

=
1√
n

√
(1− r)Â>Σ̂Â− r‖v1‖2

(
Θα −

√
V̂ Φ−1(δ)

)
+O≺(n−1∆

1
2
d ) .
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By Proposition 2, Θα is asymptoticallyN (0, V̂ ) distributed with convergence rateO≺(n−1/2).
We then have for any constant ε ∈ (0, 1

2),

IP
(
Θα −

√
V̂ Φ−1(δ) > n−

1
2

+ε
)

= IP
(
Θα/

√
V̂ > Φ−1(δ) + n−

1
2

+ε/
√
V̂
)

≥ IP
(
N (0, 1) > Φ−1(δ) + n−

1
2

+ε/
√
V̂
)
− n−

1
2

+ε

= 1− Φ
(
Φ−1(δ) + n−

1
2

+ε/
√
V̂
)
− n−

1
2

+ε

≥ 1− δ − C1n
− 1

2
+ε

for some C1 > 0 and n > n(ε). Here the second step is due to the convergence rate
O≺(n−1/2) of Θα; And for the last step, we used the continuity of Φ(·) together with V̂ > c
for some constant c > 0 following from the definition (3.5). Further we have the estimate√

(1− r)Â>Σ̂Â− r‖v1‖2 � ∆
1/2
d with probability at least 1 − n−D for any D > 0 and

n > n(ε,D), which is obtained from (4.12). Thereby, we get that

1√
n

√
(1− r)Â>Σ̂Â− r‖v1‖2

(
Θα −

√
V̂ Φ−1(δ)

)
≥ cn−1+ε∆

1
2
d

for some c > 0, with probability at least 1 − δ − C1n
− 1

2
+ε − n−D when n > n(ε,D). As a

consequence, there exist some C1, C2 > 0 such that

Ĉpα − F (Σ,µ0) > cn−1+ε
(
r

1
2 +

√
µ>d Σ−1µd

)
+O≺

(
n−1

(
r

1
2 +

√
µ>d Σ−1µd

)(
1 +

√
n

n0
r

1
2
))

> 0

with probability at least 1 − δ − C1n
− 1

2
+ε − C2n

−D for any ε ∈ (0, 1/2) and D > 0, when
n > n(ε,D).

In the sequel, we proceed to prove statement (ii) regarding the type II error. Note that
by definition,

R1(φ̂α) = IP(φ̂α(x) 6= Y
∣∣Y = 1) = IP

(
Â>x < Ĉpα

∣∣∣x ∼ N (µ1,Σ)
)

= Φ
(

(Â>ΣÂ)−
1
2
(
Ĉpα − Â>µ1

))
= Φ

(
Φ−1(1− α)− Â>µd√

Â>ΣÂ
+O≺(n−

1
2 )
)
.

(4.20)

Using the estimates in Lemma 3, if p/n→ 0, we further have

R1(φ̂α) = Φ
(

Φ−1(1− α)−∆
1
2
d +O≺

(
n−

1
2∆

1
2
d

)
+O

(
r∆

1
2
d

) )
.

Then, compared with R1(φ∗α) = Φ
(

Φ−1(1− α)−∆
1
2
d

)
, it is not hard to deduce that in the

case of p/n→ 0, (3.6) holds.
In the case that p/n→ r0 ∈ (0, 1), continuing with (4.20), we arrive at

R1(φ̂α) = Φ
(

Φ−1(1− α)− (1− r)−1∆d√
r

(1−r)3 ‖v1‖2 + 1
(1−r)3∆d

+O≺
(
n−

1
2∆

1
2
d

))
.
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However, in this case,
√

1− r
σ

∆
1
2
d <

(1− r)−1∆d√
r

(1−r)3 ‖v1‖2 + 1
(1−r)3∆d

<
√

1− r ∆
1
2
d ,

for some σ > 1 which depends on r‖v1‖2/∆d. Thereby, by some elementary computations,
one shall obtain that with probability at least 1 − n−D for D > 0 and ε ∈ (0, 1/2), when
n > n(ε,D),

R1(φ̂α)−R1(φ∗α) ≥ 1√
2π

exp
(
− 1

2

(
Φα − δ1

√
∆d

)2)
(1−

√
1− r − n−

1
2

+ε )
√
∆d ,

R1(φ̂α)−R1(φ∗α) ≤ 1√
2π

exp
(
− 1

2

(
Φα − δ2

√
∆d

)2)(
1−
√

1− r
σ

+ n−
1
2

+ε
)√

∆d ,

for some δ1 ∈ (
√

1− r, 1) and δ2 ∈ (
√

1− r/σ, 1).
Combining the loss of probability for both statements together and setting D = 1,

eventually we see that (i) and (ii) hold with probability at least 1− δ−C1n
− 1

2
+ε and hence

we finished the proof of Theorem 1.

5. Numerical Analysis

5.1 Simulation Studies

In this section, we compare the performance of the two newly proposed classifiers eLDA

and feLDA with that of five existing splitting NP methods: pNP-LDA, NP-LDA, NP-sLDA,
NP-svm, and NP-penlog. Here pNP-LDA is the parametric NP classifier as discussed in
Section 1, where the threshold is constructed parametrically and the base algorithm is
linear discriminant analysis (LDA). The latter four methods with NP as the prefix use the
NP umbrella algorithm to select the threshold, and the base algorithms for scoring functions
are LDA, sparse linear discriminant analysis (sLDA), svm and penalized logistic regression
(penlog), respectively. 1 In figures, we omit the NP for these four methods for concise
presentation. Among the five existing methods, only pNP-LDA does not have sample size
requirement on n0. Thus for small n0, we can only compare our new methods with pNP-LDA.
For all five splitting NP classifiers, τ , the class 0 split proportion, is fixed at 0.5, and the
each experiment is repeated 1,000 times.

In Example 1a, we particularly added a vanilla plug-in estimator of the oracle classifer
(2.1) as a benchmark for comparison. More specifically, we replace all the population
parameters with their sample counterparts:

φ̂∗α(x) = 1I
(

(Σ̂−1µ̂d)
>x >

√
µ̂>d Σ̂−1µ̂d Φ−1(1− α) + µ̂>d Σ̂−1µ̂0

)
. (5.1)

1. We implemented the NP umbrella algorithms using the R package npc with default parameters. Specif-
ically, for NP-svm, npc adopted the “radial” kernel for analysis. It is important to note that when the
data resembles a Gaussian distribution, implementing svm with a “linear” kernel may slightly enhance
performance. However, even in such cases, eLDA consistently outperforms all of its competitors.

16



Non-splitting Neyman-Pearson Classifiers

We aim to demonstrate the limitations of a simple plug-in estimator φ̂∗α(x) in controlling
the type I error under α with a desirable violation rate. This highlights the necessity of
developing eLDA as an alternative approach.

Example 1 The data are generated from an LDA model with common covariance matrix
Σ, where Σ is set to be an AR(1) covariance matrix with Σij = 0.5|i−j| for all i and j.
βBayes = Σ−1µd = 1.2× (1p0 ,0p−p0)>, µ0 = 0p, p0 = 3. We set π0 = π1 = 0.5 and α = 0.1.
Type I and type II errors are evaluated on a test set that contains 30,000 observations from
each class, and then we report the average over the 1,000 repetitions.

(1a) δ = 0.1, p = 3, varying n0 = n1 ∈ {20, 70, 120, 170, 220, 270, 320, 370, 500, 1000}

(1b) δ = 0.1, p = 3, n1 = 500, varying n0 ∈ {20, 70, 120, 170, 220, 270, 320, 370, 500, 1000}

(1c) δ = 0.1, n0 = n1 = 125, varying p ∈ {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}

(1c’) δ = 0.05, n0 = n1 = 125, varying p ∈ {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}

(1c*) δ = 0.01, n0 = n1 = 125, varying p ∈ {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}

(1d) δ = 0.1, n0 = 125, n1 = 500, varying p ∈ {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}

(1d’) δ = 0.05, n0 = 125, n1 = 500, varying p ∈ {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}

We summarize the results for Example 1 in Figure 1, Figure 2, Table 2, Table 3 and
Appendix Figures 4, 5, and 6. We discuss our findings in order.

Examples 1a and 1b share the common violation rate target δ = 0.1 and low dimension
p = 3. Their distinction comes from the two class sample sizes; Example 1a has balanced
increasing sample sizes, i.e., n0 = n1, while Example 1b keeps n1 fixed at 500, and only
increases n0. Due to the space limit, we only demonstrate the performance of Example 1a
in Figure 1, in terms of type I and type II errors, and relegate the comparison between
Example 1a and Example 1b to Appendix Figure 4. Notice that, for very small class 0
sample sizes n0 = 20, all NP umbrella algorithm based methods (NP-LDA, NP-sLDA, NP-svm,
and NP-penlog) fail to meet the minimum sample size requirement for class 0 and are not
implementable, thus only the performances of eLDA, feLDA and pNP-LDA are available in
Figure 1. Consistently across Example 1a and Example 1b, we see that 1) as n0 increases,
for all methods, the type I errors increase (but bounded above by α), and the type II errors
decrease. Nevertheless, the five existing NP methods present type I errors mostly below 0.08,
and are much more conservative compared to eLDA and feLDA, whose type I errors closer
to 0.1; 2) in terms of type II errors, eLDA and feLDA significantly outperform the other five
methods across all n0’s. Comparing Example 1b to Example 1a, keeping n1 = 500 does not
affect much the performance of eLDA and feLDA. However, Example 1b has aggravated the
type I error performance of pNP-LDA for small n0, and also the type II error performance of
NP-svm. It is important to highlight that the vanilla plug-in classifier φ̂∗α(x) has shown
limitations in effectively controlling even the average type I error. This is particularly
evident with small sample sizes (e.g., less than 250), where the type I error exceeds α by
a significant margin. This observation underscores the importance of delicate threshold
construction in eLDA.
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We further summarize the observed (type I error) violation rate2 in Table 2. The five
splitting NP classifiers all have violation rates smaller than targeted δ = 0.1, and share a
common increasing trend as n0 increases. In particular, pNP-LDA is the most conservative
one with the largest violation rate being 0.007 in Example 1a and 0.028 in Example 1b.
In contrast, eLDA exhibits a much more accurate targeting at the violation rates, with all
the observed violation rates around δ = 0.1. Theorem 1 indicates that the type I error
upper bound of eLDA might be violated with probability at most δ + C1n

−1/2+ε. As the
sample size increases, this quantity gets closer to δ. The control of violation rates for feLDA
is not desirable for small n0. However, we observe a decreasing pattern as n0 increases,
which agrees with Corollary 1. When n0 = 1000, for Example 1a, the violation rate of
feLDA reaches the targeted level δ = 0.1. In the case of the vanilla plug-in classifier, the
simulation results consistently demonstrate type I error violation rates that far exceed the
target across various values of n0. This outcome is not unexpected, as the threshold in
φ̂∗α(x) is not a tight high-probability upper bound for the threshold in the intermediate
oracle φ̃∗α(x). Recall that φ̃∗α(x) uses the same scoring function as φ̂∗α(x), but has a type I
error exactly equal to α. .

Figure 1: Examples 1a, type I and type II errors for competing methods with increasing
balanced sample sizes.

(a) Example 1a, type I error (b) Example 1a, type II error

The common setting shared by Examples 1c, 1c’ and 1c* includes balanced and fixed
sample sizes, and increasing dimension p. Similarly, in the main text, we only present
performance of Example 1c in Figure 2 and leave the comparison across Examples 1c, 1c’
and 1c* to Appendix Figure 5. First, we observe from Figure 2 that both eLDA and feLDA

2. Strictly speaking, the observed violation rate on type I error is only an approximation to the real violation
rate. The approximation is two-fold: 1). in each repetition of an experiment, the population type I error
is approximated by the empirical type I error on a large test set; 2). the violation rate should be
calculated based on infinite repetitions of the experiment, but we only calculate it based on a finite
number of repetitions. However, such approximation is unavoidable in numerical studies.
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Table 2: Examples 1a and 1b, violation rates over different n0 and methods.

