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Abstract
Recent literature has advocated the use of randomized methods for accelerating the solu-
tion of various matrix problems arising in machine learning and data science. One popular
strategy for leveraging randomization in numerical linear algebra is to use it as a way to
reduce problem size. However, methods based on this strategy lack sufficient accuracy for
some applications. Randomized preconditioning is another approach for leveraging random-
ization in numerical linear algebra, which provides higher accuracy. The main challenge
in using randomized preconditioning is the need for an underlying iterative method, thus
randomized preconditioning so far has been applied almost exclusively to solving regres-
sion problems and linear systems. In this article, we show how to expand the application
of randomized preconditioning to another important set of problems prevalent in machine
learning: optimization problems with (generalized) orthogonality constraints. We demon-
strate our approach, which is based on the framework of Riemannian optimization and
Riemannian preconditioning, on the problem of computing the dominant canonical corre-
lations and on the Fisher linear discriminant analysis problem. More broadly, our method
is designed for problems with input matrices featuring one dimension much larger than
the other (e.g., the number of samples much larger than the number of features). For
both problems, we evaluate the effect of preconditioning on the computational costs and
asymptotic convergence and demonstrate empirically the utility of our approach.
Keywords: Riemannian optimization, randomized preconditioning, generalized orthogo-
nality constraints, generalized Stiefel manifold; matrix sketching, machine learning

1. Introduction

Matrix sketching has recently emerged as a powerful tool for accelerating the solution of
many important matrix computations, with widespread use throughout machine learning
and data science. Important examples of matrix computations that have been accelerated
using matrix sketching include linear regression, low rank approximation, and principal
component analysis (see recent surveys Woodruff, 2014; Yang et al., 2016). Matrix sketching
is one of the main techniques used in so-called Randomized Numerical Linear Algebra.

Roughly speaking, matrix sketching provides a transformation that embeds a high di-
mensional space in a lower dimensional space, while preserving some desired properties of
the high dimensional space (Woodruff, 2014). There are several ways in which such an
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embedding can be used. The most popular approach is sketch-and-solve, in which matrix
sketching is used to form a smaller problem. That is, sketch-and-solve based algorithms
attempt to find a “good” approximate solution by sketching the input problem so that with
high probability the exact solution of the sketched problem is a good approximate solution to
the original problem. For example, the sketch-and-solve approach for solving unconstrained
overdetermined linear regression problem, i.e., minw ‖Xw − y‖2, where X ∈ Rn×d (n ≥ d)
is assumed to be full rank matrix, is to randomly generate a matrix S ∈ Rs×n and solve the
reduced size problem minw ‖SXw−Sy‖2 (Drineas et al., 2011). If S is chosen appropriately,
then with high probability the solution of the sketched problem, ŵ, is close to the exact
solution, w?, in the sense that the inequality ‖Xŵ − y‖2 ≤ (1 + ε)‖Xw? − y‖2 holds, and
that SX and Sy can be computed quickly.

Sketch-and-solve algorithms have been proposed for a wide spectrum of linear algebra
problems relevant for machine learning applications: linear regression (Drineas et al., 2011),
principal component analysis (Kannan et al., 2014), canonical correlation analysis (CCA)
(Avron et al., 2014a), kernelized methods (Avron et al., 2014b), low-rank approximations
(Clarkson and Woodruff, 2017), structured decompositions (Boutsidis and Woodruff, 2017),
etc. However, there are two main drawbacks to the sketch-and-solve approach. First, it
is unable to deliver highly accurate results (typically, for sketch-and-solve algorithms, the
running time dependence on the accuracy parameter ε is Θ(ε−2)). The second drawback is
that sketch-and-solve algorithms typically have only Monte-Carlo type guarantees, i.e., they
return a solution within the prescribed accuracy threshold only with high probability (on
the positive side, the running time is deterministic).

These drawbacks have prompted researchers to develop a second approach, typically
termed sketch preconditioning or randomized preconditioning. The main idea in random-
ized preconditioning is to use an iterative method which, in turn, uses a preconditioner
that is formed using a sketched matrix. For example, consider again the unconstrained
overdetermined linear regression problem problem. It is possible to accelerate the solution
of minw ‖Xw − y‖2 by first sketching the matrix X to form SX, and then using a factor-
ization of SX = QR to form a preconditioner, R, for an iterative Krylov method (e.g.,
LSQR). By choosing S properly, with high probability the preconditioner R is such that the
condition number governing the convergence of the Krylov method, κ(XR−1), is bounded
by a small constant (Rokhlin and Tygert, 2008; Avron et al., 2010; Meng et al., 2014; Clark-
son and Woodruff, 2017; Gonen et al., 2016). Thus, when using a Krylov method to solve
minw ‖XR−1w − y‖2 only a small number of iterations are necessary for convergence.

More generally, by using an iterative method, it is typically possible to reduce the run-
ning time dependence on the accuracy parameter to be logarithmic instead of polynomial.
Furthermore, since we can control the stopping criteria of the iterative methods, sketch
preconditioning algorithms typically entertain Las-Vegas type guarantees, i.e., they return
a solution within the accuracy threshold, albeit at the cost of probabilistic running time.

The sketch-and-solve approach is more prevalent in the literature than sketch precondi-
tioning. Indeed, in one way or the other, almost all sketch preconditioning methods have
essentially been designed for linear regression or solving linear systems. The main reason
is that sketch preconditioning requires an iterative method that can be preconditioned, and
such a method is not always known for the various problems addressed by sketching. In-
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deed, linear regression and solving linear systems are cases where the use of preconditioning
is straightforward.

The goal of this paper is to go beyond linear regression, and design sketch precondi-
tioning algorithms for another important class of problems: optimization problems under
generalized orthogonality constraints. We would like to emphasize that in the context of
optimization, preconditioning can be performed on some algorithms, e.g., algorithms based
on conjugate gradients (Vandereycken and Vandewalle, 2010). However, our approach aims
to be more general; rather than preconditioning each optimization method on its own, we
aim to precondition the problem itself through randomized preconditioning. In general, we
are interested in solving problems of the form

min f(X1, . . . ,Xk) s.t. XT
i BiXi = Ip (i = 1, . . . , k) (1)

where f(X1, . . . ,Xk) : Rd1×p × · · · × Rdk×p → R is a smooth function, and Bi ∈ Rdi×di are
fixed symmetric positive definite (SPD) matrices. An important example of such problems
is the problem of finding the dominant subspace: given a symmetric matrix A ∈ Rn×n, if
f(X1) = −Tr

(
XT

1 AX1

)
and B1 = In, then Problem (1) corresponds to finding a basis for

the dominant eigenspace.
Problems of the form of Eq. (1) frequently appear in machine learning. In this paper, we

focus on a specific important subset of these problems; the constraint matrices Bi are not
given explicitly, however, as is typically happening in various machine learning problems, we
assume that they can be written as a Gram matrix of a tall-and-skinny data matrix Zi, i.e.,
Bi = ZT

i Zi for Zi ∈ Rni×di . More generally, we allow the following form Bi = ZT
i Zi + λiId

where λi ≥ 0 is some regularization parameter. Moreover, we assume that ni � di. Indeed,
that is often the case that Zi represent data matrices of samples stacked in rows, such that
the number of samples, ni, is much larger than the dimension of each data point, di. We aim
to address the class of problems where Z1, . . . ,Zk are given as inputs and not B1, . . . ,Bk,
and ni � di. Both requirements are fundamental to our paper. Thus, our goal is to
avoid explicitly forming Bi or factorizing it (e.g., Cholesky decomposition) computations
that require O(nd2) operations. We aim to design algorithms that use o(nd2) operations
to find the preconditioner, and use O(nd) operations per iteration, where n = maxi ni and
d = maxi di.

Two important unsupervised machine learning methods that reduce to Problem (1) are
canonical correlation analysis (CCA) and Fisher linear discriminant analysis (FDA). We
illustrate our approach, demonstrating its effectiveness both theoretically and empirically,
on both of these problems. In particular, we improve on the Θ(nd2) running time possible
for both problems using direct methods. Moreover, Θ(nd2) is also the cost of forming Bi,
which is one of the reasons for prohibiting the explicit formation of Bi in our setting. For
CCA and FDA, the proposed approach can be viewed as a novel way of solving an old
problem.

The underlying iterative methods we precondition are based on the framework of Rie-
mannian optimization (Absil et al., 2008; Boumal, 2022). Riemannian optimization is well
suited for problems with manifold constraints, e.g., under generalized orthogonality con-
straints (Edelman et al., 1998). It makes use of the Riemannian geometry components
associated with the constraining manifolds, which in the case of Eq. (1) are products of gen-
eralized Stiefel manifolds. Riemannian Preconditioning (Mishra and Sepulchre, 2016), which

3



Shustin and Avron

is a technique for preconditioning Riemannian optimization algorithms based on carefully
choosing the Riemannian metric is another component of our proposed method. By com-
bining randomized preconditioning with Riemannian preconditioning we obtain randomized
preconditioners and faster methods for solving Eq. (1). Specifically, we propose a constant
randomized preconditioning scheme X 7→ MX := M that is an SPD matrix M ∈ Rd×d
which defines the Riemannian metric on StB(p, d) (see Section 3).

Remark 1 We note that our proposed preconditioner is based on the search space, as we
assume that the main computational burden lies in forming Bi. Nevertheless, our method can
be combined with the approach presented in (Mishra and Sepulchre, 2016), i.e., also include
the a cost function dependent component, which would make the preconditioner non-constant.
We leave this for future work, and in particular one example of this kind of preconditioner
can be found in (Mor and Avron, 2020).

1.1 Contributions

In this subsection, we emphasize our main contributions. In this paper, we propose to expand
the application of randomized preconditioning to optimization problems with (generalized)
orthogonality constraints. In order to achieve that goal we use the framework of Riemannian
optimization (Absil et al., 2008; Boumal, 2022), and perform Riemannian preconditioning via
Riemannian metric selection (Mishra and Sepulchre, 2016). Thus, we utilize the Riemannian
components of the generalized Stiefel manifold developed in (Shustin and Avron, 2023).

• Our main contribution, presented in Section 3, is designing a constant randomized
preconditioning scheme which is incorporated via the Riemannian metric for the gen-
eralized Stiefel manifold (and products of it) with Bi = ZT

i Zi+λId where Zi are given.
Moreover, we exemplify a specific sketching transformation, CountSketch (Charikar
et al., 2004), list the corresponding computational costs of the geometric components
required for sketching based Riemannian preconditioning in Table 2 (we also provide
costs for the Subsampled Randomized Hadamard Transform (SRHT) (Tropp, 2011;
Boutsidis and Gittens, 2013; Clarkson and Woodruff, 2017)), and present Lemma 2
(and its analogue for SRHT, Lemma 22), which would later aid in assessing the effec-
tiveness of our proposed preconditioning.

• In sections 4 and 5, we exemplify our approach by developing preconditioned iterative
methods for CCA and FDA correspondingly. We identify the corresponding critical
points, and analyze their stability. We theoretically analyze the effect of a generic
preconditioner on the asymptotic convergence rate, and identify the optimal precon-
ditioner. Then, we present end-to-end sketching based algorithms for CCA and FDA,
analyze their asymptotic convergence and evaluate the computational costs. Finally,
we demonstrate numerically our randomized preconditioning approach in Section 6.

1.2 Related Work

We begin with the related work on matrix sketching. The literature on sketching has so
far mostly focused on the sketch-and-solve approach. In particular, in the context of solving
problems with generalized orthogonality constraints, a sketch-and-solve based approach for
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CCA was developed by Avron et al. (2014a). Sketch preconditioning was predominantly
applied to linear least-squares regression problems (e.g., Avron et al., 2010; Meng et al.,
2014), and also to non least-squares variants (e.g., `1-regression by Meng and Mahoney,
2013). For a regularized version of FDA, a randomized iterative method was developed by
Chowdhury et al. (2019). Even though the method of Chowdhury et al. (2019) does not use
sketch preconditioning per se, it can be viewed as a preconditioned Richardson iteration. A
randomized iterative method for solving LP problems was proposed by Chowdhury et al.
(2020), where sketch preconditioning is used to find the Newton search direction as part of an
interior point method. To the best of our knowledge, sketch preconditioning has neither been
applied to CCA before nor has it been used in the context of Riemannian optimization. We
remark, that one approach to solving CCA is via alternating least squares (ALS) presented
by Golub and Zha (1995) (see Algorithm 5.2 in their paper). Thus, one natural idea is
to use randomized preconditioning for least squares for each of the sub-problems in ALS
approach. While a series of least squares solved exactly is equivalent to a specific choice of
Riemannian algorithm, and a prescribed step size, our preconditioning approach allows for
a wide variety of algorithms (e.g., first, and second-order methods). In addition, solving a
series of least squares requires to solve each of the sub-problems, whereas in our approach
one does not need to solve sub-problems. Finally, on a conceptual level our approach aims to
precondition the problem directly, rather than performing a two-level solution of replacing
the problem with a series of sub-problems, and then preconditioning these.

Next, we recall the related work on Riemannian optimization. Recent works in-
troducing Riemannian optimization are (Absil et al., 2008; Boumal, 2022). Earlier works
are (Luenberger, 1972; Gabay, 1982; Smith, 1994), and specifically, using Riemannian opti-
mization to solve problems under orthogonality constraints is presented in the seminal work
of Edelman et al. (1998).

