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Abstract

Information-theoretic measures have been widely adopted for machine learning (ML) fea-
ture design. Inspired by this, we look at the relationship between information loss in the
Shannon sense and the operation loss in the minimum probability of error (MPE) sense
when considering a family of lossy representations. Our first result offers a lower bound on a
weak form of information loss as a function of its respective operation loss when adopting a
discrete encoder. When considering a general family of lossy continuous representations, we
show that a form of vanishing information loss (a weak informational sufficiency (WIS)) im-
plies a vanishing MPE loss. Our findings support the observation that selecting/designing
representations that capture informational sufficiency is appropriate for learning. However,
this selection is rather conservative if the intended goal is achieving MPE in classification.
Supporting this, we show that it is possible to adopt an alternative notion of informa-
tional sufficiency (strictly weaker than pure sufficiency in the mutual information sense) to
achieve operational sufficiency in learning. Furthermore, our new WIS condition is used
to demonstrate the expressive power of digital encoders and the capacity of two existing
compression-based algorithms to achieve lossless prediction in ML.
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1. Introduction

Given a continuous random object X, the problem of representation learning formalizes the
task of finding lossy descriptions (or features) of X, denoted by U , that are sufficient (in
some sense) to discriminate a target discrete variable of interest Y (e.g., a class or concept).
In numerous contexts, the raw observation X lives in a finite-dimensional continuous space
Rd. In this mixed continuous-discrete setting, a reasonable assumption is that the raw X
is redundant, i.e., many explanatory factors interact in the expression of X beyond Y and,
consequently, a lossy description (aka coding) U has the potential to capture almost all, or
ideally all, the information that X offers to discriminate Y (Bengio et al., 2013). Supporting
this idea, it has been shown that under some structural conditions (Bloem-Reddy and Teh,
2020; Dubois et al., 2021), there is a lossy description U = g(X) that is information sufficient
in the sense that I(X;Y ) = I(U ;Y ), where I(X;Y ) denotes the mutual information (MI)
between X and Y (Cover and Thomas, 2006). From the data-processing inequality (Cover
and Thomas, 2006; Gray, 1990b), informational sufficiency implies that I(X;Y |U) = 0,
meaning that X and Y are conditionally independent given U . A relevant context where
this strong latent structure arises is problems with probabilistic symmetries or invariances
with respect to (w.r.t.) a group of transformations (Bloem-Reddy and Teh, 2020; Dubois
et al., 2021).

In practice, lossy descriptions have been instrumental in learning problems because they
regularize the hypothesis space by reducing the complexity/dimensionality of the features,
thus providing better generalization from training to unseen testing conditions, which is
arguably the cornerstone of the learning problem (Xu and Mannor, 2012; Bousquet and
Elisseeff, 2002; Shalev-Shwartz et al., 2010; Devroye et al., 1996; Bousquet et al., 2004).
There is a large body of work that addresses the design of lossy representations from data.
Many of these approaches rely on the use of information-theoretic measures to quantify the
predictive relationship between X and Y , using, for instance, MI I(X;Y ), or conditional
entropy H(Y |X) or other approaches (Achille and Soatto, 2018a; Amjad and Geiger, 2019;
Alemi et al., 2017; Achille and Soatto, 2018b). Along the same lines of learning a minimal
(or compressed) sufficient representation from X, the Information Bottleneck (IB) method
has been adopted in learning and decision (Amjad and Geiger, 2019; Alemi et al., 2017;
Achille and Soatto, 2018b; Tishby et al., 1999) to optimize a tradeoff between relevance
I(U ;Y ) and compression I(U ;X) over a collection of probabilistic mappings from X to
a (latent) variable U (Zaidi et al., 2020). There is also a deterministic version of the IB
method where the objective is to find the optimal tradeoff between I(Y, U) and H(U) where
U is generated through a family of finite alphabet mappings (or vector quantizations) of X
(Tishby et al., 1999; Strouse and Schwab, 2017; Tegmark and Wu, 2019).

In the context of learning representation as outlined above, the concept of asymptotic
sufficiency can be introduced: an infinite collection of lossy descriptions U1, U2, .... of X is
said to be information sufficient (IS) if limi→∞ I(Ui;Y ) = I(X;Y ). In contrast, a collection
U1, U2, .... is said to be operationally sufficient (OS) if the performance of classifying Y from
Ui, in the minimum probability of error (MPE) sense, achieves—as i tends to infinity—the
performance of the optimal MPE classifier that uses X losslessly to predict Y . Then, a
natural question is: If a method designs a collection of IS descriptions, is this collection also
OS? More generally, is there a strictly weaker notion of IS that implies OS?
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To address both questions and, in particular, whether there is a strictly weak notion
of IS that implies OS, in this paper, we focus on studying the interplay between a weak
form of information loss and the operation loss over a family of problems (models) induced
by lossy continuous representations of X. In particular, we consider a model (X,Y ) with
joint distribution µX,Y and a family of lossy representations (encoders) {Ui}i≥1 of X, where
Ui = gi(X) is a continuous mapping and µUi,Y denotes the joint distribution of (Ui, Y ).
In this context, we look at the following weak form of information loss1 I((r̃(X), Ui);Y )−
I(Ui;Y ) ≥ 0 where r̃(X) denotes the MPE decision rule2.

1.1 Contributions

For the case of discrete representations (i.e., Ui is induced by a vector quantizer (VQ)),
Theorem 10 presents a lower bound for I((r̃(X), Ui);Y ) − I(Ui;Y ) ≥ 0 as a function of
its respective operation loss (OL) `(µUi,Y ) − `(µX,Y ) ≥ 0 where `(µUi,Y ) and `(µX,Y ) are
the MPE associated to the model µUi,Y and µX,Y , respectively. OL is the loss attributed
to using Ui instead of X in classifying Y . Using this bound, our first main result (The-
orem 12) shows that if {Ui}i≥1 is weakly information sufficient (WIS), in the sense that
limi→∞ [I((r̃(X), Ui);Y )− I(Ui;Y )] = 0 then {Ui}i≥1 is operationally sufficient (OS) to
discriminate Y in the sense that limi→∞ `(µUi,Y ) = `(µX,Y ). In other words, a form of
sufficiency that is strictly weaker than IS implies a vanishing operation loss when {Ui}i≥1

is a family of general continuous representations of X.

On the technical contribution, we obtain Theorem 12 using the bound in Theorem 10.
In particular, the argument to prove this result goes from discrete (or VQ) to continuous
representations. We demonstrate first the scenario of discrete representations in Theorem
35, Section 3.2, to prove then Theorem 12 in the general continuous case in Section 10.2.3.
The proofs of Theorems 12 and 10 rely on two important information-theoretic results: The
first by Ho and Verdú (2010) that characterizes, using a specific rate-distortion function, a
tight upper bound for the conditional entropy given an error probability and the second from
Liese et al. (2006) on asymptotic sufficient partitions for mutual information. Regarding
the optimality of the WIS condition for {Ui}i≥1 in Theorem 12, we show in Theorem 14
that when the MPE rule is unique almost surely w.r.t. to the model µX,Y , then “WIS is
equivalent to OS” for a general class of continuous representations of X. This result offers a
context where WIS is tight and optimal, in the sense that no weaker expressivity condition
on {Ui}i≥1 could be found to guarantee OS.

In the second part of this paper, we work on applications and extensions of Theorem 12
in machine learning (ML). Applying Theorem 12 for the task of evaluating representations or
encoders of X, we discover that discrete encoders (in the form of a VQ) have the expressive
power to be operationally sufficient (OS) for any model µX,Y in P(X × Y). We present
two versions of this expressiveness result: Theorem 15 for non-adaptive partitions and
Theorem 18 for adaptive (data-driven) partitions. These results are used to demonstrate
that three specific schemes are OS distribution-free in P(X ×Y): a uniform partition of the
space (Liese et al., 2006), a data-driven statistically equivalent partition (Devroye et al.,
1996; Gessaman, 1970) and a data-driven tree-structured partition (Devroye et al., 1996;

1. This weak information loss (WIL) is formally introduced in Definition 3 - Section 2.4.
2. r̃(·) is formally introduced in Eq.(10) - Section 2.4.
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Silva and Narayanan, 2010a). These results, obtained from Theorem 12, shed light on two
interesting aspects of representation learning: the expressive power that can be achieved
using partitions (a digitalization of the problem) and the capacity of non-supervised data-
driven methods to achieve informational and operational sufficiency.

Studying how Theorem 12 (WIS⇒ OS) can be extended in an ML setting, we introduce
a setting where the true (unknown) model belongs to class Λ ⊂ P(X × Y) or collection of
learning tasks. In this context, we introduce a measure-theoretic characterization for the
structure of Λ. That characterization is used to determine a lossy mapping ηΛ(·) that
is operationally sufficient (OS) for Λ, in the sense that `(µX,Y ) = `(µηΛ(X),Y ) for any
µX,Y ∈ Λ. This property facilitates the following non-oracle extension of Theorem 12:
if I(ηΛ(X);Y |Ui) → 0 (non-oracle WIS) then {Ui}i≥1 is OS. Importantly, this new result
(stated in Theorem 24) replaces r̃(X), which is an oracle object, by ηΛ(X) that is non-oracle
and used as a prior knowledge of the learning setting (inductive bias). On the application
of Theorem 24, we highlight the class of invariant models to the action of a compact group3.
For this class, there is a well-established lossy mapping ηΛ(·), which is maximal invariant
w.r.t. a group of transformations on X , that precisely meets the mentioned operational
requirement, i.e., `(µX,Y ) = `(µηΛ(X),Y ) for any µX,Y ∈ Λ. More generally, we study
many classes of models and examples where Theorem 24 can be applied meaningfully. In
some of these contexts, we demonstrate that our new condition I(ηΛ(X);Y |Ui) → 0 is
strictly weaker than IS. Finally, Theorem 24 (non-oracle WIS ⇒ OS) is used to explain the
expressive power of two existing compression-based learning algorithms: two variations of
the information bottleneck (IB) method (Tishby et al., 1999; Tishby and Zaslavsky, 2015;
Chechik et al., 2005) and a version of the lossy compression for lossless prediction (LCLP)
method by Dubois et al. (2021).

1.2 Related Work

Our analyses relate fundamentally to the interplay between (minimum) probability of error
and conditional entropy (or equivocation entropy) that has been studied systematically in
information theory (Feder and Merhav, 1994; Ho and Verdú, 2010; Prasad, 2015). One of
the most recognized results in this area is Fano’s inequality4 that offers a lower bound for
the probability of error as a function of the entropy (Cover and Thomas, 2006). A refined
analysis between conditional entropy and minimum error probability was presented by Feder
and Merhav (1994). They explored the relationship between these quantities, providing
tight (achievable) lower and upper bounds for the conditional entropy given a minimum
error probability restriction. Refining this analysis, Ho and Verdú (2010) studied a more
specific problem that is relevant in the Bayesian treatment of classification: given the prior
distribution µY of Y , they were interested in the interplay between the error probability
of predicting Y from an observation X and the conditional entropy of Y given X when X
is a discrete (finite-alphabet) observation. They provided a closed-form expression for the
maximal conditional entropy that can be achieved as a function of the prior distribution µY
and the minimum probability error ε in the non-trivial regime when ε ≤ (1−maxy∈Y µy(y)).

3. An excellent exposition for this family is presented in (Bloem-Reddy and Teh, 2020).
4. H(Y |X) ≤ h(`(µX,Y )) + `(µX,Y ) log(|Y| − 1) where h(r) = −r log(r) − (1 − r) log(1 − r) is the binary

entropy (Cover and Thomas, 2006).
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These results offer tight bounds between conditional entropy and error probability, thus
providing refined and specialized versions of Fano’s type of bounds (Ho and Verdú, 2010).
These bounds were extended to countably infinite alphabets, a regime for which Fano’s
original inequality has not been defined. A relevant corollary of these bounds says that a
vanishing probability of error implies a vanishing conditional entropy. The converse result
is also true under some conditions (Feder and Merhav, 1994). Then, when the classification
task is almost perfect or degenerate (zero probability of error), the relationship between
error probability and conditional entropy is rather evident (zero error ⇔ zero conditional
entropy). However, this connection is less evident for most cases that deviate from this
highly discriminative context as it is clearly presented in (Feder and Merhav, 1994; Ho and
Verdú, 2010).

The focus of our work in this paper is different from the results mentioned in this sub-
section as we are interested in the interplay between a form of information loss and its
respective operation loss over a family of problems induced by lossy continuous representa-
tions (encoders) of X.

1.3 Organization

The rest of the paper is organized as follows. Sections 2 formalizes our main question and
introduces notations, required concepts, and preliminary results. Section 3 presents the
statement and interpretations of the main asymptotic result (Theorem 12). Section 3 also
covers a result for a finite alphabet representation of X (Theorem 10), which is essential to
extend the analysis to continuous representations. Section 4 discusses about the optimality
of the WIS condition (Theorem 14). The application of Theorem 12 to demonstrate the
expressive power of digital representations is presented in Section 5. Section 6 extends
the concept of weak informational sufficiency into a learning setting (Theorem 24). The
expressive analysis of two existing compression-based representation learning algorithms is
presented in Section 7. Concluding remarks and discussions are presented in Section 9. The
proofs of the main results of this work are presented in Section 10. Finally, complementing
numerical examples are presented in Section 8, and the supporting technical material of
this work is organized in the Appendix.

2. Preliminaries

Let us consider a decision problem expressed in terms of the joint probability5 µX,Y ∈
P(X×Y) of a random vector (r.v.) (X,Y ) where Y takes values in a finite set Y = {1, ..,M}
(e.g., a class label) and X takes values in a finite dimensional space X = Rd. On the
operational side, the minimum probability of error (MPE) of predicting Y using X as an
observation, given the model µX,Y , is expressed by the following task

`(µX,Y ) ≡ min
f :X→Y

P(f(X) 6= Y )

=

∫
X

(1−max
y∈Y

µY |X(y|x))∂µX(x), (1)

5. P(X × Y) denotes the collection of probabilities in the measurable space (X × Y,B(X × Y)) where
B(X × Y) denotes the product sigma field of Rd × {1, ..,M} (Breiman, 1968).
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where µY |X(·|x) denotes the conditional probability mass function (pmf) of Y given the
event {X = x} and µX denotes the marginal probability of X in X . On the information
side, the conditional entropy of Y given X — also known as the equivocation entropy (EE)
in this decision context (Feder and Merhav, 1994; Ho and Verdú, 2010) — is

H(Y |X) ≡
∫
X
H(µY |X(·|x))∂µX(x), (2)

where
H(µY |X(·|x)) ≡ −

∑
y∈Y

µY |X(y|x) logµY |X(y|x) ∈ [0, logM ]

is the Shannon entropy of µY |X(·|x) ∈ P(Y) (Gray, 1990b; Cover and Thomas, 2006). The
mutual information (MI) of µX,Y is (Gray, 1990b; Cover and Thomas, 2006)

I(µX,Y ) = I(X;Y ) ≡ H(µY )−H(Y |X) ≥ 0. (3)

The standard notation for MI is I(X;Y ), however we also use I(µX,Y ) to emphasize in our
analysis that MI is a functional of the joint distribution µX,Y .

2.1 Representations of X

A representation of X is a measurable function η : (Rd,B(Rd))→ (U ,B(U)) where U is the
representation space with its respective sigma field denoted by B(U). In general, we are
interested in the case of a lossy function η(·) where (U ,B(U)) is a continuous measurable
space. However, attention will be given to the relevant case where |U| = K <∞, meaning
that η(·) is a vector quantizer (VQ) of X.6 This VQ induces the following finite partition
of size K:

πη ≡
{
η−1({u}), u ∈ U

}
, (4)

where conversely we have that η(x) =
∑

u∈U u · 1η−1({u})(x).
We denote by U ≡ η(X) the representation of X induced by η(·), and we denote by µU,Y

the joint distribution of (U, Y ) (induced by µX,Y and η(·)) in U × Y. As the expressions in
(1) and (3) are functions of the model µX,Y , they can be extended to µU,Y , where i) `(µU,Y )
is the MPE of predicting Y from U , and ii) I(µU,Y ) is the MI between U and Y .

2.2 Information Loss and Operation Loss

We are interested in the information loss (IL) of using U (instead of X) to resolve Y in the
Shannon sense. This can be measured by7

I(µX,Y )− I(µU,Y ) = I(X;Y |U), (5)

where the conditional MI (CMI) of X and Y given U is

I(X;Y |U) ≡
∫
U
I(µX,Y |U (·|u))∂µU (u) ≥ 0. (6)

6. The main result of this work is for continuous measurable transformations. However, studying the case
of finite VQs is instrumental as elaborated in Sections 3.1 and Appendix 10.2.

7. The equality in (5) comes from the chain rule of MI and the definition of the conditional MI (Gray,
1990b; Cover and Thomas, 2006).
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The main objective of this work is to understand how an information loss of the form
in (5) relates to its respective operation loss (OL) of using U (instead of X) to classify Y
in the MPE sense, i.e.,

`(µU,Y )− `(µX,Y ) ≥ 0. (7)

2.3 Sufficiency

Let us consider a family of measurable functions (or encoders) ηi : X → Ui, indexed by i ∈ N,
where Ui is a continuous space, for example a finite dimensional Euclidean space Rq. Using
ηi(·), we consider the representation variable Ui = ηi(X) (e.g., a feature) and the respective
joint distribution of (Ui, Y ) characterized by µUi,Y in Ui × Y. At this point, we introduce
the following definitions for informational and operational sufficiency, respectively.

Definition 1 A sequence of representations {ηi(·)}i≥1 for X (and its respective represen-
tation variables {Ui}i≥1) is said to be operationally sufficient (OS) for the model µX,Y (in
the MPE sense) if

lim
i−→∞

`(µUi,Y ) = `(µX,Y ). (8)

Definition 2 A sequence of representations {ηi(·)}i≥1 for X (and {Ui}i≥1, respectively) is
said to be information sufficient (IS) for µX,Y if

lim
i−→∞

I(µUi,Y ) = I(µX,Y ). (9)

Let us introduce a weak version of IS for {ηi(·)}i≥1 w.r.t. to µX,Y . For this, let us recall

that the MPE rule (a sufficient statistic) is a quantizer of X of size M = |Y| given by8

r̃µX,Y (x) ≡ arg max
y∈Y

µY |X(y|x), (10)

where `(µX,Y ) = P(r̃µX,Y (x) 6= Y ). This rule induces a (distribution dependent) partition
of X given by

π̃ ≡
{
Ãy ≡ r̃−1

µX,Y
({y}), y ∈ Y

}
, (11)

and a finite-alphabet (VQ) lossy representation of X given by Ũ ≡ r̃µX,Y (X) ∈ Y.

Definition 3 A sequence of representations {ηi(·)}i≥1 for X (and {Ui}i≥1) is said to be
weakly information sufficient (WIS) for µX,Y if

lim
i−→∞

I(µ(Ũ ,Ui),Y
)− I(µUi,Y )︸ ︷︷ ︸

I(Y ;Ũ |Ui)≥0

= 0, (12)

where Ũ = r̃µX,Y (X) and I(Y ; Ũ |Ui) is the conditional MI between Y and Ũ given Ui (Cover
and Thomas, 2006).

This weak IS definition (WIS) is introduced from the observation that Ũ is a sufficient
statistic for the inference task in the operational MPE sense, see Eq.(10). Finally in (12), we
have the following weak information loss I(µ(Ũ ,Ui),Y

)−I(µUi,Y ) = I(Ũ , Ui;Y )− I(Ui;Y ) =

I(Ũ ;Y |Ui).

8. The optimal rule in (10) is not unique in general. If for some x several y ∈ Y achieve the minimum in
(10), we select the smallest one to define r̃µX,Y (x) in (10).
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2.4 A Basic Analysis of the Losses Induced by a VQ

Let us consider the discrete and finite case where Ui = {1, . . . , ki} for any i ≥ 1. In this
context, there is a finite measurable partition induced by ηi(·):

πηi ≡
{
Bi,j ≡ η−1

i ({j}), j ∈ Ui = {1, . . . , ki}
}
, (13)

where ηi(x) =
∑

j∈Ui 1Bi,j (x) · j. In this VQ context, the following results present useful
expressions for I(µ(Ũ ,Ui),Y

)− I(µUi,Y ) and `(µUi,Y )− `(µX,Y ).

Proposition 4 `(µUi,Y )− `(µX,Y ) =
∑

Bi,j∈πηi
µX(Bi,j) · g(µX,Y , Bi,j), where

g(µX,Y , Bi,j) ≡
[
1−max

y∈Y
µY |X(y|Bi,j)

]
−
∑
Ãu∈π̃

µX(Ãu ∩Bi,j)
µX(Bi,j)

[
1−max

y∈Y
µY |X(y|Ãu ∩Bi,j)

]
.

(14)

On the information loss side, instead of looking at I(X;Y |Ui) in (4), we look at the MI
loss of observing Ui with respect to a re-defined reference case (Ũ , Ui) with Ũ = r̃µX,Y (X)
introduced in (12).

Proposition 5 I(µ(Ũ ,Ui),Y
)− I(µUi,Y ) =

∑
Bi,j∈πi µX(Bi,j) · I(Ũ ;Y |X ∈ Bi,j), where

I(Ũ ;Y |X ∈ Bi,j) ≡ H(µY |X(·|Bi,j))−
∑
Ãu∈π̃

µX(Ãu ∩Bi,j)
µX(Bi,j)

H(µY |X(|Ãu ∩Bi,j)) (15)

is the MI between Y and Ũ =
∑

u∈Y u · 1Ãu(X) conditioning on the event {X ∈ Bi,j}.