Methods n0 = 20 70 120 170 220 270 320 370 500 1000

Example 1a

NP-lda NA .016 .047 .062 .071 .087 .074 .074 .078 .080
NP-slda NA .016 .046 .062 .071 .086 .074 .074 .077 .079

NP-penlog NA .018 .050 .064 .075 .096 .071 .071 .084 .078
NP-svm NA .020 .045 .064 .077 .084 .068 .064 .082 .084
pNP-lda .000 .000 .004 .004 .002 .001 .001 .002 .002 .007

elda .091 .084 .108 .105 .103 .104 .104 .100 .101 .081
felda .220 .144 .145 .138 .134 .141 .141 .126 .121 .100

vanilla-plugin .654 .568 .559 .553 .533 .535 .533 .530 .529 .547

Example 1b

NP-lda NA .017 .043 .055 .072 .090 .078 .069 .078 .078
NP-slda NA .017 .043 .056 .072 .090 .075 .069 .077 .078

NP-penlog NA .016 .047 .063 .076 .091 .075 .072 .084 .074
NP-svm NA .022 .058 .066 .072 .089 .070 .065 .082 .075
pNP-lda .028 .015 .012 .010 .005 .005 .003 .005 .002 .000

elda .083 .087 .090 .095 .095 .090 .099 .102 .101 .091
felda .138 .122 .112 .118 .122 .121 .121 .122 .121 .112

dominate existing methods in terms of type II errors. Nevertheless, Example 1c shows that
when p gets to 20 and beyond, type I error of feLDA is no longer bounded by α = 0.1.
Changing the violation rate δ from 0.1 to 0.05 and further to 0.01 hinders the growth of
type I error of feLDA as p increases, but does not solve the problem ultimately as illustrated
in Appendix Figure 5 panel (c) and (e). This is due to the construction of feLDA which
is specifically designed for small p; when p gets large, eLDA outperforms feLDA. Therefore,
considering the performance across different p’s, eLDA performs the best among the seven
methods. Second, as dimension p increases, all of the type II errors slightly increase or
remain stable as expected, except for that of pNP-LDA. This is due to a technical bound in
the construction of the threshold of pNP-LDA, which becomes loose when p is large.

Table 3 presents the violation rates from Examples 1c, 1c’, and 1c*. Similar to what
we have observed earlier, the five existing NP classifiers are relatively conservative and
the observed violation rates of eLDA are mostly around the targeted δ in all the three sub-
examples, while that of feLDA goes beyond the targeted δ as p increases. When we decrease δ
from 0.1 to 0.05 and further to 0.01, we have the following two observations: 1) the violation
rates of the four NP umbrella algorithm based classifiers NP-LDA, NP-sLDA, NP-penlog and
NP-svm stay the same in Examples 1c and 1c’. The violation rates decrease as we move
to Example 1c*. This is due to the discrete combinatorial construction of the thresholds
in umbrella algorithms and thus the observed violation rates present discrete changes in
terms of δ. In other words, not necessarily small changes in δ will lead to a change in
the constructed classifier and the observed violation rates. For example, for NP umbrella
algorithm based methods, the number of left-out class 0 observations is 63, and the threshold
is constructed as the k∗-th order statistics of the classification scores of the left-out class 0
sample, where k∗ = min{k ∈ {1, · · · , 63} : ν(k) < δ}, and ν(k) =

∑63
j=k

(
63
j

)
(1 − α)jα63−j .

Plugging in α = 0.1, we could easily calculate that k∗ = 61 for both δ = 0.1 and δ = 0.05,
since ν(61) =

∑63
j=61

(
63
j

)
(1 − 0.1)j0.163−j = 0.042 and ν(60) = 0.113. Furthermore, for

δ = 0.01, the threshold changes as k∗ changes, since 0.042 > 0.01; 2) pNP-LDA, eLDA, and
feLDA have the parametric construction of the threshold and the observed violation rates
of these methods respond to changes in δ more smoothly. Nevertheless, pNP-LDA is overly
conservative, with the observed violation rate almost all 0.

19



Wang, Xia, Tong and Bao

Figure 2: Examples 1c, type I and type II errors for competing methods with increasing
dimension p, δ = 0.1.

(a) Example 1c, type I error (b) Example 1c, type II error

Table 3: Examples 1c, 1c’ and 1c*, violation rates over different p and methods.

Methods p = 3 6 9 12 15 18 21 24 27 30

Example 1c
δ = 0.1

NP-lda .044 .039 .039 .045 .058 .046 .035 .049 .044 .048
NP-slda .045 .033 .037 .050 .047 .043 .034 .045 .038 .041

NP-penlog .037 .042 .035 .056 .050 .044 .031 .049 .043 .041
NP-svm .041 .040 .041 .044 .041 .042 .043 .039 .035 .048
pNP-lda .001 .000 .000 .000 .000 .000 .000 .000 .000 .000

elda .105 .091 .084 .107 .104 .079 .105 .099 .082 .082
felda .147 .206 .274 .362 .435 .548 .597 .712 .790 .817

Example
1c’ δ = 0.05

NP-lda .044 .039 .039 .045 .058 .046 .035 .049 .044 .048
NP-slda .045 .033 .037 .050 .047 .043 .034 .045 .038 .041

NP-penlog .037 .042 .035 .056 .050 .044 .031 .049 .043 .041
NP-svm .041 .040 .041 .044 .041 .042 .043 .039 .035 .048
pNP-lda .001 .000 .000 .000 .000 .000 .000 .000 .000 .000

elda .061 .049 .043 .052 .046 .042 .057 .054 .044 .044
felda .087 .115 .161 .260 .431 .410 .472 .599 .679 .732

Example
1c*
δ = 0.01

NP-lda .001 .001 .000 .004 .002 .000 .000 .000 .002 .001
NP-slda .001 .001 .001 .003 .004 .000 .002 .000 .000 .001

NP-penlog .001 .001 .000 .003 .004 .000 .001 .000 .001 .001
NP-svm .000 .002 .001 .002 .000 .002 .000 .000 .001 .001
pNP-lda .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

elda .014 .007 .008 .009 .003 .011 .011 .016 .010 .010
felda .025 .032 .053 .100 .146 .188 .259 .361 .436 .530

Examples 1d and 1d’ also demonstrate the performances when dimension p increases,
but with unequal class sizes. We omit the details in the main due to similar messages, and
refer interested readers to Appendix Figure 6.

Example 2 The data are generated from an LDA model with common covariance matrix
Σ, where Σ is set to be an AR(1) covariance matrix with Σij = 0.5|i−j| for all i and j.
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βBayes = Σ−1µd = Cp · 1>p , µ0 = 0p. Here, Cp is a constant depending on p, such that the
NP oracle classifier always has type II error 0.236 for any choice of p when α = 0.1. We
set π0 = π1 = 0.5 and α = δ = 0.1.

(2a) n0 = n1 = 125, varying p ∈ {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}

(2b) n0 = 125, n1 = 500, varying p ∈ {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}

Examples 2a and 2b are similar to Examples 1c and 1d, but their oracle projection
direction βBayes is not sparse. Appendix Figure 7 summarizes the results on type I and
type II errors. The delivered messages are similar to those of Examples 1c and 1d: 1)
while eLDA enjoys controlled type I errors under α = 0.1 for all p in both Examples 2a and
2b, the type I errors of feLDA deteriorate above the target for large p; 2) eLDA and feLDA

dominate all other competing methods in terms of type II errors. Observed violation rates
from Examples 2a and 2b present similar messages as in Examples 1c and 1d, so we omit
the table for those results.

Example 3 The data are generated from multivariate t-distributions with degrees of free-
dom 4. Two classes share a common covariance matrix Σ, where Σij = 0.5|i−j| for all i
and j. µ0 = 0p and µ1 is defined by Σ−1µd = 1.2× 1>p with p = 3. We set π0 = π1 = 0.5,
α = δ = 0.1. In terms of dimensions, we let the balanced sample sizes n0 and n1 grow
together as n0 = n1 ∈ {20, 70, 120, 170, 220, 270, 320, 370, 500, 1000}. Type I and type II
errors are evaluated on a test set with 30,000 observations from each class, and then we
report the average over the 1,000 repetitions.

Example 3 helps provide a broader understanding of the newly proposed classifiers under
non-Gaussian distributions. Figure 3 depicts type I and type II errors, and Table 4 summa-
rizes the observed violation rates. We have two observations as follows: 1) among pNP-lda,
elda and felda, which are implementable for all sample sizes, elda and felda clearly dom-
inate pNP-lda. elda and felda have the type I error bounded under α and enjoy much
smaller type II errors comparing to pNP-lda; 2) comparing elda and felda with other
umbrella algorithm based NP classifiers, we observe that when sample size of class 0 is very
small (in the current setting, less than 220), the umbrella algorithm based classifiers either
cannot be implemented (n0 = 20) or have much worse type II errors than elda and felda.
As the sample size further increases, the performances of most umbrella algorithm based
classifiers begin to catch up and eventually outperform elda and felda. We believe this
phenomenon is due to the fine calibration of the LDA model in the development of elda
and felda, which leads to conservative results in heavy-tail distribution settings. On the
other hand, the nonparametric NP umbrella algorithm does not rely on any distributional
assumptions and benefit from larger sample sizes.

5.2 Real Data Analysis

In this section, we analyze five datasets in total, including two cancer datasets, Fashion
MNIST, a dataset on spam email detection and the CSE-CIC-IDS2018 dataset on network
intrusion. One thing to keep in mind is that, the observed violation rate in real data
analysis should not be interpreted as a close proxy to the true violation rate. First, the
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Figure 3: Example 3, type I and type II errors for competing methods with increasing and
balanced sample sizes

(a) Example 3, Type I errors (b) Example 3, Type II errors

Table 4: δ = 0.1, p = 3; violation rates over different n0 and methods.

Methods n0 = 20 70 120 170 220 270 320 370 500 1000

Example 3

NP-lda NA .024 .067 .064 .068 .074 .073 .078 .073 .057
NP-slda NA .024 .071 .062 .069 .078 .069 .076 .074 .056

NP-penlog NA .021 .061 .059 .069 .077 .073 .074 .075 .058
NP-svm NA .026 .063 .066 .066 .084 .065 .080 .081 .068
pNP-lda .000 .001 .000 .000 .000 .000 .000 .000 .000 .000

elda .075 .026 .009 .006 .003 .001 .003 .001 .000 .000
felda .191 .043 .017 .011 .004 .001 .003 .001 .001 .000

previous discussion on observed type I error violation rate for simulation in the footnote
also applies to the real data studies. Moreover, in simulations, samples are generated from
population many times; however, in real data analysis, the one sample we have plays the
role of population for repetitive sampling. Such substitute can be particularly inaccurate
when the sample size is small.

Based on the findings from the five datasets, the main insights are as follows: 1) when the
class 0 sample size is insufficient to meet the sample size requirement for the NP umbrella
algorithm, two viable options remain: pNP-lda and eLDA. However, pNP-lda tends to be
excessively conservative, resulting in an observed type I error violation rate of 0 and type
II error of 1. On the other hand, the newly proposed eLDA achieves reasonable type II
errors while effectively controlling the violation rate; 2) when the covariate distributions
significantly deviate from Gaussian, eLDA can still achieve the desired control over type I
error, demonstrating its robustness to non-Gaussian distributed features; and 3) in cases
where the sample size is small compared to the feature dimensionality, a pre-step for eLDA
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Table 5: Lung cancer dataset

pNP-LDA eLDA

α = 0.01
δ = 0.05

type I error .000 .003
type II error 1 .104

observed violation rate 0 .03

is to first select only the important features, yielding a practical way to apply eLDA more
widely. Next, we will thoroughly analyze and closely examine the results of each dataset.

5.2.1 Lung Cancer Dataset

The first dataset is a lung cancer dataset (Gordon et al., 2002; Jin and Wang, 2016) that
consists of gene expression measurements from 181 tissue samples. Among them, 31 are
malignant pleural mesothelioma (MPM) samples and 150 are adenocarcinoma (ADCA)
samples. As MPM is known to be highly lethal pleural malignant and rare (in contrast to
ADCA which is more common), misclassifying MPM as ADCA would incur more severe
consequences. Therefore, we code MPM as class 0, and ADCA as class 1. The feature
dimension of this dataset is p = 12,533. First, we set α = 0.01 and δ = 0.05. Since the
class 0 sample size is very small, none of the umbrella algorithm based NP classifiers are
implementable. Hence, we only compare the performance of pNP-LDA with that of eLDA.
We choose to omit feLDA here because we have found from the simulation studies that
feLDA outperforms eLDA only when the dimension is extremely small (e.g., p ≤ 3). On the
other hand, since eLDA is designed for p < n settings and pNP-LDA usually works poorly for
large p, we first reduce the feature dimensionality to 40 by conducting two-sample t-test
and selecting the 40 genes with smallest p-values. To provide a more complete story, we
implemented further analysis with larger parameters (α = 0.1 and δ = 0.4) so that NP-sLDA,
NP-penlog, NP-svm are also implementable. Those results are presented in Appendix Table
10.

The experiment is repeated 100 times and the type I and type II errors are the averages
over these 100 replications. In each replication, we randomly split the full dataset (class
0 and class 1 separately) into a training set (composed of 70% of the data), and a test
set (composed of 30% of the data). We train the classifiers on the training set, with the
feature selection step added before implementing eLDA and pNP-LDA. Then we apply the
classifiers to the test set to compute the empirical type I and type II errors. Table 5 presents
results from the parameter set α = 0.01 and δ = 0.05. We observe that while both eLDA

and pNP-LDA achieve type I errors smaller than the targeted α = 0.01, pNP-LDA is overly
conservative and has a type II error of 1. In contrast, eLDA provides a more reasonable type
II error of 0.104, and the observed violation rate is 0.03 (< 0.05).