In particular, we mention related work on Riemannian preconditioning. Precondi-
tioning of Riemannian optimization methods based on the cost function alone is presented
in several works (see e.g., Ngo and Saad, 2012; Mishra and Sepulchre, 2014; Shi et al., 2016;
Zhou et al., 2017). Most of the aforementioned works attempt to perform preconditioning
by approximating the Euclidean Hessian of the cost function. However, the Riemannian
Hessian and the Euclidean Hessian are quite different even for simple examples (see Shustin
and Avron, 2023, Section 3.5). The Riemannian Hessian is related to the Hessian of the
Lagrangian, and indeed in (Mishra and Sepulchre, 2016) it is shown that selecting the Rie-
mannian metric inspired by the Hessian of the Lagrangian affects convergence of Riemannian
steepest-descent, coining the term Riemannian preonditioning for judiciously choosing the
Riemannian metric in order to accelerate convergence. Unlike in (Mishra and Sepulchre,
2016), we present a randomized preconditioning strategy, and analyze the condition number
of the Riemannian Hessian at the optimum for specific examples (CCA and FDA), which
allows us to quantify the quality of the proposed preconditioner. Recently, a new paper,
(Gao et al., 2023), that appeared after our paper was sent for initial review, presented a
preconditioning technique for product manifolds by defining the Riemannian metric via the
diagonal blocks of the Riemannian Hessian at the optimum. In addition, Gao et. al ana-
lyzed the effect of preconditioning via the condition number of the Riemannian Hessian at
the optimum, in a similar manner to the analysis in our paper. They demonstrated their
technique on CCA, truncated singular value decomposition, and matrix and tensor com-
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pletion problems. Unlike in (Gao et al., 2023), we present a randomized preconditioning
strategy via matrix sketching.

Additional works regarding preconditioning of Riemannian methods are a work by Kress-
ner et al. (2016) where they proposed a Riemannian analogue to the preconditioned Richard-
son method, and the works (Baker, 2008, Algorithm 5) and (Vandereycken and Vandewalle,
2010) where a Riemannian version of preconditioning the trust-region sub-problem was pro-
posed. To some extent that work can be also viewed as Riemannian metric selection. The
aforementioned preconditioning approaches are essentially two-stage approaches, in which
a specific choice of a Riemannian algorithm is made, and then a preconditioning is applied
specific to this method. In contrast, our approach aims to allow a wider choice of algorithms
(zero, first, and second-order methods), without the need to solve sub-problems. Moreover,
from a conceptual approach, we aim to precondition the problem itself, regardless of the
algorithm at hand, and avoid two-stage procedures.

Another work on Riemannian preconditioning for the trust-region sub-problem is (Mor
and Avron, 2020). We remark that apart from the last work mentioned, no previous work
proposed to use randomized preconditioners in the context of Riemannian preconditioning.

Finally, we also recall related work on iterative methods for CCA and FDA. Several
iterative methods for solving CCA have been proposed in the literature. Golub and Zha
(1995) presented an iterative method for CCA based on ALS. Each iteration requires the
solution of two least squares problems. The authors suggest using LSQR for that task.
Wang et al. (2016) proposed to replace LSQR with either accelerated gradient descent,
stochastic variance reduce gradient (SVRG) or accelerated SVRG. They also proposed a
different approach based on shift-and-invert preconditioning. Ma et al. (2015) developed an
algorithm for CCA based on augmented approximate gradients. Ge et al. (2016b) provided
an iterative algorithm for the generalized eigenvalue problem, and used a standard reduction
of CCA to generalized eigenvalue problems to derive an algorithm for CCA. They assume a
fast black box access to an approximate linear system solver.

Convergence bounds of all the aforementioned algorithms depend on the condition num-
ber of the input matrices, which might be large. In contrast, the condition number bounds
for our proposed sketching based algorithms are independent of the conditioning of the input
matrices. As aside, (Yger et al., 2012) proposed a Riemannian method for adaptive CCA.

Recently, Chapman et al. (2024) proposed a stochastic method to solve large-scale CCA
problems. Their method is based on unifying multiview CCA and self-supervised learning.
To make the method feasible for large-scale problems a family of fast stochastic algorithms
was proposed for a novel unconstrained objective function for generalized eigenvalue prob-
lems (which CCA generalizes).

In the context of FDA, a recent work by Chowdhury et al. (2019) proposed an iterative,
sketching-based algorithm for regularized FDA.

Note that both CCA and FDA are closely related to the singular value decomposition
(SVD) and generalized eigenvalue problems correspondingly. In the context of optimization
on manifolds Helmke and Moore (1992) and Brockett (1991) did an analysis of SVD and
generalized eigenvalue problems correspondingly, as dynamical systems, i.e., gradient flows
on manifolds (of unitary matrices). In particular, the stability of the equilibrium point was
established, which we use in Subsections 4.3 and 5.3.
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2. Preliminaries

In this section, we present notation and recall preliminaries on Riemannian optimization
and preconditioning.

2.1 Notation and Basic Definitions

Scalars are denoted by lower case letters α, β, ..., x, y, . . . , while vectors are denoted by bold
letters α,β, ...,x, y, . . . , and matrices are denoted by bold uppercase English letters A,B . . .
or upper case Greek letters. We use the convention that vectors are column-vectors. We
describe a diagonal matrix using diag (·), and a block diagonal matrix using blkdiag (·).

We denote by (·, ·)M the inner-product with respect to a matrix M: for U and V,
(U,V)M := Tr

(
UTMV

)
where Tr (·) denotes the trace operator. The s × s identity

matrix is denoted Is. The s × s zero matrix is denoted 0s. We denote by Ssym(p) and
Sskew(p) the set of all symmetric and skew-symmetric matrices (respectively) in Rp×p. The
symmetric and skew-symmetric components of A are denoted by sym(A) :=

(
A + AT) /2

and skew(A) :=
(
A−AT) /2 respectively.

For a SPD matrix B ∈ Rd×d, we denote by B
1/2 the unique SPD matrix such that

B = B
1/2B

1/2, obtained by keeping the same eigenvectors and taking the square root of the
eigenvalues. We denote the inverse of B

1/2 by B−
1/2.

The eigenvalues of a symmetric d × d matrix A are denoted by λ1(A) ≥ λ2(A) ≥
· · · ≥ λd(A). The condition number of A, i.e. the ratio between the largest and smallest
eigenvalues in absolute value, is denoted by κ(A). The generalized condition number of a
matrix pencil (A,B), which is the ratio between the largest and the smallest generalized
eigenvalues, is denoted by κ(A,B), and it holds that if B is a SPD matrix, then κ(A,B) =
κ(B−

1/2AB−
1/2).

For differential geometry objects we use the following notations: tangent vectors (of a
manifold) are denoted using lower case Greek letters with a subscript indicating the point
of the manifold for which they correspond (e.g., ηx), while normal vectors (of a manifold)
are denoted using bold lower and upper case letters with a subscript (e.g., ux). We denote
by StB(p, d) the generalized Stiefel manifold, which is a submanifold of Rd×p defined by

StB(p, d) :=
{

X ∈ Rd×p : XTBX = Ip

}
.

Given a function defined on StB(p, d), a smooth extension of that function to the entire Rd×p
is denoted by a bar decorator. For example, given a smooth function f : StB(p, d)→ R, we
use f̄ : Rd×p → R to denote a smooth function on Rd×p such that on StB(p, d) that function
agrees with f .

2.2 Riemannian Optimization and Preconditioning for the Generalized Stiefel
Manifold

In this subsection we detail several necessary ingredients required for preconditioning strat-
egy: Riemannian optimization, Riemannian preconditioning, and the geometric optimiza-
tion components of the generalized Stiefel manifold with a non-standard metric. In following
sections we make use of these components to present our randomized Riemannian precon-
ditioning strategy.

7



Shustin and Avron

Riemannian optimization (Absil et al., 2008; Boumal, 2022) is a framework of design-
ing algorithms for solving constrained optimization problems, where the constraints form a
smooth manifoldM. The general idea of these algorithms is to make use of the differential
geometry components ofM in order to generalize iterative methods for unconstrained opti-
mization. Iterative algorithms for smooth problems such as gradient methods, trust-region,
and conjugate gradient (CG), are adapted to the Riemannian setting using the following
components: a Riemannian metric which is a smoothly varying inner product x 7→ gx on
the tangent bundle TM such that (M, g) becomes a Riemannian manifold, a retraction map-
ping Rx : TxM→M which allows to take a step at point x ∈M in a direction ξx ∈ TxM,
a vector transport Tηx : TxM → TRx(ηx)M which allows operations between tangent vec-
tors from two different tangent spaces, a Riemannian gradient gradf(x) ∈ TxM, and a
Riemannian Hessian Hessf(x) : TxM→ TxM. Another important notion in the context
of this paper is the notion of Riemannian submanifold, which allows to easily compute the
aforementioned geometric components if they are known for the ambient manifold. Usually,
a Riemannian optimization algorithm is built from iterations on the tangent space TxM
which are then retracted to the manifold. For example, Riemannian gradient methods are
given by the formula xk+1 = Rxk(τkgradf(xk)) where τk is the step size. Many of the
Riemannian algorithms and common manifolds are implemented in manopt, which is a
matlab library (Boumal et al., 2014). There is also a python parallel for manopt called
pymanopt (Townsend et al., 2016). The experiments reported in Section 6 use the manopt
library.

Preconditioning of iterative methods is often challenging since it is not initially clear how
to actually precondition the problem for an iterative method. Riemannian precondition-
ing (Mishra and Sepulchre, 2016) generalizes preconditioning for Riemannian optimization
methods. In Riemannian preconditioning, preconditioning is performed via a Riemannian
metric selection, i.e., the preconditioner is incorporated via the Riemannian metric.

A motivation for metric selection is the observation that the condition number of the
Riemannian Hessian at the optimum affects the asymptotic convergence rate of Riemannian
optimization, e.g., (Absil et al., 2008, Theorem 4.5.6, Theorem 7.4.11 and Equation 7.50),
and (Boumal, 2022, Section 4.6). In the case of convex objective function in the Riemannian
sense (Udriste, 2013, Chapter 3.2) there are also global convergence results (e.g., Udriste,
2013, Chapter 7, Theorem 4.2). Thus, selecting a metric such that this condition number is
lowered should improve convergence.

In this paper, we propose to utilize randomized preconditioning to accelerate the solution
of orthogonality constrained problems by using Riemannian preconditioning. Optimization
problems under generalized orthogonality constraints can be written as Riemannian opti-
mization problems on the generalized Stiefel manifold. The standard Riemannian metric for
the generalized Stiefel manifold (e.g., Edelman et al., 1998; Boumal et al., 2014) is

gX(ξX, ηX) := (ξX, ηX)B = Tr
(
ξTXBηX

)
.

The use of this metric has two possible shortcomings. First, it might not be the optimal
metric with respect to convergence of Riemannian optimization methods. Second, and more
relevant for this paper, the computation of most Riemannian components requires taking
products of B−1 with a vector. Computing B and/or factorizing is in many cases as costly
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Table 1: Summary of the Preconditioned various Riemannian components of the generalized
Stiefel manifold (Shustin and Avron, 2023), i.e., a generalized Stiefel manifold with
a Riemannian metric defined via an SPD matrix M ∈ Rd×d. Note that, the
matrix SξX denotes a solution for a Sylvester equation, arising from the orthogonal
projection of ξX on the tangent space.

Component Formula

Tangent space TXStB(p, d)
{
Z ∈ Rd×p : ZTBX + XTBZ = 0p

}
Tangent space TXStB(p, d)

alternative form

{
Z = XΩ + XB⊥K ∈ Rd×p : Ω = −ΩT, K ∈ R(d−p)×p} such that

XT
B⊥BXB⊥ = Id−p, XT

B⊥BX = 0(d−p)×p

The Riemannian metric gX(ξX, ηX) = (ξX, ηX)M = Tr
(
ξTXMηX

)
Normal space with respect to the

Riemannian metric

(TXStB(p, d))⊥ =
{
M−1BXS : S = ST}

Polar-based retraction Rpolar
X (ξX) = (X + ξX)(Ip + ξTXBξX)−1/2

QR-based retraction RQR
X (ξX) = B−1/2qf

(
B1/2 (X + ξX)

)
Orthogonal projection on the normal

space

Π⊥X (ξX) = M−1BXSξX

Orthogonal projection on the tangent

space

ΠX (ξX) =
(
idTXStB(p,d) −Π⊥X

)
(ξX) = ξX −M−1BXSξX

Sylvester equation for SξX

(orthogonal projection)

(
XTBM−1BX

)
SξX + SξX

(
XTBM−1BX

)
= XTBξX +

(
XTBξX

)T
Vector transport τηXξX = ΠRX(ηX) (ξX)

Riemannian gradient gradf(X) = ΠX

(
M−1∇f̄(X)

)
Riemannian Hessian applied on a

tangent vector

Hessf(X)[ηX] =

ΠX(M−1(∇2f̄(X)ηX −BηX(XT∇f̄(X)−XTMgradf(X))))

as solving the problem directly or even solving it via standard iterative methods, e.g., for
CCA (see Section 4).

In order to overcome these shortcomings, we leverage our recently developed geometric
components for the generalized Stiefel manifold with a Riemannian metric which is based
on a preconditioning scheme X 7→ MX that maps a X ∈ StB(p, d) to an SPD matrix
MX ∈ Rd×d, instead using the standard metric defined by B (Shustin and Avron, 2023).
In this paper, we apply a preconditioning scheme independent of X, i.e., MX := M for all
X ∈ StB(p, d) (see Section 3). As a reference we summarize (without proofs) in Table 1 the
various geometric components developed in (Shustin and Avron, 2023).