Remark 6 The term g(µX,Y , Bi,j) ≥ 0 in Proposition 4 can be interpreted as the gain in
MPE from a “prior scenario” where the marginal distribution of Y follows (µY |X(y|Bi,j))y∈Y ∈
P(Y) to a “posterior scenario” where we observe Ũ = r̃µX,Y (X) to classify Y under the joint

conditional model
(
µŨ ,Y |X(u, y|Bi,j) ≡

µX,Y (Ãu∩Bi,j×{y})
µX(Bi,j)

)
(u,y)∈Y2

in P(Y × Y).9

Remark 7 There is a parallel connection between g(µX,Y , Bi,j) in (14), prior minus pos-
terior MPE loss condition on {X ∈ Bi,j}, and I(Ũ ;Y |X ∈ Bi,j) in (15), which is the prior
minus the posterior Shannon entropy condition on {X ∈ Bi,j}.

2.5 An Information-Theoretic Lower Bound

Finally, to establish a relationship between the two losses presented in Section 2.4, we
consider the following result by Ho and Verdú (2010).

Lemma 8 (Ho and Verdú, 2010, Th.4) Let us consider Y a random variable in Y =
{1, . . . ,M} and a finite observation space X such that |X | ≥ M . If we denote by P(X|Y)

9. This Bayesian gain interpretation of the term g(µX,Y , Bi,j) will be central for the results in Section 3.
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the collection of conditional probabilities from Y to X , then for any non-negative ε ≤
(1−max

y∈Y
µY (y))︸ ︷︷ ︸

the prior error of µY

, it follows that10

f(µY , ε) ≡ min
ρX|Y ∈P(X|Y)st.`(ρX|Y ·µY )=ε

I(ρX|Y · µY ) = H(µY )−H(R(µY , ε)) ≥ 0, (16)

where ρX|Y · µY is a joint probability in P(X × Y) and R(µY , ε) ∈ P(Y) is a well-defined
probability function of µY and ε.11

This Lemma offers a tight (achievable) lower bound on the minimum MI achieved by a
family of joint discrete distributions in P(X × Y) that satisfy two conditions: i) they meet
an MPE restriction parametrized by ε ∈ [0, 1−maxy∈Y µY (y)] and ii) they have a marginal
distribution on Y given by µY ∈ P(Y).12

Remark 9 Considering a discrete observation X such that (X,Y ) ∼ µX,Y , Lemma 8 can
be used directly to obtain a lower bound for I(X;Y ) = I(µX,Y ) as a function of `(µX,Y ).
More precisely, from (16) we have that

I(X;Y ) = I(µX,Y ) ≥ f(µY , `(µX,Y )) = H(Y )−H(R(µY , `(µX,Y ))). (17)

Importantly, the bound in (17) recovers the known fact that if `(µX;Y ) < (1−maxy∈Y µY (y))
then I(X;Y ) > 0, or, conversely, I(X;Y ) = 0 (zero information) implies `(µX,Y ) = (1 −
maxy∈Y µY (y)), i.e., there is a zero gain in MPE when observing X.

In the following section, we present two results that express the interplay between the
weak information loss (WIL) I(Y ; Ũ |Ui) in (12) and the operation loss (OL) introduced in
(7) for which Lemma 8 and Propositions 4 and 5 will be instrumental.

3. Interplay between Information Loss and Operation Loss

This section presents the main asymptotic result of this work: WIS implies OS (Theorem
12). This theorem is constructed from a series of results that analyze the interplay between
WIL and OL from discrete (VQs) to continuous representations.

3.1 The Non-Asymptotic Bound for Vector Quantizers

To derive Theorem 12, it is essential to have a lower bound on the WIL (in Proposition 5)
as a function of its respective OL (in Proposition 4). This result for VQ is the following:

10. The closed-form expression of the probability R(µY , ε) ∈ P(Y) is presented in (Ho and Verdú, 2010) and
in Appendix I for completeness.

11. In information theory, the function f(µY , ε) in (16) is a special case of the celebrated rate-distortion
function of a memoryless source (i.i.d.) with marginal distribution µY and distortion function given by
the hamming distance (or the 0-1 loss) (Gray, 1990a).

12. For the non-trivial case when ε < (1 − maxy∈Y µY (y)), Ho and Verdú (2010) showed that H(µY ) >
H(R(µY , ε)) ⇒ f(µY , ε) > 0, while for the trivial case when ε = (1 −maxy∈Y µY (y)) they showed that
R(µY , ε) = µY ⇒ f(µY , ε) = 0 (Ho and Verdú, 2010).

9
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Theorem 10 Let us consider a model µX,Y and a finite alphabet representation Ui of X
(induced by ηi(·)), then

I(µ(Ũ ,Ui),Y
)− I(µUi,Y )︸ ︷︷ ︸

I(Y ;Ũ |Ui)

≥
∑

Bi,j∈πi

µX(Bi,j) ·
[
H(µY |X(·|Bi,j))−H(R(µY |X(·|Bi,j), εi,j)

]
≥ 0,

(18)
where

εi,j ≡
[
1−max

y∈Y
µY |X(y|Bi,j)

]
− g(µX,Y , Bi,j)

=
∑
Ãu∈π̃

µX(Ãu ∩Bi,j)
µX(Bi,j)

[
1−max

y∈Y
µY |X(y|Ãu ∩Bi,j)

]
and g(µX,Y , Bi,j) as in (14).

The proof is presented in Section 10.1.
Analysis of Theorem 10:

1. The lower bound on the WIL in (18) is an explicit function of the decomposition of
the OL presented in Proposition 4.

2. On the proof of Theorem 10, the lower bound in (18) comes from writing the OL as
(from Proposition 4)

`(µUi,Y )− `(µX,Y ) =
∑

Bi,j∈πi

µX(Bi,j) · g(µX,Y , Bi,j), (19)

i.e., as the sum of some posterior minus prior MPE gains (see Remark 6) and the
application of Lemma 8.

3. The inequality in (18) implies that

Corollary 11 If `(µUi,Y )− `(µX,Y ) > 0 then I(µ(Ũ ,Ui),Y
)− I(µUi,Y ) > 0.

Therefore, a non-zero OL (on using Ui instead of X to discriminate Y ) implies a
respective non-zero WIL. Conversely, Corollary 11 states that if Ui = ηi(X) is weakly
IS in the sense that I(Ũ ;Y |Ui) = 0, then `(µUi,Y ) = `(µX,Y ), i.e., ηi(·) (and Ui) is OS
for µX,Y . The proof is presented in Appendix C.

4. It is worth noting that for a large class of models (continuos in nature), Ui being
weakly IS, i.e., I(Ũ ;Y |Ui) = 0, is strictly weaker than asking that Ui is IS for µX,Y in
the sense that I(X;Y |Ui) = 0. In fact, I(X;Y |Ui) = 0 implies that I(Ũ ;Y |Ui) = 013,
but the converse result is not true in general.14

5. The difference between the information loss (IL), i.e., I(X;Y |Ui), and the weak infor-
mation loss (WIL), i.e., I(Ũ ;Y |Ui), is further discussed in Section 3.4 and its non-zero
discrepancy is illustrated by examples in Section 3.4.1 and Section 8.2.

13. I(X;Y |Ui) = 0⇒ I(Ũ ;Y |Ui) = 0 follows from the fact that Ũ is a deterministic function of X and the
chain rule of the MI (Cover and Thomas, 2006).

14. Artificial construction for µX,Y can be made, which are discrete in nature, where I(X;Y ) = I(Ũ ;Y ). In
this discrete context, it is simple to verify that I(X;Y |Ui)=I(Ũ ;Y |Ui) independent of Ui.

10
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3.2 The Main Asymptotic Result

The following result shows that a family of weakly IS representations for µX,Y ∈ P(X ×Y)
is OS for µX,Y . This result can be interpreted as a non-trivial extension of Corollary 11
(from Theorem 10) because it relaxes the zero WIL condition (considering instead a family
of representations that achieves zero WIL asymptotically) and, more importantly, it is valid
for any type of encoder (continuous and discrete).

Theorem 12 Let {Ui}i≥1 be a sequence of representations for X obtained from {ηi(·)}i≥1

following the setting introduced in Section 2.3. If {Ui}i≥1 is WIS for µX,Y (Definition 3),
then {Ui}i≥1 is OS for µX,Y (Definition 1).

Remarks on Theorem 12 and its interpretation:

1. WIS in (12) as a condition on {Ui}i≥1 means that as i tends to infinity, Ui captures

all the information (in the Shannon sense) that Ũ has to offer to resolve Y . As a
corollary of this result, we obtain that pure IS (Definition 2) implies OS.

2. Importantly, for a large class of continuous models in P(X × Y), we have that
I(Ũ ;Y ) < I(X;Y ) because Ũ is an M size quantized version of X (see Eq.11). Then,
the WIS condition has the potential to be strictly weaker (for a large class of models
and representations) than asking for pure IS (Definition 2). This important point is
further analyzed in Section 3.4 and demonstrated with examples in Section 3.4.1 and
Section 8.2.

3. Theorem 12 formalizes the intuition that achieving sufficiency in the Shannon MI sense
is appropriate but a conservative criterion if the operational objective is classification,
as a strictly weaker condition does exist (WIS) that guarantees OS. Indeed, if {Ui}i≥1

is not OS for µX,Y , Theorem 12 implies that lim infi→∞ I(µUi,Y ) < I(µX,Y ), meaning
that the representations {Ui}i≥1 do not achieve (eventually in i) the MI of the lossless
variable X.

To conclude this part, it is worth mentioning that WIS, as a condition on {ηi(·)}i≥1,
is theoretically relevant for the reasons mentioned in the previous points, but it is not
appropriate as a criterion for feature design/selection in a learning setting. The reason is
that the reference representation Ũ (used in Eq.12) is a function of the model µX,Y , which
is by nature unavailable in learning. This practical limitation motivates the extensions of
Theorem 12 into a learning setting, which is the main focus of Section 6 and the applications
presented in Section 7.

3.3 Proof of Theorem 12: from Discrete to Continuous Representations

The proof of Theorem 12 is presented in Section 10.2 and is divided in two main sections.
The first part restricts the problem to the important case of finite alphabet representations,
or VQs of X. In this discrete scenario, we use many results from information theory to
prove that WIS implies OS: see Theorem 35 stated in Section 10.2.2. The decision to begin
studying the case of finite alphabet representations was essential because it offers a path
to adopt results on the interplay between probability of error and conditional entropy only

11
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available for discrete random variables (see Theorem 10 in Section 3.1). In the second part,
presented in Section 10.2.3, we make a connection between the discrete result in Theorem
35 and the unconstrained version of this result in Theorem 12. Importantly, the finite
alphabet result, Theorem 35, is used as a building block to extend the proof argument to
the continuous case. For this challenging task, results on sufficient partitions for mutual
information approximation were extensively used (Liese et al., 2006).

3.4 Is WIS Strictly Weaker than IS?

On the significance of Theorem 12, it is important to confirm if WIS is strictly weaker than
IS. A basic angle to address this question implies looking at the difference between the two
introduced information losses, i.e., the difference between I(X;Y ) and I((Ũ , Ui);Y ). On
this, we could say that:

• The difference IL-WIL = I(X;Y ) − I((Ũ , Ui);Y ) ≥ 0 depends on the model µX,Y
and the representation Ui. The WIL uses Ũ (a quantized version of X of size M)
as a reference, while IL uses X, which is a continuous random variable (with infinite
information) in the context of our general mixed model µX,Y .

• It is known that I(X;Y ) is the supremum of I(η(X);Y ) over all possible finite-size
measurable quantizers η(·) (Liese et al., 2006; Silva and Narayanan, 2010a; Vajda,
2002) (see the results presented in Section 5.1). Then, we say that a model µX,Y
is continuous (from a MI point of view) if the MI is not achieved by any finite size
representation of X (Liese et al., 2006; Silva and Narayanan, 2010a; Vajda, 2002).
Conversely, a model µX,Y is discrete (from a MI point of view) if a quantized version
of X achieves I(X;Y ), i.e., ∃η(·) a VQ such that I(X;Y ) = I(η(X), Y )(Cover and
Thomas, 2006). Then, WIL is strictly smaller than IL for the rich scenario where we
have a continuous model and a finite alphabet representation15.

• On the previous point, the continuous scenario for µX,Y is an important case study
as we do not impose any discrete structural assumptions on the model. Furthermore,
in many practical domains with continuous observations (images, audio, time series
continuous signals, etc), it is reasonable to consider that any quantized (digital) version
of X induces a non-zero mutual information loss about Y (see Corollary 11).

These (non-asymptotic) observations on the non-zero discrepancy of IL v.s. WIL mo-
tivate the construction presented next, where we confirm that WIS is strictly weaker than
IS.

3.4.1 An illustrative Example

To illustrate the discrepancy between WIS and IS as a condition on {Ui}i≥1 given a model
µX,Y , we design a simple construction:

• Y takes two values with µY (1) = µY (2) = 1/2.

• X given Y follows a Gaussian distribution: X ∼ Normal(K,σ) when Y = 1 and
X ∼ Normal(−K,σ) when Y = 2. K > 0 and σ > 0 (the parameters).

15. If µX,Y is continuous, then for any VQ ηi(·): I((Ũ , ηi(X));Y ) < I(X;Y ).

12
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• The MPE decision is: Ũ = 1 if X ≥ 0 and Ũ = 2 if X < 0.

• Let us consider the following collection of indexed partitions:

πi =
{

(−∞,−1/2i), [−1/2i, 1/2i], (1/2i,∞)
}

for i ≥ 1.

• If we denote by A1
i , A

2
i and A3

i the cells of πi, this produces a VQ of X determined
by: Ui = 1 if X ∈ A1

i , Ui = 2 if X ∈ A2
i , and Ui = 3 if X ∈ A3

i .

• It is simple to show that I(Ui;Y ) < I(X;Y ) (as the model is continuous) (Liese et al.,
2006; Silva and Narayanan, 2010a; Cover and Thomas, 2006) and furthermore that
limi→∞ I(Ui;Y ) = I(Ũ , Y ) < I(X;Y ).16 In other words, the collection {Ui}i≥1 is not
IS: i.e, I(X;Y )− I(Ui;Y ) = I(X;Y |Ui) is not vanishing as i tends to infinity.

• In contrast, by the construction of this family, Ui determines Ũ in the limit (it follows
that limi→∞H(Ũ |Ui) = 0) and, consequently, we have that limi→∞ I(Ũ ;Y |Ui) = 0
(Cover and Thomas, 2006). Therefore, this family of representations {Ui, i ≥ 1} is
WIS.

• Finally, from Theorem 12, {Ui, i ≥ 1} is OS (Def. 1) but not IS (Def.2).

This example is important for our question “is WIS strictly weaker than IS?” as it
illustrates a scenario where the difference between IL and WIL is strictly positive for any
i ≥ 1. Importantly, this discrepancy is non-vanishing when i grows: WIL tends to zero, but
IL does not. Therefore, we conclude from this construction that WIS (Def. 3) is strictly
weaker than IS (Def. 2) as a general condition. Furthermore in the context of this example,
we observe that IL as fidelity indicator is blind on predicting the quality that the collection
{Ui, i ≥ 1} has to achieve the MPE in (1). Supporting this finding, in Section 8.2 we show
other constructions (a sequence of VQs) and (continuous) models where the same finding
illustrated in this example is observed.

4. On the Optimality of WIS

On this section, we show that WIS is equivalent to OS if we consider a uniqueness condition
of the Bayes rule in (10) of a given model µX,Y . More precisely, we have that

Definition 13 A model µX,Y is said to have a unique MPE decision rule, if for any rule
r : X → Y such that P(r(X) 6= Y ) = `(µX,Y ) then r(·) is equal to the MAP rule r̃µX,Y (·) in
(10) almost surely.17

Theorem 14 Let {Ui}i≥1 be a sequence of representations for X and let us assume that
µX,Y has a unique MPE decision rule (Def. 13). Then, {Ui}i≥1 is OS for µX,Y if, and only
if, {Ui}i≥1 is WIS for µX,Y .

Therefore, under this uniqueness condition of the optimal rule for µX,Y , WIS is the weakest
condition on the representations needed to achieve OS. From that perspective, our result
in Theorem 12 can be considered optimal for this family of models.

The proof of Theorem 14 is presented in Section 10.5.

16. We verify this strict inequality in Appendix D.
17. More precisely, P(r(X) 6= r̃µX,Y (X)) = µX(

{
x ∈ X : r(x) 6= r̃µX,Y (x)

}
) = 0.
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5. On the Expressiveness of Digital Representations

Important results in the literature of information theory (IT) show that a collection of
measurable partitions is asymptotically sufficient for approximating the Kullback-Leibler
(KL) divergence and MI (Berlinet and Vajda, 2005; Liese et al., 2006; Vajda, 2002). From
these IT results and Theorem 12, we present conditions and specific constructions that
demonstrate that finite-size representations (VQs) are expressive for classification, i.e., new
expressiveness conditions and results for VQs (Theorems 15 and 18). Special attention is
placed on the family of data-driven (stochastic) partitions (Silva and Narayanan, 2010a,
2007, 2010b; Vajda, 2002; Darbellay and Vajda, 1999; Gonzales et al., 2022). We show
that these data-driven representations have the capacity to be IS with probability one and,
consequently, are OS for classification with probability one from Theorem 12.

5.1 A Universal IS Representation

This section shows that digitalization (a VQ) of X offers a universal (distribution-free) rep-
resentation scheme with the capacity to retain an arbitrary amount of the MI that X has
about Y , i.e., IS in the sense of Def. 2. We present an approximation condition to guar-
antee IS for a sequence of embedded partitions and from that result a simple construction
illustrating this IS capacity.

Theorem 15 Let {ηi(·), i ≥ 1} be a collection of discrete finite-size representations (VQs)
equipped with its induced measurable partitions {πηi , i ≥ 1} ∈ B(Rd) in Eq.(4). If the collec-
tion is embedded in the sense that18 σ(η1) ⊂ σ(η2) ⊂ σ(η3) . . . and σ(πη1 ∪ πη2 . . .) = B(Rd)
then for any distribution µX,Y ∈ P(X × Y)

lim
i→∞

I(X;Y |ηi(X)) = 0, (20)

and, consequently,
lim
i→∞

`(µUi,Y ) = `(µX,Y ) (21)

where Ui = ηi(X).

The proof is presented in Section 10.7.
Some observations about Theorem 15 are:

• The result establishes a universal (distribution-free) expressiveness condition on the
quality of {ηi(·), i ≥ 1} to make the collection of digital representations IS and OS for
any model µX,Y . The condition σ(πη1 ∪πη2 . . .) = B(Rd) expresses that the partitions
approximate in the limit any measurable event in B(Rd). The assumption that σ(η1) ⊂
σ(η2) ⊂ σ(η3) . . . is a functional embedded condition meaning that ηi+1(·) is a refined
version of ηi(·) for any i ≥ 1.

• The proof of this result follows from the seminal work by Liese et al. (2006) on
sufficient measurable partitions to approximate the KL divergence. The details on
this connection are presented in the proof of Theorem 15 (Section 10.7).

18. σ(ηi) ⊂ B(Rd) denotes the smallest sub-sigma field that makes ηi(·) measurable and σ(πη1 ∪ πη2 . . .)
denotes the smallest sub-sigma field that contains the collection of events

⋃
i≥1 πηi ⊂ B(Rd) (Halmos,

1950; Varadhan, 2001; Breiman, 1968).
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• On the feasibility of finding digital representations (VQs) that meet the conditions of
Theorem 15, the following section offers a simple construction to demonstrate that
digitalization has that universal (distribution-free) capacity.

5.1.1 The Universal (distribution-free) Construction

We present a universal partition scheme introduced by Liese et al. (2006) for the measurable
space (Rd,B(Rd)) that is IS (distribution-free) from Theorem 15. The construction is the
following:

π̃m = {Bm,0} ∪
{
Bm,j̄ , j̄ = (j1, . . . , jd) ∈ Jm

}
, (22)

where the index set is Jm = {−m2m, . . . ,m2m − 1}d and

Bm,0 = Rd \ [−m,m)d, (23)

Bm,j1,...,jd =

d⊗
k=1

[
jk
2m

,
jk + 1

2m

)
, ∀(j1, . . . , jd) ∈ Jm. (24)

This construction is universal for the Borel sigma-field B(Rd), as any interval in B(Rd) can
be approximated (arbitrarily closely) by the union of cells of π̃m as m goes to infinity (Liese
et al., 2006). Consequently, we have that σ(∪m≥1π̃m) = B(Rd) (Liese et al., 2006). Then
adopting Theorem 15, we have the following zero-information loss result:

lim
m→∞

I(X;Y |ηπ̃m(X)) = 0, (25)

where the representation ηπ̃m(·) from Rd to {(m2m, ...,m2m)} ∪ Jm of size (m2m+1)d + 1
(the encoder induced by π̃m) is given by:

ηπ̃m(x) = (m2m, ...,m2m) · 1Bm,0(x) +
∑
j̄∈Jm

j̄ · 1Bm,j̄ (x). (26)

5.1.2 Final Remarks

From (25), there is a collection of finite-size partitions (of size (m2m+1)d + 1) that asymp-
totically captures all the information of (X,Y ) in a distribution-free manner (independent
of µX,Y ). Furthermore, Theorem 15 and Theorem 12 show that {ηπ̃n(·), n ≥ 1} is OS
distribution-free too: i.e., ∀µX,Y , limn→∞ `(µUn,Y ) = `(µX,Y ), where Un = ηπ̃m(X).

5.2 Data-Driven Partitions

The universal analysis presented in Section 5.1 offers unquestionable evidence about the
power of digitalization; however, the analysis is limited to deterministic and data-independent
representations. Complementing these findings, we present a result in a learning setting that
shows that data-driven (stochastic) partitions can be IS (in a probabilistic sense) and, con-
sequently, they have the potential to provide a better tradeoff between complexity (size of
the partition) and information loss for a given model µX,Y . We construct two data-driven
representations that are IS (with probability one) and, consequently, they are OS (with
probability one) in light of Theorem 12.
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First, let us introduce the data-dependent (stochastic) partition concept. An n-sample
partition rule πn(·) is a mapping from the data space (Rd × Y)n to Q(Rd), where Q(Rd)
denotes the space of finite size measurable partitions of Rd. A special case of this family
is when πn(·) has the X-property (Devroye et al., 1996, Ch. 20.2) meaning that πn(·)
is a mapping from the unsupervised data space Rdn to Q(Rd). Finally, a scheme Π =
{π1(·), π2(·), . . .} is a collection of partition rules of different lengths.