5.2.2 A Microarray Dataset of 11 Tumor Types (Su et al., 2001)

The second dataset was originally studied in (Su et al., 2001). It contains microarray
data from 11 different tumor types, including 27 serous papillary ovarian adenocarcinomas,
8 bladder/ureter carcinomas, 26 infiltrating ductal breast adenocarcinomas, 23 colorectal
adenocarcinomas, 12 gastroesophageal adenocarcinomas, 11 clear cell carcinomas of the
kidney, 7 hepatocellular carcinomas, 26 prostate adenocarcinomas, 6 pancreatic adenocar-
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Table 6: Cancer dataset in (Su et al., 2001)

pNP-LDA eLDA

α = 0.01
δ = 0.05

type I error .000 .008
type II error 1 .437

observed violation rate 0 .15

cinomas, 14 lung adenocarcinomas carcinomas, and 14 lung squamous carcinomas. In more
recent studies (Jin and Wang, 2016; Yousefi et al., 2010), the 11 different tumor cell types
were aggregated into two classes, where class 0 contains bladder/ureter, breast, colorectal
and prostate tumor cells, and class 1 contains the remaining groups. We follow (Yousefi
et al., 2010) in determining the binary class labels, and we work on the modified dataset
with n0 = 83, n1 = 91 and p = 12,533.

We repeat the data processing procedure as in the lung cancer dataset, and report results
from the parameter set α = 0.01 and δ = 0.05 in Table 6. While the sample size is too
small for other umbrella algorithm based NP classifiers to work, the advantage of eLDA over
pNP-LDA is obvious.

5.2.3 Fashion MNIST

Fashion MNIST is a widely-used imaging dataset for benchmarking machine learning algo-
rithms. It contains 60,000 training data and 10,000 testing data from ten different fashion
categories, including T-shirt/top, Trousers, Sneakers, Bags, and others. Despite numerous
algorithms achieving near-perfect results over the entire dataset, we focus on a regime with
a small subset of the training data to demonstrate the benefits of utilizing a parametric
model in the face of limited training data.

Specifically, we subsample 10% of the training data in each repetition while keeping
a fixed testing set with 10,000 images. We report two types of errors and the violation
rate of type I error over 100 repetitions. Given that the eLDA algorithm handles binary
classifications only, we conduct two experiments with different grouping strategies, each
time selecting one subcategory as class 0 and combining the remaining nine categories as
class 1, resulting in highly unbalanced sample sizes. The remainder of the data processing
is the same as that used in cancer datasets.

From Table 7, we have the following observations. First, when the sample sizes are
small, even if the sample size requirement is satisfied, umbrella algorithms, i.e., NP-slda,
NP-penlog and NP-svm may fail to control the violation rate. Second, while both eLDA and
pNP-lda conservatively guarantee the violation rate, eLDA achieves a much smaller type II
error (0.488 versus 1 and 0.438 versus 1), in both of the experimental settings.

5.2.4 Spam Email

We analyzed another dataset containing 4,601 spam and non-spam emails, each with 57
word frequency-related attributes. To avoid labeling good emails as spam which is the
more severe type of error, we labeled non-spams as class 0 and spam as class 1.

For the NP umbrella algorithms, we retained all features, while for pNP-lda and eLDA,
we performed feature selection. To demonstrate the functionality of eLDA, we selected the
top 20 features with the largest p-values from Shapiro-Wilk tests, since eLDA is based on
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Table 7: Fashion MNIST with α = 0.1 and δ = 0.1

NP-slda NP-penlog NP-svm pNP-lda eLDA

{T-shirt/top}
v.s.

{Others}

type I error .087 .084 .082 .000 .052
type II error .346 .308 .309 1.000 .488
violation rate .21 .17 .09 .00 .00

{Sandal}
v.s.

{Others}

type I error .089 .087 .086 .000 .007
type II error .243 .237 .243 1.000 .438
violation rate .28 .21 .20 .00 .00

an LDA model. Nevertheless, this was a fair comparison since we used the full model for
the NP umbrella algorithms, and reported better results for these algorithms comparing to
using only the top 20 features. Moreover, the top 20 features selected had p-values ranging
from 10−55 to 10−84, indicating that they were still far from normally distributed, and thus
our eLDA adapted well to non-Gaussian distributions.

We report results from two scenarios with α = 0.05 and δ = 0.01. In the first scenario,
we randomly selected 10% of the dataset as training data, providing a sufficiently large
sample size for all methods to work. In the second scenario, we randomly selected 5% of the
dataset as training data, creating a sample size too small for the NP umbrella algorithms
to work. Therefore, we only compared the performance of eLDA and pNP-lda.

We observe from Table 8 that, under both of the cases, violation rates are constantly
under control. When the sample size is large enough, eLDA achieves a smaller type II
error than both NP-slda, which is constructed based on the same LDA assumption, and
NP-penlog. The type II error of eLDA is slightly larger than NP-svm. In the regime where
the sample size is too small for the NP umbrella algorithms to work, the advantage of eLDA
is apparent, with a type II error of 0.581 comparing with 1 which is realized by pNP-lda.
When we decrease the training sample size from 10% to 5% of the whole available dataset,
the type II error of eLDA increases, but only mildly. This Spam Email example suggested us
a practical way to use eLDA, that is when the sample size is small, instead of using all the
features for eLDA, we may screen out the ones that are most Gaussian-like, and performance
may even be better than using the full model for the NP umbrella algorithms.

Table 8: Spambase Dataset with α = 0.05 and δ = 0.01

NP-slda NP-penlog NP-svm pNP-lda eLDA

training set:
10% of the
dataset

type I error .012 .013 .014 .000 .027
type II error .768 .707 .509 1.000 .550
violation rate .00 .00 .01 .00 .00

training set
5% of the
dataset

type I error NA NA NA .000 .028
type II error NA NA NA 1.000 .581
violation rate NA NA NA .00 .00
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5.2.5 CSE-CIC-IDS2018

We consider the popular network intrusion classification problem and apply the NP clas-
sifiers to the CSE-CIC-IDS2018 dataset (Sharafaldin et al., 2018). It was a collaborative
project between the Communications Security Establishment (CSE) and the Canadian In-
stitute for Cybersecurity (CIC). The original dataset contains seven different malicious types
of attack scenarios including Brute-force, Heartbleed, Botnet and etc. Since our method
focuses on binary classification, we only consider one type of the malicious attack scenarios,
the FTP-BruteForce attacks, and define it as class 0. We define benign attacks as class
1. Then we have 193,360 observations in class 0, 667,626 observations in class 1 with 79
features in total. As a benchmark dataset, the overall accuracy has been very high; nev-
ertheless, we would like to demonstrate the performance of our method for such type of
data when the available sample size is relatively small. Therefore, similar to the Spambase
Dataset in Section 5.2.4, we randomly subsample a small proportion of the whole dataset
to be our training data and evaluate the performance on the rest of the data. We conduct
analysis in the following three scenarios and discuss the findings: 1) α = 0.05 and δ = 0.2,
0.04% of the dataset as training (all methods work); 2) α = 0.05 and δ = 0.2, 0.02% of the
dataset as training (only pNP-lda and eLDA work); 3) α = 0.05 and δ = 0.1, 0.04% of the
dataset as training (only pNP-lda and eLDA work).

Comparing the first two scenarios, we observe from Table 9 that, when the sample
size is large enough, while all the methods achieve desirable type I error control and the
targeted violation rate, it is beneficial to apply the non-model-based NP classifiers with the
umbrella algorithms as they achieve smaller type II errors. Nevertheless, when we decrease
the training data to include only 0.02% of the dataset, NP-slda, NP-penlog and NP-svm

fail to work due to the minimum sample size requirement. In this regime, the advantage
of eLDA over pNP-lda is tremendous, with eLDA achieving a type II error of 0.022, while
pNP-lda achieved a type II error of 1. When we select 0.04% of the dataset as training data,
together with the parameter sets as α = 0.05 and δ = 0.1, NP-slda, NP-penlog, NP-svm
cannot be applied either. In this case, eLDA achieved a type I error of 0.010, a type II error
of 0.019 and a violation rate of 0.08, which is desirable and much superior than the only
applicable alternative pNP-lda.

Table 9: CSE-CIC-IDS Dataset with α = 0.05 and δ = 0.2

NP-slda NP-penlog NP-svm pNP-lda eLDA

training set:
0.04% of the
dataset

type I error .025 .025 .025 .000 .011
type II error 0 0 0 1.000 .018
violation rate .12 .12 .12 .00 .10

training set
0.02% of the
dataset

type I error NA NA NA .000 .012
type II error NA NA NA 1.000 .022
violation rate NA NA NA .00 .1
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6. Discussion

Our current work initiates the investigations on non-splitting strategies under the NP
paradigm. With the explicit LDA model assumption, we can use the model character-
istics and distributional properties of the estimates to achieve high-probability type I error
control, circumventing the minimum class 0 sample size requirement as in the NP umbrella
algorithm which relies on an order statistics approach.

For future works, we can work in settings where p is larger than n by selecting features
via various marginal screening methods (Fan and Song, 2010; Li et al., 2012) and/or may
add structural assumptions to the LDA model. To accommodate diverse applications, one
might also construct classifiers based on more complicated models, such as the quadratic
discriminant analysis (QDA) model (Fan et al., 2015; Li and Shao, 2015; Yang and Cheng,
2018; Pan and Mai, 2020; Wang et al., 2021; Cai and Zhang, 2021).
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Appendix A. Further remark on Assumption 1

Previously, margin assumption and detection condition were assumed in Tong (2013) and
subsequent works (Zhao et al., 2016; Tong et al., 2020) for an NP classifier to achieve a dimin-
ishing excess type II error. Concretely, write the level-α NP oracle as 1I(f1(x)/f0(x) > C∗α),
where f1 and f0 are class-conditional densities of the features, then the margin assumption
assumes that

IP(|f1(x)/f0(x)− C∗α| ≤ δ|Y = 0) ≤ C0δ
γ̄ ,

for any δ > 0 and some positive constant γ̄ and C0. This is a low-noise condition around the
oracle decision boundary that has roots in (Polonik, 1995; Mammen and Tsybakov, 1999).
On the other hand, the detection condition, which was coined in Tong (2013) and refined
in Zhao et al. (2016), requires a lower bound:

IP(C∗α ≤ f1(x)/f0(x) ≤ C∗α + δ|Y = 0) ≥ C1δ
γ− ,

for small δ and some positive constant γ
−
. In fact, δ

γ− can be generalized to u(δ), where u(·) is

any increasing function on R+ that might be (f0, f1)-dependent and limδ→0+ u(δ) = 0. The
necessity of the detection condition under general models for achieving a diminishing excess
type II error was also demonstrated in Zhao et al. (2016) by showing a counterexample that
has fixed f1 and f0, i.e., when p does not grow with n. Note that although the feature
dimension p considered in Zhao et al. (2016) and Tong et al. (2020) can grow with n, both
impose sparsity assumptions, and the “effective” dimensionality s has the property that
s/n → 0. Hence previously, there were no theoretical results regarding the excess type II
error when the effective feature dimensionality and the sample size are comparable.
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Under Assumption 1, the marginal assumption and detection condition hold automat-
ically. To see this, recall the level-α NP oracle classifier defined in (2.1), we can directly
derive that for any δ > 0,

IP(C∗α ≤ f1(x)/f0(x) ≤ C∗α + δ|Y = 0)

= IP(F ≤ (Σ−1µd)
>x ≤ F + δ|Y = 0)

= IP
(
F − µ>d Σ−1µ0 ≤ (Σ−1µd)

>(x− µ0) ≤ F − µ>d Σ−1µ0 + δ|Y = 0
)

= IP
(F − µ>d Σ−1µ0

√
∆d

≤ N (0, 1) ≤
F − µ>d Σ−1µ0 + δ√

∆d

)
,

with the shorthand notation F :=
√
∆d Φ−1(1 − α) + µ>d Σ−1µ0. The RHS above can be

further simplified to get

IP(F ≤ (Σ−1µd)
>x ≤ F + δ|Y = 0) = Φ

(
Φ−1(1− α) + δ/

√
∆d

)
− (1− α).

Thereby, using mean value theorem, we simply bound the above probability from above
and below as

IP(F ≤ (Σ−1µd)
>x ≤ F + δ|Y = 0) ≤ 1√

2π
exp (−1

2
Φ2
α)

δ√
∆d

,

IP(F ≤ (Σ−1µd)
>x ≤ F + δ|Y = 0) ≥ 1√

2π
exp

(
− 1

2

(
Φα +

δ√
∆d

)2
)

δ√
∆d

.

where we recall Φα = Φ−1(1−α). A similar upper bound can also be derived for IP(F −δ ≤
(Σ−1µd)

>x ≤ F |Y = 0). These coincide with the aforementioned marginal assumption and
detection condition.