In addition, we also address optimization problems that are constrained on a product
of generalized Stiefel manifolds such as CCA. In this case, the Riemannian components of
the generalized Stiefel manifold can be generalized to be the Riemannian components of a
product of generalized Stiefel manifolds in a straightforward way (Shustin and Avron, 2023).
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3. Randomized Riemannian Preconditioning

In this section we present our main contribution: randomized Riemannian preconditioners
for optimization problems which feature generalized orthogonality constraints defined by
Gram matrices. That is, our goal is to address constraints of the form XT

i BiXi = Ip (i =
1, . . . , k), where Bi are not given explicitly but can be written as a regularized Gram matrix
of a given tall-and-skinny matrix Zi ∈ Rni×di , ni � di, with a regularization parameter
λ ≥ 0, i.e., Bi = ZT

i Zi + λId. As alluded to earlier, our proposed solution incorporates a
preconditioner by selecting a non-standard metric for StB1 × · · · × StBk

.

For simplicity, let us focus our exposition on the case of k = 1 and drop the subscript
from B1,Z1 etc. Generalization to an arbitrary k is straightforward. We define the metric
on StB(p, d) using a constant preconditioning scheme MX := M for all X ∈ StB(p, d)
formed from sketching Z prior to computing the Gram matrix. Our proposed construction
of M requires o(nd2) operations, which is cheaper than computing B as required when the
standard metric is used.

Our randomized construction of M is based on the following observation: in many
cases, if M approximates B in the sense that the condition number κ(B,M) is small,
then convergence will be fast. Conceptually, the last observation is synonymous with the
observation that usually the standard metric is a good choice iteration complexity-wise,
albeit a computationally expensive choice, and thus we should aim at cheaply approximating
it. Mathematically, the underlying reason is that in many cases the condition number of
the Riemannian Hessian at the optimum is bounded by the product of κ(B,M) and a
problem/input dependent quantity which is typically small. It is known in the Riemannian
optimization literature that the local convergence rate can be analyzed by inspecting the
condition number of the Riemnnian Hessian at the optimum, see (Absil et al., 2008, Section
4.1 and Theorem 4.5.6) and (Boumal, 2022, Section 4.6).

We demonstrate the observation that when M approximates B well, then the Riemannian
Hessian at the optimum is well conditioned on two important use-cases: CCA and FDA (see
Theorems 9 and 18). Indeed, we show that under certain assumptions, both for CCA and
FDA we can bound the condition number at the optimum by the product of some baseline
condition number that depends on eigengaps, and the condition number of κ(B,M).

We propose to construct M using the technique of sketching (Woodruff, 2014). Let
S ∈ Rs×n be some sketching matrix (a certain distribution on matrices; we discuss a concrete
choice in the next paragraph), where s < n. We then use M = ZTSTSZ+λId. However, we
do not propose to actually compute M. Using the metric defined by M requires only taking
products with M and M−1 (see Table 1). Suppose we have already computed SZ. The
product of M with a vector can be computed in O(nnz (SZ)) operations. As for M−1, by

computing a QR factorization of
[ SZ√

λId

]
(O(sd2) operations), we can obtain a Cholesky

factorization of M, and then taking the product of M−1 with a vector requires O(d2). So
our goal is to design sketching matrices S such that SZ is cheap to compute, and for which
κ(B,M) is bounded by a constant.

10
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There are quite a few sketching distributions proposed in the literature, and most of them
are good choices for S. For concreteness, we describe a specific choice: the CountSketch1

transformation (Charikar et al., 2004). CountSketch is specified by a random hash func-
tion h : {1, . . . , d} → {1, . . . , s} and random sign function g : {1, . . . , d} → {−1,+1}.
Applying S to a vector x ∈ Rn is given by the formula

(Sx)i =
∑

j|h(j)=i

g(j)xj .

It is easy to see that S is a random matrix where the jth column contains a single nonzero
entry g(j) in the h(j)th row. Clearly, SZ can be computed using O(nnz (Z)) = O(nd)
arithmetic operations. Thus, it only remains to bound the condition number. The following
lemma shows that if the sketch size is large enough, then with high probability the condition
number is bounded by a constant.

Lemma 2 Assume that λ > 0 or that Z ∈ Rn×d has full column rank. Let sλ(Z) :=
Tr
(
(ZTZ + λI)−1ZTZ

)
. Suppose that S ∈ Rs×n is a CountSketch matrix with s ≥

20sλ(Z)2/δ for some δ ∈ (0, 1). Then with probability of at least 1 − δ we have that all the
generalized eigenvalues of the pencil (ZTZ+λI,ZTSTSZ+λI) are contained in the interval
[1/2, 3/2] and κ(ZTZ + λI,ZTSTSZ + λI) ≤ 3.

Proof The argument is rather standard and appeared in similar forms in the literature. To
show that the generalized eigenvalues of the pencil (ZTZ+λI,ZTSTSZ+λI) are contained
in the interval [1/2, 3/2] and that κ(ZTZ + λI,ZTSTSZ + λI) ≤ 3 to hold, it is enough to
show that

1

2
(ZTZ + λI) � ZTSTSZ + λI � 3

2
(ZTZ + λI) .

Let Z = QR be a λ-QR factorization of Z, i.e., Q is a full-rank matrix and R is upper
triangular such that RTR = ZTZ + λI (Avron et al., 2017, Definition 28). Note that such
a factorization always exists (Avron et al., 2017, remark following Definition 28). Left-
multiplying by R−T and right-multiplying by R−1 on both sizes, we find it suffices to show
that with probability of at least 1− δ we have

1

2
Id � QTSTSQ + λR−TR−1 � 3

2
Id

or, equivalently,

‖QTSTSQ + λR−TR−1 − Id‖2 ≤
1

2
.

Since QTSTSQ + λR−TR−1 − Id = QTSTSQ −QTQ (Avron et al., 2017, Fact 29) and
the spectral norm is dominated by the Frobenius norm, it is enough to show that

‖QTSTSQ−QTQ‖F ≤
1

2
.

1. Note that SRHT is also a good choice, in particular for dense data sets. In Appendix A, we provide a
similar analysis for SRHT.
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It is known (Avron et al., 2014b, Lemma 2) that for any two fixed matrices A and B, and a
CountSketch matrix S0 with m ≥ 5/(ε2δ) rows, we have that with probability of at least
1− δ,

‖ATST
0 S0B−ATB‖F ≤ ε · ‖A‖F · ‖B‖F .

Since ‖Q‖2F = sλ(Z) (Avron et al., 2017, Fact 30), then with s ≥ 20sλ(Z)2/δ we have

‖QTSTSQ−QTQ‖F ≤
1

2

with probability of at least 1− δ.

The last lemma justifies the use of CountSketch to form the preconditioner M. In
practice, additional heuristics that improve running time and robustness can be inserted
into the construction of randomized preconditioners, and these can improve running time
considerably; see (Avron et al., 2010).

Furthermore, our sketching-based preconditioner construction naturally allows for a
warm-start. While this is not captured by our theory, heuristically (and empirically) the
Riemannian optimization part of our proposed algorithm converges faster if the starting
vectors are close to the optimum. Our sketching approach lets us quickly compute good
starting vectors (these are the sketch-and-solve approximations). We demonstrate warm-
start numerically in Section 6 for CCA and FDA.

In Table 2 we detail the computational cost, measured in terms of arithmetic operations,
of computing the Riemannian components of Table 1, for our construction of M as a pre-
conditioner. Table 2 is based on (Shustin and Avron, 2023, Table 1). Note that all the costs
are for operations in ambient coordinates. In the table, we denote by T∇f̄ and by T∇2f̄ the
cost of computing the Euclidean gradient and the cost of applying the Euclidean Hessian
to a tangent vector. Instead of committing to a specific sketch size, we use s for sketch size
(number of rows), and consider two possible sketching distributions: CountSketch and
SRHT.

To put Table 2 in the contexts of the total computation complexities, we can use the
results presented in (Boumal et al., 2019). For example, Riemannian gradient descent with
a fixed step-size (which requires a Riemannian gradient and a retraction computation per
iteration) takes at most O(ε−2) iterations to reach to an ε-approximate first-order KKT
point (Boumal et al., 2019, Theorem 2.5). Using our proposed preconditioned components,
preprocessing takes O(nnz (Z)+sd2) operations for CountSketch, and O(ndlog(s)+sd2)
operations for SRHT. On the other hand, using the standard metric would require O(nd2)
operations in preprocessing. In addition, computing a Riemannian gradient and a retraction
is unaffected of the choice of the Riemannian metric after preprocessing is done. Thus, in
the worst-case scenario, using our preconditioned components for a fixed-step Riemannian
gradient descent would result in a total of O(nnz (Z) + sd2 + ε−2(ndp+ d2p+ dp2 + T∇f̄ ))

operations for CountSketch, and O(nd log(s)+sd2+ε−2(ndp+d2p+dp2+T∇f̄ )) operations
for SRHT, while using the standard metric would result in a total of O(nd2 + ε−2(ndp +
d2p + dp2 + T∇f̄ )) operations. As we demonstrate in Section 6, we have s � n, thus our
preconditioned algorithm is expected to be faster, at least in the worst-case scenario. As
for the asymptotic convergence, we demonstrate for CCA and FDA how our preconditioner
affects the asymptotic convergence via analysis of the condition number of the Riemannian
Hessian at the optimum in Subsection 4.5 and Subsection 5.5.

12
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Table 2: Summary of the cost of various components for using sketching based Riemannian
preconditioning for generalized orthogonality constraints.

Operation Cost using CountSketch Cost using SRHT

Preprocessing: computing SZ O(nnz (Z)) = O(nd) O(nd log(s))

Preprocessing: given SZ

forming the inverse of

M = ZTSTSZ + λId

O(sd2) O(sd2)

Applying M−1 on a vector O(d2) O(d2)

Retraction O(ndp+ dp2) O(ndp+ dp2)

Inner product on the tangent

space (Riemannian metric)

O(nnz (SZ) p+ dp) O(nnz (SZ) p+ dp)

Orthogonal projections on the

tangent/normal space

O(ndp+ d2p+ dp2) O(ndp+ d2p+ dp2)

Vector Transport O(ndp+ d2p+ dp2) O(ndp+ d2p+ dp2)

Riemannian gradient O(ndp+ d2p+ dp2 + T∇f̄ ) O(ndp+ d2p+ dp2 + T∇f̄ )

Applying the Riemannian

Hessian to a tangent vector

O(ndp+ d2p+ nnz (SZ) p+ dp2 +

T∇f̄ + T∇2f̄ )

O(ndp+ d2p+ nnz (SZ) p+ dp2 +

T∇f̄ + T∇2f̄ )

Remark 3 In Table 2 we assumed, for simplicity, that s ≥ d . However, if λ is sufficiently
large, it is possible for the prescribed values of s (s ≥ 20sλ(Z)2/δ) to be smaller than d. In
such cases, we can reduce the O(sd2) term in the complexity to O(sdmin(s, d)) by employing
the Woodbury formula. We omit the details.

4. Sketched Iterative CCA

CCA, originally introduced by Hotelling in 1936 (Hotelling, 1936), is a well-established
method in statistical learning with numerous applications (e.g., Sun et al., 2010; Kim et al.,
2007; Su et al., 2012; Dhillon et al., 2012, 2011; Chaudhuri et al., 2009). In CCA, the
relation between a pair of data sets in matrix form is analyzed, where the goal is to find
the directions of maximal correlation between a pair of observed variables. In the language
of linear algebra, CCA measures the similarities between two subspaces spanned by the
columns of the two matrices, whereas in the geometric point of view, CCA computes the
cosine of the principal angles between the two subspaces. We consider a regularized version
of CCA defined below2:

Definition 4 Let X ∈ Rn×dx and Y ∈ Rn×dy be two data matrices, and λx, λy ≥ 0 be two
regularization parameter. Let q = max

(
rank

(
XTX + λxIdx

)
, rank

(
YTY + λyIdy

))
. The

(λx, λy)-canonical correlations σ1 ≥ · · · ≥ σq and the (λx, λy)-canonical weights u1, . . . ,uq,
v1, . . . ,vq are the arguments that maximize Tr

(
UTXTYV

)
subject to

UT(XTX + λxIdx)U = Iq, VT(YTY + λyIdy)V = Iq, UTXTYV = diag (σ1, . . . , σq) ,

2. The definition is formulated as a linear algebra problem. While the problem can be motivated, and
described, in the language of statistics, the linear algebraic formulation is more convenient for our
purposes.
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where U =
[

u1 . . . uq
]
∈ Rdx×q and V =

[
v1 . . . vq

]
∈ Rdy×q.

4.1 CCA as an Optimization Problem on a Product of Generalized Stiefel
Manifolds

We focus on finding σ1, ..., σp,u1, ...,up and v1, ...,vp, where p ≤ q is a parameter, i.e., on
finding the top p-canonical correlations and the corresponding left and right vectors. For
convenience, we use the following notations:

Σxx := XTX + λxIdx , Σyy := YTY + λyIdy , Σxy := XTY .