We need to extend the notion of IS and OS to this stochastic representation setting:

Definition 16 A partition scheme Π = {πn, n ≥ 1} is said to be information sufficient
(IS), if for any µX,Y ∈ P(X × Y), it follows that

lim
n→∞

I(ηπn(Z1,...,Zn)(X);Y ) = I(X;Y ), with probability one (27)

where Zi ≡ (Xi, Yi), Z1, . . . , Zn are i.i.d. samples from µX,Y , and ηπn(Z1,...,Zn)(·) is the
data-driven VQ induced by the partition πn(Z1, . . . , Zn).19

Definition 17 A partition scheme Π is said to be operationally sufficient (OS), if for any
µX,Y ∈ P(X × Y),

lim
n→∞

`(µUn,Y ) = `(µX,Y ), with probability one, (28)

where Un = ηπn(Z1,...,Zn)(X).

5.2.1 A Shrinking-cell Condition for Data-Driven Sufficiency

Here, we present a data-driven condition on Π that guarantees that the scheme is IS (Def.
16). Before that, we need to introduce a few definitions. The diameter of an event B ⊂
B(Rd) is

diam(B) ≡ sup
x,y∈B

||x− y|| , (29)

where ||·|| is the Euclidian norm in Rd. Considering a partition rule πn : Rdn → Q(Rd),
a point x ∈ Rd and data-sequence zn1 ∈ (Rd × Y)n, we use πn(x|zn1 ) to denote the cell in
πn(zn1 ) that contains x.

Theorem 18 Let us consider µX,Y and Π = {π1(·), π2(·), . . . } a partition scheme driven
by Z1, Z2, . . . where Zi ∼ µX,Y for any i ≥ 1. If µX has a density function20 and Π satisfies
that for any δ > 0 21

lim
n→∞

µX

({
x ∈ Rd, diam(πn(x|Zn1 )) > δ

})
= 0, with probability one, (30)

then
lim
n→∞

I(ηπn(Z1,...,Zn)(X);Y ) = I(X;Y ), with probability one, (31)

and
lim
n→∞

`(µUn,Y ) = `(µX,Y ), with probability one, (32)

where Un = ηπn(Z1,..,Zn)(X).

19. It is worth noting that πn(Z1, . . . , Zn) is a random element in Q(Rd), as it is a function of the r.v.
Zn1 = (Z1, . . . , Zn).

20. µX is absolutely continuous with respect to the Lebesgue measure in (Rd,B(Rd)).
21. The probability one is with respect to the process distribution of (Zn)n≥1 = (Xn, Yn)n≥1.

16



Interplay between Information Loss and Operation Loss

The proof is presented in Section 10.8.
Some observations about Theorem 18 are:

• Theorem 18 presents a shrinking-cell condition (in (30)) sufficient to make Π IS
(Def. 16) and OS (Def. 17). In particular, if the diameter of the random partition
(πn(Xn

1 ))n≥1 tends to zero almost surely w.r.t. the process distribution of (Zn)n≥1,
then its stochastic representations

{
ηπn(Z1,...,Zn)(·), n ≥ 1

}
are both IS and OS. Dif-

ferent flavors of this high-resolution condition have been presented in the statistical
learning literature (Lugosi and Nobel, 1996; Devroye et al., 1996; Nobel, 1996). The
one adopted in this work comes from results on histogram-based estimation for infor-
mation measures (Silva and Narayanan, 2010a, 2012, 2010b).

• For the proof, we use (Silva and Narayanan, 2010a, Th. 2) to show that (30) implies
(31) and then we use Theorem 12 to extend in this random setting that IS (Def. 16)
implies OS (Def. 17).

• A special case of Theorem 18 applies when Π has the X-property, meaning that πn(·)
only depends on the unsupervised portion of the data, i.e., (X1, . . . , Xn).

The following subsections present two constructions with the X-property (unsupervised
representations) that meet the shrinking cell condition in (30).

5.2.2 Statistically Equivalent Blocks

Here, we present a scheme implementing the principle of statistically equivalent partitions
(Devroye et al., 1996; Gessaman, 1970). Let X1, .., Xn be i.i.d. samples of µX ∈ P(X )
for which we assume that µX � λ. The idea is to partition the space Rd by axis-parallel
hyperplane in such a way that at the end of the process we have almost the same number
of sample points per cell. For that, let ln > 0 be the number of samples (a non zero
integer) that ideally we want to have at the end of the process in every cell of πn. The
method chooses an arbitrary order of the axis-coordinate, let us say the order (1, 2, .., d),
and considers Tn = b(n/ln)1/dc as the number of partitions to produce in every axis. The
method goes as follows: choose the first coordinate and project the data in that direction
Z1, .., Zn ∈ R; compute the order statistics that we denote by Z(1) < .... < Z(n). From this
sequence, define the following axis-parallel partition of the real line:{

I1
i : i = 1, .., Tn

}
=
{

(−∞, Z(sn)], (Z(sn), Z(2·sn)], .., (Z((Tn−1)·sn),∞)
}
⊂ R, (33)

where sn = bn/Tnc. Then assigning the vector samples X1, .., Xn to the cells of π
(1)
n (Xn

1 ) ={
I1
i × Rd−1, i = 1, .., , Tn

}
concludes the first iteration. The second iteration applies the

same principle (statistically equivalent partition with axis-parallel hyperplanes) over the

cells of π
(1)
n (Xn

1 ) but in the second coordinate, for which the original samples X1, .., Xn

are assigned to each individual cell of π
(1)
n (Xn

1 ), accordingly. At the end of the second

iteration, we produce π
(2)
n (Xn

1 ). Iterating this algorithm until the last coordinate, d, we

obtain π
(d)
n (Xn

1 ).22 This data-driven assignment is critical to derive the following result:

22. It can be shown that ∀A ∈ π(d)
n (Xn

1 ) the number of training samples that belong to A is greater than or
equal to ln (Silva and Narayanan, 2010a).

17



Silva, Tobar, Vicuña and Cordova

Corollary 19 Let µX be a probability in Rd such that µX � λ and let (Xn)n≥1 be i.i.d.
samples driven by µX . If (ln) is o(n),23 it follows that for any δ > 0

lim
n→∞

µX

({
x ∈ Rd, diam(π(d)

n (x|Xn
1 )) > δ

})
= 0, with probability one, (34)

and then Π =
{
π

(d)
n (·), n ≥ 1

}
is IS (Def. 16) and OS (Def 17).

Corollary 19 derives from (Silva and Narayanan, 2010a, Th.4) that proves that if (ln) is
o(n) then (34) holds and from Theorem 18 follows the rest of the result.

5.2.3 Balanced Search Tree

Here we present a version of a balanced search tree (Devroye et al., 1996, Ch. 20), in par-
ticular the binary case studied in (Silva and Narayanan, 2010a, Sec.V.B). Given X1, ..., Xn

i.i.d. samples (unsupervised data) driven by µX , the partition rule selects a coordinate of
the set {1, .., d} in a given sequential order, let us say the i-coordinate, and the axis-parallel
hyperplane

Hi(X
n
1 ) =

{
x ∈ Rd : x(i) ≤ X(dn/2e)(i)

}
, (35)

where X(1)(i) < X(2)(i) <, .., < X(n)(i) is the order statistics of Xn
1 projected over the coor-

dinate i. Then, we create a binary partition of Rd given by π̄
(1)
n (Xn

1 ) = {Hi(X
n
1 ), Hi(X

n
1 )c}.

Assigning Xn
1 to its respective cells in π̄

(1)
n (Xn

1 ), the process continues with the following
coordinate, let us say the j-coordinate, in the mentioned sequential order applying the me-

dian statistically equivalent principle in (35) in each cell of π̄
(1)
n (Xn

1 ) by projecting the data
over the j-coordinate. Importantly, the axis-parallel binary partition in (35) is conduced
if the number of samples associated with the resulting cells is greater than or equal to
ln > 0 (a parameter of the method); otherwise, the algorithm stops the splitting process
for this cell. ln is designed to guarantee that the statistically equivalent splitting approach
has a sufficient number of samples24. Therefore, after iterating this principle and meeting

the stopping criterion in every resulting cell, we have a partition π̄
(ln)
n (Xn

1 ) with a binary
tree-structure that has almost the same number of samples in every cell (balanced). This
stopping criterion and the statistically equivalent principle of this scheme are critical to
prove the following:

Corollary 20 Let µX be a probability on Rd such that µX � λ and let (Xn)n≥1 be i.i.d.
samples driven by µX . If (ln) is O(np) with p ∈ (0, 1), it follows that for any δ > 0

lim
n→∞

µX

({
x ∈ Rd, diam(π̄(ln)

n (x|Xn
1 )) > δ

})
= 0, with probability one, (36)

and then Π̄ =
{
π̃

(ln)
n (·), n ≥ 1

}
is IS (Def. 16) and OS (Def. 17).

Corollary 20 derives from (Silva and Narayanan, 2010a, Ths.5 and 6) that proves that if
(ln) is O(np) with p ∈ (0, 1) then (36) holds and from Theorem 18 follows the rest of the
result.

23. (an) being o(bn) means that limn→∞
an
bn

= 0.

24. A systematic exposition of the statistical properties of this scheme and its implementation and use can
be found in (Devroye et al., 1996) for pattern recognition and in (Silva and Narayanan, 2010a,b) for
estimating information measures.
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5.2.4 Final Remarks

To conclude, in Theorem 18 we show a quantitative condition to meet IS and OS for data-
driven partitions (the shrinking cell condition in Eq.30) and two practical construction with
the X-property that meet this requirement for a large class of models (see Corollaries 19
and 20). These results confirm that digitalization offers expressive representations in ML
and that VQs learned from the principle of statistically equivalent division of the space can
meet IS and OS.

6. Weak Informational Sufficiency (WIS) for a Class of Models

As we discussed in Section 3.2, the WIS condition on {ηi(·)}i≥1 used in Theorem 12 cannot
be adopted as a criterion in an actual learning setting. The reason for this is that the
reference representation Ũ used in Definition 3 is a function of the true model µX,Y . Then,
adopting this oracle WIS condition in learning, for instance, for learning representations
from data, is not possible.

To give significance to the adoption of Theorem 12 in a learning setting, in this section

we move towards considering a family of indexed models Λ =
{
µθX,Y , θ ∈ Θ

}
⊂ P(X × Y)

(or hypotheses) to formalize on Λ the structure of a learning task. More precisely, we
assume that the unknown model µX,Y belongs to Λ, which can be seen as a form of prior
knowledge. The objective here is to use this knowledge and Theorem 12 to develop a new
IS condition that implies OS but is strictly weaker than pure IS (in Definition 2) for certain
classes of models Λ.

6.1 Formalizing Operational Structure

For any µθX,Y ∈ Λ, let us consider its MPE decision rule given by25:

r̃θ(x) ≡ arg max
y∈Y

µθY |X(y|x) (37)

and its induced optimal partition:

π̃θ ≡
{
r̃−1
θ ({y}), y ∈ Y

}
⊂ B(Rd). (38)

Importantly, we can introduce

σ(Λ) ≡ σ

(⋃
θ∈Θ

π̃θ

)
⊂ B(Rd) (39)

to be the smallest sub-sigma field that makes all the decision rules {r̃θ(·), θ ∈ Θ} of Λ
measurable from X to Y (Halmos, 1950). σ(Λ) in (39) can be seen as an operational form
of structure, in the sense that σ(Λ) captures the smallest σ-field that makes all MPE rules
in (37) measurable and, consequently, it is a function of both Λ and the operational problem
in (1). In general, the smaller (or, the simpler) σ(Λ) is relative to the Borel sigma field of
Rd, the more structural knowledge we have from assuming that our model belongs to Λ.

25. This rule is not unique. In general, we could select any function that is a solution of (37) and thus
achieves the MPE.
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6.2 Finite-Size Families

An important case to consider is when Λ has an intrinsic finite-size structure.

Definition 21 Λ has a finite size operational structure if ∃π = {Ai, i = 1, ..,K} ⊂ B(Rd)
such that σ(Λ) = σ(π).

The condition in Def. 21 holds, for instance, when
⋂
θ∈Θ π̃

θ reduces to a measurable partition
of finite size (let say K > 0) that we denote by π = {Ai, i = 1, ..,K} ⊂ B(Rd).26 Under this
finite-size assumption, we can construct a finite-size operationally sufficient representation
(VQ) for the whole family Λ. In particular, we can choose a prototype pi ∈ Ai for every
cell of π and the following VQ: ∀x ∈ X

ηΛ(x) ≡
K∑
j=1

1Aj (x) · pj ∈ Rd. (40)

Importantly, from (38), (39) and the construction ηΛ(·) in (40), it follows that for any θ ∈ Θ

r̃θ(x) = r̃θ(ηΛ(x)), ∀x ∈ Rd. (41)

Therefore, all the MPE rules on our class of models are insensitive to this lossy operator
ηΛ(·). From the invariant (to the action of ηΛ(·)) property presented in (41), we have the
following representation result:

Proposition 22 Let us consider a lossy mapping η∗ : X → X . If the family Λ is invariant
to the action of η∗(·) in the sense of (41), then for any µθX,Y ∈ Λ

`(µθη∗(X),Y ) = `(µθX,Y ). (42)

Proof The proof derives from the observation that the condition in (41) implies that r̃θ(·)
is a deterministic function of η∗(·) for any θ ∈ Θ, and the fact that by construction r̃θ(·) is
operationally sufficient for µθX,Y (i.e., `(µθr̃θ(X),Y ) = `(µθX,Y )).

Proposition 22 shows that the finite-size operational structure in Λ (Def. 21) reduces
to a VQ of X (ηΛ(·) in Eq.40) that is operationally sufficient for all members of Λ. In
general, the structure for Λ (beyond the finite-size case) is captured in σ(Λ), as long as
σ(Λ) is strictly contained in B(Rd). The objective of this section is to use this structure
and, with that, the construction of a lossy mapping satisfying (42) to extend Theorem 12.
This objective will be the focus of the following two subsections.

6.3 The Main Result

Here, we present a weak form of informational sufficiency for a family of models Λ ⊂
P(X × Y) that implies operational sufficiency. Before that, let us introduce the following
definition:

26. An example that meets this condition is presented in Section 6.4.
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Definition 23 We say that a lossy mapping η∗ : X → X is operationally sufficient (OS)

for a class Λ =
{
µθX,Y , θ ∈ Θ

}
⊂ P(X × Y) if H(r̃θ(X)|η∗(X)) = 0 when X ∼ µθX for any

θ ∈ Θ. 27

At this point, we can state the following result:

Theorem 24 Let {Ui}i≥1 be a family of representations of X obtained from the functions
{ηi(·)}i≥1, and let us assume that there is a transformation η∗ : X → X that is OS for Λ

(Def. 23). If for any models µθX,Y ∈ Λ

lim
i→∞

I(µθ(η∗(X),Ui),Y
)− I(µθUi,Y )︸ ︷︷ ︸

I(η∗(X);Y |ηi(X)) when (X,Y )∼µθX,Y

= 0, (43)

then

lim
i→∞

`(µθηi(X),Y ) = `(µθX,Y ). (44)

The proof is presented in Section 10.9.

Analysis and interpretation of Theorem 24:

1. Theorem 24 can be considered as a non-oracle extension of Theorem 12 as we do not
need the true model to establish a sufficient condition to achieve OS in (44). Instead,
we assume that the true model belongs to a class Λ with an operational structure
represented by η∗(·).

2. The new sufficient condition for the representations {ηi(·)}i≥1 in (43) is in principle
strictly weaker (if η∗(·) is a lossy mapping) than IS in Definition 2.

3. To make Theorem 24 useful, it is relevant to determine a lossy mapping η∗(·) that is
OS for a class Λ. It would be ideal, although difficult, to find the simplest mapping
of Λ that satisfies the condition in Definition 23. This last optimal representation
problem for a given Λ is not evident and is not addressed in this work (Cover and
Thomas, 2006, pp.37). However, on the existence of a lossy mapping that meets OS
for Λ (Def. 23), Section 6.4 illustrates some relevant examples.

4. Complementing the previous point, one might note that the identity function from X
to X is OS for any class of models Λ (Def. 23). With η∗(·) = id(·), (43) reduces to the
IS condition (Def. 2). Then in this trivial context, Theorem 24 recovers the known
result that if {Ui}i≥1 is IS for µθX,Y then {Ui}i≥1 is OS for µθX,Y .

5. Notably, the finite-size family introduced in Section 6.2 has a lossy function in (40)
(a VQ) that meets the requirement of being OS (Def. 23) for Λ. Then, Theorem 24
applies in this case in a non-trivial way. More details about this class of models can
be found in Section 6.4.1.

27. Definition 23 implies that r̃θ(·) is a deterministic function of η∗(·) for any θ ∈ Θ (µθX almost surely) and,
consequently, we have that `(µθη∗(X),Y ) = `(µθX,Y ), from the same argument used to prove Proposition
22 from (41).
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6. There is a special representation scenario of the setting of Theorem 24 worth describ-
ing. The scenario is when ηi(·) is a deterministic function of η∗(·) for any i ≥ 1, i.e.,
for any i, there is η̃i(·) such that ηi(·) = η̃i(·) ◦ η∗(·). In this projected context, it is
simple to verify that our weak IL I(µθ(η∗(X),Ui),Y

) − I(µθUi,Y ) in (43) is the pure IL

induced by η̃i(·) for the induced transform model µθη∗(X),Y . Then, in this setting, the

WIS condition in (43) reduces to the pure IS condition for {η̃i(·)}i≥1 on the trans-

form (or projected) model µθη∗(X),Y . We present an example of this projected learning
scenario in Section 7.1.

7. Finally, for the general (non-projected) setting stated in Theorem 24, the proof of
this result derives from Theorem 12. In Section 7, we present two unsupervised
representation learning algorithms operating in Theorem 24’s general non-projected
context.

6.4 Application of Theorem 24

At this point, we could use σ(Λ) to determine a lossy mapping η(·) that meets Definition
23 for Λ. Along this line, we revisit the case of finite-size families and introduce a class
of models that satisfies some invariant properties to illustrate two relevant contexts where
Theorem 24 can be adopted.

6.4.1 Finite Size Families

In the special case when Λ has an intrinsic finite-size structure (see Section 6.2), we have a
vector quantizer (VQ) η(·) in (40) that satisfies the conditions in (41) and, consequently, is
OS for Λ (Definition 23). Therefore, Theorem 24 applies in this case using the finite-size VQ
in (40) as the sufficient representation for the class Λ in (43). In this case, condition (43) is
strictly weaker than pure IS and, consequently, the result in Theorem 24 is meaningful.

A simple example of this class of problems is when µX,Y belongs to a finite class of

hypotheses Λ =
{
µiX,Y , i = 1, .., L

}
, where it is possible to show from (39) that σ(Λ) = σ(π)

where π ≡
⋂L
i=1 π̃

i and π̃i is the M -size partition induced by the MPE decision rule of µiX,Y
in (38), and, consequently, Λ has an intrinsic finite size K ≤ML <∞.28

6.4.2 Invariant Models

Another interesting example is when Λ has some invariances and operational symmetries
(Bloem-Reddy and Teh, 2020). We will consider the case where Λ is invariant w.r.t. the ac-
tion of a compact group G of measurable transformations on (X ,B(X ))29. For this purpose,
we introduce a new form of operational invariances for Λ relative to a group G.

28. The proof that σ(Λ) = σ(π) for Λ =
{
µiX,Y , i = 1, .., L

}
is presented in the Appendix E.

29. A compact group G acting on X is a collection of Borel measurable functions from (X ,B(X )) to (X ,B(X ))
such that: for any pair g, h ∈ G, g ◦ h ∈ G; for any g ∈ G, g−1 ∈ G; and the identity mapping belongs to
G (Eaton, 1989; Rotman, 1995).
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Definition 25 (Functional invariance) A measurable transformation f : (X ,B(X )) →
(U ,B(U)) is G-invariant if for any g ∈ G

f ◦ g(x) = f(x), ∀x ∈ X .

Definition 26 (Operational invariance of a model) A model µX,Y ∈ P(X × Y) is said to
be operational invariant with respect to G (in short G-invariant) if there is a MPE decision
rule, solution of (37), which is G-invariant (Def. 25).

Definition 27 (Operational invariance of a class) A class Λ =
{
µθX,Y , θ ∈ Θ

}
⊂ P(X ×Y)

is said to be operational invariant with respect to G (in short G-invariant) if µθX,Y is G-

invariant (Def. 26) for any µθX,Y ∈ Λ.

A lossy mapping η∗G(·) for G: Let us consider the orbit of G at x ∈ X given by

G(x) ≡ {g(x), g ∈ G} ∈ B(X ).

We can induce an equivalent relationship in X where x ←→ y if G(x) = G(y) and from
this a measurable partition of X given by πG ≡ {G(x), x ∈ X} ⊂ B(X ). πG is the collection
of orbits induced by the application of G in every point of X . Importantly, there exists a
measurable cross section C ⊂ X of G (Eaton, 1989)30, which is a collection of prototypes
for every orbit of πG satisfying that ∀x ∈ X

C ∩ G(x) is a singleton (i.e. C selects one prototype for every cell of πG), (45)

and we denote this element (selection) by C(x). Then, we can construct the following lossy
mapping η∗G(x) ≡ C(x) from X to C ⊂ X . From construction, η∗G(·) is Borel measurable
and G-invariant (Def. 25). Importantly, η∗G(·) is also maximal-invariant in the sense that
for any pair x, y ∈ X that belongs to different orbits of πG (i.e., G(x) ∩ G(y) = ∅) then
η∗G(x) 6= η∗G(y). This last discrimination property over disjoint orbits of πG is central to
show that η∗G(·) is OS (Def. 23) for the collection of G-invariant models (Def. 27):

Proposition 28 Let Λ =
{
µθX,Y , θ ∈ Θ

}
be G-invariant (Def. 27) w.r.t. a compact mea-

surable group G acting on (X ,B(X )). Then η∗G(·) is OS for Λ (Def. 23) meaning that
∀θ ∈ Θ there is r̃θ(·), solution of (37), such that H(r̃θ(X)|η∗G(X)) = 0 when X ∼ µθX and,
consequently, `(µθη∗G(X),Y ) = `(µθX,Y ).