Appendix B. Proofs of Lemma 1 and Corollary 1

We first show the proof of Lemma 1 below.
Proof [Proof of Lemma 1] The statement (i) is easy to obtain by the definition of φ̃∗α(·) in
(3.1) and the definition of the type I error. Specifically,

R0(φ̃∗α) = IP
(
Â>(x− µ0) >

√
Â>ΣÂΦ−1(1− α)

∣∣∣x ∼ N (µ0,Σ)
)

= 1− Φ(Φ−1(1− α)) = α .

Next, we establish statement (ii). By definition, we have

R1(φ̃∗α) = IP
(
Â>(x− µ1) ≤

√
Â>ΣÂΦ−1(1− α)− Â>µd

∣∣∣x ∼ N (µ1,Σ)
)

= Φ
(

Φ−1(1− α)− Â>µd√
Â>ΣÂ

)
,

R1(φ∗α) = IP
(

(Σ−1µd)
>x <

√
∆d Φ−1(1− α) + µ>d Σ−1µ0

∣∣∣x ∼ N (µ1,Σ)
)

= Φ
(

Φ−1(1− α)−
√
∆d

)
. (B.1)
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Lemma 3 and some elementary calculations lead to the conclusion: for any ε ∈ (0, 1/2) and
D > 0, when n > n(ε,D), with probability at least 1− n−D we have,

∆
1/2
d >

Â>µd√
Â>ΣÂ

= ∆
1/2
d +O

(
r∆

1/2
d

)
+O

(
n−

1
2

+ε(1 +∆
1/2
d )

)
.

Moreover, it is straightforward to check

exp
(
− 1

2

(
Φ−1(1− α)−∆1/2

d

)2)
� exp

(
− c∆d

2

)
.

Thus, we conclude that there exists some fixed constant C which may depend on c0, c1, c2

and α such that for any ε ∈ (0, 1/2) and D > 0, when n ≥ n(ε,D), with probability at least
1− n−D, we have

R1(φ̃∗α)−R1(φ∗α) ≤ C
(
r + n−

1
2

+ε
)
∆

1/2
d exp

(
− c∆d

2

)
.

Let D = 1, we thus finished our proof.

At the end of this section, we sketch the proof of Corollary 1.
Proof [Proof of Corollary 1] By the definition of F̃ (Σ̂, µ̂0) and C̃pα in (3.7), (3.8), under
the setting of p = O(1), we observe that

F̃ (Σ̂, µ̂0) = F̂ (Σ̂, µ̂0) +O≺
(
n−1∆

1
2
d

)
,

C̃pα = Ĉpα +O≺
(
n−1∆

1
2
d

)
.

Then, similarly to the proof of Theorem 1, with the aid of Remark 3 and Remark 4, we
conclude the results in the same manner; hence we omit the details.

Appendix C. Proofs for Section 4.1

C.1 Proof of Lemma 2

Part (i) is obvious from Definition 1. For any fixed % > 0, we have

|IEX1| ≤ IE|X11I(|X1| ≤ N%Φ)|+ IE|X11I(|X1| ≥ N%Φ)|
≤ N%Φ +NCIP(|X1| ≥ N%Φ) = O(N%Φ)

for for sufficiently large N ≥ N0(%). This proves part (ii).

C.2 Proof of Proposition 1

Define

D ≡ D(τ) := {z ∈ C+ : −λ−
2
< <z < λ−

2
, 0 < =z ≤ τ−1} . (C.1)

29



Wang, Xia, Tong and Bao

All the estimates in Proposition 1 can be separately shown for the case of p > nε for some
fixed small ε > 0 and the case of p < nε. We first show all the estimates hold for the case
l = 0 and then proceed to the case of l ≥ 1.

• For the case of l = 0.

In the regime that p ≥ nε for some fixed small ε > 0, (4.5) can be derived from the
entrywise local Marchenko-Pastur law for extended spectral domain in Theorem 4.1 of
(Bloemendal et al., 2014). We emphasize that originally in (Bloemendal et al., 2014) the
results are not provided for extended spectral domain one only need to adapt the arguments
in Proposition 3.8 of (Bloemendal et al., 2016) to extend the results.

The estimates of (4.7) can be obtained by the rigidity estimates of eigenvalues in (Bloe-
mendal et al., 2014, Theorem 2.10). We remark that we get the improved version in the
second estimate of (4.8) due to the trivial bound z = O(1), for z ∈ D0, while for z ∈ D,

we crudely bound |z| by r−
1
2 . For (4.6), by noticing that X>G1 = G2X, one only needs

to show the first estimate of (4.6). Using singular value decomposition (SVD) of X, i,e.,

X = U>(Λ
1
2 , 0)V , where the diagonal matrix Λ

1
2 collects the singular values of X in a

descending order, we arrive at

(
X>G1(z)

)
i′i

= V >i′

(
Λ

1
2 (Λ− z)−1

0

)
Ui, Λ := diag(λ1, . . . , λp)

and Ui, Vi′ are independent and uniformly distributed on Sp−1 and Sn−1, respectively,
thanks to the fact that X is a GOE matrix. Here we abbreviate λi(H) by λi. Then we can
further write

(
X>G1(z)

)
i′i

d
=

p∑
i=1

gig̃i

√
λi

λi − z
1

‖g‖‖g̃‖

=

p∑
i=1

gig̃i

√
λi

λi − z

(
1− ‖g‖

2 − 1

2
+O≺(n−1)

)(
1− ‖g̃‖

2 − 1

2
+O≺(p−1)

)
,

(C.2)

where g := (g1, · · · , gp) ∼ N (0, 1
pIp), g̃ := (g̃1, · · · , g̃n) ∼ N (0, 1

nIn) and they are indepen-

dent. The leading term on the RHS of (C.2) is
∑p

i=1 gig̃i
√
λi

λi−z . By the rigidity of eigenvalues,

we easily get that
√
λi/(λi − z) � r

1
4 uniformly for z ∈ D with high probability. Further

applying the randomness of gi’s and g̃i’s, it is easy to conclude the first estimate in (4.6).
The second estimate with the extension in (4.8) holds naturally from X>G1 = G2X and the

facts that |z| ≤ r−
1
2 for z ∈ D, |z| = O(1) for z ∈ D0.

In the regime that p < nε for sufficiently small ε. We first write

XX> = r−
1
2 Ip +G,

where G is a p by p matrix defined entrywise by Gij = x>i xj −Ex>i xj and xi represents the
i-th row of X. One can easily see that Gij is asymptotically centred Gaussian with variance
1/p by CLT. Thus we can crudely estimate Gij = O≺(p−1/2) and ‖G‖ ≤ ‖G‖HS = O≺(

√
p ).
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Then, for G1, we can obtain that for z ∈ D,

G1 = (r−
1
2 − z)−1

(
Ip + (r−

1
2 − z)−1G

)−1
= (r−

1
2 − z)−1Ip − (r−

1
2 − z)−2G+O≺

(
r

3
2 p
)

here with a little abuse of notation, we used O≺
(
r

3
2 p
)

to represent the higher order term

of matrix form whose operator norm is O≺
(
r

3
2 p
)
. Choosing ε sufficiently small so that

p3n−
1
2 = o(1). After elementary calculation, we further have that

(G1)ij = (r−
1
2 − z)−1δij − (r−

1
2 − z)−2Gij +O≺(n−1) = (r−

1
2 − z)−1δij +O≺(n−

1
2 r

1
2 ),

m1(z)− (r−
1
2 − z)−1 = O≺(r

3
2 ), (C.3)

which by the fact that r
3
2 � n−

1
2 r

1
2 indeed imply the first estimate in (4.5) for the case

l = 0. By using the identity zG2(z) = X>G1(z)X − Ip, we also have that

(zG2(z))i′j′ = −δi′j′ + (r−
1
2 − z)−1(X>X)i′j′ − (r−

1
2 − z)−2(X>GX)i′j′ +O≺(n−1),

zm2(z) = −1 + r(1 + zm1(z)) = −1 + r
1
2 (r−

1
2 − z)−1 +O≺(r

3
2 ). (C.4)

It is easy to see that (X>X)i′j′ = (xi
′
)>xj

′
= r

1
2 δi′j′ + O≺(n−1/2), where xi

′
is the i′-th

column of X. Furthermore, |(X>GX)i′j′ | = |(xi′)>Gxj
′ | ≤ ‖G‖‖xi′‖‖xj′‖ = O≺(n−1/2p).

We then see that

(zG2(z))i′j′ − zm2(z)δi′j′ = O≺(n−
1
2 r

1
2 ).

Thus, we can conclude the second estimate in (4.5). Next, for the two estimates in (4.6),

we only need to focus on the former one in light of X>G1 = G2X and the facts |z| ≤ r−
1
2

for z ∈ D, |z| = O(1) for z ∈ D0. Similarly to the above discussion, we have

(X>G1(z))i′i = (r−
1
2 − z)−1Xii′ − (r−

1
2 − z)−2(X>G)i′i +O≺(n−1p2r

1
4 ) = O≺(n−

1
2 r

1
4 )

(C.5)

following from the facts that Xii′ = O≺(n−
1
2 r−

1
4 ), |(X>G)i′i| ≤ ‖G‖|(X>X)i′i′ |1/2 =

O≺(r1/4√p), and p2n−
1
2 = o(1). This proved (4.6). We then turn to the estimates in

(4.7). Note that Gii are i.i.d. random variables of order O≺
(
p−

1
2

)
, for 1 ≤ i ≤ p. Hence

by CLT, p−1
∑p

i=1Gii is crudely of order O≺(p−1). Applying the first estimate in (C.3), we
have

m1n(z) =
1

p

p∑
i=1

(G1)ii = (r−
1
2 − z)−1 + (r−

1
2 − z)−2 1

p

p∑
i=1

Gii +O≺(n−1)

= (r−
1
2 − z)−1 +O≺(n−1).

The above estimate, together with the second equation in (C.3) and the estimate r
3
2 � n−1,

yields the first estimate in (4.7). The second estimate in (4.7) can be concluded simply by
using the identity zm2n(z) = −1 + r(1 + zm1n(z)) and zm2(z) = −1 + r(1 + zm1(z)), since

|rzm1n(z)− rzm1(z)| ≺ r|z||m1n(z)−m1(z)| ≺ n−1r
1
2
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uniformly for z ∈ D. Particularly for z ∈ D0, since |z| = O(1), the bound above can be
further improved to n−1r.

Therefore, we proved the estimates (4.5)-(4.7) uniformly for z ∈ D in the case of l = 0.
Since D0 is simply a subset of D, we trivially have the results uniformly for z ∈ D0. Now,
we will proceed to the case that l ≥ 1 by using the estimates for z ∈ D.

• For the case of l ≥ 1.

We can derive the estimates easily from the case l = 0 by using Cauchy integral with the
radius of the contour taking value |z−λ−|/4 � r−

1
2 . Note that for any z ∈ D0, the contour

Γ centred at z with radius |z − λ−|/4 still lies in the regime D, hence all the estimates
(4.5)-(4.7) hold uniformly on the contour. Moreover, we shall see that

∣∣∣(G(l)
1 (z)

)
ij
−m(l)

1 (z)δij

∣∣∣∣ � ∣∣∣ ∮
Γ

(
G1(z̃)

)
ij
−m1(z̃)δij

(z̃ − z)l+1
dz̃

∣∣∣∣ ≺ n−
1
2 r

1
2

|z − λ−|l
= n−

1
2 r

1+l
2 .

Similarly, we can show the error bounds for the other terms stated in (4.5)-(4.7).

Appendix D. Proofs of Lemma 3 and Proposition 2

In this section, we prove Lemma 3 and Proposition 2, which are the key technical ingredients
of the proofs of our main theorem. We separate the discussion into three subsections: in the
first subsection we will show the proof of Lemma 3; then followed by the proof of Proposition
2 in the second subsection; in the last subsection, we provide the proofs for some technical
results in the first two subsections. In advance of the proofs, we discuss some identities
regarding Stieltjes transforms m1(z),m2(z) (see (4.2) for definitions) and list some basic
identities of Green functions which will be used frequently throughout this section.