With these notations, we can reformulate the problem of finding the top p-canonical corre-
lations succinctly in the following way:

max Tr
(
UTΣxyV

)
, s.t. UTΣxxU = Ip, VTΣyyV = Ip,

UTΣxyV is diagonal with non-increasing diagonal (2)

Notice that without the last constraint, Problem (2) is a maximization over the product
of two generalized Stiefel manifolds. However, without this constraint the solution is not
unique. The reason for that is that the trace operator and the constraint set are invariant
to multiplication by orthonormal matrices, and so there are optimal values that are non-
diagonal (and so additional steps are needed to extract the canonical correlations from
such values). In order to circumvent this issue, we use a well known method to modify such
problems so to make the solution unique. The modification is based on the von Neumann cost
function (Von Neumann, 1962). That is, we replace the objective function Tr

(
UTΣxyV

)
with Tr

(
UTΣxyVN

)
where N = diag (µ1, ..., µp) and we take arbitrary µ1, ..., µp such that

µ1 > ... > µp > 0. In other words, the problem we wish solve is

max Tr
(
UTΣxyVN

)
, s.t. UTΣxxU = Ip, VTΣyyV = Ip.

In the next subsection, we detail the Riemannian components which allow to solve the
CCA problem. We show that critical points of the corresponding objective function consist
of coordinated left and right canonical correlation vectors not necessarily on the same phase.
In particular, the optimal solutions are critical points consisting of coordinated left and right
top p-canonical correlation vectors on the same phase.

4.2 Preconditioned Riemannian Components for CCA

In this subsection we derive the Riemannian components associated with the CCA prob-
lem. The CCA problem is a constraint maximization on the product of two general-
ized Stiefel manifolds: StΣxx(p, dx) and StΣyy(p, dy). We denote the search space by
Sxy := StΣxx(p, dx) × StΣyy(p, dy). We consider the use of Riemannian optimization for
solving the CCA problem, while exploiting the geometry of the preconditioned generalized
Stiefel manifold and use the notion of product manifold. To make the calculations easier,
we denote d = dx + dy and Z :=

[
UT VT ]T ∈ Rd×p where U ∈ StΣxx(p, dx) and

V ∈ StΣyy(p, dy). Henceforth, we abuse notation and view Sxy as a subset of Rd×p given

14
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by this coordinate split, and also write Z = (U,V) as a shorthand for Z =
[

UT VT ]T.
With these conventions, the optimization problem can be rewritten in the following way:

min
Z∈Sxy

fCCA(Z) , fCCA(Z) := −1

2
Tr

(
ZT
[

Σxy

ΣT
xy

]
ZN

)
(3)

For a product of disjoint Generalized Stiefel manifolds, if the number of columns of
the matrices that belong to each of the manifolds is the same, the various Riemannian
components can be computed separately on each of the manifolds and then stacked on
top of each other. We use two preconditioning schemes U 7→ M

(xx)
U and V 7→ M

(yy)
V

to define Riemannian metrics on StΣxx(p, dx) and StΣyy(p, dy) respectively, and these, in

turn, define a Riemannian metric on Sxy via Z 7→ MZ := blkdiag
(
M

(xx)
U ,M

(yy)
V

)
. For

U ∈ StΣxx(p, dx), let ΠU (·) denote the projection on TUStΣxx(p, dx), and similarly for
ΠV (·) where V ∈ StΣyy(p, dy). Similarly, let Π⊥U(·) and Π⊥V(·) be the projections on the
corresponding normal spaces. Given Z ∈ Sxy the orthogonal projection on the tangent space
TZSxy is ΠZ (ξZ) = (ΠU (ξU) ,ΠV (ξV)) where ξZ := (ξU, ξV) ∈ Rd×p.

Let f̄CCA be fCCA extended smoothly to be defined on Rd×p where f̄CCA is defined by
Eq. (3) as well. The following are analytical expressions for the Riemannian gradient and
the Riemannian Hessian in ambient coordinates:

gradfCCA(Z) = ΠZ

(
M−1

Z ∇f̄CCA(Z)
)

= −

 ΠU

((
M

(xx)
U

)−1
ΣxyVN

)
ΠV

((
M

(yy)
V

)−1
ΣT

xyUN

)
 , (4)

HessfCCA(Z) = ΠZ

(
M−1

Z

[
−Σ∇2fCCA

ξZN + Σ

[
ξUUTΣxyVN

ξVVTΣT
xyUN

]
+

+Σ

[
ξUUT

ξVVT

]
MZgradfCCA(Z)

])
, (5)

Σ∇2fCCA
:=

[
Σxy

ΣT
xy

]
, Σ := blkdiag (Σxx,Σyy) ,

where Eq. (5) is valid for critical points or if MZ := M = blkdiag
(
M(xx),M(yy)

)
.

Along with formulas for the retraction and vector transport, various Riemannian opti-
mization algorithms can be applied to solve Problem (3). In the next theorem, we summarize
the critical points. Note that an important outcome of this theorem is that we can obtain
σi from UTΣxyV for critical U and V. In the theorem statement, a pair of left and right
canonical correlation vectors u and v are on the same phase if uTXTYv ≥ 0. The proof is
delegated to Appendix B.1.

Theorem 5 A point Z = (U,V) ∈ Sxy is a critical point of fCCA(Z) on Sxy if and only
if the columns of U and V are left and right coordinated canonical correlation vectors not
necessarily on the same phase.

The optimal solutions of minimizing fCCA(Z) on Sxy are critical points Z such that the
columns of U and V are coordinated left and right top p-canonical correlation vectors on the
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same phase. Moreover, the optimal solution is unique up to sign of the columns of U and
V if σ1 > σ2 > ... > σp+1 ≥ 0.

4.3 Stability of the Critical Points of fCCA

Naturally, we want our proposed optimization algorithm to converge to an optimal point. In
Theorem 5 we characterized all the critical points of fCCA(Z) on Sxy. In general, a typical
guarantee for Riemannian optimization algorithms is that for a sequence of iterates, all the
accumulation points of the sequence are critical points (e.g., Absil et al., 2008, Theorem
4.3.1). Unfortunately, this guarantee does not specify to which of the critical points the
convergence is to. However, we can utilize the fact that in practice, for a sufficiently close
initial guess, Riemannian optimization methods converge to the stable critical points and
do not converge to unstable critical points (Absil et al., 2008, Section 4.4). We analyze the
stability of the various critical points of fCCA(Z) on Sxy. Note that solving CCA on the
generalized Stiefel manifold (and its products) can be reduced to an SVD problem and that
the discussion of the stability of critical points is independent of the choice of the Riemannian
metric. In (Helmke and Moore, 1992, Theorem 3.4), the stability of the global minimum of
SVD problem is established assuming distinct singular values. In the context of Riemannian
optimization, the SVD problem was discussed by Sato and Iwai (2013). However, apart from
(Absil et al., 2008, Theorem 4.6.3) where the stability of the critical points of finding the
extreme eigenvalue, i.e., p = 1, none of the aforementioned references provides an analysis
of the stability of the critical points in the context of Riemannian optimization. Thus, for
completeness of the presentation, we present our analysis in this paper and delegate the
proofs to the appendix. In Theorem 6, we show that under reasonable assumptions the
critical points which solve Problem (3) are asymptotically stable. Moreover, we show that
critical points which are saddle points or local maxima of Problem (3) are unstable. The
proof of Theorem 6 is in Appendix B.2.

To do so, we use (Absil et al., 2008, Proposition 4.4.1) and (Absil et al., 2008, Proposition
4.4.2). First, recall the definition of a descent mapping from (Absil et al., 2008, Chapter
4.4): we say that F is a descent mapping for a cost function f onM if f(F (x)) ≤ f(x) for
all x ∈M. Now, (Absil et al., 2008, Proposition 4.4.1) shows that if we use any Riemannian
algorithm that induces a descent mapping, and for which for every starting point the series of
points generated by the algorithm has only accumulation points that are critical points, then
any critical point which is not a local minimum with a compact neighborhood where the cost
function achieves the same value for all other critical points is unstable. Additionally, (Absil
et al., 2008, Proposition 4.4.2) shows that if the same conditions hold, and the distance on
the manifold between iterations goes to zero as the algorithm approaches a local minimum,
then if this minimum is an isolated critical point, it is an asymptotically stable critical point.

Theorem 6 Consider using Riemannian optimization to minimize fCCA(Z) subject to Z ∈
Sxy, and assume that the mapping defined by the algorithm is a descent mapping. Assume
that σ1 > σ2 > ... > σp+1 ≥ 0, then Z that minimize fCCA(Z) on Sxy are asymptotically
stable. Furthermore, critical points which are not a local minimum of Problem (3) are
unstable.
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Remark 7 Consider the case that one or more of the top p-canonical correlations is not
simple, i.e., some σi = σj for 1 ≤ i, j ≤ p. Then there is no longer an isolated minimum
of the form Z = (U,V) ∈ Sxy such that the columns of U and V are the left and right
top p-canonical vectors, because permutations and linear combinations of the columns of U
and V associated with σi which maintain the phase do not change the optimal value. In
such case, we can still guarantee that there exists a neighborhood of the space of the left and
right top p-canonical correlation spaces for which all the starting points converge. However,
note that linear convergence of Riemannian gradient descent is no longer guaranteed, as the
Riemannian Hessian is only positive semi-definite, but theorems such as (Absil et al., 2008,
e.g., Theorem 4.5.6), require a positive definite Riemannian Hessian.
Indeed, any neighborhood of these spaces contains a sublevel set of fCCA where the only
critical points of fCCA in this sublevel set belongs to the space of the left and right top p-
canonical correlation spaces. Thus, if a Riemannian optimization algorithm which induces
a descent mapping is started with an initial point within such a sublevel set, and assuming
all accumulation points are critical points of fCCA, then it converges to the space of the left
and right top p-canonical correlation spaces.

In the next theorem, we show that under certain assumptions, critical points which do
not solve Problem (3) are saddle points or local maximizers. Furthermore, the algorithm
is likely to converge to the desired global minimizer since under some assumptions it is the
only local minimizer (up to the signs of the columns) among the critical points, thus making
it the only asymptotically stable critical point. The proof relies on the proof of Theorem 9,
Thus, its proof appears in Appendix B.4, after the proof of Theorem 9 (Appendix B.3).

Theorem 8 Consider using Riemannian optimization to minimize fCCA(Z) subject to Z ∈
Sxy, where we use the Riemannian metric defined by MZ = blkdiag

(
M

(xx)
U ,M

(yy)
V

)
where

M
(xx)
U ∈ Rdx×dx and M

(yy)
V ∈ Rdy×dy are given preconditioning schemes. Assume that for

all i = 1, ..., q the values σi are distinct, and that Σ is a SPD matrix. Then the global
minimizer of fCCA(Z) subject to Z ∈ Sxy, denoted by Z? = (U?,V?), is the only local
minimizer of fCCA(Z) on Sxy, up to the signs of the columns, and it is also strict, and
all other critical points are either saddle points or global maximizers. Thus, Z? is the only
asymptotically stable critical point, and all other critical points are unstable.

4.4 The Effect of Preconditioning on the Convergence

The following theorem allows us to reason about the quality of a preconditioner for the CCA
problem. In this theorem, we bound the condition number of the Riemannian Hessian at
the optimum based on how well the preconditioner approximates a specific matrix (Σ). The
proof appears in Appendix B.3.

Theorem 9 Consider using Riemannian optimization to minimize fCCA(Z) subject to Z ∈
Sxy, where we use the Riemannian metric defined by MZ = blkdiag

(
M

(xx)
U ,M

(yy)
V

)
where

M
(xx)
U ∈ Rdx×dx and M

(yy)
V ∈ Rdy×dy are given preconditioning schemes. Also assume that

σ1 > σ2 > ... > σp+1 ≥ 0 and that Σ is a SPD matrix. Then at the global minimizer
of fCCA(Z) subject to Z ∈ Sxy, denoted by Z? = (U?,V?), the following bound on the
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condition number of the Riemannian Hessian at Z? holds

κ(HessfCCA(Z?)) ≤ κ?CCA · κ (Σ,MZ?)

where

κ?CCA :=
max

{
µ1(σ1 + σp+1), 1

2(µ1 + µ2)(σ1 + σ2)
}

min
{
µp(σp − σp+1),min1≤j<p

1
2 (µj − µj+1) (σj − σj+1)

}
and µ1 > · · · > µp > 0. If MZ? = Σ then κ(HessfCCA(Z?)) = κ?CCA.

Note that from Theorem 9, we have a cumbersome connection between N and the
condition number. Nevertheless, from the expression for κ?CCA, one can conclude that to
balance the numerator and denominator the differences between the values on the diagonal
of N should not be too small nor too large.

The condition number for the case p = 1 does not involve the values in N, and thus is
simple and illuminating:

Corollary 10 For p = 1, the condition number of the Riemannian Hessian at the optimum
is at most σ1+σ2

σ1−σ2
· κ(Σ,Mz?). If Mz? = Σ then the condition number of the Riemannian

Hessian at the optimum is σ1+σ2
σ1−σ2

.

The condition number bound from Corollary 10 decomposes into two components: the
first is the relative eigengap ((σ1 + σ2)/(σ1 − σ2)), which forms a natural condition number
for the problem (if the first and second correlations are very close, it is very hard to dis-
tinguish between them) that almost always appear in problems of this form, and a second
component which measures how close the preconditioner-defined metric approximates the
natural metric for the constraints. The optimal preconditioner, according to the bound, is
M = Σ. However, using this preconditioner requires explicitly computing it in O(nd2) time.
This is too expensive since the exact correlations can be computed analytically in O(nd2)
time as well Björck and Golub (1973).