The proof is presented in Appendix G. Then, we have the following:

Corollary 29 Let Λ =
{
µθX,Y , θ ∈ Θ

}
be operational G-invariant (Def. 27), and let {Ui}i≥1

be a family of representations of X obtained from {ηi(·)}i≥1. For any µθX,Y ∈ Λ, if

lim
i→∞

I(µθ(η∗G(X),Ui),Y
)− I(µθUi,Y )︸ ︷︷ ︸

I(η∗G(X);Y |ηi(X)) when (X,Y )∼µθX,Y

= 0, (46)

then limi→∞ `(µ
θ
ηi(X),Y ) = `(µθX,Y ).

30. A systematic exposition of this result can be found in (Bloem-Reddy and Teh, 2020) and references
therein.
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Proof The result follows from Proposition 28 and Theorem 24.

Remark 30 It is important to mention that our definition of operational invariances (Def.
27) for Λ only implies that η∗G(·) is operationally sufficient (i.e., the requirement that
`(µθη∗G(X),Y ) = `(µθX,Y ) for any µθX,Y ∈ Λ). This operational condition does not imply

that η∗G(·) is information sufficient for all the models in Λ. Therefore, we could have that
I(µθX,Y ) > I(µθη∗G(X),Y ) where (X,Y ) ∼ µθX,Y for some model µθX,Y ∈ Λ. This last non-zero

information loss condition makes Corollary 29 non-trivial and interesting because, under
this scenario, (46) is strictly weaker than pure IS in Definition 2.

6.4.3 Sd-invariant models

An important example of Definition 27 is the collection of models invariant to the action of
permutations of the coordinates of X = Rd.31 In this case, the compact group G is denoted
by Sd where for any g ∈ Sd there is a permutation of [d] = {1, , ., d} p : [d]→ [d] such that
g(x) = (xd(1), xd(2), .., xd(d)) ∀x ∈ Rd. Therefore, if a function f(·) is Sd-invariant (see Def.
25), it means that its output is invariant to the action of any permutation of x = (x1, .., xd),
and therefore f(x) depends on the set {x1, .., xd} ⊂ R induced by x.32

Here we consider the family of operational Sd-invariant models PSd ⊂ P(X × Y) from
Definition 27. For this group, it is well known that the empirical distributionM : Rd → P(R)
33 is invariant to the actions of Sd, but, more importantly (for the adoption of Corollary 29),
M(·) is maximal-invariant for Sd (Bloem-Reddy and Teh, 2020). Then, in the adoption of
Corollary 29 for PSd , we could consider the lossy mapping η∗Sd(·) =M(·).

6.4.4 Other Invariant Examples

In Section 8, we illustrate other simple examples of models with an operational structure
where Theorem 24 can be used. In particular, examples are presented with specific symme-
tries and operational invariant properties (to translation, rotation, and scale operations),
as well as some expressive representations that show that the WIS condition in Theorem 24
is strictly weaker than IS and, as a consequence, the evident gap that might exist between
OS and IS in some scenarios.

6.4.5 A Final Remark: Probabilistic Invariance

Bloem-Reddy and Teh (2020) studied a stronger notion of invariance for Λ under the action
of a compact group G. They consider the case where Λ is G-invariant if for any g ∈ G and
any model µθX,Y ∈ Λ, it follows that (X,Y ) = (g(X), Y ) in distribution when (X,Y ) ∼
µθX,Y . This means that the complete joint model of (X,Y ) is invariant to the actions of
G. Importantly, this model-based assumption on Λ is stronger than the operational G-

31. This class is systematically studied in the excellent paper by Bloem-Reddy and Teh (2020).
32. A complete characterization of this family of permutation invariant functions is presented in (Zaheer

et al., 2017) and revisited and extended for a family of probabilistic models in (Bloem-Reddy and Teh,
2020).

33. M(x) = 1
d

∑d
i=1 δxi(·) ∈ P(R) denotes the empirical distribution induced by x in (R,B(R)).
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invariant condition we used in Definition 27 to derive Corollary 29.34 Furthermore, under
the model-based invariance used in (Bloem-Reddy and Teh, 2020), the authors showed
that any maximal invariant transformation η∗(·) of G offers a D-separation of the model
µθX,Y ∈ Λ, in the sense that I(X;Y |η∗(X)) = 0 when (X,Y ) ∼ µθX,Y . Then η∗(X) is an
information sufficient representation of Y , which is strictly stronger than the concepts of
OS (in Def. 23) used to derive Corollary 29 (from Theorem 24). Indeed, under this stronger
model-based invariant assumption for Λ, it is simple to show that (46) reduces to the IS
condition in Definition 2, and the application of Corollary 29 reduces to restate the result
(from Theorem 12) that if {Ui}i≥1 is IS for every model in Λ, then {Ui}i≥1 is OS for every
model in Λ.

7. Lossy Compression Algorithms

In this section, Theorem 24 (non-oracle WIS⇒ OS) is used to explain the operational qual-
ity of existing machine learning algorithms. We analyze two compression-based methods
that select lossy representations (encoders) by implementing info-max optimization princi-
ples: a version of the information bottleneck (IB) method (Tishby et al., 1999; Tishby and
Zaslavsky, 2015; Chechik et al., 2005) and a version of the recently introduced lossy com-
pression for lossless prediction (LCLP) method (Dubois et al., 2021). For these analyses,
we introduce a simple adaptation of the IB method to deal with the operational assumption
studied in Section 6.

7.1 Information Bottleneck in a Projected OS Domain

Under the prior knowledge assumed in Theorem 24, there is a simple adaptation of the IB
method that can be used if µX,Y ∈ Λ (prior knowledge) and there is a lossy mapping ηΛ(·)
that is OS for Λ (Def. 23). For that objetive, let us use the OS variable UΛ ≡ ηΛ(X) as
our new reference where ηΛ : X → X . Then, we can adapt the IB method in the lossy
representation UΛ as the solution of:

max
U

I(U ;Y ) s.t. I(UΛ = ηΛ(X);U) ≤ B, (47)

where U = η(UΛ) and η(·) represents a collection of lossy encoders (or latent variable)
obtained from UΛ, i.e., measurable functions acting on UΛ (more details in Theorem 31). In
(47), B > 0 parametrizes a compression constraint on U , i.e., the information bottleneck.

The IB method has been adopted as a learning principle in ML to learn compressed
supervised latent variables (Zaidi et al., 2020). DNN has been used for solving a stochastic
version of (47)35 by inducing a family of expressive parametric encoders (Alemi et al., 2017;
Amjad and Geiger, 2019; Achille and Soatto, 2018b). Indeed, it has been argued that the
well-known functional expressive power of DNN offers the potential to create supervised
representations UB (solution of the regularized info-max problem in (47)) with the capacity
to approximate the optimal tradeoff between compression I(UΛ;U) and information I(U ;Y )
in (47).

34. In fact, it is simple to verify that if µX,Y is G-invariant in the sense that (X,Y ) = (g(X), Y ) in distribution
for any g ∈ G, then µX,Y is operational G-invariant (Def. 26). For completeness, this is shown in
Appendix H.

35. The called deep variational IB problem (Goldfeld and Polyanskiy, 2020, Sec. IV).
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For any model µX,Y ∈ Λ, it is expected that UB, the solution of (47) for B > 0,
achieves the maximum MI value I(UΛ;Y ) of this projected setting, as we relax the com-
pression constraint B → ∞. Then, the IB algorithm in (47) has the potencial to satisfy
that I((UΛ, U

B);Y ) − I(UB;Y ) → 0 (i.e., the WIS condition in Eq.43) as B increases.
Consequently, Theorem 24 can be used to justify the expressive power of the IB method in
the MPE sense. Supporting this claim, we have the following result for the IB algorithm in
(47):

Theorem 31 Let Λ ⊂ P(X × Y) and let us consider a mapping ηΛ : X → X that is OS
for Λ (Def. 23). If F(X,R) represents the family of measurable functions from (X ,B(X ))
to (R,B(R)), and ηB(·) ∈ F(X,R) denotes the projected-based IB encoder solution of

arg max
η(·)∈F(X,R)

I(η(UΛ);Y ) s.t. I(UΛ; η(UΛ)) ≤ B, (48)

then for any model µX,Y ∈ Λ, we have that

lim
B→∞

I(UΛ;Y |ηB(UΛ)) = 0, (49)

and, consequently,
lim
B→∞

`(µηB(UΛ),Y ) = `(µX,Y ). (50)

The proof of Theorem 31 is presented in Section 10.10.

• Theorem 31 shows that the projected version of the IB algorithm introduced in (47)
can produce expressive representations for classification, i.e., by finding the optimal
tradeoff between information (minimizing the WIL in this case) and compression we
obtain compressed representations that achieve lossless prediction in the MPE sense.

• The proof of Theorem 31 shows that it is feasible to construct a sequence of finite-
information versions (in bits) of UΛ that are the solution of the IB problem in (47).
These compressed representations {Um,m ≥ 1} meet only the WIS fidelity criterion:
i.e., limm→∞ I(UΛ;Y |Um) = 0. Indeed, if UΛ has a non-zero information loss for
µX,Y , i.e., I(X;Y |UΛ) > 0 then {Um,m ≥ 1} is not IS (from the proof of Theorem
31). Consequently, the adapted IB algorithm in (47) is exploiting the prior structural
knowledge of Λ and only meeting the weaker WIS fidelity condition stated in Theorem
24.

• The proof of this result comes from three non-trivial technical elements elaborated
in this work: the universal expressiveness of digital encoders studied in Section 5,
Theorem 15 in Section 5.1, and Theorem 24 (non-oracle WIS ⇒ OS).

• Finally, for the range of the encoder η(·), Theorem 31 can be extended to any finite-
dimensional continuous space.

Remark 32 It is worth noting that the identity function is OS for any model in P(X ×Y).
In this trivial scenario, from the perspective of modeling prior knowledge for a learning task
(see Section 6), Theorem 31 can be used. Our result shows that the original IB algorithm
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acting on X (Tishby et al., 1999; Tishby and Zaslavsky, 2015) offers IS representations
for any model µX,Y . Then, we have that I(X;Y |UB) → 0 and, consequently, `(µUB ,Y ) →
`(µX,Y ) from Theorem 31. This universal predicting capacity of the IB method is non-
evident considering that X has infinite information (when µX has a density function (Renyi,
1959)) and the representation UB obtained from (47) only preserves a finite bit description
of X. Then, for any B > 0, the information loss of UB relative to the information of X
is unbounded. However, the information loss of predicting Y from UB relative to the same
prediction from X is vanishing as B increases. This exciting result verifies the expressive
power of digitalization (in the form of compression) in conjunction with an info-max learning
principle. To the best of our knowledge, this is the first time that the IB method’s IS and
OS lossless prediction capacity has been proven in the machine learning literature.

7.2 (Unsupervised) Lossy Compression for Lossless Prediction

A sufficient condition to meet that I(ηΛ(X);Y |Ui) → 0 is asking for H(ηΛ(X)|Ui) → 0.
This condition is only applicable to discrete classes of models, i.e., when the range of ηΛ(·)
is finite or countable with H(ηΛ(X)) <∞ (see Section 6.2) and, consequently, the entropy
and conditional entropy of ηΛ(X) are well defined (Cover and Thomas, 2006; Renyi, 1959).
In this discrete context, H(ηΛ(X)|Ui) → 0 implies the WIS condition of Theorem 24.36

This new information vanishing condition is non-supervised, a property useful for analyzing
many representation learning methods (Bengio et al., 2013; Kingma and Welling, 2014).

Relevantly, this non-supervised sufficient condition can be adopted to evaluate the OS
expressiveness of an existing compression-based algorithm. To illustrate this capacity, here
we revisit the work by Dubois et al. (2021) on “Lossy Compression for Lossless Predic-
tion”(LCLP). The authors proposed a compression-based learning algorithm designed to be
minimax optimal over a collection of invariant models denoted by Λ. As in Section 6, Λ is
used to model some prior knowledge about the learning task (the downstream tasks). Using
the theory of rate-distortion for lossy compression (Gray, 1990b; Berger, 1971), the authors
proposed an algorithm that solves the optimal tradeoff between compression I(X;U) (in
bits) and fidelity H(ηΛ(X)|U)37. Here, we analyze a version of this problem: finding Uδ (a
compressed description of X) that is solution of the following non-supervised task:

min
U
I(X;U) s.t. H(ηΛ(X)|U) ≤ δ. (51)

Solving (51) offers a collection of compressed variables {Uδn}n≥1 where H(ηΛ(X)|Uδn) ≤ δn
by the information constraint in (51) (see Dubois et al. 2021, Th.2). Then, if we design δn →
0 as n grows, {Uδn}n≥1 meets our WIS conditions in Eq.(43) because I(ηΛ(X);Y |Uδn) ≤
H(ηΛ(X)|Uδn) → 0 as (δn) is o(1). Consequently, we obtain that the solutions {Uδn}n≥1

meet the OS fidelity criterion from Theorem 24. As in the case of the IB algorithm in (47),
this LCLP algorithm has the expressive capacity to meet WIS, but it is not designed to
meet IS when ηΛ(·) is a lossy information mapping, i.e., when I(X;Y |ηΛ(X)) > 0. Then,
the representations obtained from (51) can meet the WIS condition of Theorem 24 and,
consequently, achieve lossless prediction (OS) with no guarantee to be IS.

36. H(ηΛ(X)|Ui) → 0 implying I(ηΛ(X);Y |Ui) → 0 follows from the fact that I(ηΛ(X);Y |Ui) ≤
H(ηΛ(X)|Ui) in this discrete setting (Cover and Thomas, 2006).

37. Remarkably, under some regularity conditions on the family of invariant models Λ, H(ηΛ(X)|U) is shown
to be the worse-case information loss over Λ (Dubois et al., 2021, Proposition 1).
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In summary, under the assumption used in (Dubois et al., 2021, Proposition 1) that
µX,Y ∈ Λ and Λ is a discrete family, the unsupervised lossy compression algorithm proposed
by Dubois et al. (2021) in (51) can be designed to extract all the MI that ηΛ(X) has about
Y distribution-free over Λ. In this context, Theorem 24 explains the expressive power of
this algorithm in the MPE sense (i.e., OS), proving that these lossy representations can
achieve lossless prediction (i.e., zero operational loss).38

Remark 33 Alternatively, this new (unsupervised) condition H(ηΛ(X)|Ui) → 0 can be
used to modify the IB algorithm in (48) minimizing H(UΛ|η(UΛ)) instead of maximizing
I(η(UΛ);Y ), making this modified IB algorithm non-supervised. This algorithm is presented
next.

7.3 The Unsupervised IB Algorithm: A Compressed Auto-encoder

The following result is an extension of the IB method and shows the operational expres-
siveness of an unsupervised variation of the IB algorithm introduced in Eq.(48), under the
discrete assumption that H(ηΛ(X)) <∞.

Theorem 34 Let Λ ⊂ P(X × Y) and let us consider a mapping ηΛ : X → X that is OS
for Λ (Def. 23) and discrete in the sense that H(ηΛ(X)) < ∞ for any µX,Y ∈ Λ. If
F(X,R) represents the family of measurable functions from (X ,B(X )) to (R,B(R)), and
η̃B(·) ∈ F(X,R) denotes the unsupervised IB encoder solution of

arg min
η(·)∈F(X,R)

H(UΛ|η(X)) s.t. I(UΛ; η(X)) ≤ B, (52)

then for any model µX,Y ∈ Λ, we have that

lim
B→∞

I(UΛ;Y |η̃B(X)) = 0, (53)

and, consequently,
lim
B→∞

`(µη̃B(X),Y ) = `(µX,Y ). (54)

The proof of Theorem 34 is presented in Appendix 10.11.

8. Numerical Analysis

In this section, we design some simple examples (the model µX,Y and family of represen-
tations {Ui, i ≥ 1}) to illustrate the interplay between information loss and operation loss
studied in this work. For a given model µX,Y , we consider different families of represen-
tations of X. We focus on discrete encoders (VQs). We consider universal IS partitions
from the results in Section 5.1, and IS data-driven partitions from the results in Section 5.2.
The idea is to have a diverse range of representations of X in terms of information losses
and see how this diversity translates in the operation loss. From this, we analyze scenar-
ios where WIS is strictly weaker than IS complementing the example presented in Section
3.4.1. We also evaluate if the order of representations obtained from the information loss is
an adequate predictor of the order obtained with the operation loss for regimes where the
information loss is non-zero.

38. The lossless prediction was mentioned as one of the intended properties of this method in (Dubois et al.,
2021). Our result (Theorem 24) proves this result.
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8.1 Settings and Experimental Design

We consider three classes of models. Each of them simple enough to approximate the
true information losses and operation losses, and each of them expressing some interesting
structure that could be used as a prior knowledge to obtain more effective representations
for the task.

8.1.1 The Models

We consider a simple setting with X = R2 and Y = {1, . . . , 4} using a uniform marginal
(i.e., µY ({y}) = 1/4). The probability of X given Y = y (i.e., µX|Y (·|y)) follows a normal
distribution (∼ N (mX|Y (y),KX|Y (y))) with an isotropic covariance KX|Y (y) = σ2

y · I2×2,
where I2×2 denotes the identity matrix. The mean is denoted by mX|Y (y) ≡ E(X|Y = y) ∈
R2. In this parametric context, we consider three scenarios (classes of models):

• Scale Invariant Models: In this family, the mean vector is given by: mX|Y (1)t =
(α, α), mX|Y (2)t = (−α, α), mX|Y (3)t = (α,−α) and mX|Y (4)t = (−α,−α) and
KX|Y (y) = σ2 · I2×2. Consequently, two scalar parameters (degrees of freedom) σ > 0

and α > 0 determine the joint distribution of (X,Y ), which we denote by µSX,Y (σ, α).

Samples of the 4 conditional distributions
{
µSX|Y (·|y), y ∈ Y

}
are illustrated in Fig.1.

From the symmetry of the class
{
µSX,Y (σ, α), σ > 0, α > 0

}
⊂ P(X × Y), the MPE

rule of µSX,Y (σ, α) is independent of α and σ, and induces the following OS partition

π̃S =

[0,∞)× [0,∞)︸ ︷︷ ︸
ÃS,1

, (−∞, 0)× [0,∞)︸ ︷︷ ︸
ÃS,2

, [0,∞)× (−∞, 0)︸ ︷︷ ︸
ÃS,3

, (−∞, 0)× (−∞, 0)︸ ︷︷ ︸
ÃS,4

 .

(55)
The MPE rule is r̃S(x) =

∑4
j=1 1ÃS,j (x) · j. For the following analysis, we use σ2 = 1

and α = 1.5.

• Translation Invariant Models: This 2D joint distribution µX,Y follows the same Gaus-
sian parametric structure for µX|Y (·|y) and KX|Y (y) as the previous scenario but with
Y = {1, . . . , 5}. In this case, the mean vectors of the 5 equiprobable clases are oriented
in one (1D) direction as illustrated in Fig. 7. This 1D linear disposition of the mean
vectors makes the MPE rules invariant (and the µX,Y , see Def. 26) to any translation
in the direction that is orthogonal to the direction used to place the mean vectors of{
µX|Y (·|y), y ∈ Y

}
.

• Rotation Invariant Models: We use the same 2D Gaussian parametric structure of the
previous two examples. In this scenario,

{
µX|Y (·|y), y ∈ Y

}
shares the same mean

vector (the zero vector for simplicity), where σy in KX|Y (y) = σ2
y · I2 is a function of

the class y ∈ Y.39 This centered structure makes the model MPE rule invariant to
any rotation of the space (see Defs. 25 and 26). Samples of this model are illustrated
in Fig. 9.

39. In particular, we consider |Y| = 3 and σ2
1 = 1, σ2

2 = 3 and σ2
3 = 10.
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8.1.2 The Partitions

For the three models presented in Section 8.1.1, we will use the following partitions of X :

• Product partition (PP): we consider K > 0 sufficiently large, and we produce a uniform
quantization of the bounded space [−K,K]× [−K,K] following the product structure
presented in Section 5.1.1. We denote these partitions by

{
πPn , n = 1 . . . N

}
⊂ Q(X )

with sizes kn =
∣∣πPn ∣∣ and its representations in (26) (VQs) by

{
ηPn (·), n = 1 . . . N

}
.

An illustration of this partition is presented in Fig.1a.

• Gessaman partition (GP): Using i.i.d. samples from µX , i.e., X1 . . . Xm, we implement
the statistically equivalent partition presented in Section 5.2.2. Therefore, we have
a family of data-driven partitions that we denote by

{
πGn , n = 1, .., N

}
⊂ Q(X ) with

kn =
∣∣πGn ∣∣. The different sizes (number of cells) were obtained fixing X1 . . . Xm and

changing the threshold `n used to construct πGn (see Eq.33).40 An illustration of this
non-product data-driven partition is presented in Fig. 1b.

• Tree-structured partition (TSP): Using i.i.d. samples from µX , i.e., X1 . . . Xm, we
implement the TSP in Section 5.2.3. This scheme produces a family of data-driven
partitions that we denote by

{
πTn , n = 1 . . . N

}
⊂ Q(X ) with kn =

∣∣πTn ∣∣ where the
different sizes (number of cells) were obtained by changing the threshold `n.41 An
illustration of this data-driven partition is presented in Fig. 1c.

For each model µX,Y , we use at least three partition schemes:
{
πPn
}

,
{
πGn
}

, and
{
πTn
}

.
We designed them in increasing order of complexity, i.e., |πn| < |πn+1|, and covering similar
sizes (number of cells) in the range {1, . . . , 1.000}. In addition, we include a partition scheme
that uses some prior knowledge of the model class (scale invariant, translation invariant,
and rotation invariant) to produce more effective representations.