Using (4.2) and (4.3), one can easily derive the following identities

m1 = − 1

z(1 + r−1/2m2)
, 1 + zm1 =

1 + zm2

r
, r−1/2(zm2)′ + 1 =

m′1
m2

1

. (D.1)

We remark that since our discussion is based on the assumption r ≡ rn → r0 ∈ [0, 1),
then by definition, λ− = r1/2 +r−1/2−2 = O(r−1/2). This implies the support of νMP,a(dx)
for a = 1, 2 stays away from 0 by O(r−1/2) distance. For the special case z = 0, m1(z) is
well-defined and analytic at z = 0 since r < 1. More specifically, m1(0) =

√
r/(1 − r) by

the first equation of (4.3). In contrast, z = 0 is a pole of m2(z) due to the (1 − r) point
mass at 0 (see MP law νMP,2(dx) in (4.1)). However, the singularity at z = 0 is removable
for zm2(z). We can get zm2(z)|z=0 = r−1 by simple calculations of the second equation of
(4.2).We write m̂2(z) := zm2(z) for simplicity. Let us simply list several results of functions
in terms of m1,2 at z = 0 which can checked easily from either (4.2) or (D.1).

m1(0) =

√
r

1− r
, m′1(0) =

r

(1− r)3
; (D.2)

m̂2(0) = r − 1 , m̂′2(0) =
r3/2

1− r
. (D.3)
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Next for the Green functions G1, G2, we have some basic and useful identities which can
be easily checked by some elementary computations.

Gl1 =
1

(l − 1)!

∂l−1G1

∂zl−1
=

1

(l − 1)!
G(l−1)

1 , (D.4)

Gl1XX> = Gl−1
1 + zGl1, X>Gl1X = Gl2X>X = Gl−1

2 + zGl2 . (D.5)

D.1 Proof of Lemma 3

We start with the proof of (4.12). Applying Woodbury matrix identity, from (2.4), we see
that

Σ̂−1 =
n− 2

n
√
r

Σ−
1
2

(
G1(0) + G1(0)XEI−1

2 E>X>G1(0)
)

Σ−
1
2 , (D.6)

where we introduced the notation

I2 := I2 − E>X>G1(0)XE .

Recall the definition E = (e0, e1). By the second identity in (D.5) and the second estimate
of (4.9), we have the estimate

u>X>Ga1 (z)Xv = (1 + zm2(z))(a−1)u>v +O≺(n−
1
2 r

a
2 ) (D.7)

for arbitrary unit vectors u,v and any integer a ≥ 1. Further by m̂2(0) = zm2(z)
∣∣∣
z=0

= r−1,

we obtain

e>0 X
>G1(0)Xe1 = O≺(n−1/2r1/2), 1− e>i X

>G1(0)Xei = 1− r +O≺(n−1/2r1/2) , i = 0, 1 .

Then,

I−1
2 =

1

1− r
I2 + ∆ , (D.8)

where ∆ represents a 2× 2 matrix with ‖∆‖ = O≺(n−1/2r1/2). Plugging (D.8) into (D.6),
we can write

Σ̂−1 =
n− 2

n
√
r

Σ−
1
2G1(0)Σ−

1
2 +

n− 2

n(1− r)
√
r

∑
i=1,2

Σ−
1
2G1(0)Xeie

>
i X

>G1(0)Σ−
1
2 + ∆̂ , (D.9)

where

∆̂ =
n− 2

n
√
r

Σ−
1
2G1(0)XE∆E>X>G1(0)Σ−

1
2 ,

and it is easy to check ‖∆̂‖ ≺ n−1/2r1/2.
With the above preparation, we now compute the leading term of Â>Σ̂Â. Recall Â =

Σ̂−1µ̂d. We have

Â>Σ̂Â = µ̂>d Σ̂−1µ̂d =
√
rv>1 X

>Σ
1
2 Σ̂−1Σ

1
2Xv1 + µ>d Σ̂−1µd + 2r

1
4 v>1 X

>Σ
1
2 Σ̂−1µd

=: T1 + T2 + T3 . (D.10)
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For T1, with (D.9), we have

T1 =
n− 2

n
v>1 X

>G1(0)Xv1 +
n− 2

n(1− r)
v>1 X

>G1(0)X
( ∑
i=0,1

eie
>
i

)
X>G1(0)Xv1

+
√
rv>1 X

>Σ
1
2 ∆̂Σ

1
2Xv1

= r‖v1‖2 +
r2

1− r

((
v>1 e0

)2
+
(
v>1 e1

)2)
+O≺(n−

1
2 r

1
2 ) . (D.11)

Here in the last step, we repeatedly used the estimate (D.7) and 1 + zm2(z)|z=0 = r. In
addition, for the last term of the second line of (D.11), we trivially bound it by

√
rv>1 X

>Σ
1
2 ∆̂Σ

1
2Xv1 ≤ ‖∆̂‖‖Σ‖(

√
rv>1 X

>Xv1) = O≺(n−
1
2 r

1
2 ) .

Similarly, for T2, we have

T2 =
n− 2

n
√
r

u>1 G1(0)u1 +
n− 2

n(1− r)
√
r

u>1 G1(0)X
( ∑
i=0,1

eie
>
i

)
X>G1(0)u1 + u>1 Σ

1
2 ∆̂Σ

1
2 u1

=
‖u1‖2

1− r
+O≺(n−

1
2 ‖u1‖2) , (D.12)

where we employed the shorthand notation

u1 := Σ−
1
2µd . (D.13)

Here in (D.12), we applied the estimates

u>1 G1(0)u1 = m1(0)‖u1‖2 +O≺(n−
1
2 r

1
2 ‖u1‖2) (D.14)

u>1 G1(z)Xei = O≺(n−
1
2 r

1
4 ‖u1‖), i = 0, 1 . (D.15)

with the fact m1(0) =
√
r/(1− r). Next, we turn to estimate T3. Similarly, we have

T3 =
2(n− 2)

nr
1
4

v>1 X
>G1(0)u1 +

2(n− 2)

n(1− r)r
1
4

v>1 X
>G1(0)X

( ∑
i=0,1

eie
>
i

)
X>G1(0)u1 +O≺(n−

1
2 r

1
2 ‖u1‖)

= O≺(n−
1
2 ‖u1‖) .

Therefore, we arrive at

Â>Σ̂Â =
r

1− r
‖v1‖2 +

1

1− r
‖u1‖2 +O≺

(
n−

1
2 (r

1
2 + ‖u1‖2 + ‖u1‖)

)
.

This proved (4.12).

To proceed, we estimate Â>ΣÂ. By definition,

Â>ΣÂ =
(n− 2

n
√
r

)2
µ̂>d Σ−

1
2H−2

E Σ−
1
2 µ̂d ,
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where we introduced the notation

HE := X(In − EE>)X>.

Applying Woodbury matrix identity again, we have

H−2
E = G2

1(0) + G2
1(0)XEI−1

2 E>X>G1(0)

+ G1(0)XEI−1
2 E>X>G2

1(0) +
(
G1(0)XEI−1

2 E>X>G1(0)
)2
. (D.16)

Analogously to the way we deal with Â>Σ̂Â, applying the representation of µ̂d in (2.6) and
also the notation in (D.13), we can write

Â>ΣÂ =
(n− 2

n

)2
r−

1
2 v>1 X

>H−2
E Xv1 +

(n− 2

n

)2
r−1u>1 H

−2
E u1

+ 2
(n− 2

n

)2
r−

3
4 v>1 X

>H−2
E u1 =: T1 + T2 + T3 , (D.17)

and we analyse the RHS of the above equation term by term. First, for T1, substituting
(D.16) and (D.8), we have

T1 =
(n− 2

n

)2
r−

1
2

(
v>1 X

>G2
1(0)Xv1 +

2

1− r
∑
i=0,1

(
v>1 X

>G2
1(0)Xei

)(
e>i X

>G1(0)Xv1

)
+

1

(1− r)2

∑
i,j=0,1

(
v>1 X

>G1(0)Xei
)(

e>i X
>G2

1(0)Xej
)(

e>j X
>G1(0)Xv1

))
+O≺(n−

1
2 )

=

[
r−

1
2 (zm2(z))′‖v1‖2 +

2r−
1
2

1− r
(zm2(z))′(1 + zm2(z))

( ∑
i=0,1

(v>1 ei)
2
)

+
r−

1
2

(1− r)2
(zm2(z))′

(
(1 + zm2(z))

)2( ∑
i=0,1

(v>1 ei)
2
)]∣∣∣∣

z=0

+O≺(n−
1
2 r

1
2 )

=
r

(1− r)3
‖v1‖2 +O≺(n−

1
2 r

1
2 ) . (D.18)

Here we used the estimate (D.7) and the facts that (zm2(z))′
∣∣
z=0

= r3/2/(1 − r), (1 +

zm2(z))
∣∣
z=0

= r and
∑

i=0,1(v>1 ei)
2 = ‖v1‖2 according to the definition of v1 in (2.6).

Next, similarly to T1, for T2, we have the estimates

T2 =
(n− 2

n

)2
r−1
(
u>1 G2

1(0)u1 +
2

1− r
∑
i=0,1

(
u>1 G2

1(0)Xei
)(

e>i X
>G1(0)u1

)
+

1

(1− r)2

∑
i,j=0,1

(
u>1 G1(0)Xei

)(
e>i X

>G2
1(0)Xej

)(
e>j X

>G1(0)u1

))
+O≺(n−

1
2 ‖u1‖2)

=
1

(1− r)3
‖u1‖2 +O≺(n−

1
2 ‖u1‖2) .
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In the last step, we applied (4.9), the second estimate of (4.10) and (D.7). Further for T3,
we have the following estimate

T3 = 2
(n− 2

n

)2
r−

3
4

(
v>1 X

>G2
1(0)u1 +

1

1− r
∑
i=0,1

(
v>1 X

>G2
1(0)Xei

)(
e>i X

>G1(0)u1

)
+

1

1− r
∑
i=0,1

(
v>1 X

>G1(0)Xei
)(

e>i X
>G2

1(0)u1

)
+

1

(1− r)2

1∑
i,j=0

(
v>1 X

>G1(0)Xei
)(

e>i X
>G2

1(0)Xej
)(

e>j X
>G1(0)u1

))
+O≺(n−

1
2 ‖u1‖)

= O≺(n−
1
2 ‖u1‖) .

Here all the summands above contain quadratic forms of (XGa1 ), and by (4.10), we see such

quadratic forms are of order O≺(n−
1
2 r1/4+(a−1)/2‖u1‖). Further with the estimate (D.7)

and identities (D.3), we shall get the estimate O≺(n−
1
2 ‖u1‖) for T3. According to the above

estimates of T1, T2, T3, we now see that

Â>ΣÂ =
r

(1− r)3
‖v1‖2 +

1

(1− r)3
‖u1‖2 +O≺

(
n−

1
2 (r

1
2 + ‖u1‖2 + ‖u1‖)

)
.

Thus we completed the proof of (4.11) by the fact that ‖u1‖2 = ∆d.
Next, we turn to prove the estimates (4.13) and (4.14). Recall the representations of

µ̂0 and µ̂d in (2.5) and (2.6), and also the notation in (D.13). Applying Woodbury matrix
identity to H−1

E , we can write

Â>µd =
n− 2

n
√
r

(
r

1
4 v>1 X

> + u>1
)
H−1
E u1

=
n− 2

n
r−

1
4

(
v>1 X

>G1(0)u1 + v>1 X
>G1(0)XEI−1

2 E>X>G1(0)u1

)
+
n− 2

n
√
r

(
u>1 G1(0)u1 + u>1 G1(0)XEI−1

2 E>X>G1(0)u1

)
,

and

Â>µ̂0 − Â>µ0 = µ̂>d Σ̂−1(µ̂0 − µ0) =
n− 2

n
√
r

(
r

1
4 v>1 X

> + u>1
)
H−1
E

(√ n

n0
r

1
4Xe0

)
=
n− 2
√
nn0

(
v>1 X

>G1(0)Xe0 + v>1 X
>G1(0)XEI−1

2 E>X>G1(0)Xe0

)
+
n− 2
√
nn0

r−
1
4

(
u>1 G1(0)Xe0 + u>1 G1(0)XEI−1

2 E>X>G1(0)Xe0

)
.

Similarly to the derivation of the leading term of Â>Σ̂−1Â, by (4.9), (4.10) and (D.7), after
elementary calculation, we arrive at

Â>µd =
1

1− r
µ>d Σ−1µd +O≺

(
n−

1
2 (‖u1‖2 + ‖u1‖)

)
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and

Â>µ̂0 − Â>µ0 =

√
n

n0

r

1− r
v>1 e0 +O≺

(
n
− 1

2
0 (r

1
2 + ‖u1‖)

)
.

Finally, analogously to Â>µ̂0 − Â>µ0, the estimates with the triple (µ0, µ̂0,
√
n/n0 e0)

replaced by (µ1, µ̂1,
√
n/n1 e1) or (µd, µ̂d,v1) can be derived similarly. Hence we skip the

details and conclude the proof of Lemma 3.

D.2 Proof of Proposition 2

In this part, we show the proof of Proposition 2. First, we introduce the Green function
representation of F̂ (Σ̂, µ̂0)− F (Σ,µ0) based on Lemma 3 and Remark 3.