4.5 Randomized Preconditioning for CCA

The condition number bound in Theorem 9 separates two factors: κ?CCA and κ (Σ,M).
The first, κ?CCA, depends on the gap between the p + 1 largest canonical correlations and
on the differences between the values in N, which are parameters for the CCA problem as
a Riemannian optimization problem. The dependence on the gap almost always appears
in problems of this form, since the more the singular values are distinct it is easier to
distinguish between them. The second component, κ (Σ,MZ?), measures how close the
preconditioner, which defines the Riemannian metric, approximates Σ. A preconditioner
that minimizes the bound in Theorem 9 is such that MZ? = Σ. However, using that
preconditioner, requires explicitly computing a factorization of Σ which classically requires
Ω(nd2) arithmetic operations which is non-beneficial in light of direct solution methods.

Thus, Theorem 9 provides an argument in favor of our proposed randomized precon-
ditioner, i.e., easy to factorize MZ such that κ (Σ,MZ?) is bounded. In order to achieve
this goal, the preconditioning schemes U 7→ M

(xx)
U and V 7→ M

(yy)
V should approximate

Σxx = XTX + λxIdx and Σyy = YTY + λyIdy respectively (at least at the optimum).
Thus, as described in Section 3 we propose constant randomized preconditioning scheme
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Algorithm 1 Sketched Riemannian Iterative CCA with warm-start.
1: Input: X ∈ Rn×dx , Y ∈ Rn×dy , s ≥ max(dx, dy), λx, λy ≥ 0.
2: Generate random h : {1, . . . , d} → {1, . . . , s} and g : {1, . . . , d} → {−1,+1}. Let S

denote the corresponding CountSketch matrix.
3: XS ← SX, YS ← SY.
4: Ũ, Ṽ← exact− cca(XS,YS).
5: M(xx) ← XT

S XS + λxIdx , M(yy) ← YT
S YS + λyIdy .

6: Notation: Σxx = XTX + λxI, Σyy = YTY + λyI. Do not compute these matrices
(algorithms only require taking products with them).

7: Choose: any N = diag (µ1, ..., µp) s.t. µ1 > ... > µp > 0.
8: Using Riemannian CG, solve max Tr

(
UTΣxyVN

)
s.t. U ∈ StΣxx(p, dx), V ∈

StΣyy(p, dy). Use M(xx) and M(yy) for the metric. Start the iteration from qfΣxx

(
Ũ
)

and qfΣyy

(
Ṽ
)
.

M := blkdiag
(
M(xx),M(yy)

)
, i.e., using sketching for X and Y correspondingly to de-

fine M
(xx)
U := M(xx) and M

(yy)
V := M(yy). A pseudocode description of an end-to-end

randomized preconditioned CCA algorithm with warm-start appears in Algorithm 1. The
following corollary summarizes our theoretical results regarding the proposed algorithm. We
remark that CountSketch can possibly be replaced with other sketching transforms (such
as SRHT), and Riemannian CG can be replaced with other Riemannian optimization meth-
ods, although the bounds in the corollary might change. We prove Corollary 11 in Appendix
B.5.

Corollary 11 Consider Algorithm 1. Let δ ∈ (0, 1) and denote sλ = max(sλx(X), sλy(Y)).
If s = max(

⌈
40s2

λ/δ
⌉
, d), then with probability of at least 1 − δ, the condition number of

the Riemannian Hessian at the optimum is bounded by 3κ?CCA, regardless of the condition
number of Σxx and Σyy. Furthermore, assuming we use Riemannian CG, n ≥ d ≥ p, and
all computations are done in ambient Rd×p coordinates, then the preprocessing steps take
O(nnz (X) + nnz (Y)) = O(nd) and O(sd2). Assuming a bounded number of line-search
steps in each iteration then each iteration takes O

(
p (nnz (X) + nnz (Y)) + dp2 + d2p

)
op-

erations.

5. Sketched Iterative FDA

Fisher’s linear discriminant analysis (FDA), introduced by Fisher (1936), is a well-known
method for classification (Fisher, 1936; Mika et al., 1999), and more commonly for dimen-
sionality reduction before classification (Chen et al., 2012). The latter is achieved by finding
an embedding such that simultaneously the between-class scatter is maximized and the
within-class scatter is minimized. In this paper, we consider a regularized version of FDA
as defined below:

Definition 12 (Duda et al., 2001, Section 4.11) Let x
(1)
1 , ...,x

(1)
n1 ,x

(2)
1 , ...,x

(2)
n2 ...,x

(2)
1 , ...,x

(l)
nl ∈

Rd be samples from l ≤ d different classes, and denote by x1, ...,xn the union of the differ-
ent classes (the entire data set in a sequential index). For i = 1, . . . , n, let yi denote the
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label corresponding to xi, i.e., yi = k if xi = x
(k)
j for some j. Let mk, for k = 1, . . . , l,

denote the sample mean of class k (i.e., mk := n−1
k

∑nk
i=1 x

(k)
i ), and m := n−1

∑n
i=1 xi =

n−1
∑l

k=1 nkmk denote the data set sample mean of the entire data set. Let SB and Sw be
the between-class3 and within-class scatter matrices (respectively):

SB :=
l∑

k=1

nk(mk −m)(mk −m)T Sw :=
n∑
i=1

(xi −myi)(xi −myi)
T

Let λ ≥ 0 be a regularization parameter. The l − 1 FDA weight vectors w1, ...,wl−1 are the
columns of W ∈ Rd×(l−1) such that W is the maximizer of the following cost function:

J(W) =
det(WTSBW)

det(WT(Sw + λId)W)
. (6)

5.1 FDA as an Optimization Problem on a Generalized Stiefel Manifold

It is well known that the solution of maximizing Eq. (6) (i.e., finding the FDA weight vectors)
is equivalent to finding a matrix W such that its columns are the leading l − 1 generalized
eigenvectors of the matrix pencil (SB,Sw + λId) (Duda et al., 2001, Section 4.11). Note
that this generalized eigenproblem has at most l − 1 nonzero generalized eigenvalues since
the matrix Sw + λId is a SPD matrix, and SB is the sum of l matrices of rank one or less,
where only l − 1 of these are independent, thus, SB is of rank l − 1 or less. We denote
the eigenvalues of the matrix pencil (SB,Sw + λId) with correspondence to the FDA weight
vectors by ρ1 ≥ ρ2 ≥ ... ≥ ρd ≥ 0.

We focus on finding the p leading FDA weight vectors, i.e., w1, ...,wp corresponding
to ρ1 ≥ ρ2 ≥ ... ≥ ρp where p ≤ l − 1. For the purpose of describing and analyzing our
algorithm, it is useful to write,

Sw = X̂
T

X̂, X̂ := X−Y, SB = Ŷ
T

Ŷ ,

where X̂ ∈ Rn×d is a matrix such that each i-th row of X̂ is (xi −myi)
T, X ∈ Rn×d is a

matrix such that each i-th row of X is xT
i , Y ∈ Rn×d is a matrix such that each i-th row is

of the form myi (thus, there are at most l different rows in Y), and Ŷ ∈ Rl×d is a matrix
such that each kth row of Ŷ is

√
nk(mk −m)T. With these notations, we can reformulate

the problem of finding the p leading FDA weight vectors as a Riemannian optimization
problem on the generalized Stiefel manifold (see Fukunaga, 2013, Section 10.2, Eq. (10.5)),
i.e., finding the generalized eigenvalues of the matrix pencil (SB,Sw + λId). We use the
Brockett cost function (Brockett, 1991) and obtain the following optimization problem

max
W∈Rd×p

Tr
(
WTŶ

T
ŶWN

)
, s.t. WT(X̂

T
X̂ + λId)W = Ip, (7)

where N = diag (µ1, ..., µp) where we take arbitrary µ1, ..., µp such that µ1 > ... > µp > 0.

3. For l = 2 the matrix SB is defined by SB := (m1 − m2)(m1 − m2)T. The definitions coincide after
multiplying SB = (m1 − m2)(m1 − m2)T by 2(n1n2)/n.
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Remark 13 Problem (7) is actually a relaxation of the trace-ratio problem (Wang et al.,
2007; Ngo et al., 2012), which provides superior results in various tasks (e.g., classification
and clustering Wang et al., 2007). We focus on Problem (7) since it is amenable to our
preconditioning strategy.

In the next subsection, we detail the Riemannian components which allow to solve the
FDA problem. We show that critical points of the corresponding objective function are
matrices W such that the columns are some p FDA weight vectors. In particular, the
optimal solutions are critical points consisting of the p leading FDA weight vectors. We
further show that if ρ1, . . . , ρp+1 are distinct, the optimal solution is unique up to sign of
the columns of W.

5.2 Preconditioned Riemannian Components for FDA

We first transform Problem (7) into a minimization problem:

min
St(Sw+λId)(p,d)

fFDA(W) , fFDA(W) := −1

2
Tr
(
WTSBWN

)
. (8)

We use the components of the generalized Stiefel manifold with a Riemannian metric de-
fined by a preconditioning scheme MW ∈ Rd×d to apply Riemannian optimization to solve
Problem (8).

Let f̄FDA be fFDA extended smoothly to be defined on Rd×p where f̄FDA is defined by
Eq. (8) as well.

For W ∈ St(Sw+λId)(p, d), let ΠW (·) denote the projection on TWSt(Sw+λId)(p, d).
Similarly, let Π⊥W (·) be the projection on the corresponding normal space. The following
are analytical expressions for the Riemannian gradient and Hessian in ambient coordinates:

gradfFDA(W) = ΠW

(
M−1

W∇f̄FDA(W)
)
−ΠW

(
M−1

WSBWN
)
, (9)

HessfFDA(W)[ξW] = ΠW(M−1
W [−SBξWN+

(Sw + λId)ξW(WTSBWN + gradf(W))]), (10)

where Eq. (10) is valid for critical points or if MW := M.
Along with formulas for the retraction and vector transport, various Riemannian opti-

mization algorithms can be applied to solve Problem (8). In the next theorem, we summarize
the critical points. Note that an important outcome of this theorem is that we can obtain
ρi from WTSBW with a critical W. The proof is almost the same as the proof of Theorem
5, and presented in Appendix C.1.

Theorem 14 A point W ∈ St(Sw+λId)(p, d) is a critical point of fFDA(W) on the manifold
St(Sw+λId)(p, d) if and only if the columns of W are some p FDA weight vectors.

The optimal solutions of minimizing fFDA(W) on St(Sw+λId)(p, d) are critical points W
such that the columns are the p leading FDA weight vectors. Moreover, the optimal solution
is unique up to sign of the columns if ρ1 > ρ2 > ... > ρp+1 ≥ 0.
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5.3 Stability of the Critical Points of fFDA

In the FDA problem, we want any optimization algorithm to converge to an optimal point. In
Theorem 14 we prove that the critical points of fFDA(W) on St(Sw+λId)(p, d) are matrices
W ∈ St(Sw+λId)(p, d) such that the columns are some p FDA weight vectors. Similarly
to the CCA problem, we analyze the stability of the critical points using (Absil et al.,
2008, Proposition 4.4.1) and (Absil et al., 2008, Proposition 4.4.2). Note that similarly to
the CCA problem, solving FDA on the generalized Stiefel manifold can be reduced to a
generalized eigenvalues problem, and that the discussion of the stability of critical points
is independent of the choice of Riemannian metric. In (Brockett, 1991, Theorem 4), the
stability of the global minimum of the generalized eigenvalue problem is established assuming
distinct eigenvalues. In the context of Riemannian optimization, the eigenvalue problem
was discussed in various references, e.g., (Absil et al., 2008, Sections 4.6 and 4.8). However,
apart from (Absil et al., 2008, Theorem 4.6.3) where the stability of the critical points of
finding the extreme eigenvalue, i.e., p = 1, none of the aforementioned references provides
a complete analysis of the stability of the critical points in the context of Riemannian
optimization. Thus, for completeness of the presentation, we present our analysis in this
paper and relegate the proofs to the appendix.

The following theorem shows that under reasonable assumptions the critical points which
solve Problem (8) are asymptotically stable and critical points which are saddle points of
Problem (8) are unstable. The proof is analogous to the proof of Theorem 6, and presented
in Appendix C.2.

Theorem 15 Consider using Riemannian optimization to minimize fFDA(W) subject to
W ∈ St(Sw+λId)(p, d), and assume that the mapping defined by the algorithm is a descent
mapping. Assume that ρ1 > ρ2 > ... > ρp+1 ≥ 0, then W ∈ St(Sw+λId)(p, d) such that
the columns are the p leading FDA weight vectors are asymptotically stable. Furthermore,
critical points which are not a local minimum of Problem (8) are unstable.

Remark 16 Consider the case that one or more of the p-dominant generalized eigenval-
ues of the matrix pencil (SB,Sw + λId) is not simple, i.e., some ρi = ρj for 1 ≤ i, j ≤ p.
Then there is no longer an isolated minimum of the form W ∈ St(Sw+λId)(p, d) such that the
columns are the p leading FDA weight vectors, because permutations and linear combinations
of the columns of W associated with ρi do not change the optimal value. In such case, we
can still guarantee that there exists a neighborhood of the space of the p-dominant generalized
eigenspaces for which all the starting points converge to the space of the p-dominant gener-
alized eigenspaces. However, note that linear convergence of Riemannian gradient descent
is no longer guaranteed, as the Riemannian Hessian is only positive semi-definite, but theo-
rems such as (Absil et al., 2008, e.g., Theorem 4.5.6), require a positive definite Riemannian
Hessian.
Indeed, any neighborhood of these generalized eigenspaces contains a sublevel set of fFDA

where the only critical points of fFDA in this sublevel set belong to the space of the p-
dominant generalized eigenspaces. Thus, if a Riemannian optimization algorithm which
induces a descent mapping is started with an initial point within such a sublevel set, and
assuming all accumulation points are critical points of fFDA, then it converges to the space
of the p-dominant generalized eigenspaces.
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In the next theorem, we show that under certain assumptions, critical points which do not
solve Problem (7) are saddle points or local maximizers. Furthermore, the algorithm is likely
to converge to the desired global minimizer since under some assumptions it is the only local
minimizer (up to the signs of the columns) among the critical points, thus making it the
only asymptotically stable critical point. The proof relies on the proof of Theorem 18, and
is presented in Appendix C.4.