8.1.3 Estimation of Information and Operation losses

For a model µX,Y and a partition πi ∈ Q(X ), we consider ηπi(·), Ui = ηπi(X) and the
induced distribution of (Ui, Y ), i.e., µUi,Y . For the partition, we have two scenarios: non
data-driven πi and data-driven πi(x1 . . . xm), where this last object is a function of the
unsupervised sample x1 . . . xm ∈ Xm that follow the true marginal µX . For data-dependent
partitions, the dependency on x1 . . . xm will be implicit. Then, the cells of a partition will
be denoted by πi = {Aj , j = 1, .., ki} in all cases. In addition to the (unsupervised) sample
x1 . . . xm ∈ Xm used to create the data-driven partitions, we use an independent set of
supervised i.i.d. realizations of (X,Y ) ∼ µX,Y to estimate I(µX,Y ), I(µUi,Y ), `(µX,Y ) and
`(µUi,Y ) by strongly consistent estimators.

40. Using Eq.(33) and a fixed sample size m = 10.000, we hand-selected different values of `n (the threshold)
such that we achieve a representative collection of values kn =

∣∣πGn ∣∣ in the range {1, . . . , 1.000}.
41. For a fixed sample size m = 10.000, we hand-selected `n (the threshold of the method) to cover a rich

collection of values kn =
∣∣πTn ∣∣ in the range {1, . . . , 1.000}.
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To estimate the IL of Ui, we know that I(µX,Y ) = E(X,Y )

{
log

µY |X(Y |X)

µY (Y )

}
< ∞ and,

consequently, a natural empirical estimator (assuming knowledge of the model) is

În(µX,Y ) ≡ 1

n

n∑
j=1

log
µY |X(Yj |Xj)

µY (Yj)
. (56)

Concerning the discrete model µUi,Y ∈ P([ki]× Y), we have that

I(µUi,Y ) = I(Ui;Y ) =

ki∑
j=1

∑
y∈Y

µX,Y (Aj × {y}) log
µX,Y (Aj × {y})
µX(Aj) · µY ({y})

. (57)

Then, we can use the empirical version (known as the plug-in estimator) of (57) by42

I(µ̂nUi,Y ) ≡
ki∑
j=1

∑
y∈Y

µ̂nX,Y (Aj × {y}) log
µ̂nX,Y (Aj × {y})
µ̂nX(Aj) · µ̂nY ({y})

, (58)

where

µ̂nX,Y (A× {y}) ≡ 1

n

n∑
j=1

1A×{y}(Xj , Yj).

Finally, our empirical estimation of the information loss of Ui is

În(µX,Y )− I(µ̂nUi,Y ). (59)

From the law of large numbers, limn→∞ În(µX,Y ) = I(µX,Y ) and limn→∞ I(µ̂nUi,Y ) =
I(µUi,Y ) with probability one. Therefore, our empirical estimation of I(µX,Y ) − I(µUi,Y )
in (59) is strongly consistent.

For the operation loss of Ui, we determine the MPE decision r̃µX,Y (·) and r̃µUi,Y (·) analyt-
ically as we know µX,Y and µUi,Y . Using the supervised i.i.d. sample (X1, Y1), . . . , (Xn, Yn)
from µX,Y , we use the empirical risks:

ˆ̀
n(µX,Y ) ≡ 1− 1

n

n∑
j=1

1{Yj}(r̃µX,Y (Xj)) (60)

ˆ̀
n(µUi,Y ) ≡ 1− 1

n

n∑
j=1

1{Yj}(r̃µUi,Y (ηπi(Xj)), (61)

and the empirical operation loss of Ui is

ˆ̀
n(µUi,Y )− ˆ̀

n(µX,Y ). (62)

As before, limn→∞ ˆ̀
n(µUi,Y )− ˆ̀

n(µX,Y ) = `(µUi,Y )− `(µX,Y ) with probability one.
For the following sections, we use these consistent estimators to obtain precise indica-

tors of the true losses. For that, we can select a sufficiently large sample size n for the
computation of (59) and (62). For our analysis, we found that n = 1.000.000 realizations of
µX,Y were sufficient to obtain accurate estimations of the information losses and operation
losses in all the numerical examples described below.

42. In (58), we can update the classical plug-in estimador using the fact that we know that µY ({y}) = 1/ |Y|.
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(a) Product Partition πPn (b) Gessaman Partition πGn

(c) TSP Partition πTn (d) Asymmetric Partition πBn

Figure 1: Illustration of the data-driven and non data-driven partitions used to obtain lossy
representations (vector quantizers) of X. For the data-driven methods, we show the sample
of µX used for this construction: the Scale Invariant Model in Section 8.1.1 with parameters
α = 3 and σ = 1.

8.2 Information Loss vs. Operation Loss

We begin with the scale invariant model. We consider the product partitions
{
πPn
}
n
, the

Gessaman partitions
{
πGn
}
n
, and TSP

{
πTn
}
n
. In addition, we include a scheme that uses

some prior knowledge of the task
{
πBn
}
n
. This scheme quantizes the space R2 with vertical

and horizontal lines in an asymmetric way as illustrated in Fig.1d. These vertical and
horizontal boundaries are added to increase the size of the partitions. In the limit (of
infinite partition size) the added vertical and horizontal lines converge to the boundaries of
the optimal OS partition π̃S presented in (55). For each of the four representation strategies,
we produce a collection of partitions of different sizes (number of cells). Figure 1 illustrates
how the i.i.d. samples for each of the four classes are distributed in the space and the four
strategies adopted in this analysis.
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Figure 2: Information losses (the left panels) and operation losses (the right panel) curves
for different number of cells (k) of the partitions: Product (πPn ), Gessaman (πGn ), Tree-
structured (πTn ) and Biased-Asymmetrical (πBn ).

Figure 3: Weak information losses (the left panels) and operation losses (the right panel)
curves for different number of cells (k) of the partitions: Product (πPn ), Gessaman (πGn ),
Tree-structured (πTn ) and Biased-Asymmetrical (πBn ).
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Figure 2 presents the information losses (the left panel) and the operation losses (the
right panel) across a range of partition sizes from 10 to 1, 000. The trends of all four curves
follow the expected decreasing pattern: as the partition size increases so does the quality
to represent the information that Ui has about Y . However, on the information loss side,
there are two clear groups of curves. The first group shows a vanishing information loss
(Product, Gessaman, and TSP) expressing the fact that these families are IS (Def. 2), which
is consistent with the results elaborated in Section 5. For k in the range [50 − 400], there
are representation differences among these three cases. The data-driven schemes (TSP and
Gessaman) offer better information losses than the product (non-adaptive) partition. This
discrepancy is attributed the known flexibility and representation quality of data-driven
partitions (Lugosi and Nobel, 1996; Silva and Narayanan, 2010b, 2012; Gonzales et al.,
2022).

On the expressiveness of the Product, Gessaman, and TSP scheme in terms of operation
loss (OL) (the right panel), the exact order observed in the information loss side is not pre-
served. Indeed, for partition size in the range [50, 400], the product scheme (non-adaptive)
shows marginally better OL than the Gessaman scheme (data-driven) in opposition of what
is observed in the IL indicator. On the other hand, the TSP shows a clear advantage in
OL compared with the other two methods (the Gessaman and the product partition) that
is not explained by looking at the IL indicator. On explaining this last advantage, TSP
construction captures with very few cells (k < 10) the optimal solution in (55), which is
attributed to the symmetry observed in the unsupervised samples (see Fig.1) mimicking the
symmetry of the optimal rule in (55).

Finally, if we look at the task-informed asymmetrical partitions
{
πBn
}

, the analysis is
insightful. We observe that this family is not IS (left panel in Fig.2), however, on the
operation loss (right panel of Fig.2) this family is OS. Furthermore, this scheme has an
almost zero OL in all the size regimes (the only exception is when k < 20), which is clearly
better than the Gessaman and the Product partitions in all regimes. This numerical finding
is relevant considering that these last two schemes (Gessaman and Product) are IS. This
analysis demonstrates how prior knowledge of the task (in this case the symmetry of the
optimal solution) can be used to meet OS very efficiently without the need to achieve the
conservative IS requirement. In addition, this asymmetric construction shows an scenario
(based on prior knowledge of the task) where pure IL is not adequate as a predictor of the
quality of representations if the objective is having a small predictive error.

Complementing this analysis, Fig.3 presents the WIL (i.e., I(Ũ ;Y |Ui)) vs. OL curves
for the same four strategies (product, Gessaman, TSP, and asymmetrical) and settings used
in Fig.2 for the IL vs. OL analysis.43 From Figs. 2 and 3, the WILs are upper bounded
by the ILs as expected. More importantly, the asymmetrical partitions

{
πBn
}

meet the
WIS condition (left panel of Fig.3), explaining their vanishing operation loss. This scenario
shows again that WIS, as a condition, is strictly weaker than IS (a condition demonstrated
in Section 3.4.1). Furthermore, the raking obtained in the WIL domain (left panel) is
more consistent with the order followed by the OL indicator, especially in the regime where
k ≤ 100. In particular, this is observed in the relative order given to (πPn ), (πTn ) and (πBn )
from one domain (WIL) to the other (OL), which is in clear contrast with what is observed

43. To compute the WILs in Fig.3, we use the OS rule r̃S(·) induced by the partition in (55). Then, we
estimate I(Ũ , Ui;Y )− I(Ui;Y ) using the consistent MI estimation I(µ̂n

(Ũ,Ui),Y
)− I(µ̂nUi,Y ) from (58).
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in Fig. 2 for the same three schemes. Overall, the WILs offer better predictions of the
quality (prediction error) of the representations.

8.2.1 Rotated version of the Scale Invariant Model

To make the previous numerical setting a bit more challenging for the partitions schemes
that are coordinate oriented, we consider a rotated version of the scale invariant model.
The samples for this rotated model and the obtained partitions used for this analysis are
illustrated in Fig. 4. We consider the same family of data-driven partitions (TSP and
Gessaman) and non-data driven partitions (Product and Asymmetric). All partitions (with
the exception of the biased-asymmetrical that used prior knowledge of the orientation of
π̃S) are produced in a coordinate based manner.

Fig. 5 shows the information loss and the operation loss curves. These curves show
again two groups of decreasing curves on the information loss side: three schemes are
IS (Gemmanan, TSP and Product), while the asymmetric scheme

{
πBn
}

does not show
a vanishing information loss. In contrast, not only

{
πBn
}

has a vanishing operation loss
but is the scheme with the best operational performance (see the right panel in Fig.5).
Consequently, as in the previous example, the information loss is not adequate predictor of
the ranking in operation loss among these four schemes. More critically, the IL indicator
is blind in expressing the vanishing operation loss of

{
πBn
}

. In contrast, Fig.6 shows the
counterpart of Fig.5 using instead the WIL indicator. As in the previous example,

{
πBn
}

meet the WIS condition explaining their vanishing OL (from Theorem 24). This case is
another example that demonstrates that WIS is strictly weaker than IS as a condition.
Overall, the relative order provided by WIL indicators offers a very accurate prediction of
the quality of the representations (seen in the right panel of Fig.6).

As a side comment, we observe that achieving a close to zero operation loss in this case
is quite more difficult than what is observed on the previous non-rotated example as we
anticipated. Indeed, the data-driven methods achieve close to zero operation loss only after
k > 800 in clear contrast with what is presented in the right panel of Fig. 2.

8.2.2 Translation Invariant Model

In this case, we consider a rotated version of the Translation Invariant Model introduced
in Section 8.1.1 to make the problem non-coordinate oriented and more challenging. The
samples of this model are presented in Fig.7. In addition to the partitions presented in
Section 8.1.2, we include a partition that project the data in the direction of symmetry of
the problem (1D projection) to then perform a uniform quantization in this projected scalar
domain. This informed (with prior knowledge of the task) representation of X is illustrated
in Fig.7d and denoted by πSn .

As this problem is translation invariant, there is a linear lossy mapping44 η : R2 →
R that is operationally sufficient for µX,Y , in the sense that `(µX,Y ) = `(µη(X),Y ) (see
Corollary 29). Because of this operational structure, we consider the projected information
loss I((η(U), Ui);Y ) − I(Ui;Y ) = I(η(U);Y |Ui) for our analysis (see Eq.43) to evaluate if
this projected indicator (from Theorem 24) predicts the operation loss in this task.

44. η(x̄) = a1 · x1 + a2 · x2, where the vector ā = (a1, a2)t ∈ R2 is orthogonal to the direction used to locate
the means of the conditional Gaussian distribution (i.e., µX|Y (·|y), y ∈ Y) of the model µX,Y .
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(a) Product Partition πPn (b) Gessaman Partition πGn

(c) TSP Partition πTn (d) Asymmetric Partiton πBn

Figure 4: Illustration of the data-driven and non data-driven partitions used to obtain lossy
representations (vector quantizers) of X. For the data-driven methods, we show samples
of the distribution used for this analysis: a rotated version of the Scale Invariant Model in
Section 8.1.1 with parameters α = 3 and σ = 1.
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Figure 5: Information loss (the left panels) and operation losses (the right panel) curves
for different number of cells (k) of the partitions: Product (πPn ), Gessaman (πGn ), Tree-
structured (πTn ) and Biased-Asymmetrical (πBn ).

Figure 6: Weak Information loss (the left panels) and operation losses (the right panel)
curves for different number of cells (k) of the partitions: Product (πPn ), Gessaman (πGn ),
Tree-structured (πTn ) and Biased-Asymmetrical (πBn ).
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(a) Product Partition πPn (b) Gessaman Partition πGn

(c) TSP Partition πTn (d) 1D-Uniform Partiton πSn

Figure 7: Illustration of the data-driven and non data-driven partitions used to obtain lossy
representations (vector quantizers) of X. For the data-driven methods, we show samples of
the distribution used for this analysis: a rotated version of the Translation Invariant Model
in Section 8.1.1.
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Figure 8: Projected (task-depedent) information loss (the left panels) and operation losses
(the right panel) curves for different number of cells (k) of the partitions: Product, Ges-
saman, Tree-structured and 1D-Uniform projection.

Fig.8 shows the task-dependent information loss I(η(U);Y |Ui) and the operation loss
for the four schemes. In the information loss, all schemes perform very well in capturing
the information that η(X) has about Y and they offer the expected monotonic and van-
ishing decreasing pattern. In particular, data-driven partitions are slightly better than the
product one (that is consistent with their more efficient adaptation illustrated in Fig. 7).
Importantly, the projected partition (that use the operationally sufficient representation
η(·) in its construction) takes advantage of this prior knowledge, which is expressed in a
clearly superior performance in the information loss. In fact, the decreasing trend of its loss
curve is very drastic showing that this representation is very effective in capturing the la-
tent information structure of I(η(X);Y ). For example, the informed scheme (1D-Uniform)
achieves a loss with 10 cells that is obtained with the TSP and Gessaman (partitioning the
whole space) with more than 500 cells. Therefore, the gain of using a prior knowledge of the
learning task (i.e., projecting the problem to a smaller dimension to design πSn ) is significant
in terms of the projected information loss I(η(U);Y |Ui). Importantly, these patterns are
preserved in the operation loss domain (right panel of Fig.8). Here, the drastic difference
in performance of the 1D-Uniform representation with respect to the rest is also observed.
Also the order, or the ranking, from the less informative to the more informative represen-
tation is consistently observed in the operation side (right panel), showing for this example
that I(η(U);Y |Ui) provides a good prediction of the relative (operational) performance of
the schemes.

8.2.3 Rotation Invariant Model

Finally, we consider the rotation invariant model introduced in Section 8.1.1 that is illus-
trated in Fig. 9. This problem is very challenging for the representations in Section 8.1.2
that are coordinate oriented. As in the previous example, this model has a 1D projection
that is operationally sufficient45 η : R2 → R, meaning that `(µX,Y ) = `(µη(X),Y ). Here, we

45. η(x̄) = ||x̄||2 = x2
1 + x2

2, where x̄ = (x1, x2)t ∈ R2.
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also consider the projected information loss for our analysis, i.e. I(η(U);Y |Ui), and a spe-
cific representation (1D-Uniform) induced by projecting X using η(·) and then performing
a uniform quantization in this scalar domain (see Fig.9d). These collection of partitions
including this last informed partition scheme (1D-Uniform) are illustrated in Fig.9.

Fig.10 shows the curves associated to the projected information loss and the operation
loss. As in the previous case, the difference in information loss for the projected scheme
is significant, meaning that prior knowledge of the task translates in a significant boost in
expressiveness. In this scenario, the discrepancy is even more drastic than the previous
example in Section 8.2.2, where the 1D-Uniform representation has a projected information
loss with 10 cells that is better than what all the other alternative partitions can achieve
with 1, 000 cells, which is a very impressive difference. As in the previous example in
Section 8.2.2, these differences translate in the operation loss showing a clear advantage of
the 1D-Uniform with respect to the rest.

9. Final Discussion

This work offers new results that shed light on the interplay between information loss
(in the Shannon sense) and operation loss (in the classical MPE sense) when considering
a general family of lossy continuous representations of an observation vector X in Rd.
Our main asymptotic result (Theorem 12) supports the idea that creating a family of
information sufficient representations is adequate in the sense that these representations
have a vanishing residual error with respect to the best decision acting on X to classify Y .
At the same time, Theorem 12 shows that pure IS (in the sense of Def.2) is a conservative
criterion. Indeed, Theorems 24 demonstrates that a weaker notion of IS suffices to obtain
the required operational result (OS).

We worked on a non-oracle extension of Theorem 12 adopting a learning setting where
µX,Y belongs to a class of models Λ ⊂ P(X × Y). We studied how the structure of Λ can
be modeled operationally using sub-sigma fields, and we connected this structure with the
existence of a lossy OS transformation for the task. We use this operational structure as
prior knowledge to propose a less conservative and non-oracle-weak form of informational
sufficiency that implies OS. This new non-oracle result is stated in Theorem 24. In the
application of Theorem 24, we look at two important families of models: the operationally
invariant models (invariant to the action of a compact group) (Bloem-Reddy and Teh, 2020)
and finite-size models (Xu and Mannor, 2012). In these two relevant contexts, it was pos-
sible to determine “a non-oracle” lossy surrogate of r̃µX,Y (·) (in Theorem 12) that extends
our main result (WIS implies OS) in a realistic learning-like setting. Some applications
of this result are discussed and presented in Section 6.4. To conclude, in Section 7, we
demonstrate that two existing compression-based learning algorithms have the expressive
power to achieve lossless prediction (OS) by applying Theorem 24 (WIS implies OS).

Complementing these results, our empirical analysis in Section 8 supports our theoretical
findings, verifying with some concrete examples that the proposed WIS condition is strictly
weaker than IS. In these examples, we validate that pure information loss is not always
an adequate predictor of operation loss in classification and, therefore, that looking only
at mutual information as a fidelity indicator could be misleading in some contexts. In
this regard, our theoretical results and supported numerical evidence are consistent with
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(a) Product Partition πPn (b) Gessaman Partition πGn

(c) TSP Partition πTn (d) 1D-Uniform Partiton πRn

Figure 9: Illustration of the data-driven and non data-driven partitions (with k = 100) used
to obtain lossy representations (vector quantizers) of X. For the data-driven methods, we
show samples of the distribution used for this analysis: the Rotation Invariant Model in
Section 8.1.1.
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Figure 10: Projected information loss (the left panels) and operation losses (the right
panel) curves for different number of cells (k) of the partitions: Product, Gessaman, Tree-
structured and 1D-Uniform projection.

some of the findings made in feature selection (Frenay et al., 2013). Finally, our empirical
findings show that in the presence of prior knowledge about the task, in the form studied in
Section 6 and formalized in Theorem 24, this operational knowledge can be used to design
representations that offer significantly better operational performances.

9.1 Applications in ML

Studying the interplay between vanishing information and operation loss was motivated by
our desire to understand the role of lossy compression in machine learning. Our two main
results (Theorems 12 and 24) shed light on this theoretical dimension. Furthermore, our
theoretical findings do offer new insights for the design of ML methods (see Section 7.1)
and provide formal arguments to explain the appropriateness and expressiveness of existing
encoder strategies (see Section 5) and compression-based learning algorithms (see Section
7). On this last dimension, we can say that:

• Our results support the universality of approximating (or learning) compressed rep-
resentations that capture the mutual information between X and Y , for example,
via minimization of the conditional entropy H(Y |U), or maximization of I(U ;Y ) as
illustrated in Section 7 for the IB method. This info-max principle is widely adopted
in representation learning, in the form of maximizing empirical versions of the mutual
information (info-max problems) or minimizing empirical versions of the conditional
entropy over a family of encoders of X (Amjad and Geiger, 2019; Alemi et al., 2017;
Achille and Soatto, 2018b; Strouse and Schwab, 2017; Tegmark and Wu, 2019).

• Our two main results (on WIS implies OS) also show that IS is a conservative criterion
if the objective is designing expressive representations in the MPE sense. Indeed, we
introduce a weaker (strictly weaker in some cases) information-sufficient condition that
implies OS. Importantly, our non-oracle result in Theorem 24 (WIS implies OS) could
be adopted for the analysis of learning problems as shown in Section 6.4 and Section
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7. Indeed, two existing compression-based algorithms are studied in Section 7. These
solutions can meet our non-oracle WIS criterion in Theorem 24 and, consequently,
we demonstrate their expressive power to achieve lossless prediction (OS): Theorem
31. In light of these results, we believe that our findings, analyses, and theoretical
results could be used to motivate new avenues of practical research in ML: for instance,
designing new “non-oracle” losses inspired by WIS, weaker than pure IS that could
be adopted to rank, select or optimize representations from data when some prior
knowledge of the task is available beforehand.