Lemma D.1 Let F̂ (Σ̂, µ̂0) and F (Σ,µ0) be defined in (3.3) and (3.2), respectively. Sup-
pose that Assumption 1 holds. Then,

F̂ (Σ̂, µ̂0)− F (Σ,µ0) =

[
1− r

2
√
µ̂>d Σ̂−1µ̂d

(
1− 2r

(1− r)4
v>1
(
zG2 − zm2

)
v1 −

r−
1
2

(1− r)2
v>1

(
(zG2)′ − (zm2)′

)
v1

+
r−

1
2

(1− r)2
u>1 (G1 −m1)u1 − r−1u>1 (G2

1 −m′1)u1

+
2r−

1
4

(1− r)2
u>1 G1Xv1 −

2r−
3
4

1− r
u>1 G2

1Xv1

)
Φ−1(1− α)

+

√
n

n0

( 1

(1− r)2
v>1 (zG2 − zm2)e0 +

r−
1
4

1− r
u>1 G1Xe0

)]∣∣∣∣∣
z=0

+O≺
(
n−1(r

1
2 +∆

1
2
d )
)
. (D.19)

Remark 5 Here we emphasize again that z = 0 is a removable singularity of zG2(z) and
zm2(z). Additionally, zG2(z) 6= 0 and zm2(z) 6= 0 when z = 0 (see (D.3)). By (4.12), (4.9)
and (4.10), it is not hard to see that the factor before Φ−1(1 − α) on the RHS of (D.19)

is of order O≺(n−1/2∆
1/2
d ). Similarly, the term in the fourth line of (D.19) is also crudely

bounded by O≺(n−1/2∆
1/2
d ).

Here to the rest of this subsection, we will adopt the notation (M)uv as the quadratic
form u∗Mv for arbitrary two column vectors u,v of dimension a, b, respectively, and any
a × b matrix M . In light of Lemma D.1 and Remark 5, it suffices to study the joint
distribution of the following terms with appropriate scalings which make them order one
random variables,

√
n√
r

(
zG2 − zm2

)
v̄1v̄1

,

√
n

r

(
(zG2)′ − (zm2)′

)
v̄1v̄1

,

√
n√
r

(G1 −m1)ū1ū1 ,

√
n

r
(G2

1 −m′1)ū1ū1 ,

√
nr−

1
4 (G1X)ū1v̄1 ,

√
nr−

3
4 (G2

1X)ū1v̄1 ,

√
n√
r

(zG2 − zm2)v̄1e0 ,
√
nr−

1
4 (G1X)ū1e0 . (D.20)
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Here we adopt the notation ū to denote the normalized version of a generic vector u, i.e.

ū =

{ u
‖u‖ , if ‖u‖ 6= 0 ;

0, otherwise .

And for a fixed deterministic column vector c :=
(
c10, · · · , c14, c20, c21, c22

)> ∈ R8, we
define for z ∈ D

P ≡ P(c, z) :=

√
n√
r
c10(G1 −m1)ū1ū1 +

√
n

r
c11(G2

1 −m′1)ū1ū1

+

√
n

r
1
4

c12(G1X)ū1v̄1 +

√
n

r
1
4

c13(G1X)ū1e0 +

√
n

r
3
4

c14(G2
1X)ū1v̄1

+

√
n√
r
c20

(
zG2 − zm2

)
v̄1v̄1

+

√
n√
r
c21(zG2 − zm2)v̄1e0 +

√
n

r
c22

(
(zG2)′ − (zm2)′

)
v̄1v̄1

.

(D.21)

Further we define M ≡ M(z) to be a 8-by-8 block diagonal matrix such that M =
diag(M1,M2,M3), and the main-diagonal blocksM1,M2,M3 are all symmetric matrices
with dimension 2, 3, 3, respectively. The entrywise definition of the diagonal blocks are
given below.

With certain abuse of notation, in this part, let us use Ma(i, j) to denote the (i, j)-th
entry of matrix Ma, a = 1, 2, 3. For the matrix M1, it is defined entrywise by

M1(1, 1) = 2r−
3
2m2

1(zm1)′ , M1(1, 2) = r−2m2
1(zm1)′′ + 2r−2m1m

′
1(zm1)′ ,

M1(2, 2) = 2r−
5
2

(m2
1(zm1)′′′

3!
+m1m

′
1(zm1)′′ + (m′1)2(zm1)′

)
.

The entries of M2 are given by

M2(1, 1) = − m′1(zm2)

r(1 +
√
rm1)

, M2(1, 2) =
m′1(zm2)

r(1 +
√
rm1)

√
n1

n
,

M2(1, 3) =
1

2

[
− m′′1(zm2)

r
3
2 (1 +

√
rm1)

− m′1(zm2)′

r
3
2 (1 +

√
rm1)

+
(m′1)2(zm2)

r(1 +
√
rm1)2

]
,

M2(2, 2) = − m′1(zm2)

r(1 +
√
rm1)

,

M2(2, 3) = −1

2

[
− m′′1(zm2)

r
3
2 (1 +

√
rm1)

− m′1(zm2)′

r
3
2 (1 +

√
rm1)

+
(m′1)2(zm2)

r(1 +
√
rm1)2

]√n1

n
,

M2(3, 3) = − 1

r2(1 +
√
rm1)

(m′′′1 (zm2)

3!
+
m′′1(zm2)′

2

)
+

m′1

r
3
2 (1 +

√
rm1)2

(m′′1(zm2)

2
+m′1(zm2)′

)
.
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Further, we define M3 entrywise by

M3(1, 1) = − 2(zm2)′(zm2)

r
3
2 (1 +

√
rm1)

, M3(1, 2) =
2(zm2)′(zm2)

r
3
2 (1 +

√
rm1)

√
n1

n
,

M3(1, 3) = − (zm2)′′(zm2)

r2(1 +
√
rm1)

+
m′1(zm2)′(zm2)

r
3
2 (1 +

√
rm1)2

−
(
(zm2)′

)2
r2(1 +

√
rm1)

,

M3(2, 2) = − (zm2)′(zm2)

r
3
2 (1 +

√
rm1)

(
1 +

n1

n

)
,

M3(2, 3) =
(
− (zm2)′′(zm2)

r2(1 + rm1)
+
m′1(zm2)′(zm2)

r
3
2 (1 + rm1)2

−
(
(zm2)′

)2
r2(1 + rm1)

)(
−
√
n1

n

)
,

M3(3, 3) = 2
[
− 1

r
5
2 (1 +

√
rm1)

((zm2)′′′(zm2)

3!
+

(zm2)′′(zm2)′

2

)
+

m′1
r2(1 +

√
rm1)2

((zm2)′′(zm2)

2
+
(
(zm2)′

)2)]
.

Next, we set

z := in−K (D.22)

for some sufficiently large constant K > 0. This setting allows us to use the high probability
bounds for the quadratic forms of Ga1 , (zG2)(a), (X>Ga1 ) for a = 0, 1, even when we estimate
their moments. To see this, first we can always bound those quadratic forms deterministi-
cally by (=z)−s for some fixed s > 0, up to some constant. Then according to Lemma 2 (ii)
and Proposition 1 with Remark 2, we get that the high probability bound in Remark 2 can
be directly applied in calculations of the expectations.

With all the above notations, we introduce the following proposition.

Proposition D.1 Let P be defined above and z given in (D.22). Denote by ϕn(·) the
characteristic function of P. Suppose that p/n→ [0, 1). Then, for |t| � n1/2,

ϕ′n(t) = −
(
c>Mc

)
tϕn(t) +O≺((|t|+ 1)n−

1
2 ) .

The proof of Proposition D.1 will be postponed. With the aid of Lemma D.1 and
Proposition D.1, we can now finish the proof of Proposition 2.
Proof (Proof of Proposition 2) First by Proposition D.1, we claim that the random vector(√

n√
r

(G1 −m1)ū1ū1 ,

√
n

r
(G2

1 −m′1)ū1ū1 ,

√
n

r
1
4

(G1X)ū1v̄1 ,

√
n

r
1
4

(G1X)ū1e0 ,

√
n

r
3
4

(G2
1X)ū1v̄1 ,

√
n√
r

(
zG2 − zm2

)
v̄1v̄1

,

√
n√
r

(zG2 − zm2)v̄1e0 ,

√
n

r

(
(zG2)′ − (zm2)′

)
v̄1v̄1

)
(D.23)

is asymptotically Gaussian with mean 0 and covariance matrixM at z = 0. To see this, we
only need to claim that P is asymptotically normal with mean 0 and variance c>Mc due to
the arbitrariness of the fixed vector c. Let us denote by ϕ0(t) the characteristic function of
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standard normal distribution with mean 0 and variance c>Mc which takes the expression
ϕ0(t) = exp{−

(
c>Mc

)
t2/2}. According to Proposition D.1, for |t| � n1/2, we have

d

dt

ϕn(t)

ϕ0(t)
=
ϕ′n(t) +

(
c>Mc

)
tϕn(t)

ϕ0(t)
= O≺

(
(|t|+ 1)e

(
c>Mc

)
t2/2n−

1
2

)
.

Notice the fact ϕ(0)/ϕ0(0) = 1, we shall have

ϕn(t)

ϕ0(t)
− 1 =

 O≺

(
e

(
c>Mc

)
t2/2n−

1
2

)
, 1 < |t| �

√
n ;

O≺(|t|n−
1
2 ), |t| ≤ 1 .

This further implies that

ϕn(t) = ϕ0(t) +O≺(n−
1
2 ), for 1 < |t| �

√
n; ϕn(t) = ϕ0(t) +O≺(|t|n−

1
2 ), for |t| ≤ 1 .

(D.24)

We can then conclude the asymptotical distribution of P.

Recall the Green function representation in (D.19). Set

Θα :=

[
(1− r)

√
n

2
√
µ̂>d Σ̂−1µ̂d

(
1− 2r

(1− r)4

(
zG2 − zm2

)
v1v1
− 1

r
1
2 (1− r)2

(
(zG2)′ − (zm2)′

)
v1v1

+
1

r
1
2 (1− r)2

(G1 −m1)u1u1 −
1

r
(G2

1 −m′1)u1u1

+
2

r
1
4 (1− r)2

(G1X)u1v1 −
2

r
3
4 (1− r)

(G2
1X)u1v1

)
Φ−1(1− α)

+
n
√
n0

( 1

(1− r)2
(zG2 − zm2)v1e0 +

1

r
1
4 (1− r)

(G1X)u1e0

)]/√(
(1− r)µ̂>d Σ̂−1µ̂d −

n2r

n0n1

)
,

which is a linear combination of the components of the vector in (D.23). Therefore by
elementary calculations of the quadratic form of M with the identities

m1(0) =

√
r

1− r
, m′1(0) =

r

(1− r)3
, m′′1(0) =

2r
3
2 (1 + r)

(1− r)5
, m′′′1 (0) =

6r2(1 + 3r + r2)

(1− r)7

m̂2(0) := (zm2(z))
∣∣∣
z=0

= r − 1, m̂′2(0) =
r

3
2

1− r
, m̂′′2(0) =

2r2

(1− r)3
, m̂′′′2 (0) =

6r
5
2 (1 + r)

(1− r)5
,

together with the estimate

µ>d Σ−1µd

(1− r)µ̂>d Σ̂−1µ̂d − n2r
n0n1

= 1 +O≺(n−
1
2 )

which follows from Lemma 3, we can finally prove (4.17) and the fact Θα ' N (0, V̂ ).
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In the end, we show the convergence rate of Θα again using Proposition D.1. It suffices
to obtain the convergence rate of the general form of linear combination, i.e. P. We follow
the derivations for Berry-Esseen bound, more precisely, by Esseen’s inequality, we have

sup
x∈R

∣∣Fn(x)− F0(x)
∣∣ ≤ C1

∫ T

0

|ϕn(t)− ϕ0(t)|
t

dt+
C2

T

for some fixed constants C1, C2 > 0. Here we use Fn(x), F0(x) to denote the distribution
functions of P and centred normal distribution with variance c>Mc, respectively. Applying
(D.24), and choose T =

√
n, we then get

sup
x∈R

∣∣Fn(x)− F0(x)
∣∣ ≤ C1

∫ T

1
t−1O≺(n−

1
2 )dt+ C1

∫ 1

0
t−1O≺(|t|n−

1
2 )dt+ C2n

− 1
2 = O≺(n−

1
2 ) .

This indicates that the convergence rate of P is O≺(n−
1
2 ), and hence the same rate applies

to Θα.

Remark 6 The arguments of the convergence rate of Θ̃α of Remark 4, which leads to the
high probability bound in Corollary 1 is actually the same, since Θ̃α again takes the form of
P with appropriate c.