Theorem 17 Consider using Riemannian optimization to minimize fFDA(W) subject to
W ∈ St(Sw+λId)(p, d), where we use the Riemannian metric defined by MW ∈ Rd×d, which
is a given preconditioning scheme. Assume that for all i = 1, ..., d the values ρi are distinct
and that Sw + λId is a SPD matrix. Let W? denote the global minimizer of fFDA(W)
subject to W ∈ St(Sw+λId)(p, d). Then W? is the only local minimizer of fFDA(W) on
St(Sw+λId)(p, d), up to the signs of the columns, and it is also strict, and all other critical
points are either saddle points or strict local maximizers. Thus, W? is the only asymptoti-
cally stable critical point, and all other critical points are unstable.

5.4 The Effect of Preconditioning on the Convergence

The following theorem provides a bound on the condition number of the Riemannian Hessian
at the optimum based on how well the preconditioner approximates a specific matrix (Sw +
λId). This theorem provides a general guideline in designing a Riemannian preconditioner
via the Riemannian metric, and in particular motivates our proposed approach detailed in
Subsection 5.5. The proof uses the same arguments as the proof of Theorem 9, though they
are simplified considerably since only a single generalized Stiefel manifold is considered. The
proof appears in Appendix C.3.

Theorem 18 Consider using Riemannian optimization to minimize fFDA(W) subject to
W ∈ St(Sw+λId)(p, d), where we use the Riemannian metric defined by MW ∈ Rd×d, which
is a given preconditioning scheme. Assume that ρ1 > ρ2 > ... > ρp+1 ≥ 0 and that Sw + λId
is an SPD matrix. Let W? denote the global minimizer of fFDA(W) subject to W ∈
St(Sw+λId)(p, d). Then,

κ(HessfFDA(W?)) ≤ κ?FDA · κ (Sw + λId,MW?)

where
κ?FDA :=

µ1 (ρ1 − ρd)
min

{
µp (ρp − ρp+1) ,min1≤j<p

1
2 (µj − µj+1) (ρj − ρj+1)

}
and µ1 > · · · > µp > 0. If MW? = Sw + λId then κ(HessfFDA(W?)) = κ?FDA.

Note that from Theorem 18, we have a cumbersome connection between N and the
condition number. Nevertheless, from the expression for κ?FDA, one can conclude that to
balance the numerator and denominator the differences between the values on the diagonal
of N should not be too small nor too large.

The condition number for the case p = 1 does not involve the values in N, and thus is
simple and illuminating:

Corollary 19 For p = 1, the condition number of the Riemannian Hessian at the optimum
is at most ρ1−ρd

ρ1−ρ2
· κ (Sw + λId,MW?). If MW? = Sw + λId then the condition number of

the Riemannian Hessian at the optimum is ρ1−ρd
ρ1−ρ2

.
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The condition number bound from Corollary 19 decomposes to two components: the
first is the relative eigengap (ρ1/(ρ1 − ρ2)) (when ρd is very small or zero), which form a
natural condition number for the problem (if the first and second generalized eigenvalues
are very close, it is very hard to distinguish between invariant subspaces corresponding to
them) that almost always appears in problems of this form, and a second component which
measures how close the preconditioner-defined metric approximates the natural metric for
the constraints. The optimal preconditioner according to the bound, is M = Sw + λId.
However, using this preconditioner requires explicitly computing it in O(nd2) time. This is
too expensive, since the exact discriminant variables can be computed analytically in O(nd2)
time as well (exact solution requires finding the inverse of Sw + λId and then finding the
first eigenvalue and corresponding eigenvector of (Sw + λId)

−1SB).

5.5 Randomized Preconditioning for FDA

The bound on the condition number in Theorem 18 decomposes two components: the first,
κ?FDA, depends only on the FDA problem (and its formulation as a Riemannian optimization
problem). κ?FDA depends on both the gap between the p+ 1 largest generalized eigenvalues,
and on the diagonal elements of N, which are parameters of the optimization problem. The
dependence on the gap almost always appears in problems of this form, since the more the
generalized eigenvalues associated with the FDA weight vectors we search for are distinct it
is easier to distinguish between them. The second component, κ (Sw + λId,MW?), measures
how close the preconditioner, which defines the Riemannian metric, approximates Sw +λId.
A preconditioner that minimizes the bound in Theorem 18 is such that MW? = Sw + λId.
However, using that preconditioner requires explicitly computing Sw + λId which takes
O(nd2) arithmetic operations. As for the CCA problem, direct methods for solving FDA
require Θ(nd2) arithmetic operations as well (exact solution requires finding the inverse of
Sw+λId and then finding the eigenvalues and corresponding eigenvectors of (Sw+λId)

−1SB).
Thus, we want MW to approximate Sw + λId at the optimum, while allowing a cheap
factorization which is satisfied by our proposed randomized preconditioning approach.

We propose to design the preconditioner in the following way: MW := M approximates
Sw + λId = X̂

T
X̂ + λId via a matrix sketching procedure for X̂ as described in Section

3. A full description of a randomized preconditioned algorithm for FDA with warm-start
appears in Algorithm 2. The following corollary summarize our theoretical results regarding
the proposed algorithm. Note that CountSketch can possibly be replaced with other
sketching transforms (such as SRHT), and Riemannian CG can be replaced with any other
Riemannian optimization methods, although the bound in the corollary might change. The
proof is in Appendix C.5.

Corollary 20 Consider Algorithm 2. Let δ ∈ (0, 1). If s = max(
⌈
20sλ(X̂)2/δ

⌉
, d), then

with probability of at least 1 − δ, the condition number of the Riemannian Hessian at the
optimum is bounded by 3κ?FDA, regardless of the condition number of Sw +λI. Furthermore,
assuming we use Riemannian CG, n ≥ d ≥ p, and all computations are done in ambient
Rd×p coordinates, then the preprocessing steps take O(nnz

(
X̂
)

) = O(nd) and O(sd2). As-
suming a bounded number of line-search steps in each iteration then each iteration takes
O(p (nnz (X) + ld) + nnz

(
X̂
)
p+ d2p+ dp2) operations.
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Algorithm 2 Sketched Riemannian Iterative FDA with warm-start.
1: Input: X ∈ Rn×d, y ∈ Nn, s ≥ d, λ ≥ 0.
2: Compute matrices SB and X̂.
3: Generate random h : {1, . . . , d} → {1, . . . , s} and g : {1, . . . , d} → {−1,+1}. Let S

denote the corresponding CountSketch matrix.
4: XS ← SX̂.
5: W̃← exact− fda(XS).
6: M← XT

S XS + λId.
7: Notation: Sw = X̂

T
X̂. Do not compute this matrix (algorithms only require taking

products with it).
8: Choose: any N = diag (µ1, ..., µp) s.t. µ1 > ... > µp > 0.
9: Using Riemannian CG, solve max Tr

(
WTSBWN

)
s.t. W ∈ StSw+λId(p, d). Use M

for the metric. Start the iteration from qfSw+λI

(
W̃
)
.

6. Numerical Experiments

In the following section, we present our numerical experiments illustrating our randomized
preconditioning approach.

6.1 Experiments with Real-World Data Sets

We report experiments with our proposed preconditioned Riemannian optimization algo-
rithms. The experiments are not designed to be exhaustive; we use a prototype MATLAB
implementation. In particular we present experiments with the preconditioned CCA and
FDA algorithms presented in Sections 4 and 5. Our aim is to assess the effectiveness of our
randomized preconditioning approach.

In addition to Algorithms 1 and 2, we experiment with an additional precondition-
ing strategy based on work by Gonen et al. (2016), which we term as Dominant Subspace
Preconditioning. This preconditioner was designed via an approximation of the empirical
correlation matrix to speed up SVRG when solving ridge regression problems. In our ex-
periments, we use this method to approximate Σxx and Σyy for CCA, and Sw + λId for
FDA. Specifically, the matrices X,Y and X̂ are approximated in the following way: sup-
pose A = XTX ∈ Rd×d, and let X = UΛ1/2VT be an SVD decomposition of X such that
A = UΛUT is an eigendecomposition, with the diagonal entries in Λ sorted in a descend-
ing order. Given k, let us denote by Uk the first k columns of U, Λk denote the leading
k × k minor of Λ, and λk the k-th largest eigenvalue of A. Then, the k-dominant subspace
preconditioner of A + λId is Uk(Λk − λkI)UT

k + (λk + λ)Id. The dominant subspace can be
found using a sparse SVD solver (we use MATLAB’s svds). Moreover, its inverse can be
easily computed using the formula

Uk(Λk + λI)−1UT
k +

1

λk + λ
(Id −UkU

T
k ).

We also experiment with variants of sketched iterative CCA (Algorithm 1) and sketched
iterative FDA (Algorithm 2) in which Riemannian CG is replaced with Riemannian trust-
region Method.
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We use MATLAB for our implementations, relying on the manopt library (Boumal
et al., 2014) for Riemannian optimization. In the manopt library we implemented the
generalized Stiefel manifold with a non-standard metric4. The experiments we present here
are with p = 3 and N = diag (3, 2.75, 2). Recall that the only condition on the matrix
N is that it is diagonal, with strictly descending and positive diagonal elements. In the
literature, typically, descending integers are chosen. We remark that this choice of N is an
arbitrary (not optimized) choice, and we achieved similar results for other choices of N as
a diagonal matrix with strictly decreasing values on the diagonal, and p as well (which we
exclude from this text). In the plots (Fig. 1, 2, 3, and 4), the role of s is the number of rows
in the sketched data matrices, after applying a CountSketch transformation on the data
matrices. Similarly, k is the number of singular values and vectors we use for the Dominant
Subspace Preconditioning.

We did not optimize the implementation, so wall clock time is not an appropriate metric
for performance, instead, we use an alternative metrics. In particular, the direct methods
are about 10 times faster than the iterative methods measured in wall clock time in the
experiments in this subsection, however, as n becomes larger, iterative methods become
faster than the direct methods (see Subsection 6.2). In Riemannian trust-region Method,
different iterations do a variable amount of passes over the data, so we measure passes
directly, i.e., products with the data matrices, as this is the dominant cost of our algorithm.
As for Riemannian CG, the manopt solver restricts the number of line-search steps in each
iteration to 25, otherwise the step is rejected. In practice, in our experiments the number of
products in different iterations is between 6 to 26 for CCA and between 3 to 13 for FDA, so
we report the number of iterations. For every iteration or pass over the data, t, we plot the
suboptimality of the current iterate: |

∑p
i=1 σiµi + fCCA(Zt)|/

∑p
i=1 σiµi for CCA where Zt

represents the parameters at iteration t, and |
∑p

i=1 ρiµi + fFDA(Wt)|/
∑p

i=1 ρiµi for FDA
where Wt represents the parameters at iteration t. We use manopt’s default stopping
criteria: the optimization process terminates if the norm of the Riemannian gradient drops
below 10−6. We cap the number of iterations by 1000.

We use in our experiments three popular data sets: MNIST (Figures 1 and 2), ME-
DIANILL (Figure 3) and COVTYPE (Figure 4)5. MNIST is used for testing CCA and
FDA, where for CCA we try to correlate the left side of the image to the right side of the
image. MEDIANILL (43, 907 examples) is a multilabel data set, so we use it to test CCA.
COVTYPE is a large (581, 012 examples) labeled data set, and we use it to test FDA.

Consider Figure 1 (CCA on MNIST). For Riemannian CG the number of products per
iteration is never bigger than 20. As a reference, for CCA the number of iterations required
for CG and Trust-Region with M = Σ is 218 and 15 correspondingly, whereas without a
preconditioner (M = Id) the CG does not converge even after 1000 iterations and the Trust-
Region required 21 iterations to converge. We clearly see the direct correspondence between
sketch quality (as measured by the sketch size s) and number of iterations. Furthermore,
the number of iterations is close to optimal after sketching to only s = 2000 rows (there are

4. manopt has an implementation of the generalized Stiefel manifold, but only with the standard metric
M = B.

5. data sets were downloaded for libsvm’s website: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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Figure 1: Results for CCA on MNIST. For CountSketch the number of rows is s, and k
is the number of singular vectors for the dominant subspace preconditioner.
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Figure 2: Results for FDA on MNIST. For CountSketch the number of rows is s, and k
is the number of singular vectors for the dominant subspace preconditioner.

60,000 examples in the original data set) or using only 40 singular vectors for the dominant
subspace preconditioner (there are 784 features in the data set)6.

6. Interestingly, with s ≥ 500 the subspsace embedding preconditioner uses less iterations than the optimal
preconditioner. This is because of the use of sketching based warm-start.
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Figure 3: Results for CCA on MEDIAMILL. For CountSketch the number of rows is s,
and k is the number of singular vectors for the dominant subspace preconditioner.