• Finally, on the use of our raw oracle result in Theorem 12, which is purely theoreti-
cal, we show in Section 5 that this result facilitates an exciting connection with the
problem of mutual information estimation. Not only that, but Theorem 12 is used
to demonstrate the universal expressive power of digital representations (VQs) for
classification (see Theorems 15 and 18). This is an important result for ML and rep-
resentation learning in particular, saying that digitalization can be used with vanishing
performance degradation, which justifies the adoption of lossy compression ideas and
methods in ML (Strouse and Schwab, 2017; Tegmark and Wu, 2019; Goldfeld and
Polyanskiy, 2020; Zaidi et al., 2020; Dubois et al., 2021). On this, it is worth empha-
sizing the role of data-driven partitions (Silva and Narayanan, 2010a, 2007, 2010b;
Vajda, 2002; Darbellay and Vajda, 1999; Gonzales et al., 2022). We establish a con-
dition that makes these stochastic encoders IS with probability one (Theorem 18).
Then, Theorem 12 is used to prove that these data-driven VQs are OS (with proba-
bility one) for classification, as presented in Corollaries 19 and 20 for two widely used
data-driven constructions.
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10. Proofs of the Main Results

10.1 Proof of Theorem 10

Proof Let us first look at the definition of g(µX,Y , B) in (14). This is a function of the

model µX,Y , the partition π̃ =
{
Ãy, y ∈ Y

}
in (11) and a set B ⊂ X . In particular, we

have that

g(µX,Y , B) =

[
1−max

y∈Y
µY |X(y|B)

]
−
∑
Ãu∈π̃

µX(Ãu|B) ·
[
1−max

y∈Y
µY |X(y|Ãu ∩B)

]
. (63)

The first term on the RHS of (63) can be seen as the prior minimum error probability of
a random variable Ỹ in Y with marginal probability (vỸ (y) ≡ µY |X(y|B))y∈Y ∈ P(Y). On
the other hand, the second term on the RHS of (63) can be seen as the MPE of a joint
vector (X̃, Ỹ ) in Y × Y with probability vX̃,Ỹ in P(Y × Y) defined by

vX̃,Ỹ (u, y) ≡
µX,Y (Ãu ∩B × {y})

µX(B)
, ∀(u, y) ∈ Y2. (64)

The second term in (63) is precisely `(vX̃,Ỹ ). Adopting Lemma 8 in this context, we can
use its corollary in (17) to obtain that

I(vX̃,Ỹ ) = I(X̃; Ỹ ) ≥ H(Ỹ )−H(R(vỸ , `(vX̃,Ỹ )))

= H(vỸ )−H(R(vỸ , `(vX̃,Ỹ )))

= H(µY |X(·|B))−H(R(µY |X(·|B), `(µX̃,Ỹ ))), (65)

where `(vX̃,Ỹ ) =
[
1−maxy∈Y µY |X(y|B)

]
− g(µX,Y , B) from (63) and the construction of

vX̃,Ỹ in (64). The inequality in (65) is obtained as a function of B ⊂ X , as it is used to
construct vX̃,Ỹ in (64).

Returning to the main object of interest of this result, we have that

I(µ(Ũ ,Ui),Y
)− I(µUi,Y ) = I(Ũ ;Y |Ui) =

∑
Bi,j∈πi

µX(Bi,j) · I(Ũ ;Y |X = Bi,j). (66)

The first equality is by the chain rule of MI and the second is by definition of the conditional
MI (Cover and Thomas, 2006). Finally we recognize that I(Ũ ;Y |X = B) = I(µŨ ;Y |X(·|B)),

where µŨ ;Y |X(·|B) is precisely the distribution vX̃,Ỹ defined in (64). Consequently, applying

(65) in each Bi,j ∈ πi, we have that

I(µ(Ũ ,Ui),Y
)− I(µUi,Y ) ≥

∑
Bi,j∈πi

µX(Bi,j) ·
[
H(µY |X(·|Bi.j))−H(R(µY |X(·|Bi,j), εi,j))

]
,

where εi,j =
[
1−maxy∈Y µY |X(y|Bi,j)

]
− g(µX,Y , Bi,j).
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10.2 Proof of Theorem 12: from Discrete to Continuous Representations

10.2.1 Organization of the Proof

The proof of Theorem 12 is divided in many stages. The first stage, presented in Section
10.2.2, restricts the analysis to the case of finite alphabet representations to prove Theorem
35 below. In the second stage, in Section 10.2.3, we make a connection between the discrete
and the continuous version of this problem. To conclude, the finite alphabet result (Theorem
35) is used as a building block to prove Theorem 12.

10.2.2 Discrete version of Theorem 12

Theorem 35 Let {Ui}i≥1 be a sequence of representations for X obtained from {ηi(·)}i≥1

where |Ui| <∞ for any i ≥ 1. If {Ui}i≥1 is WIS for µX,Y then {Ui}i≥1 is OS for µX,Y .

The proof of Theorem 35 is presented in Section 10.3.
Technical remarks about the proof of Theorem 35:

1. The proof of this result uses a sample-wise version of the inequality presented in (18)
(Theorem 10) as a key element in the argument.

2. Another important technical element of the proof was characterizing and analyzing
the following information object:

Iloss(ε,M) ≡ min
v∈Pε([M ])

{H(v)−H(R(v, prior(v)− ε))} , (67)

where Pε([M ]) ≡ {v ∈ P([M ]), prior(v) ≥ ε} and M = |Y|. Indeed, a non-trivial part
of this argument was to prove that Iloss(ε,M) > 0 for some values of ε > 0 (see
Theorem 37 and Appendix 10.4). To achieve this key result, we derived an explicit
lower bound for Iloss(ε,M) function of ε and M .

10.2.3 Proof of Theorem 12

Proof Without loss of generality, let us assume that ηi : X → Ui is such that Ui ⊂ U = Rq

for some q ≥ 146. Here we use a result from the seminal work of Liese et al. (2006) on
asymptotic sufficient partition for MI. In particular, in the context of our work we have the
following:

Lemma 36 (Liese et al., 2006) There is an infinite collection of finite-size embedded par-
titions π1 � π2 . . . ⊂ B(Rq) of U = Rq such that for any model µX,Y ∈ P(X × Y) and any
measurable function η : X → U it follows that

lim
i→∞

I(Y ;mπi(η(X))) = I(Y ; η(X)), (68)

where
mπi(u) ≡

∑
Al∈πi

l · 1Al(u) ∈ {1, .., |πi|} , ∀u ∈ U (69)

denotes the lossy function (VQ) induced by the partition πi = {Ai, i = 1, .., |πi|}.

46. The general case derives directly from the argument presented for this case, and it only requires the
introduction of additional notations that occludes the proof flow.
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Lemma 36 is a remarkable implication of the work by Liese et al. (2006). This result shows
the existence of a finite-size VQ family that approximates (universally) any well-defined MI
on a continuous space in the sense presented in (68). More details of this result and the
construction of {πi}i≥1 are presented in Section 5.1.1.

In the context of this argument, we can use the universal embedded quantization {πi}i≥1

of U stated in Lemma 36 to obtain as a direct corollary of Lemma 36 that for any ηj : X → U

lim
i→∞

I((Ũ ,mπi(Uj));Y )−I(mπi(Uj);Y ) = I((Ũ , Uj);Y )−I(Uj ;Y ) = I(Ũ ;Y |Uj) ≥ 0, (70)

where Uj = ηj(X) and Ũ = r̃µX,Y (X) ∈ Y (see Eq.10).

On the other hand, from the hypothesis that assumes that {ηj(·)}j≥1 is WIS, we have
that

lim
j→∞

I(Ũ ;Y |Uj = ηj(X)) = 0. (71)

Let us consider an arbitrary sequence (εn)n≥1 ∈ R+ \{0} such that εn → 0 as n tends to
infinity. Using (70), we have that for any j ≥ 1 there exists i∗j (εj , ηj) ≥ 1 sufficiently large

such that47

I(Ũ ;Y |Uj) + εj > I((Ũ ,mπi∗
j
(Uj));Y )− I(mπi∗

j
(Uj);Y )︸ ︷︷ ︸

I(Ũ ;Y |mπi∗
j

(Uj)))

> I(Ũ ;Y |Uj)− εj . (72)

In (72), it is worth noticing that mπi∗
j
(Uj) = mπi∗

j
◦ ηj(X). Then, we can define

η̃j ≡ mπi∗
j
◦ ηj : X →

{
1, ..,

∣∣∣πi∗j ∣∣∣ <∞} , (73)

which is a finite alphabet representation (vector quantization) of X. Therefore using
{ηj(·)}j≥1 and (εn)n≥1, we have constructed a family of finite alphabet lossy representations
of X, which we denoted by {η̃j(·)}j≥1 in (73), satisfying that

lim
j→∞

I(Ũ ;Y |η̃j(X))) = 0, (74)

from (72), (71), and the fact (εn)n≥1 is o(1). Therefore, (74) means that {η̃j(·)}j≥1 is weakly
information sufficient (Def.3). Then, Theorem 35 implies that

lim
j→∞

`(µη̃j(X),Y ) = `(µX,Y ). (75)

Finally, by construction, we have that η̃j(X) = mπi∗
j
◦ ηj(X). Then, η̃j(X) is indeed a de-

terministic function of ηj(X) for any j. Therefore, from classical results on Bayes decision
`(µη̃j(X),Y ) ≥ `(µηj(X),Y ), which concludes the proof from (75).

47. For what follows, we omitted the dependency on εj , ηj in i∗j to simplify the notation.
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10.3 Proof of Theorem 35

Let us begin introducing some preliminaries that will be used in the main argument in
Section 10.3.2.

10.3.1 Preliminaries

Let us consider a finite alphabet representation η : X → U where |U| < ∞. Using the
expressions presented in Propositions 4 and 5 and the interplay between them, determined
in Theorem 10, we define the information loss density (ILD) and the operation loss density
(OLD) associated with η(·) as follows:

`η(x) ≡
∑
A∈πη

1A(x) · g(µX,Y , A) ≥ 0, ∀x ∈ X (76)

Iη(x) ≡
∑
A∈πη

1A(x) · I(Ũ ;Y |X ∈ A) ≥ 0, ∀x ∈ X . (77)

It is useful to denote by πη(x) the cell in πη that contains x ∈ X . Using this notation, we
have that `η(x) = g(µX,Y , πη(x)) and Iη(x) = I(Ũ ;Y |X ∈ πη(x)). The names of `η(·) and
Iη(·) come from the observation that

EX {`η(X)} = `(µU,Y )− `(µX,Y ) (78)

EX {Iη(X)} = I(µ(Ũ ,U),Y )− I(µU,Y ), (79)

where U = η(X).

From the proof of Theorem 10, we obtain the following sample-wise inequality: for any
A ∈ B(X )

I(Ũ ;Y |X ∈ A) ≥ H(µY |X(·|A))−H(R(µY |X(·|A), prior(µY |X(·|A))− g(µX,Y , A))), (80)

where prior(µY ) ≡ (1−maxy∈Y µY (y)) denotes the prior risk of a prior model µY ∈ P(Y).
Adopting this inequality, it follows that for any x ∈ X

Iη(x) ≥ H(µY |X(·|πη(x)))−H(R(µY |X(·|πη(x)), prior(µY |X(·|πη(x)))− `η(x))). (81)

Then the ILD Iη(x) is lower bounded by a function of the posterior model µY |X(·|πη(x)) ∈
P(Y) and the gain of observing Ũ when the prior distribution on Y is µY |X(·|πη(x)), i.e.,

[
prior(µY |X(·|πη(x)))− `η(x))

]
=
∑
Ãu∈π̃

µX(Ãu|A) ·
[
1−max

y∈Y
µY |X(y|Ãu ∩A)

]
≥ 0.

Let us assume that we have a family of WIS representations for µX,Y (Definition 3)
given by {ηi(·)}i≥1 where ηi : X → Ui and |Ui| < ∞ for any i. Using the definition of the
ILD in (77) and (79), it follows that WIS is equivalent to

lim
i−→∞

EX {Iηi(X)} = 0. (82)
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As Iηi(x) ≤ log |Y| (uniformly in i and x), the convergence in (82) is equivalent to the conver-
gence in probability of (Iηi(X))i≥1, i.e., ∀ε > 0 it follows that limi→∞ P ({Iηi(X) > ε}) = 0.

Using again (78), the proof of Theorem 35 reduces to verify that

lim
i−→∞

EX {`ηi(X)} = 0. (83)

Again `ηi(·) is uniformly bounded by 1, then the convergence in (83) is equivalent to the
convergence in probability of the random sequence (`ηi(X))i≥1, i.e., for any ε > 0

lim
i→∞

P ({`ηi(X) > ε}) = 0. (84)

10.3.2 Main Argument

Proof Let us prove the result by contradiction. Let us assume that {ηi(·)}i≥1 is not OS.

Then from (84), there exists ε > 0 such that lim supi→∞ µX(Bi
ε) > 0 where

Bi
ε ≡ {x ∈ X , `ηi(x) > ε} ⊂ X . (85)

Then, we can pick δ > 0 where ∀N > 0 ∃i ≥ N such that (from the hypothesis that
lim supi→∞ µX(Bi

ε) > 0)

µX(Bi
ε) ≥ δ. (86)

Using the definition of the function R(v, ε) (see Appendix I), for any v ∈ P(Y), it follows
— from the expression of f(v, ε) in (16) — that H(R(v, ε1)) ≥ H(R(v, ε2)) when ε1 ≥ ε2;
therefore, from (81), if x ∈ Bi

ε, we have that

Iηi(x) ≥ H(µY |X(·|πi(x)))−H(R(µY |X(·|πi(x)), prior(µY |X(·|πi(x)))− ε)) (87)

where πi(x) is a shorthand for πηi(x).
The bound in (87) will be central to prove the result: a lower bound on the information

loss density function of the operation loss density that is lower bounded by ε > 0. More
precisely, given ε > 0, we proceed by finding a uniform lower bound for

H(v)−H(R(v, prior(v)− ε)) (88)

over all models v ∈ P(Y) that are admissible in the sense that prior(v) ≥ ε.
In particular, we will consider the following general information v.s. operation loss

problem:

Iloss(ε,M) ≡ min
v∈Pε([M ])

{H(v)−H(R(v, prior(v)− ε))} , (89)

where

Pε([M ]) ≡ {v ∈ P([M ]), prior(v) ≥ ε} . (90)

In this notation, we use Y = [M ] ≡ {1, ..,M} to make explicit the role that the cardinality of
Y plays in this analysis. Importantly, we have the following (information loss vs. operation
loss) interplay result that shows that a non-zero operation loss (ε > 0) implies a positive
information loss for any M ≥ 1:
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Theorem 37 ∀M ≥ 1, and for any ε ∈ (0, 1− 1/M ], it follows that Iloss(ε,M) > 0.

The proof of this result requires (non-trivial) technical elements that are presented in Section
10.4.

Returning to the main proof argument, by definition of the operation loss density in (76) ,
we have that `ni(x) ≤ prior(µY |X(·|πi(x))), which implies that µY |X(·|πi(x)) ∈ P`ni (x)([M ])
in (90). Then using (87) and (89), for any x ∈ Bi

ε (considering that ε < `ηi(x) if x ∈ Bi
ε)

Iηi(x) ≥ H(µY |X(·|πi(x)))−H(R(µY |X(·|πi(x)), prior(µY |X(·|πi(x)))− ε))
≥ min

v∈Pε([M ])
{H(v)−H(R(v, prior(v)− ε))} = Iloss(ε,M), (91)

where the second inequality comes from the observation that µY |X(·|πi(x)) ∈ P`ni (x)([M ]) ⊂
Pε([M ]) from (90).

Finally, we use Theorem 37 and (91) to obtain that

∀x ∈ Bi
ε, Iηi(x) ≥ Iloss(ε,M) > 0. (92)

In particular, we have that for any ε̄ ∈ (0, Iloss(ε,M)), Bi
ε ⊂ Aiε̄ ≡ {x ∈ X , Iηi(x) > ε̄}.

Then using the hypothesis in (86), we have that for any N > 0 there exists i ≥ N such
that µX(Aiε̄) ≥ µX(Bi

ε̄) ≥ δ > 0: i.e., lim supi→∞ µX(Aiε̄) > 0. This last result is equivalent
to say that (Iηi(X))i≥1 does not converge to zero in probability. Then, from the argument
presented in Section 10.3.1 (see Eq.82), this last result contradicts the fact that {ηi(·)}i≥1

is WIS. This concludes the proof of Theorem 35.

10.4 Proof of Theorem 37

Proof Given a probability µ ∈ Pε([M ]), Ho and Verdú (2010) presented a closed-form
analytical expression for R(µ, prior(µ)−ε) (see details in Appendix I) appearing in the def-
inition of Iloss(ε,M) in (89). To present this induced distribution more clearly, we assume,
without loss of generality, that µ(1) ≥ µ(2) ≥ . . . ≥ µ(M). Then µε ≡ R(µ, prior(µ) − ε)
has the following structure:48

µε(1) = µ(1) + ε ≤ 1 (93)

µε(2) = θ

. . .

µε(K) = θ (94)

µε(K + 1) = µ(K + 1)

. . .

µε(M) = µ(M), (95)

48. To simplify notation µ(j) denotes µ({j}), i.e., µ(j) is a short-hand of the probability mass function
(pmf).
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where both K ∈ {2, ..,M} and θ ∈ (0, µ(1)) are functions of µ and ε > 0 satisfying the
following condition:

K∑
j=2

(µ(i)− θ) = ε > 0, (96)

which makes µε a well-defined probability in P([M ]).49

Therefore, using (93), (94) and (95), we have that for any µ ∈ Pε([M ]):

H(µ)−H(µε) = µ(1) log
1

µ(1)
− (µ(1) + ε) log

1

µ(1) + ε

+

K(µ,ε)∑
j=2

µ(j) log
1

µ(j)
− (K(µ, ε)− 1)θ(µ, ε) log

1

θ(µ, ε)
, (97)

where here we make explicit the dependency of K and θ on µ and ε. It is important to note
that by construction θ(µ, ε) < µ(K) ≤ µ(K − 1) . . . ≤ µ(1). At this point, we will use the
following result:

Lemma 38 ∀ε > 0 and for any µ ∈ Pε([M ]), it follows that

K(µ,ε)∑
j=2

µ(j) log
1

µ(j)
≥ (θ(µ, ε) + ε) log

1

θ(µ, ε) + ε
+ (K(µ, ε)− 2)θ(µ, ε) log

1

θ(µ, ε)
. (98)

The proof is presented in Appendix F.

Remark 39 The proof of Lemma 38 comes from the use of some information-theoretic
inequalities, similar to the argument used to prove that the Shannon entropy (over a finite
alphabet) is minimized with a degenerated distribution (Cover and Thomas, 2006; Gray,
1990b).

Applying Lemma 38, we have that for all µ ∈ Pε([M ]):

H(µ)−H(µε) ≥ µ(1) log
1

µ(1)
− (µ(1) + ε) log

1

µ(1) + ε

+

[
(θ(µ, ε) + ε) log

1

θ(µ, ε) + ε
− θ(µ, ε) log

1

θ(µ, ε)

]
. (99)

Using the fact that θ(µ, ε) < µ(K) ≤ µ(K−1) . . . ≤ µ(1), and that
∑K(µ,ε)

j=2 (µ(j)−θ(µ, ε)) =

ε, it is simple to verify that50

µ(2)− θ(µ, ε) ≥ ε

K − 1
, (100)

which implies that θ(µ, ε) ≤ µ(2)− ε/(K − 1).

49. Ho and Verdú (2010) show that for any ε ≤ prior(µ), ∃θ ∈ [0, µ(1)) and K ∈ {2, ..,M} that meet the
condition in (96).

50. This because µ(2)− θ(µ, ε) ≥ µ(3)− θ(µ, ε) ≥ . . . ≥ µ(K)− θ(µ, ε) > 0.
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On the other hand, if we consider the following function (used in Eq.99):

f1(θ, ε) ≡ (θ + ε) log
1

θ + ε
− θ log

1

θ
, (101)

where ∂f1(θ,ε)
∂θ (θ, ε) = log θ

θ+ε < 0. Then, f1(θ, ε) is strictly decreasing in the domain θ > 0,
for any ε > 0. Therefore from (100), we have that

f1(θ(µ, ε), ε) ≥ f1(µ(2)− ε/(K − 1), ε).

Applying this last inequality in (99), we have that

H(µ)−H(µε) ≥ −f1(µ(1), ε) + f1(θ(µ, ε), ε)

≥ −f1(µ(1), ε) + f1(µ(2)− ε/(K − 1), ε). (102)

Furthermore, we have that µ(2)− ε/(K − 1) ≤ µ(2)− ε/(M − 1), which is a bound that is
independent of K(µ, ε). Finally applying this bound in (102), we have that

H(µ)−H(µε) ≥ −f1(µ(1), ε) + f1(µ(2)− ε/(M − 1), ε). (103)

At this point, we return to our main problem:

Iloss(ε,M) = min
µ∈Pε([M ])

H(µ)−H(µε)

≥ min
µ(1)∈[1/M,1−ε]

(
−f1(µ(1), ε) + min

µ(2)∈[0,min{µ(1),1−µ(1)}]
(f1(µ(2)− ε/(M − 1), ε))

)
, (104)

where the lower bound in (104) comes from (103) and the fact that µ(1) = max {µ(j), j ∈ [M ]} ∈
[1/M, 1− ε] if µ ∈ Pε([M ]). For the rest of the proof, we concentrate on the analysis of the
RHS of (104), where we recognize for the second optimization in (104) two scenarios.