D.3 Proofs of Lemma D.1 and Proposition D.1

In the last subsection, we prove the technical results from Section D.2, i.e., Lemma D.1 and
Proposition D.1.
Proof (Proof of Lemma D.1)

Recall the definitions of F̂ (Σ̂, µ̂0) and F (Σ,µ0) in (3.3) and (3.2). In light of Lemma 3, it

suffices to further identify the differences 1
(1−r)2 Â

>Σ̂Â−Â>ΣÂ and Â>µ̂0−
√

n
n0

r
1−rv

>
1 e0−

Â>µ0. We start with the first term. We write

1

(1− r)2
Â>Σ̂Â− Â>ΣÂ =

[ n− 2

n(1− r)2
v>1 X

>H−1
E Xv1 −

(n− 2

n

)2
r−

1
2 v>1 X

>H−2
E Xv1

]
+
[ n− 2

n(1− r)2
√
r
u>1 H

−1
E u1 −

(n− 2

n
√
r

)2
u>1 H

−2
E u1

]
+ 2
[ n− 2

n(1− r)2r
1
4

v>1 X
>H−1

E u1 −
(n− 2

n

)2
r−

3
4 v>1 X

>H−2
E u1

]
=: D1 +D2 +D3 ,

in which we used (2.4), (D.10), (D.17), and the shorthand notation u1 = Σ−
1
2µd. In the

sequel, we estimate D1, D2, D3 term by term. Before we commence the details, we first
continue with (D.8) to seek for the explicit form of one higher order term by resolvent
expansion formula,

I−1
2 =

1

1− r
I2 +

1

(1− r)2
∆ +O≺(n−1r) , (D.25)
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where

∆ =
(
E>
(
zG2(z)− zm2(z)Ip

)
E
)∣∣∣
z=0

,

and ‖∆‖ = O≺(n−
1
2 r

1
2 ) by (4.9). Here in (D.25) O≺(n−1r) represents an error matrix

which is stochastically bounded by r/n in operator norm. We remark here that the above
estimate will be frequently used in the following calculations.

Let us start with D1. Similarly to (D.6), by applying Woodbury matrix identity, we get

D1 =
n− 2

n(1− r)2

(
v>1 X

>G1Xv1 + v>1 X
>G1XEI−1

2 E>X>G1Xv1

)
−
(n− 2

n

)2
r−

1
2

(
v>1 X

>G2
1Xv1 + 2v>1 X

>G2
1XEI−1

2 E>X>G1Xv1

)
−
(n− 2

n

)2
r−

1
2 v>1 X

>G1XEI−1
2 E>X>G2

1XEI−1
2 E>X>G1Xv1 .

Hereafter, for brevity, we drop the z-dependence from the notations G1(z), G2(z) and
m1(z),m2(z) and set z = 0 but omit this fact from the notations. Recall (D.11) and
(D.18). Analogously, we can compute

D1 =
1

(1− r)2
v>1
(
zG2 − zm2

)
v1 − r−

1
2 v>1

((
zG2

)′ − (zm2)′
)
v1 +

2(1 + zm2)

(1− r)3
v>1 (zG2 − zm2)EE>v1

+
(1 + zm2)2

(1− r)4
v>1 EE

>(zG2 − zm2(z))EE>v1 −
2(1 + zm2)

(1− r)
√
r

v>1

(
(zG2)′ − (zm2)′

)
EE>v1

− 2(zm2)′

(1− r)
√
r
v>1 EE

>(zG2 − zm2)v1 −
2(zm2)′(1 + zm2)

(1− r)2
√
r

v>1 EE
>(zG2 − zm2(z))EE>v1

− 2(1 + zm2)(zm2)′

(1− r)2
√
r

v>1 (zG2 − zm2)EE>v1 −
(1 + zm2)2

(1− r)2
√
r
v>1 EE

>
(

(zG2)′ − (zm2)′
)
EE>v1

− 2(1 + zm2)2(zm2)′

(1− r)3
√
r

v>1 EE
>(zG2 − zm2(z)

)
EE>v1 +O≺(n−1r)

=
1− 2r

(1− r)4
v>1
(
zG2 − zm2

)
v1 −

1

(1− r)2
√
r
v>1

((
zG2

)′ − (zm2)′
)
v1 +O≺(n−1r) .

(D.26)

Next, we turn to estimate D2. Similarly to D1, by Woodbury matrix identity, we have

D2 =
n− 2

n(1− r)2
√
r

(
u>1 G1u1 + u>1 G1XEI−1

2 E>X>G1u1

)
−
(n− 2

n
√
r

)2(
u>1 G2

1u1 + 2u>1 G2
1XEI−1

2 E>X>G1u1

)
−
(n− 2

n
√
r

)2
u>1 G1XEI−1

2 E>X>G2
1XEI−1

2 E>X>G1u1 .
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Then, by (D.25), it is not hard to derive that

D2 =
r−

1
2

(1− r)2

(
u>1 G1u1 +

1

1− r

1∑
i=0

(u>1 G1Xei)
2 +

1

(1− r)2

1∑
i,j=0

(u>1 G1Xei)(u
>
1 G1Xej)

(
e>i (zG2 − zm2)ej

))

− 1

r

(
u>1 G2

1u1 +
2

1− r

1∑
i=0

(u>1 G1Xei)(u
>
1 G2

1Xei) +
1

(1− r)2

1∑
i,j=0

(u>1 G2
1Xei)(u

>
1 G1Xej)

(
e>i (zG2 − zm2)ej

))

− 1

(1− r)2r

1∑
i,j=0

(u>1 G1Xei)(u
>
1 G1Xej)

(
e>i (zG2)′ej

)
− 2

(1− r)3r

1∑
i,j,k=0

(u>1 G1Xei)(u
>
1 G1Xek)

(
e>i (zG2)′ej

)(
e>j (zG2 − zm2)ek

)
+O≺(n−1‖u1‖2)

=
1

(1− r)2
√
r
u>1 (G1 −m1)u1 − r−1u>1 (G2

1 −m′1)u1 +O≺(n−1‖u1‖2) , (D.27)

where in the last step we applied the estimate u>1 Ga1Xei = O≺(n−1/2r1/4+(a−1)/2‖u1‖), a =
1, 2 and e>i (zG2)′ej = O≺(r3/2) which follow from (4.10) and (4.9). Further, we also used
the trivial identity m1(0)

√
r/(1− r)2 = m′1(0).

Next, we estimate D3 as follows,

D3 =
2(n− 2)

n(1− r)2r
1
4

(
v>1 X

>G1u1 + v>1 X
>G1XEI−1

2 E>X>G1u1

)
− 2
(n− 2

n

)2
r−

3
4

(
v>1 X

>G2
1u1 + v>1 X

>G2
1XEI−1

2 E>X>G1u1 + v>1 X
>G1XEI−1

2 E>X>G2
1u1

)
− 2
(n− 2

n

)2
r−

3
4 v>1 X

>G1XEI−1
2 E>X>G2

1XEI−1
2 E>X>G1u1

=
2

(1− r)2r
1
4

(
v>1 X

>G1u1 +
1

1− r
v>1 X

>G1XEE
>X>G1u1

)
− 2r−

3
4

(
v>1 X

>G2
1u1 +

1

1− r
v>1 X

>G2
1XEE

>X>G1u1 +
1

1− r
v>1 X

>G1XEE
>X>G2

1u1

)
− 2

(1− r)2
r−

3
4 v>1 X

>G1XEE
>X>G2

1XEE
>X>G1u1 +O≺(n−1r

1
2 ‖u1‖) .

Further, by (4.9), (4.10), and (D.7), we have

D3 =
2r−

1
4

(1− r)2
v>1 X

>G1u1 −
2r−

3
4

1− r
v>1 X

>G2
1u1 +O≺(n−1r

1
2 ‖u1‖) . (D.28)

Combining (D.26), (D.27) and (D.28), we conclude that

1

(1− r)2
Â>Σ̂Â− Â>ΣÂ

=
1− 2r

(1− r)4
v>1
(
zG2 − zm2

)
v1 −

r−
1
2

(1− r)2
v>1

(
(zG2)′ − (zm2)′

)
v1 +

r−
1
2

(1− r)2
u>1 (G1 −m1)u1

− r−1u>1 (G2
1 −m′1)u1 +

2r−
1
4

(1− r)2
u>1 G1Xv1 −

2r−
3
4

1− r
u>1 G2

1Xv1 +O≺
(
n−1(‖u1‖2 + r)

)
.

(D.29)
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Then, expanding
√
Â>ΣÂ around

√
Â>Σ̂Â/(1− r), we finally obtain

√
Â>Σ̂Â

1− r
−
√
Â>ΣÂ =

1− r

2
√
Â>Σ̂Â

(
1− 2r

(1− r)4
v>1
(
zG2 − zm2

)
v1 −

r−
1
2

(1− r)2
v>1

(
(zG2)′ − (zm2)′

)
v1

+
r−

1
2

(1− r)2
u>1 (G1 −m1)u1 − r−1u>1 (G2

1 −m′1)u1 +
2r−

1
4

(1− r)2
u>1 G1Xv1 −

2r−
3
4

1− r
u>1 G2

1Xv1

)
+O≺

(
n−1(r

1
2 + ‖u1‖)

)
.

Next, analogously, we have

Â>µ̂0 −
√

n

n0

r

1− r
v>1 e0 − Â>µ0

=
n− 2
√
nn0

(
v>1 X

>G1Xe0 + v>1 X
>G1XEI−1

2 E>X>G1Xe0

)
+
n− 2
√
nn0

r−
1
4

(
u>1 G1Xe0 + u>1 G1XEI−1

2 E>X>G1Xe0

)
−
√

n

n0

r

1− r
v>1 e0

=

√
n

n0

(
v>1 (zG2 − zm2)e0 + v>1 X

>G1XEI−1
2 E>X>G1Xe0 −

r2

1− r
v>1 e0

)
+

√
n

n0
r−

1
4

(
u>1 G1Xe0 + u>1 G1XEI−1

2 E>X>G1Xe0

)
+O≺(n−

1
2n
− 1

2
0 r

1
2 (r

1
2 + ‖u1‖)) .

Employing (D.25) and the estimates (4.9), (4.10) with (D.7), we can further get that

Â>µ̂0 −
√

n

n0

r

1− r
v>1 e0 − Â>µ0

=

√
n

n0

( 1

(1− r)2
v>1 (zG2 − zm2)e0 +

r−
1
4

1− r
u>1 G1Xe0

)
+O≺

(
n−

1
2n
− 1

2
0 r

1
2 (r

1
2 + ‖u1‖)

)
.

(D.30)

In light of (D.30) and (D.29), together with the fact ‖u1‖2 = ∆d, we can now conclude the
proof of Lemma D.1.

In the sequel, we state the proof of Proposition D.1 which will rely on Gaussian inte-
gration by parts. For simplicity, we always drop z-dependence from the notations G1(z),
G2(z) and m1(z),m2(z). We also fix the choice of z in (D.22) and omit this fact from the
notations.

Recall the definition of P in (D.21). For brevity, we introduce the shorthand notation

y0 := c10ū1, y1 := c11ū1, ỹ0 := c12v̄1 + c13e0, ỹ1 := c14v̄1,

η0 := c20v̄1 + c21e0, η1 := c22v̄1 . (D.31)
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Using the basic identity zG2 = X>G1X − In, we can simplify the expression of P in (D.21)
to

P =
√
n

1∑
t=0

(
r−

1+t
2 (G(t)

1 −m
(t)
1 )ū1yt + r−

1+2t
4 (G(t)

1 X)ū1ỹt

+ r−
1+t
2

(
(X>G1X)(t) − (1 + zm2)(t)

)
v̄1ηt

)
. (D.32)

Further, by Proposition 1 and Remark 2, it is easy to see

P = O≺(1) . (D.33)

Using the identity

Gt1 = z−1(HGt1 − Gt−1
1 ) , t = 1, 2 ,

we can rewrite

√
n
∑
t=0,1

r−
1+t
2 (G(t)

1 −m
(t)
1 )ū1yt

=

√
n

r

(
1

(1 + r−
1
2m2)z

(HG2
1)ū1y1 +

r−
1
2m2

1 + r−
1
2m2

(G2
1)ū1y1

+
( r−

1
2 (zm2)′

(1 + r−
1
2m2)z

− r−
1
2 (zm2)′ + 1

(1 + r−
1
2m2)z

)
(G1)ū1y1 −m′1

(
ū1

)>
y1

)

+

√
n√
r

(
1

(1 + r−
1
2m2)z

(HG1)ū1y0 +
r−

1
2m2

1 + r−
1
2m2

(G1)ū1y0 −
1

(1 + r−
1
2m2)z

(
ū1

)>
y0 −m1

(
ū1

)>
y0

)

=

√
n

r

(
1

(1 + r−
1
2m2)z

(HG2
1)ū1y1 +

r−
1
2m2

1 + r−
1
2m2

(G2
1)ū1y1 +

r−
1
2 (zm2)′

(1 + r−
1
2m2)z

(G1)ū1y1

)