Consider Figure 2 (FDA on MNIST). For Riemannian CG the number of products per
iteration is never bigger than 9. As a reference, for FDA the number of iterations required
for CG and Trust-Region with M = Sw +λId is 95 and 11 correspondingly, whereas without
a preconditioner (M = Id) the CG does not converge even after 1000 iterations and the
Trust-Region required 20 iterations to converge, so again we see that the sketching reduces
the number of iterations.

Consider Figure 3 (CCA on MEDIANILL). For Riemannian CG the number of products
per iteration is never bigger than 20. As a reference, the number of iterations required
for CG and Trust-Region with M = Σ is 107 and 15 correspondingly, whereas without a
preconditioner (M = Id) the number of iterations for CG is 550 and for Trust-Region is 23.
The data set has 30,993 examples and 221 features, so again we see that we can sketch to
relatively small size (s = 2000 or k = 40) and get an effective preconditioner.

Consider Figure 4 (FDA on COVTYPE). For Riemannian CG the number of products
per iteration is never bigger than 10. As a reference, the number of iterations required for
CG and Trust-Region with M = Sw + λId is 71 and 19 correspondingly, whereas without
a preconditioner (M = Id) the CG does not converge even after 1000 iterations and the
Trust-Region required 44 iterations to converge. Considering that the data set has over half
a million examples, subspace embedding preconditioning is highly effective, as it sketches
the data to a comparatively very small size. The data set has only 50 features, so dominant
subspace preconditioning is less effective for this data set.

6.2 Synthetic Experiments and Comparison with ALS

In addition, we report a set of synthetic experiments for CCA with comparisons to other
methods. To perform comparisons to existing methods, we conducted a set of synthetic
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Figure 4: Results for FDA on COVTYPE. For CountSketch the number of rows is s,
and k is the number of singular vectors for the dominant subspace preconditioner.

experiments in which we compared the running times of our algorithms for CCA to ALS
algorithm for CCA (Ge et al., 2016a, Algorithm 1), that is (Golub and Zha, 1995, Algorithm
5.2). Note that the aforementioned algorithm is equivalent to a Riemannian gradient descent
with a standard metric and a step-size of αt = (uT

t Σxyvt)
−1 at each iteration t (this is valid

whenever α0 = (uT
0 Σxyv0)−1 > 0), for p = 1. Thus, we add in Fig. 5 experiments for

p = 1 of Riemannian gradient descent with a step-size of αt = (uT
t Σxyvt)

−1. We compare
using the standard metric with a prescribed step-size (Golub and Zha, 1995, Algorithm 5.2)
vs. line search and our sketched metrics. In addition, we add the running times for direct
methods. For FDA, one can perform similar experiments, comparing our algorithms to the
power method for (Sw+λId)

−1/2SB(Sw+λId)
−1/2, as it is equivalent to Riemannian gradient

descent with the standard metric and a step-size of αt = (wT
t SBwt)

−1 for p = 1 (this is
valid whenever α0 = (wT

0 SBw0)−1 > 0). We do not include these experiments in the paper
as the results are similar to the experiments for CCA. Moreover, we also added experiments
with Riemannian trust-region in Fig. 6, to illustrate an advantage Riemannian optimization
framework provides, e.g., second-order methods.

Our method is most beneficial in the regime n � d and ill-conditioned data matrices.
Thus, the experiments presented in Fig. 5 and Fig. 6 are performed as follows. A synthetic
data set is generated with two ill-conditioned random data matrices X ∈ R106×500 and
Y ∈ R106×500 with a condition number of the order of 1014 correspondingly. We use a small
regularization of 10−6 multiplied by the average eigenvalue of the Gram matrices of X and
Y correspondingly. We measure suboptimality vs. time in seconds (including pre-processing
time of creating the sketched matrices) and iteration count.
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In Fig. 5, we present results for ALS algorithm and gradient descent with line search with
M = I, i.e., no preconditioning, M = Σ, i.e., optimal preconditioning, and four sketched
matrices with CountSketch of sizes s = 103, 104, 2 ∗ 104, 3 ∗ 104.

ALS is the fastest (109.7 seconds). Solving with M = Σ takes 295.72 seconds includ-
ing pre-processing, for s = 104 (0.1% of the data) it takes 245.99 seconds including pre-
processing, for s = 2∗104 (0.2% of the data) it takes 231.62 seconds including pre-processing,
and for s = 3 ∗ 104 (0.3% of the data) it takes 202.64 seconds including pre-processing. In
particular, excluding pre-processing time, solving with M = Σ takes 289.5 seconds, whereas,
for s = 104 it takes 241.77 seconds, for s = 2 ∗ 104 it takes 227.74 seconds, for s = 3 ∗ 104

it takes 197.74 seconds. Note that the pre-processing time is almost identical and faster for
the sketched matrices since storing and computing the full data matrices takes considerable
time. For comparison, solving directly using (Björck and Golub, 1973, Section 5) takes
216.33 seconds. Note that for s = 3 ∗ 104 the iterative method is faster, due to the larger
n. Note that the condition number of the Riemannian Hessian at the optimum changes
according to the preconditioning, as the ill-conditioning of the problem arises from the data
matrices. For M = I the condition number computed via Manopt is 2.66 ∗ 105, for s = 103

it is 34.1, however for s = 104 it is reduced to 2.48, for s = 2 ∗ 104 it becomes 1.89, for
s = 3∗104 it becomes 1.68, and for M = Σ it becomes 1.09. Indeed, we can observe that our
randomized preconditioning scheme behaves as theory predicts, having better conditioning
of the Riemannian Hessian at the optimum, as our sketched matrices approximate better
and better the standard metric. Moreover, as seen in these results, for very large matrices,
sketching indeed accelerates the algorithms, and results in faster methods.

In Fig. 6, we present Riemannian trust-region compared to ALS, with the metric M = Σ,
and the metrics achieved by sketching with s = 103 and s = 104 (results for M = I were
very similar to s = 103). All the iterative methods were faster than solving directly using
(Björck and Golub, 1973, Section 5) (201.78 seconds). While s = 103 achieved the slowest
convergence (113.32 seconds including preprocessing) among the iterative methods, due to
its ill-conditioning, both M = Σ and s = 104 were faster than the ALS, and s = 104 was the
fastest (45.18 seconds including preprocessing, and similar runtime without preprocessing
of the algorithm to M = Σ).

7. Conclusions

In this paper we propose faster randomized methods for orthogonality constrained prob-
lems. Our method is specifically designed for typical structure of orthogonality constraints
in machine learning, i.e., the constraints are defined by a Gram matrix of a data matrix
where one dimension is much larger than the other. We use the framework of Riemannian
optimization as the underlying iterative methods which we precondition by incorporating a
randomized preconditioner via the Riemannian metric (Riemannian preconditioning). The
aforementioned technique can be used to precondition any core Riemannian method. Our
method can also be applied to constraints which are described by the product of two or
more generalized Stiefel manifolds.

We demonstrated our method and proposed a preconditioning strategy for two problems:
CCA and FDA. For both of these examples we evaluate the computational costs, and bound
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Figure 5: Results for CCA on a synthetic experiment. Left - suboptimality vs. time in
seconds. Right - suboptimality vs. iteration count. we use CountSketch as the
sketching transform, where s is the number of rows after sketching is applied to
the data matrices.
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Figure 6: Results for CCA with Riemannian trust-region on a synthetic experiment. Left
- suboptimality vs. time in seconds. Right - suboptimality vs. iteration count.
we use CountSketch as the sketching transform, where s is the number of rows
after sketching is applied to the data matrices.

the condition number of the Riemanninan Hessian at the optimum. This in turn, allows us
to reason about the effect of the proposed randomized preconditioner.

As a future research direction we believe our method can be extended beyond orthog-
onality constrained problems for other equality constraints by identifying similar problem
structure.
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Appendix A. Analogue of Lemma 2 for SRHT

In this section, we formulate an analogue for Lemma 2, which was formulated for CountS-
ketch sketching transform to SRHT. First, we recall the definition of SRHT from (Tropp,
2011, Section 1.1) and (Boutsidis and Gittens, 2013, Definition 1.2).

Definition 21 Fix integers s and n = 2m where s < n, and m = 1, 2, 3, .... An SRHT
matrix is an s× n matrix of the form

S =

√
s

n
RHD,

where D ∈ Rn×n is a random diagonal matrix whose entries are independent random signs,
i.e., random variables uniformly distributed on ±1, H ∈ Rn×n is a normalized Walsh-
Hadamard matrix, and R ∈ Rs×n is a subset of s rows from the n × n identity matrix,
where the rows are chosen uniformly at random and without replacement.

Next, recall that according to (Ailon and Liberty, 2009, Theorem 2.1) and (Boutsidis and
Gittens, 2013, Lemma 1.3), constructing S and computing Sx given x ∈ Rn, s < n, can
be done in O(n log (s)) operations. Thus, computing SZ for Z ∈ Rn×d takes O(nd log (s))
operations (see Table 2).

Finally, we prove an analogue of Lemma 2 for SRHT using the approximate matrix
multiplication property for SRHT (Cohen et al., 2015, Theorem 9).

Lemma 22 Assume that λ > 0 or that Z ∈ Rn×d has full column rank. Suppose that
S ∈ Rs×n is an SRHT matrix with

s = Ω(4sλ(Z)2(sλ(Z)/‖Q‖22 + log (2sλ(Z)/δ) log (sλ(Z)/(‖Q‖22δ)))),

where Q is the matrix Q in the λ-QR factorization of Z (Avron et al., 2017, Definition 28),
for some δ ∈ (0, 1). Then with probability of at least 1 − δ we have that all the generalized
eigenvalues of the pencil (ZTZ + λI,ZTSTSZ + λI) are contained in the interval [1/2, 3/2]
and κ(ZTZ + λI,ZTSTSZ + λI) ≤ 3.

Proof The proof is similar to the proof of Lemma 2. To show that the generalized eigen-
values of the pencil (ZTZ + λI,ZTSTSZ + λI) are contained in the interval [1/2, 3/2] and
that κ(ZTZ + λI,ZTSTSZ + λI) ≤ 3 to hold, it is enough to show that

1

2
(ZTZ + λI) � ZTSTSZ + λI � 3

2
(ZTZ + λI) .

Let Z = QR be a λ-QR factorization of Z (Avron et al., 2017, Definition 28). Left-
multiplying by R−T and right-multiplying by R−1 on both sizes, we find it suffices to
show that with probability of at least 1− δ we have

1

2
Id � QTSTSQ + λR−TR−1 � 3

2
Id

or, equivalently,

‖QTSTSQ + λR−TR−1 − Id‖2 ≤
1

2
.
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Since QTSTSQ + λR−TR−1 − Id = QTSTSQ −QTQ (Avron et al., 2017, Fact 29), it is
enough to show that

‖QTSTSQ−QTQ‖2 ≤
1

2
.

From (Cohen et al., 2015, Theorem 9), we have that for any fixed matrix A, and an SRHT
matrix S0 with m = Ω((‖A‖2F /‖A‖22 + log (1/(εδ)) log (‖A‖2F /(‖A‖22δ)))/ε2) rows, taking
k := ‖A‖2F /‖A‖22 in (Cohen et al., 2015, Theorem 9), we have that with probability of at
least 1− δ,

‖ATST
0 S0A−ATA‖2 ≤ ε · ‖A‖22 ≤ ε · ‖A‖2F .

Since ‖Q‖2F = sλ(Z) (Avron et al., 2017, Fact 30), then with

s = Ω(4sλ(Z)2(sλ(Z)/‖Q‖22 + log (2sλ(Z)/δ) log (sλ(Z)/(‖Q‖22δ)))),

we have
‖QTSTSQ−QTQ‖2 ≤

1

2

with probability of at least 1− δ.

Appendix B. Omitted Proofs From Section 4

In this section we give omitted proofs from Section 4.

B.1 Proof of Theorem 5

Proof Recall that the critical points are defined to be the points where the Riemannian
gradient is zero, and as such, whether a point is a critical point or not does not depend on
the choice of Riemannian metric (see Absil et al., 2008, Eq. 3.31). Thus, for the sake of
identifying the critical points, we can use MZ := Σ for all Z ∈ Sxy and get a simplified form
for the Riemannian gradient (Eq. (4)):

gradfCCA(Z) = −
[

Σ−1
xxΣxyVN−Usym

(
UTΣxxΣ−1

xxΣxyVN
)

Σ−1
yyΣT

xyUN−Vsym
(
VTΣyyΣ−1

yyΣT
xyUN

) ]
= −

[ (
Idx −UUTΣxx

)
Σ−1

xxΣxyVN + Uskew(UTΣxyVN)(
Idy −VVTΣyy

)
Σ−1

yyΣT
xyUN + Vskew(VTΣT

xyUN)

]
.

There is a connection between the canonical correlations and the singular value decom-
position of R := Σ

−1/2
xx ΣxyΣ

−1/2
yy (Wang et al., 2016): a pair of vectors u and v are canonical

correlation vectors corresponding to the same canonical correlation if and only if ũ = Σ
1/2
xxu

and ṽ = Σ
1/2
yyv are left and right singular vectors of R corresponding to the same singular

value.
canonical correlation vectors are the columns of U and V it and only if the columns of

(Ũ, Ṽ) = (Σ
1/2
xxU,Σ

1/2
yyV) are p left and right coordinated singular vectors of the matrix R.