Case 1 (the restriction µ(2) ≤ µ(1) is active in Eq.(104): If we restrict the second
optimization problem in (104) to the case where µ(1) ≤ 1 − µ(1), this scenario implies
that µ(1) ≤ 1

2 . In addition, we have that µ(1) ≥ 1/M (achieved for the case of a uniform
distribution in [M ]). Then under this hypothesis, it follows that

Iloss(ε,M) ≥ min
µ(1)∈[1/M,1/2]

−f1(µ(1), ε) + f1(µ(1)− ε/(M − 1), ε). (105)

The last bound comes from (104) using that f1(x, ε) is strictly decreasing for x ∈ (0,∞) for
any ε > 0. Let us define f̃(x, ε) ≡ −f1(x, ε) + f1(x − ε/(M − 1), ε). It is simple to verify

that ∂f̃(x,ε)
∂x < 0 for any x > 051. This implies that

Iloss(ε,M) ≥ f̃(1/2, ε) = f1

(
1/2− ε

M − 1
, ε

)
− f1 (1/2, ε) > 0, (106)

as we know that (f1 (x, ε))x>0 is strictly decreasing for any ε > 0.
Case 2 (the restriction µ(2) ≤ 1 − µ(1) is active in Eq.104): If we restrict the second

optimization problem in (104) to the case where 1− µ(1) < µ(1), this scenario implies that

51. ∂f̃(x,ε)
∂x

= log ψε(x)
ψε(x−ε/(M−1))

< 0 for any x > 0, where ψε(x) ≡ (1 + ε/x).
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µ(1) > 1
2 . In addition, as µ ∈ Pε([M ]), it follows that µ(1) ≤ 1 − ε. Therefore, under this

hypothesis,

Iloss(ε,M) ≥ min
µ(1)∈(1/2,1−ε]

−f1(µ(1), ε) + f1((1− µ(1))− ε/(M − 1), ε), (107)

from (104) and using that (f1(x, ε))x∈(0,∞) is strictly decreasing for any ε > 0. In this case,

we consider φ̃(x, ε) ≡ −f1(x, ε) + f1((1 − x) − ε/(M − 1), ε). It is simple to verify that
∂φ̃(x,ε)
∂x > 0 for any x > 0. Consequently, we have that

Iloss(ε,M) ≥ φ̃(1/2, ε) = f1

(
1/2− ε

M − 1
, ε

)
− f1 (1/2, ε) > 0. (108)

In (108) and (106), we arrived to the same positive lower bound for Iloss(ε,M), which con-
cludes the proof of Theorem 37.

10.5 Proof of Theorem 14

The proof of this result is divided in two stages. First, we show that under the uniqueness
assumption of r̃µX,Y (·) (Def. 13), the OS condition implies that limi→∞ `(µUi,Ũ ) = 0, where

Ũ = r̃µX,Y (X) ∈ Y in the MPE predictor of Y . The second stages used a refined version of
Fano’s inequality stated in (Feder and Merhav, 1994, Th.1) to prove that limi→∞ `(µUi,Ũ ) =

0 implies that limi→∞ I(Ũ ;Y |Ui) = 0. Finally, the equivalence stated in Theorem 14 is
obtained from our result in Theorem 12 (WIS ⇒ OS).

10.5.1 Stage 1: limi→∞ `(µUi,Y ) = `(µX,Y )⇒ limi→∞ `(µUi,Ũ ) = 0

Proof For the MPE decision rule, we use the expression of r̃µX,Y (·) in (10) and its induced

partition π̃ =
{
Ãy, y ∈ Y

}
(with M cells) in (11). On the same line, we can introduce:

r̃µUi,Y (u) ≡ arg max
y∈Y

µY |Ui(y|u). (109)

and

πi ≡
{
Aiy ≡ η−1

i (r̃−1
µUi,Y

({y})), y ∈ Y
}
⊂ B(X ). (110)

From these, we have that `(µX,Y ) =
∑M

j=1(1− µX|Y (Ãj |j))µY (j) and `(µUi,Y ) =
∑M

j=1(1−
µX|Y (Aij |j))µY (j). Then, the operation loss of Ui (or ηi(·)) can be expressed by:

`(µUi,Y )− `(µX,Y ) =
M∑
j=1

(µX|Y (Ãj |j)− µX|Y (Aij |j)) · µY (j)

=

M∑
j=1

(µX,Y (Ãj × {j})− µX,Y (Aij × {j}) (111)
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On the other hand, our object of interest is `(µUi,Ũ ), where we have that

`(µUi,Ũ ) ≤ P(r̃µUi,Y (Ui) 6= Ũ) = P(r̃µUi,Y (ηi(X)) 6= Ũ)

= 1− P(r̃µUi,Y (ηi(X)) = r̃µX,Y (X)) = 1−
M∑
j=1

µX(Ãj ∩Aij)

=
M∑
j=1

(µX(Ãj)− µX(Ãj ∩Aij)) =
M∑
j=1

µX(Ãj \Aij), (112)

where the first inequality comes from the definition of the MPE rule and the third equality
from the fact that r̃µUi,Y (ηi(x)) =

∑M
j=1 1Aij

(x) · j and r̃µX,Y (x) =
∑M

j=1 1Ãj (x) · j.
To upper bound (112), let us work with the information loss expression in (111). It

follows that

`(µUi,Y )− `(µX,Y ) =
M∑
j=1

µX,Y (Ãj \Aij × {j})−
M∑
j̃=1

µX,Y (Ai
j̃
\ Ãj̃ ×

{
j̃
}

). (113)

Using the fact that
⋃M
j=1 Ãj \ Aij =

⋃M
j̃=1A

i
j̃
\ Ãj̃ , then for any j ∈ Y, it follows that

Ai
j̃
\ Ãj̃ = (

⋃M
j=1 Ãj \Aij) ∩Aij̃ \ Ãj̃ . From this last identity, we have that:

`(µUi,Y )− `(µX,Y ) =
M∑
j=1

µX,Y (Ãj \Aij × {j})−
M∑

j̃=1,j̃ 6=j

µX,Y (Ai
j̃
\ Ãj̃ ∩ Ãj \A

i
j ×

{
j̃
}

)


(114)

Let us analize one of the terms in the RHS of (114),

µX,Y (Ãj \Aij × {j})−
M∑

j̃=1,j̃ 6=j

µX,Y (Ai
j̃
\ Ãj̃ ∩ Ãj \A

i
j ×

{
j̃
}

)

=

∫
Ãj\Aij

fX,Y (x, j)dx−
M∑

j̃=1,j̃ 6=j

∫
Ai
j̃
\Ãj̃∩Ãj\Aij

fX,Y (x, j̃)dx

≥
∫
Ãj\Aij

fX,Y (x, j)− max
j̃∈Y,j̃ 6=j

fX,Y (x, j̃)︸ ︷︷ ︸
≥0

 dx ≥ 0, (115)

where fX,Y (x, y) denotes the density of µX,Y . The last inequality in (115) comes from the
definition of the MPE, the fact that for any x ∈ Ãj \ Aij , fX,Y (x, j) = maxy∈Y fX,Y (x, y),

the fact that for any x ∈ Ai
j̃
\ Ãj̃ ∩ Ãj \Aij , fX,Y (x, j̃) ≤ maxy∈Y,y 6=j fX,Y (x, y), and the fact

that Ãj \Aij =
⋃M
j̃=1 Ãj \A

i
j ∩Aij̃ \ Ãj̃ . Finally, using (115) in (114), we have that

`(µUi,Y )− `(µX,Y ) ≥
M∑
j=1

∫
Ãj\Aij

(fX,Y (x, j)− max
j̃∈Y,j̃ 6=j

fX,Y (x, j̃))dx. (116)
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Proving the result under a strong condition on µX,Y :
For simplicity and clarity, let us assume for the moment the following discrimination con-
dition on µX,Y : ∃K > 0 and ∃A ⊂ X s.t. ∀x ∈ A[

max
y∈Y

fX,Y (x, y)− max
y∈Y,y 6=r̃µX,Y (x)

fX,Y (x, y)

]
≥ K · fX(x) (117)

where fX(x) =
∑

y∈Y fX,Y (x, y) is the marginal density of X and µX(A) = 1. This strong
discrimination assumption on µX,Y is instrumental to directly prove our result. Indeed,
under this assumption, we have that

`(µUi,Y )− `(µX,Y ) ≥
M∑
j=1

∫
(Ãj\Aij)∩A

(fX,Y (x, j)− max
j̃∈Y,j̃ 6=j

fX,Y (x, j̃))dx (118)

≥ K ·
M∑
j=1

∫
(Ãj\Aij)∩A

fX(x)dx = K ·
M∑
j=1

µX((Ãj \Aij) ∩A) (119)

= K ·
M∑
j=1

µX(Ãj \Aij) ≥ K · `(µUi,Ũ ). (120)

The first inequality comes from (116) and the fact that (Ãj \ Aij) ∩ A ⊂ Ãj \ Aij for every
j ∈ Y and the observation that the function been integrated is non-negative. The second
inequality comes from the discrimination condition stated in (117). The second equality
comes from the assumption that µX(A) = 1, and the last inequality from (112). Therefore,
limi→∞ `(µUi,Y ) − `(µX,Y ) = 0 implies that limi→∞ `(µUi,Ũ ) = 0 under the discrimination
condition on µX,Y stated in (117).

Relaxing the discrimination condition in (117):
The argument used above to prove that limi→∞ `(µUi,Ũ ) = 0 can be extended when we relax
the condition stated in (117). For that let us introduce the following set:

AεµX,Y ≡
{
x ∈ X , fX,Y (x, y(1))− fX,Y (x, y(2)) > ε · fX(x)

}
(121)

where y(1) ≡ arg maxy∈Y fX,Y (x, y) and y(2) ≡ arg maxy∈Y,y 6=y(1)
fX,Y (x, y).52 Importantly,

we have the following result:

lim
ε→0

µx(AεµX,Y ) = lim
n→∞

µx(A1/n
µX,Y

) = µX(
⋃
n≥1

A1/n
µX,Y

), (122)

where the last equality is from the continuity of µX under a sequence of monotonic events
(Varadhan, 2001). The following important result will be instrumental for our analysis:

Theorem 40 The model µX,Y has a unique MPE decision rule (Def. 13) if, and only if,

µX(
⋃
n≥1

A1/n
µX,Y

) = µX(
{
x ∈ X , fX,Y (x, y(1)) > fX,Y (x, y(2))

}
) = 1. (123)

52. To simplify the notation, we omit the dependency of y(1) and y(2) on x.
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This result offers a concrete characterization of models with a unique MPE decision rule.
The proof is presented in Section 10.6.

Returning to the main argument, we have from (115) that for any j ∈ Y

µX,Y (Ãj \Aij × {j})−
M∑

j̃=1,j̃ 6=j

µX,Y (Ai
j̃
\ Ãj̃ ∩ Ãj \A

i
j ×

{
j̃
}

)

≥
∫
Ãj\Aij

[
fX,Y (x, y(1))− fX,Y (x, y(2))

]
dx (124)

≥
∫
Ãj\Aij∩AεµX,Y

[
fX,Y (x, y(1))− fX,Y (x, y(2))

]
dx ≥ ε

∫
Ãj\Aij∩AεµX,Y

fX(x)dx (125)

= ε · µX(Ãj \Aij ∩AεµX,Y ), (126)

where the second inequality comes from the fact that by definition fX,Y (x, y(1))−fX,Y (x, y(2)) ≥
0, and the third inequality from the definition of AεµX,Y in (121). Applying this last inequal-
ity in (114), it follows that for any ε > 0

`(µUi,Y )− `(µX,Y ) ≥ ε ·
M∑
j=1

µX(Ãj \Aij ∩AεµX,Y )

= ε · µX((∪Mj=1Ãj \Aij) ∩AεµX,Y ). (127)

Consequently, using the assumption that limi→∞ `(µUi,Y ) = `(µX,Y ), it follows that for any
ε > 0

lim
i→∞

µX((∪Mj=1Ãj \Aij) ∩AεµX,Y ) = 0. (128)

Finally, for any n ≥ 1, we have from (128) that

lim
i→∞

µX(∪Mj=1Ãj \Aij) ≤ lim
i→∞

µX((∪Mj=1Ãj \Aij) ∩A1/n
µX,Y

) + µX((A1/n
µX,Y

)c)

= 1− µX(A1/n
µX,Y

). (129)

This last bound implies that

lim
i→∞

µX(∪Mj=1Ãj \Aij) ≤ 1− lim
n→∞

µX(A1/n
µX,Y

)

= 1− µX(
⋃
n≥1

A1/n
µX,Y

). (130)

At this point, we use the assumption that µX,Y has a unique MPE and Theorem 40 to
obtain from (130) and (112) that

lim
i→∞

µX(∪Mj=1Ãj \Aij) = 0⇒ lim
i→∞

`(µUi,Ũ ) = 0. (131)
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10.5.2 Stage 2: limi→∞ `(µUi,Ũ ) = 0⇒ WIS

Proof For this part, we use the following result:

Lemma 41 (Feder and Merhav, 1994, Th.1)53 For any model µX,Y ∈ P(X × Y) in the
mixed continuous-discrete setting introduced in Section 2, it follows that

φ(`(µX,Y )) ≥ H(Y |X)

where φ(r) = h(r) + r · log(|Y| − 1) and h(r) = −r log(r) − (1 − r) log(1 − r) denotes the
binary entropy (Cover and Thomas, 2006).

Applying Lemma 41 in our context, i.e. over the family of models
{
µUi,Ũ

}
i≥1

, we have that

for any i ≥ 1

h(`(µUi,Ũ )) + `(µUi,Ũ ) · log(M − 1) ≥ H(Ũ |Ui). (132)

Using the hypothesis that limi→∞ `(µUi,Ũ ) = 0 in (132) and the fact that limr→0 h(r) =
h(0) = 0 (the continuity of the binary entropy (Cover and Thomas, 2006)), we have from
(132) that limi→∞H(Ũ |Ui) = 0. Finally, by definition of the conditional MI (Cover and
Thomas, 2006), we have that I(Ũ ;Y |Ui) ≤ H(Ũ |Ui) which proves that limi→∞ I(Ũ ;Y |Ui) =
0 (WIS).

10.6 Proof of Theorem 40

Proof First, it is simple to verify, from the definition of AεµX,Y in (121), that
⋃
n≥1A

1/n
µX,Y ={

x ∈ X , fX,Y (x, y(1)) > fX,Y (x, y(2))
}

.

Let us begin proving that if µX,Y has a unique MPE rule then µX(
⋃
n≥1A

1/n
µX,Y ) = 1.

We prove this implication by contradiction by assuming that µX(
⋃
n≥1A

1/n
µX,Y ) < 1. Let us

denote by

B ≡
{
x ∈ X , fX,Y (x, y(1)) = fX,Y (x, y(2))

}
= (

⋃
n≥1

A1/n
µX,Y

)c,

which is non-empty by our assumption. From this set, we can construct two different
optimal (MPE) decision rules:

r1(x) = y(1) = r̃µX,Y (x),∀x ∈ X (133)

and

r2(x) = r1(x),∀x ∈ X \B
r2(x) = y(2),∀x ∈ B. (134)

53. The result in (Feder and Merhav, 1994, Th.1) also offers a tight lower bound of the form H(Y |X) ≥
ψ(`(µX,Y )), where ψ(·) is presented in closed-form in (Feder and Merhav, 1994, Eq.14). Importantly,
the result proves that both bounds are tight, i.e., they are achievable for some model µX,Y in the class
P(X × Y).
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By the definition of y(1), y(2) and B, we have that P(r1(X) 6= Y ) = P(r2(X) 6= Y ) = `(µX,Y )
and P(r1(X) 6= r2(X)) = µX(B) > 0. Then, µX,Y does not have a unique MPE from
Definition 13.

For the other implication, let us assume that µX(B) = 0 and let us consider the optimal
MAP rule r̃µX,Y (x) = y(1). In addition, let us asume r : X → Y s.t. P(r(X) 6= Y ) = `(µX,Y ).

Both r̃µX,Y (·) and r(·) induce an M -cell partition of X given by π̃ =
{
Ãj , j = 1, ..,M

}
and

π =
{
Aj = r−1({j}), j = 1, ..,M

}
, respectively. Using the same arguments used in the

proof of Theorem 14, we have that:54

P(r(X) 6= Y )− `(µX,Y ) =

M∑
j=1

µX,Y (Ãj \Aj × {j})−
M∑

j̃=1,j̃ 6=j

µX,Y ((Aj̃ \ Ãj̃) ∩ (Ãj \Aj)×
{
j̃
}

)

 = 0, (135)

We observe that every term of this last summation over j is non-negative from construction
of the MAP rule. Consequently, to meet the zero condition in (135), it follows that for any
j = 1, ..,M

µX,Y (Ãj \Aj × {j})−
M∑

j̃=1,j̃ 6=j

µX,Y ((Aj̃ \ Ãj̃) ∩ (Ãj \Aj)×
{
j̃
}

) = 0 (136)

Therefore, from the inequality presented in Eq.(115) and (136), for any j∫
Ãj\Aj

[
fX,Y (x, y(1))− fX,Y (x, y(2))

]
dx = 0. (137)

At this point, we consider the set AεµX,Y in (121), where we have that∫
Ãj\Aj

[
fX,Y (x, y(1))− fX,Y (x, y(2))

]
dx ≥

∫
Ãj\Aj∩A

1/n
µX,Y

[
fX,Y (x, y(1))− fX,Y (x, y(2))

]
dx

≥ 1

n

∫
Ãj\Aj∩A

1/n
µX,Y

fX(x)dx

=
1

n
· µX(Ãj \Aj ∩A1/n

µX,Y
) = 0, (138)

for any j = 1, ..,M and any n ≥ 1. Consequently, from (138) and the additivity (Breiman,

1968) µX((∪Mj=1Aj \Aj) ∩A
1/n
µX,Y ) = 0. Then, for any n ≥ 1

µX(∪Mj=1Aj \Aj) ≤ µX((∪Mj=1Aj \Aj) ∩A1/n
µX,Y

)︸ ︷︷ ︸
=0

+(1− µX(A1/n
µX,Y

))

= 1− µX(A1/n
µX,Y

). (139)

54. In particular, from Eq.(114).
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Finally, taking the limit in n in (139), we have that

µX(∪Mj=1Ãj \Aj) ≤ 1− lim
n→∞

µX(A1/n
µX,Y

) = 1− µX(∪n≥1A
1/n
µX,Y

) = 0, (140)

the last equality from the assumption that µX(∪n≥1A
1/n
µX,Y ) = 1. To conclude, it is simple

to verify that 55

P(r(X) 6= r̃µX,Y (X)) ≤ µX(∪Mj=1Ãj \Aj) = 0,

which means that r(·) is equal to r̃µX,Y (·) almost surely. Therefore, the MPE rule associated

to µX,Y is unique (Def.13) under the assumption that µX(∪n≥1A
1/n
µX,Y ) = 1.

10.7 Proof of Theorem 15

Proof For the proof of Theorem 15, we use a result on asymptotic sufficient partitions
to approximate the divergence (Kullback-Leibler divergence or information divergence) be-
tween two distributions in an abstract measurable space (Gray, 1990b; Csiszár and Shields,
2004).

Lemma 42 (Liese et al., 2006) Let us consider P,Q probability measures in the measurable
space (Ω,F) such that D(P ||Q) < ∞. Let us consider {πn, n ≥ 1} a family of embedded
finite size measurable partitions of Ω, in the sense that σ(π1) ⊂ σ(π2) ⊂ ..... Let us denote
S ≡ σ(π1 ∪ π2, ...)

56, then it follows that

lim
n→∞

Dσ(πn)(P ||Q) = DS(P ||Q) ≤ D(P ||Q). (141)

In this result, Dσ(πn)(P ||Q) ≡
∑

A∈πn P (A) log P (A)
Q(A) denotes the KL divergence of P with

respect to Q restricted over the sigma-field induced by πn, and

DS(P ||Q) ≡ sup
π∈Q(S)

Dσ(π)(P ||Q),

where S is a general sub-sigma field of Ω (i.e., S ⊂ F)(Gray, 2009; Breiman, 1968), Q(S)
denotes the collection of measurable finite partitions in S, and

D(P ||Q) ≡ DF (P ||Q).

Consequently, if there exists {πn, n ≥ 1} such that that σ(π1 ∪ π2, ...) = F , Lemma 42
implies that this family of partitions is sufficient for the KL divergence in the sense that for
any pair P , Q such that D(P ||Q) <∞,

lim
n→∞

Dσ(πn)(P ||Q) = D(P ||Q). (142)

The result in Lemma 42 can be adapted to our mixed continuous-discrete setting Ω =
Rd × Y with the MI to obtain the following57:

55. This inequality follows from the same step presented to derive (112).
56. σ(A) denotes the smallest sigma field that contains A ⊂ F (Gray, 2009).
57. It is well-known that I(µX,Y ) = D(µX,Y ||µX · µY ) (Cover and Thomas, 2006; Gray, 1990b).
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Corollary 43 Let us consider a joint random vector (X,Y ) in mixed setting Ω = Rd × Y
with probability µX,Y and a collection of finite embedded partitions {πn, n ≥ 1} in B(Rd)
such that σ(π1) ⊂ σ(π2) ⊂ ..... Then

lim
n→∞

Iσ(πn)(X;Y ) = IS(X;Y ), (143)

where S ≡ σ(π1 ∪ π2, ...) ⊂ B(Rd),

Iσ(πn)(X;Y ) ≡
∑
A∈πn

∑
y∈Y

µX,Y (A× {y}) log
µX,Y (A× {y})
µX(A) · µY ({y})

≤ I(X;Y )

is the quantized (discrete) MI, and

IS(X;Y ) ≡ sup
π∈Q(S)

Iσ(π)(X;Y ). (144)

Furthermore, from Corollary 43 we have the following:

Corollary 44 In the setting of Corollary 43, if σ(π1 ∪ π2, ...) = B(Rd) then

lim
n→∞

Iσ(πn)(X;Y ) = I(X;Y ) (145)

where (Gray, 1990b)

I(X;Y ) = IB(Rd)(X;Y ), (146)

for any model µX,Y in (Rd × Y, σ(B(Rd)× 2Y)).

In the last two results, it is simple to verify that

Iσ(πn)(X;Y ) =
∑

A∈πn,y∈Y
µX,Y (A× {y}) log

µX,Y (A× {y}
µX(A)µY ({y})

is equal to I(µUn,Y ) = I(Un;Y ) where Un = ηπn(X) and ηπn(·) is the following finite-size
representation (VQ) (induced by πn)

ηπn(x) ≡
∑
Al∈πn

l · 1Al(x) ∈ {1, .., |πn|} , ∀x ∈ Rd. (147)

Then under the expressiveness condition of Corollary 44, (145) implies that the {ηπn(·), n ≥ 1}
is IS distribution-free.