+
m′1
m1

√
n

r

(
1

(1 + r−
1
2m2)z

(HG1)ū1y1 +
r−

1
2m2

1 + r−
1
2m2

(G1)ū1y1

)

+

√
n√
r

(
1

(1 + r−
1
2m2)z

(HG1)ū1y0 +
r−

1
2m2

1 + r−
1
2m2

(G1)ū1y0

)
=: T11 +T12 +T13 . (D.34)

Here we used the first and last identities in (D.1) to gain some cancellations. Particularly,
from first step to second step, we also do the derivation

−r
− 1

2 (zm2)′ + 1

(1 + r−
1
2m2)z

(G1)ū1y1 −m′1
(
ū1

)>
y1 =

m′1
m1

(
(G1)ū1y1 −m1

(
ū1

)>
y1

)
=
m′1
m1

(
1

(1 + r−
1
2m2)z

(HG1)ū1y1 +
r−

1
2m2

1 + r−
1
2m2

(G1)ū1y1

)
.
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Next, we also rewrite

√
n

1∑
t=0

r−
1+2t

4 (G(t)
1 X)ū1ỹt

=
√
nr−

3
4

(
(G2

1X)ū1ỹ1 +
r

1
2m′1

1 + r
1
2m1

(G1X)ū1ỹ1

)
− r−

1
4m′1

1 + r
1
2m1

√
n(G1X)ū1ỹ1 +

√
nr−

1
4 (G1X)ū1ỹ0

=: T21 +T22 +T23 , (D.35)

and

√
n

1∑
t=0

r−
1+t
2

(
(X>G1X)(t) − (1 + zm2)(t)

)
v̄1ηt

=

√
n

r

(
(X>G2

1X)v̄1η1 +

√
rm′1

1 +
√
rm1

(X>G1X)v̄1η1 −
√
rm′1

1 +
√
rm1

(
v̄1

)>
η1

)
−
√
rm′1

1 +
√
rm1

√
n

r

(
(X>G1X)v̄1η1 −

(
1− 1 +

√
rm1√

rm′1
(zm2)′

)(
v̄1

)>
η1

)
+

√
n√
r

(
(X>G1X)v̄1η0 − (1 + zm2)

(
v̄1

)>
η0

)
=

√
n

r

(
(X>G2

1X)v̄1η1 +

√
rm′1

1 +
√
rm1

(zG2)v̄1η1

)
−
√
rm′1

1 +
√
rm1

√
n

r

(
1

1 +
√
rm1

(X>G1X)v̄1η1 +

√
rm1

1 +
√
rm1

(zG2)v̄1η1

)
+

√
n√
r

(
1

1 +
√
rm1

(X>G1X)v̄1η0 +

√
rm1

1 +
√
rm1

(zG2)v̄1η0

)
=: T31 +T32 +T33 , (D.36)

where we used the second identity in (D.5) and the identities

1− 1 +
√
rm1√

rm′1
(zm2)′ = 1 + zm2 ,

√
rm1

1 +
√
rm1

= 1 + zm2 . (D.37)

We remark here that (D.37) can be easily checked by applying the identities in (D.1), the
first equation in (4.3), and also the identity obtained by taking derivative w.r.t z for both
sides of the first equation in (4.3), i.e.,

√
rm2

1 + 2z
√
rm1m

′
1 +m1 + (z − 1/

√
r +
√
r)m′1 = 0 .

46



Non-splitting Neyman-Pearson Classifiers

Before we commence the proof of Proposition D.1, let us first state below the derivative
of P, which follows from a direct calculation

∂P
∂xij

= −
√
n

∑
a1,a2≥1

a=a1+a2≤3

r−
a−1
2

(
(Ga11 ū1)i(X

>Ga21 ya−2)j + (X>Ga11 ū1)j(Ga21 ya−2)i

)

−
√
n

∑
a1,a2≥1

a=a1+a2≤3

r−
1+2(a−2)

4

(
(Ga11 ū1)i((zG2)(a2−1)ỹa2)j + (X>Ga11 ū1)j(Ga21 Xỹa−2)i

)

−
√
n

∑
a1,a2≥1

a=a1+a2≤3

r−
a−1
2

(
(Ga11 Xv̄1)i

(
(zG2)(a2−1)ηa−2

)
j

+ (Ga11 Xηa−2)i
(
(zG2)(a2−1)v̄1

)
j

)
.

(D.38)

Now, let us proceed to the proof of Proposition D.1.

Proof (Proof of Proposition D.1)

By the definition of characteristic function, we have, for t ∈ R,

ϕn(t) = IEeitP , ϕ′n(t) = iIEPeitP .

We will estimate ϕ′n(t) via Gaussian integration by parts. Recall the representation of
P in (D.32) together with (D.34)-(D.36), we may further express

ϕ′n(t) = iIE
3∑

i,j=1

Tijh(t) , h(t) := eitP .

For convenience, we use the following shorthand notation for summation

∑
i,j

:=

p∑
i=1

n∑
j=1

.

Since all entries xij are i.i.d N (0, 1/
√
np), applying Gaussian integration by parts leads to

iIE

√
n

r
(HG2

1)ū1y1 h(t) = i

√
n

r

∑
i,j

IEū1ixij(X
>G2

1y1)j h(t) = i
r−

3
2

√
n

IE
∑
i,j

ū1i
∂(X>G2

1y1)jh(t)

∂xij

= iIE
(√

nr−
3
2 (G2

1)ū1y1 −
r−

3
2

√
n

(G1HG2
1)ū1y1 −

r−
3
2

√
n

(G2
1HG1)ū1y1

−
√
nr−

3
2 (G2

1)ū1y1

TrX>G1X

n
−
√
nr−

3
2 (G1)ū1y1

TrX>G2
1X

n

)
h(t)

+
i2t√
nr3

IE
∑
i,j

ū1i(X
>G2

1y1)j
∂P
∂xij

h(t) .
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Then, by Proposition 1, Remark 2, and the fact m
(a)
1 (z) = O(r(1+a)/2) for a = 0, 1, 2 owing

to the choice of z in (D.22), we further have

iIE

√
n

r
(HG2

1)ū1y1h(t) = iIE

(
−
√
nr−

3
2 (G2

1)ū1y1

Tr zG2

n
−
√
nr−

3
2 (G1)ū1y1

Tr (zG2)′

n

− n−
1
2 r−

3
2 (zG1)′′ū1y1

)
h(t) +

i2t√
nr3

IE
∑
i,j

ū1i(X
>G2

1y1)j
∂P
∂xij

h(t)

= −i
√
nr−

3
2 IE
(
zm2(G2

1)ū1y1 + (zm2)′(G1)ū1y1

)
h(t)

+
i2t√
nr3

IE
∑
i,j

ū1i(X
>G2

1y1)j
∂P
∂xij

h(t) +O≺(p−
1
2 ) . (D.39)

Next, plugging in (D.38), we have the term
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It is easy to see that the RHS of the above equation is a linear combination of the expec-
tations of the terms taking the following forms
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Here ϑi, i = 1, 2, 3, 4 represent for vectors of suitable dimension and bi = 1, 2, for i = 1, 2, 3.

By (4.9), (4.10) and the fact m
(a)
1 (z) = O(r(1+a)/2) for a ∈ N, it is easy to observe that

except for the first term in (D.41), all the others can be bounded by O≺(tp−1/2). For
instance, for the factor
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)
, we can use the following estimates which

are consequences of (4.10),
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Therefore, by the above discussion, we can further simplify (D.40) to get

i2t√
nr3

IE
∑
i,j
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Combining (D.39) and (D.42), by the definition of T11 in (D.34) and the fact m1(z) =
O(
√
r), we get
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)]
ϕn(t) +O≺((|t|+ 1)n−

1
2 ). (D.43)

By similar arguments, we can also derive
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ū1

)>
y0 y>1 ū1
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and
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Next, we turn to study iIET2ih(t), i = 1, 2, 3, as defined in (D.35). We first do the
decompositions of T2i’s below
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And we also remark here, these seemingly artificial decompositions, of the form G1X =
sG1X+(1−s)G1X for instance, in the terms T2i’s, are used to facilitate our later derivations.
More specifically, to prove Proposition D.1, we will derive a self-consistent equation for the
characteristic function of P, for which we will need to apply the basic integration by parts
formula for Gaussian variables. In the sequel, very often, we will apply the integration by
parts to a part such as sG1X and meanwhile keep the other part (1 − s)G1X untouched.
One will see that applying integration by parts only partially will help us gain some simple
algebraic cancellations. Similar decompositions will also appear in the estimates of T31

term.
In the sequel, we only show the details of the estimate for the T21 term. The other two

terms can be estimated similarly, and thus we omit the details. By Gaussian integration by
parts, we have
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1 ū1)ih(t)

∂xij

= −iIE
(2r−

5
4

√
n

(G3
1X)ū1ỹ1 +
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TrG1

p
+
√
nr−

1
4 (G1X)ū1ỹ1
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where in the last step we used (4.10), (4.7) and the fact m
(a)
1 (z) = O(r(1+a)/2) for a = 0, 1.

Plugging the above estimate into the first term in iIET21h(t) which corresponds to the the
first term inside the parenthesis in (D.46), we easily see that
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Similarly to (D.40)- (D.42), we can also derive that

r−
5
4

√
n
tIE
∑
i,j
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which leads to

iIET21h(t) =
t

1 +
√
rm1

[
m′′1

2r
3
2
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By analogous derivations, we can get the following estimates
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In the sequel, we focus on the derivation of the estimate of iIET31h(t) and directly
conclude the estimates of iIET32h(t), iIET33h(t) without details, since we actually only
need to make some adjustments to the estimate of iIET31h(t). First, we do the following
artificial decomposition for T31,
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Then, by Gaussian integration by parts, following from (4.10) and (4.7) we have
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This combined with definition of T31, implies that
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Referring to (D.47) with slight adjustments, we can easily obtain that
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Similarly, we also get
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and
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Combining (D.43)- (D.45), (D.48)- (D.50) and (D.51)- (D.53), together with the def-
inition of y0,1, ỹ0,1,η0,1 in (D.31), after elementary computations, we can then conclude
that

ϕ′(t) = iIE
3∑

i,j=1

Tijh(t) = −
(
c>Mc

)
tϕn(t) +O≺((|t|+ 1)n−

1
2 ) .

Hence, we finish the proof of Proposition D.1.
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Appendix E. Additional numerical results

E.1 Additional figures and tables for simulation settings in Section 5

Figures 4, 5 and 6, Tables 2, 3 correspond to Examples 1 in Section 5. Figure 7 corresponds
to Examples 2.
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Figure 4: Examples 1a and 1b, type I and type II errors for competing methods with
increasing balanced sample sizes (1a) and increasing n0 only (1b) .

(a) Example 1a, type I error (b) Example 1a, type II error

(c) Example 1b, type I error (d) Example 1b, type II error
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Figure 5: Examples 1c, 1c’ and 1c*, type I and type II error for competing methods with
increasing dimension p and different δ’s: δ = 0.1 in Example 1c, δ = 0.05 in Example 1c’,
and δ = 0.01 in Example 1c*.

(a) Example 1c, type I error (b) Example 1c, type II error

(c) Example 1c’, type I error (d) Example 1c’, type II error

(e) Example 1c*, type I error (f) Example 1c*, type II error
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Figure 6: Examples 1d and 1d’, imbalanced sample sizes with larger n1. Type I and type
II error for competing methods with increasing dimension p, but different δ’s: δ = 0.1 in
Example 1d and δ = 0.05 in Example 1d’.

(a) Example 1d, type I error (b) Example 1d, type II error

(c) Example 1d’, type I error (d) Example 1d’, type II error

E.2 Lung cancer dataset continued

For the lung cancer dataset we explored in the real data section, we selected another set of
parameters α = 0.1, and δ = 0.4 for a comparison among all five methods, including the
umbrella algorithm based NP methods. We present the results in Table 10. We observe
that, eLDA dominates NP-slda, NP-penlog, and NP-svm in both the type I and the type II
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Figure 7: Examples 2a and 2b, type I and type II error for competing methods with increas-
ing dimension p. Example 2a has balanced sample sizes and Example 2b has imbalanced
sample sizes.

(a) Example 2a, type I error (b) Example 2a type II error

(c) Example 2b, type I error (d) Example 2b, type II error

errors. pNP-lda again produces a type I error of 0 and a type II error of 1: not informative
at all. eLDA outperforms all other competing methods.
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Table 10: Lung cancer dataset

NP-slda NP-penlog NP-svm pNP-lda eLDA

α = 0.1
δ = 0.4

type I error .083 .078 .081 .000 .031
type II error .015 .026 .022 1.000 .013

observed violation rate .49 .45 .46 .00 .28
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