Returning to the statement of Theorem 15 and noting that σ(ηi) = σ(πηi), we can use
Corollary 43 to obtain (20) from (145). To conclude, we use Theorem 12 (IS ⇒ OS) to
obtain (21), which concludes the proof.
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10.8 Proof of Theorem 18

First, we use Theorem 12 in this random representation setting to prove the following:

Lemma 45 Let Π = {πn(·), n ≥ 1} be a partition scheme driven by a random process
(Zn)n≥1 with Zi ∼ µX,Y . If Π is IS (Def. 16), then Π is OS (Def. 17).

Proof Let us define the collection of typical sequences

Z ≡
{

(zn)n≥1 ∈ (X × Y)N : lim
n→∞

I(ηπn(z1,..,zn)(X);Y ) = I(X;Y )
}
. (148)

Then for any (zn)n≥1 ∈ Z, the induced sequence of representations
{
ηπn(z1,..,zn)(·) : n ≥ 1

}
is IS (Def. 2) from (148). Then applying Theorem 12 (IS ⇒ OS), we have that for all
(zn)n≥1 ∈ Z

lim
n→∞

`(µηπn(z1,..,zn)(X),Y ) = `(µX,Y ). (149)

From (149), we conclude that all the representations indexed by a sequence in Z are OS
(Def. 1). Considering that P(Z) = 1 (from the hypothesis that Π is IS), we conclude that
Π is OS.

Second, we have the following result introduced by Silva and Narayanan (2010a)58 for
analysing the approximation error (bias) induced by data-driven partitions (schemes) in the
problem of MI estimation.

Lemma 46 (Silva and Narayanan, 2010a) Let µX,Y ∈ P(X ×Y) in our mixed continuous-
discrete setting and Π = {π1(·), π2(·), . . . } be a partition scheme driven by Z1, Z2, . . . where
Zi ∼ µX,Y for any i ≥ 1. If µX has a density and Π satisfies the shrinking cell condition in
(30) then

lim
n→∞

I(ηπn(Z1,..,Zn)(X);Y ) = I(X;Y ), with probability one. (150)

Finally, the proof of Theorem 18 comes from Lemma 46 to obtain (31) from the hypoth-
esis in (30) and then the application of Lemma 45 to obtain (32).

10.9 Proof of Theorem 24

Proof Let us assume that (X,Y ) ∼ µθX,Y for some arbitrary θ ∈ Θ. By the hypothesis in
(43), we know that

I(η∗(X);Y |ηi(X)) = I((η∗(X), ηi(X));Y )− I(ηi(X);Y ) −→ 0 (151)

as i tends to infinity (the expressiveness condition of {ηi}i≥1). For the rest, we will use
Theorem 12, for which we focus on I((r̃θ(X), ηi(X));Y )− I((ηi(X));Y ).

Using the fact that H(r̃θ(X)|η∗(X)) = 0, it is simple to verify that for any i ≥ 1

I((η∗(X), ηi(X));Y ) ≥ I((r̃θ(X), ηi(X));Y ). (152)

58. This result derives from the proof of (Silva and Narayanan, 2010a, Th. 2).
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Indeed ∀i ≥ 1

I((η∗(X), ηi(X));Y )− I((r̃θ(X), ηi(X));Y )

= I((η∗(X), ηi(X), r̃θ(X));Y )− I((r̃θ(X), ηi(X));Y )

= I(η∗(X);Y |r̃θ(X), ηi(X)) ≥ 0, (153)

the first equality from the assumption that H(r̃θ(X)|η∗(X)) = 0 (η∗(·) is operationally
sufficient for Λ) and the second from the fact that conditional MI is non-negative (Cover
and Thomas, 2006).

Using (152), we have that for any i ≥ 1

I((η∗(X), ηi(X));Y )− I(ηi(X);Y ) ≥ I((r̃θ(X), ηi(X));Y )− I(ηi(X);Y ). (154)

Consequently, the asymptotic condition in (151) implies that (Ui = ηi(X))i≥1 is WIS (see
Def. 3) for µθX,Y and the application of Theorem 12 implies that (see Def. 1):

lim
i→∞

`(µθηi(X),Y ) = `(µθX,Y ). (155)

Finally, the presented argument is valid for any µθX,Y ∈ Λ, which concludes the proof.

10.10 Proof of Theorem 31

Proof First, we denote by ηB(·) a solution of the IB problem

max
η(·)∈F(X,R)

I(η(UΛ);Y ) s.t. I(UΛ; η(UΛ)) ≤ B, (156)

for any B > 0.

For the proof, we adopt some of the expressiveness result presented in Section 5. In
particular, we use the digital universal (distribution-free) construction presented in Section
5.1.1. Let us consider the collection of finite measurable partitions {π̃m,m ≥ 1} presented
in (22), (23) and (24) with its associated notations for the sets (Bm,0, Bm,j̄ ,Jm) and its

induced measurable encoder (VQ) ηπ̃m(·) : X → {(m2m, ...,m2m)} ∪ Jm ⊂ Zd in (26). As
the cardinality of π̃m is (m2m+1)d + 1 < ∞, we can construct an injective scalar (one to
one) function fm : {(m2m, ...,m2m)} ∪ Jm →

{
1, . . . , (m2m+1)d + 1

}
⊂ R and with that

the following new encoder η̃π̃m(·) ∈ F(X,R) induced by π̃m:

η̃π̃m(x) ≡ fm(m2m, ...,m2m) · 1Bm,0(x) +
∑
j̄∈Jm

fm(j̄) · 1Bm,j̄ (x) ∈ R, (157)

∀x ∈ X . Considering that η̃π̃m(UΛ) is a deterministic function of UΛ and a finite-alphabet
variable, we have that (Cover and Thomas, 2006)

I(UΛ; η̃π̃m(UΛ)) ≤ H(η̃π̃m(UΛ)) ≤ log2((m2m+1)d + 1) < d [log2(m) +m+ 1] + 1︸ ︷︷ ︸
βm≡

. (158)
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Then, for any B ≥ βm (scalar defined in Eq. 158) and m ≥ 1, we have from the definition
of ηB(·) in (156) that

I(ηB(UΛ);Y ) ≥ I(η̃π̃m(UΛ);Y ). (159)

At this point, we consider Bm = βm for any m ≥ 1. Using Theorem 15 and the fact that
σ(∪m≥1π̃m) = B(Rd) (Liese et al., 2006) (see more details in Section 5.1.1) it follows that

lim
m→∞

I(η̃π̃m(UΛ);Y ) = I(UΛ;Y ), (160)

which using the inequality in (159) implies the WIS condition of Theorem 24, i.e.,

lim
m→∞

I(UΛ;Y |ηBm(UΛ)) = 0. (161)

At this point, we adopt Theorem 24 (WIS ⇒ OS) to obtain that

lim
m→∞

`(µηBm (UΛ),Y ) = `(µUΛ,Y ) = `(µX,Y ). (162)

The last equality in (161) comes from the hypothesis that ηΛ(·) is OS for Λ (see Def. 23).

To conclude the argument, we note that Bm = βm is O(m), then (161) and (162) imply
(49) and (50), respectively.

10.11 Proof of Theorem 34

Proof The problem in Eq.(52) can be written as:

η̃B(·) = arg max
η(·)∈F(X,R)

I(η(X); Ỹ ) s.t. I(UΛ; η(X)) ≤ B, (163)

where we introduce the discrete target variable Ỹ ≡ UΛ.

Following the same argument and the collection of lossy encoders (η̃π̃m(ηΛ(·)) in Eq.
157) used in the proof of Theorem 31 (Section 10.10), there is a monotonically increasing
sequence of real numbers (βm)m≥1 (introduced in Eq. 158) where we have that59

lim
m→∞

I(η̃βm(X); Ỹ ) = lim
m→∞

I(η̃π̃m(UΛ); Ỹ ) = I(UΛ; Ỹ ) = H(Ỹ ). (164)

This implies that

lim
m→∞

H(Ỹ |η̃βm(X)) = H(Ỹ )− lim
m→∞

I(η̃βm(X); Ỹ ) (165)

= H(Ỹ )−H(Ỹ ) = 0, (166)

and, consequently, limB→∞H(UΛ = Ỹ |η̃B(X)) = 0 from (166) and the fact that βm =
d[log2(m) +m+ 1] + 1 <∞ (see the proof of Theorem 31).

59. To derive (164), we use the universal encoder in (157), Theorem 15, the distribution-free inequality in
(158) and the definition of η̃B(·) in Eq.(163). The details follows the same steps presented in the proof
of Theorem 31.
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Finally, as UΛ is a discrete (a finite entropy) r.v., we have that for any µX,Y ∈ Λ

I(UΛ;Y |η̃B(X)) ≤ H(UΛ|η̃B(X)). (167)

Then from (166) and (167), we have that

lim
B→∞

I(UΛ;Y |η̃B(X)) = 0, (168)

and from Theorem 24 (non-oracle WIS ⇒ OS)

lim
B→∞

`(µη̃B(X),Y ) = `(µX,Y ). (169)

Acknowledgments

The authors of this work acknowledge support from ANID Fondecyt-Regular 1210315 and
the Advanced Center for Electrical and Electronic Engineering (AC3E) ANID-Basal project
FB0008. In addition, Dr. Tobar acknowledges support from Google, and ANID grants
Fondecyt-Regular 1210606 and the Center for Mathematical Modeling (CMM) Basal project
FB210005. The authors thank Diane Greenstein for editing and proofreading this material.
We thank the two anonymous reviewers for their constructive and rigorous analysis of this
work. This work was developed when Dr. Tobar was with the Initiative for Data & Artificial
Intelligence, Universidad de Chile.

63



Silva, Tobar, Vicuña and Cordova

Appendix A. Proof of Proposition 4

Proof From Bayes decision, it is known that Ũ = r̃µX,Y (X) is a sufficient statistic of X
in the operational sense, i.e., `(µŨ ,Y ) = `(µX,Y ). For this analysis, it is useful to consider

the augmented observation vector (Ũ , Ui), where its error `(µ(Ũ ,Ui),Y
) is at most the error

achieved by Ũ . Consequently, we have that `(µ(Ũ ,Ui),Y
) = `(µX,Y ). This identity helps us

to express the loss in (7) conveniently:

`(µUi,Y )− `(µX,Y ) = `(µUi,Y )− `(µ(Ũ ,Ui),Y
) =

∑
Bi,j∈πi

µX(Bi,j)

[
1−max

y∈Y
µY |X(y|Bi,j)

]

−
∑
Ãu∈π̃

∑
Bi,j∈πi

µX(Bi,j ∩ Ãu)

[
1−max

y∈Y
µY |X(y|Ãu ∩Bi,j)

]
. (170)

Finally (14) follows directly from (170).

Appendix B. Proof of Proposition 5

Proof From the definition of MI and the discrete nature of the joint vector (Ũ , Ui) (Cover
and Thomas, 2006), we have that

I(µ(Ũ ,Ui),Y
) = H(Y )−

∑
Ãu∈π̃

∑
Bi,j∈πi

µX(Bi,j ∩ Ãu) · H(µY |X(·|Ãu ∩Bi,j)). (171)

On the other hand, I(µUi,Y ) = H(Y ) −
∑

Bi,j∈πi µX(Bi,j) · H(µY |X(·|Bi,j)). The result in

(15) derives directly from these expressions.

Appendix C. Proof of Corollary 11

Proof Assuming that (19) holds, this implies that at least one component j of the sum
satisfies g(µX,Y , Bi,j) > 0⇔ εi,j <

[
1−maxy∈Y µY |X(y|Bi,j)

]
. Then Lemma 8 implies that

H(µY |X(·|Bi,j))−H(R(µY |X(·|Bi,j), εi,j) > 0. This last inequality suffices to show that

I(µX,Y )− I(µUi,Y ) ≥ I(µ(Ũ ,Ui),Y
)− I(µUi,Y ) > 0. (172)

The first inequality in (172) comes from the fact that (Ũ , Ui) is a deterministic function of
X (and the chain rule of MI) and the second comes from (18).

Appendix D. The Inequality of Section 3.4.1

By construction, we have that limi→∞ ηπi(·) = ηπ̃(·) point-wise, where

π̃ = {(−∞, 0), {0} , (0,∞)} ⊂ B(X )
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and ηπ̃(·) = r̃µX,Y (·), µX -almost surely. From this, we have that limi→∞ µUi,Y = µŨ ,Y in
total variation. Considering that {µUi,Y , i ≥ 1} ⊂ P({1, 2, 3} × Y) and that the entropy
and MI are a continuous functionals (w.r.t. the total variational distance) in finite-alphabet
spaces (Cover and Thomas, 2006), we have that:

lim
i→∞
I(µUi,Y ) = I(µŨ ,Y ) = I(Ũ ;Y ). (173)

Finally, as the model µX,Y is continuous, we have that I(Ũ ;Y ) < I(X;Y )60. Then from
(173), I(X;Y |Ui) = I(X;Y )− I(Ui;Y ) is non-vanishing when i→∞.

Appendix E. Finite-Size Families: σ(Λ) = σ(π)

Proposition 47 Let us consider a finite collection of models Λ =
{
µiX,Y , i = 1, .., L

}
, then

σ(Λ) = σ(π)

where π ≡
⋂L
i=1 π

∗,i and π∗,i is the M -size partition induced by the MPE decision rule of
µiX,Y in (38).

Proof The elements of π can be denoted and indexed by

Aj1,...,jL ≡ A
1
j1 ∩A

2
j2 ∩ . . . A

L
jL
, ∀(j1, . . . , jL) ∈ [M ]L (174)

where π∗,i =
{
Aij , j ∈ [M ]

}
. For simplicity, let us assume that any (j1, . . . , jL) ∈ [M ]L

indexes a unique and none-empty event in π,
Let us begin with the implication σ(Λ) ⊂ σ(π): It is simple to verify that for any

A ∈
⋃L
i=1 π

∗,i, ∃i ∈ [L], ∃j ∈ [M ] such that A = Aij and, consequently, from (174)

A =
M⋃
j1=1

. . .
M⋃

ji−1=1

M⋃
ji+1=1

. . .
M⋃
jL=1

Aj1,...,ji−1,j,ji+1....,jL ∈ σ(π). (175)

The last condition in (175) is from the fact that union of events in π belongs to σ(π).
Therefore,

⋃L
i=1 π

∗,i ⊂ σ(π), which implies that σ(Λ) = σ(
⋃L
i=1 π

∗,i) ⊂ σ(π), considering

σ(π) is a sigma-field and σ(
⋃L
i=1 π

∗,i) is the smallest sigma-field that contains
⋃L
i=1 π

∗,i.
For the converse implication σ(π) ⊂ σ(Λ): Aj1,...,jL in (174) is induced by a finite number

of set operations of
⋃L
i=1 π

∗,i. This implies that Aj1,...,jL ∈ σ(
⋃L
i=1 π

∗,i) and, consequently,

π ⊂ σ(
⋃L
i=1 π

∗,i). Then σ(π) ⊂ σ(
⋃L
i=1 π

∗,i) = σ(Λ).

Appendix F. Proof of Lemma 38

Proof Let us consider an arbitrary µ ∈ Pε([M ]), where we have that µ(1) ≥ µ(2) ≥
. . . µ(K) > θ and that

∑K
j=2(µ(j)− θ) = ε. In this analysis, the dependency of K and θ on

60. This inequality can be verify numerically using the estimation strategy presented in Section 8.1.3.
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µ and ε will be considered implicit. We consider the conditional probability µ̃ ≡ µ(·|β) ∈
P([M ]) for the set β = {2, . . . ,K}, i.e.,

µ̃(2) =
µ(2)

θ(K − 1) + ε
≥ θ̃ ≡ θ

θ(K − 1) + ε
> 0,

. . .

µ̃(K) =
µ(K)

θ(K − 1) + ε
≥ θ̃. (176)

In this context, it is instrumental to introduce the following family of admissible distribu-
tions {ē2, . . . , ēK} ⊂ P([M ]) with support in β, where ēj is given by

ēj(2) = θ̃, . . . ,

ēj(j − 1) = θ̃,

ēj(j) = θ̃ +
ε

θ(K − 1) + ε
,

ēj(j + 1) = θ̃, . . . ,

ēj(K) = θ̃. (177)

Importantly, it is simple to verify that µ̃ (in Eq.176) can be written as a convex com-
bination of our admissible family {ē2, . . . , ēK}, i.e., ∃(w2, .., wK) ∈ [0, 1]K−1 such that∑K

j=2wj = 1 and

µ̃ =

K∑
j=2

wj · ēj , (178)

where wj = µ̃(j)−θ̃
ε̃ with ε̃ ≡ ε

θ(K−1)+ε > 0.

Let us define two random variables Z and O such that Z takes values in [M ] and O
takes values in {2, ..,K} and

PZ|O(·|k) = ēk ∈ P([M ]), and PO(k) = wk, (179)

∀k ∈ {2, ..,K}. By construction, PZ =
∑K

j=2wj · ēj = µ̃. Therefore, we can use that

H(Z|O) ≤ H(Z) (Cover and Thomas, 2006), which implies that
∑K

j=2wj · H(ēj) ≤ H(µ̃).
Finally, by the invariant of the entropy to one-to-one permutations, H(ē2) = . . . = H(ēK),
then we have that H(ē2) ≤ H(µ̃), which implies that

(θ̃ + ε̃) log
1

θ̃ + ε̃
+ (K − 2)θ̃ log

1

θ̃
≤ H(µ̃). (180)

66



Interplay between Information Loss and Operation Loss

Returning to our original problem, we have that

K∑
j=2

µ(j) log
1

µ(j)
= µ(β)H(µ̃) + µ(β) log

1

µ(β)
≥

(θ(K − 1) + ε) ·
[
(θ̃ + ε̃) log

1

θ̃ + ε̃
+ (K − 2)θ̃ log

1

θ̃

]
+ (θ(K − 1) + ε) log

1

(θ(K − 1) + ε)

= (θ + ε) log
(K − 1)θ + ε

θ + ε
+ (K − 2)θ log

(K − 1)θ + ε

θ
+ (θ(K − 1) + ε) log

1

(θ(K − 1) + ε)

= (θ + ε) log
1

θ + ε
+ (K − 2)θ log

1

θ
, (181)

where for the first inequality we use the lower bound in (180) and the fact that µ(β) =
θ(K−1)+ε, and for the first equality we use that θ̃ = θ/((K−1)θ+ε) and ε̃ = ε/((K−1)θ+ε).
Finally, (181) proves the result in (98).

Appendix G. Proof of Proposition 28

Proof Let η∗(·) be maximal invariant for G. This means that for any pair (x, y) ∈ X 2

where G(x) 6= G(y) then η∗(x) 6= η∗(y). We have that for any µθX,Y ∈ Λ, r̃θ(·) solution of
(37) is G-invariant (see Def. 25), this invariant condition implies that r̃θ(·) is fully deter-
mined if we know the values of r̃θ(·) in every cell of πG = {G(x), x ∈ X}. Therefore, if we
know r̃θ(η

∗(x)) for any x ∈ X , we fully determine r̃θ(·) using the fact that η∗(·) is maximal
invariant. Indeed, we have that r̃θ(x) = r̃θ(η

∗(x)), which implies that H(r̃θ(X)|η∗(X)) = 0
where X ∼ µθX . Then, we use Proposition 22 to conclude the proof.

Appendix H. Proposition 48

Proposition 48 If µX,Y ∈ P(X×Y) is model-based G-invariant, in the sense that (X,Y ) =
(g(X), Y ) in distribution for any g ∈ G, then µX,Y is operational G-invariant (see Def.26).

Proof If µX,Y is model-based G-invariant, this implies that µY |X(y|x) = µY |X(y|g(x)) for
any y ∈ Y and x ∈ X . From this property of the posterior, it is direct to show that there
exists r(·), which is solution of (10) (for the joint model µX,Y ) that is functional G-invariant
(Def. 25).

Appendix I. The Construction of R(µ, ε)

The model R(µ, ε) that solves the optimization problem in (16) is presented here for com-
pleteness. As this optimization problem is function of µ ∈ P([M ]) and ε > 0, the model
R(µ, ε) ∈ P([M ]) is an explicit function of these two elements. To find the simplest de-
scription of this object, we assume, without loss of generality, that µ(1) ≥ µ(2) ≥ . . . µ(M).
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In this context, Ho and Verdú (2010) showed that the model µε̄ ≡ R(µ, prior(µ) − ε̄) for
ε̄ ∈ [0, prior(µ)] has the follows form:

µε̄(1) = µ(1) + ε̄ ≤ 1 (182)

µε̄(2) = θ

. . .

µε̄(K) = θ (183)

µε̄(K + 1) = µ(K + 1)

. . .

µε̄(M) = µ(M), (184)

where K ∈ {2, ..,M} and θ ∈ (0, µ(1)) are functions of µ and ε̄ meeting the following
condition

K∑
j=2

(µ(i)− θ) = ε̄ > 0. (185)

Importantly, Ho and Verdú (2010) showed that for any ε ≤ prior(µ), ∃θ ∈ (0, µ(1)) and
K ∈ {2, ..,M} that meet the condition in (185) for ε̄ = prior(µ) − ε. From the estructure
of µε̄ in (182), it follows that if ε = prior(µ) then µε̄ = µ. On the other hand, if we assume
that ε < prior(µ) then µε̄ 6= µ and H(µ) > H(µε̄), which implies that f(µ, ε) > 0 in (16) in
this regime.

Finally, from the closed-from expressions in (182)-(184) we have that:

f(µ, ε = prior(µ)− ε̄) = H(µ)−H(µε̄)

= µ(1) log
1

µ(1)
− (µ(1) + ε̄) log

1

µ(1) + ε̄

+

K(µ,ε)∑
j=2

µ(j) log
1

µ(j)
− (K(µ, ε)− 1)θ(µ, ε) log

1

θ(µ, ε)
≥ 0, (186)

where in this last expression we show the fact that the parameters K and θ are explicit
function of µ and ε.
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