Thus, we use this relation to prove this theorem.
To show that all Z ∈ Sxy such that the columns of U and V are left and right

coordinated canonical correlation vectors not necessarily on the same phase are critical
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points, let α1, . . . , αp be some singular values of R, and let ũ1, . . . , ũp, ṽ1, . . . , ṽp be the
corresponding left and right singular vectors not necessarily on the same phase. Writing
ũ1, . . . , ũp as the columns of Ũ and and ṽ1, . . . , ṽp as the columns of Ṽ, and defining
U = Σ

−1/2
xx Ũ,V = Σ

−1/2
xx Ṽ, the following two equations hold:

ΣxyV = ΣxxUA, ΣT
xyU = ΣyyVA

where A := diag (β1, . . . , βp) such that |βi| = αi for i = 1, ..., p. Letting Z = (U,V) ∈ Sxy,
we have

gradfCCA(Z) = −
[

UAN−Usym
(
UTΣxxUAN

)
VAN−Vsym

(
VTΣyyVAN

) ] =

[
0dx×p
0dy×p

]
where the last line is true since AN is diagonal.

To show the other side, note that if the Riemannian gradient nullifies, then[ (
Idx −UUTΣxx

)
Σ−1

xxΣxyVN + Uskew(UTΣxyVN)(
Idy −VVTΣyy

)
Σ−1

yyΣT
xyUN + Vskew(VTΣT

xyUN)

]
=

[
0dx×p
0dy×p

]
.

By using similar reasoning as in (Absil et al., 2008, Subsection 4.8.2),

(Idx −UUTΣxx)Σ−1
xxΣxyVN,

belongs to the orthogonal compliment of the column space of U (with respect to the matrix
Σxx), and Uskew(UTΣxyVN) belongs to the column space of U. The same is true for
(Idy −VVTΣyy)Σ−1

yyΣT
xyUN and Vskew(VTΣT

xyUN) with respect to V and Σyy. Thus,
we get that the gradient vanishes if and only if the aforementioned four factors vanish.

From
(
Idx −UUTΣxx

)
Σ−1

xxΣxyVN = 0dx×p we get Σ−1
xxΣxyV = U

(
UTΣxyV

)
, since

N is an invertible matrix. Also, since U ∈ StΣxx(p, dx) it is a full (column) rank matrix
then Uskew(UTΣxyVN) vanishes if and only if skew(UTΣxyVN) vanishes, which leads
to
(
UTΣxyV

)
N = N

(
UTΣxyV

)
. This implies that UTΣxyV is diagonal because any

rectangular matrix that commutes with a diagonal matrix with distinct entries is diagonal.
Thus, we have

Σ−1
xxΣxyV = UD , (11)

where D = UTΣxyV is diagonal. Similarly, we have

Σ−1
yyΣT

xyU = VD , (12)

where D = VTΣT
xyU = UTΣxyV is diagonal. From Eq. (11) and Eq. (12) we get

RΣ
1/2
yyV = Σ

1/2
xxUD, RTΣ

1/2
xxU = Σ

1/2
yyVD.

This implies that the columns of (Ũ, Ṽ) = (Σ
1/2
xxU,Σ

1/2
yyV) are some p left and right singular

vectors of R not necessarily on the same phase, but corresponding to the same singular
values.

Finally, to identify the optimal solutions, note that at the critical points the objective
function is the sum of the canonical correlations multiplied by a diagonal element of N, and
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a sign corresponding to the canonical correlation vectors in the columns of U and V and the
correspondence of their phase. Thus, the optimal solutions that minimize fCCA(Z) on Sxy

are Z = (U,V) ∈ Sxy such that the columns of U and V correspond to the top p-canonical
correlations on the same phase. Otherwise, we can increase the value of the objective func-
tion either by flipping the sign of one of the vectors or by replacing a canonical vector with
another that corresponds to a smaller canonical correlation. Moreover, if we assume that
σ1 > σ2 > ... > σp+1 ≥ 0, then for the aforementioned Z = (U,V) ∈ Sxy, the columns of
(Ũ, Ṽ) belong each to a one dimensional singular left and right space and so do the columns
of the corresponding (U,V), i.e., unique solution up the the signs of the columns of (U,V).
In the case where some σi = σj for 1 ≤ i, j ≤ p, permutations of the columns of U and V
associated with σi keep the solution optimal making it non-unique.

B.2 Proof of Theorem 6

Proof To prove the asymptotic stability of Z = (U,V) that minimize fCCA(Z) on Sxy,
we use (Absil et al., 2008, Proposition 4.4.2). Recall from Theorem 5 that Z that solve
Problem (3) are unique up the the signs of the columns of U and V, making these points
isolated global (and consequently local) minimizers of fCCA(Z) on Sxy. According to (Absil
et al., 2008, Proposition 4.4.2), such points Z are asymptotically stable.

Suppose Z is a critical point of fCCA(Z) on Sxy which is not a local minimum. Then,
there exists compact neighborhoods with either no other critical points, if there are no mul-
tiplicities of the canonical correlations, or where all other critical point achieve the same
value for the cost function, if there are multiplicities. Thus, according to (Absil et al., 2008,
Proposition 4.4.1), such Z are unstable.

B.3 Proof of Theorem 9

Proof In order to bound the condition number of the Riemannian Hessian at Z? ∈ Sxy, we
need to bound its maximal and minimal eigenvalues. Thus, to prove the theorem we analyze
the eigenvalues of the Riemannian Hessian at some critical point Z ∈ Sxy (in particular at
Z? ∈ Sxy) using the Courant-Fischer Theorem (also called the minimax principle, see (Kato,
2013, Chapter 1, Section 6.10)) for the compact self-adjoint linear operator HessfCCA(Z)[·] :
TZSxy → TZSxy over the finite dimensional vector space TZSxy:

λk(HessfCCA(Z)) = min
U,dim(U)=k−1

max
0 6=ξZ∈U⊥

R(ξZ), (13)

λk(HessfCCA(Z)) = max
U,dim(U)=k

min
0 6=ξZ∈U

R(ξZ), (14)

where
R(ξZ) :=

gZ(ξZ,HessfCCA(Z)[ξZ])

gZ(ξZ, ξZ)
,

In the above, λk(HessfCCA(Z)) is the kth largest eigenvalue (i.e., eigenvalues are ordered
in a descending order) of HessfCCA(Z), and U is a linear subspace of TZSxy. In particular,
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the maximal and minimal eigenvalues are given by the formulas

λmax(HessfCCA(Z)) = max
0 6=ξZ∈TZSxy

R(ξZ), (15)

λmin(HessfCCA(Z)) = min
0 6=ξZ∈TZSxy

R(ξZ). (16)

We begin by simplifying the quotient R(ξZ). Recall that any critical point of fCCA

is a matrix Z = (U,V) ∈ Sxy such that the columns of (Ũ, Ṽ) = (Σ
1/2
xxU,Σ

1/2
yyV) are

p left and right singular vectors (not necessarily on the same phase) of the matrix R :=

Σ
−1/2
xx ΣxyΣ

−1/2
yy (see Theorem 5). Let α1, . . . , αp be some singular values of the matrix R, and

let ũ1, . . . , ũp, ṽ1, . . . , ṽp be the corresponding left and right singular vectors (not necessarily
on the same phase). Writing ũ1, . . . , ũp as the columns of Ũ and and ṽ1, . . . , ṽp as the

columns of Ṽ, and defining U = Σ
− 1

2
xx Ũ,V = Σ

− 1
2

xx Ṽ, the following two equations hold:

ΣxyV = ΣxxUA (17)

ΣT
xyU = ΣyyVA (18)

where A := diag (β1, . . . , βp) such that |βi| = αi for i = 1, ..., p. Letting Z = (U,V) ∈ Sxy,
plugging in the ambient coordinates formula for the Riemannian Hessian (Eq. (5)), the
Riemannian gradient nullifies (see Theorem 5) and we have

HessfCCA(Z)[ξZ] = ΠZ(M−1
Z [−Σ∇2fCCA

ξZN + Σ

[
ξUUTΣxyVN
ξVVTΣT

xyUN

]
+ Σ

[
ξUUT

ξVVT

]
MZgradfCCA(Z)]) = ΠZ

(
M−1

Z

[
−Σ∇2fCCA

ξZ + ΣξZA
]
N
)
. (19)

Plugging in the formula for the Riemannian Hessian at a critical point (Eq. (19)), the
quotient R(ξZ) is reduced to to

R(ξZ) =
Tr
(
ξTZ MZΠZ

(
M−1

Z

[
−Σ∇2fCCA

ξZ + ΣξZA
]
N
))

Tr
(
ξTZ MZξZ

) .

Now, using the fact that the projection to the tangent space is self-adjoint with respect to
the Riemannian metric and that for any ξZ ∈ TZSxy we have ΠZ (ξZ) = ξZ, we further see
that

Tr
(
ξTZ MZΠZ

(
M−1

Z

[
−Σ∇2fCCA

ξZ + ΣξZA
]
N
))

Tr
(
ξTZ MZξZ

) =
Tr
(
ξTZ
(
−Σ∇2fCCA

ξZ + ΣξZA
)
N
)

Tr
(
ξTZ MZξZ

) .

Obviously, we can also write

Tr
(
ξTZ
(
−Σ∇2fCCA

ξZ + ΣξZA
)
N
)

Tr
(
ξTZ MZξZ

)
=

Tr
(
ξTZ
(
−Σ∇2fCCA

ξZ + ΣξZA
)
N
)

Tr
(
ξTZ ΣξZ

) ·
Tr
(
ξTZ ΣξZ

)
Tr
(
ξTZ MZξZ

) . (20)
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Using Eq. (20), a simplified form of the quotient R(ξZ), we can estimate upper and lower
bounds on R(ξZ) where 0 6= ξZ ∈ TZSxy in order to bound the condition number of the
Riemannian Hessian at Z? ∈ Sxy. Since for ξZ 6= 0 the term Tr

(
ξTZ ΣξZ

)
/Tr

(
ξTZ MZξZ

)
>

0, then the upper and lower bounds on

Tr
(
ξTZ
(
−Σ∇2fCCA

ξZ + ΣξZA
)
N
)

Tr
(
ξTZ ΣξZ

) , (21)

together with the upper and lower bounds of Tr
(
ξTZ ΣξZ

)
/Tr

(
ξTZ MZξZ

)
> 0 bound the

condition number of the Riemannian Hessian at Z? ∈ Sxy.
We begin by estimating the term Tr

(
ξTZ ΣξZ

)
/Tr

(
ξTZ MZξZ

)
> 0. We use the vector-

ization operator, and the Kronecker product to rewrite it in the following form

Tr
(
ξTZ ΣξZ

)
Tr
(
ξTZ MZξZ

) =
vec (ξZ)T (Ip ⊗ Σ) vec (ξZ)

vec (ξZ)T (Ip ⊗MZ) vec (ξZ)
. (22)

Eq. (22) is the generalized Rayleigh quotient for the matrix pencil (Ip ⊗ Σ, Ip ⊗MZ).
Note that Ip ⊗ Σ and Ip ⊗ MZ are both SPD matrices, thus the generalized eigenval-
ues of the matrix pencil (Ip ⊗ Σ, Ip ⊗MZ) are equivalent to the eigenvalues of the matrix
(Ip ⊗MZ)−1 (Ip ⊗ Σ) = Ip ⊗M−1

Z Σ. According to (Minka, 2000, Section 2) the eigenvalues
Ip⊗M−1

Z Σ are p copies of each of the eigenvalues of M−1
Z Σ. Thus, the maximal and minimal

eigenvalues of the matrix pencil (Ip ⊗ Σ, Ip ⊗MZ) denoted by λ̃max and λ̃min are equivalent
to the maximal and minimal generalized eigenvalues of the matrix pencil (Σ,MZ), and so
is the corresponding condition number

κ (Ip ⊗ Σ, Ip ⊗MZ) =
λ̃max

λ̃min

= κ (Σ,MZ) .

Recall the definition of the generalized eigenvalues. The generalized eigenvalues of the
matrix pencil (A,B), where A ∈ Rd×d and B ∈ Rd×d is a symmetric positive semi-definite
matrix such that ker(B) ⊆ ker(A), are defined as follows: if for λ ∈ R and v /∈ ker(B) it holds
that Av = λBv then λ is a generalized eigenvalue and v is a generalized eigenvector of the
matrix pencil (A,B). The generalized eigenvalues are denoted by λ1(A,B) ≥ λ2(A,B) ≥
· · · ≥ λrank(B)(A,B). Therefore, using the Courant-Fischer Theorem for the matrix pencil
(Ip ⊗ Σ, Ip ⊗MZ) we have

λ̃max := λmax(Ip ⊗ Σ, Ip ⊗MZ)

= max
06=ξZ∈Rd×p

vec (ξZ)T (Ip ⊗ Σ) vec (ξZ)

vec (ξZ)T (Ip ⊗MZ) vec (ξZ)

≥ max
06=ξZ∈TZSxy

vec (ξZ)T (Ip ⊗ Σ) vec (ξZ)

vec (ξZ)T (Ip ⊗MZ) vec (ξZ)

= max
06=ξZ∈TZSxy

Tr
(
ξTZ ΣξZ

)
Tr
(
ξTZ MZξZ

)
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and

λ̃min := λmin(Ip ⊗ Σ, Ip ⊗MZ)

= min
06=ξZ∈Rd×p

vec (ξZ)T (Ip ⊗ Σ) vec (ξZ)

vec (ξZ)T (Ip ⊗MZ) vec (ξZ)

≤ min
06=ξZ∈TZSxy

vec (ξZ)T (Ip ⊗ Σ) vec (ξZ)

vec (ξZ)T (Ip ⊗MZ) vec (ξZ)

= min
06=ξZ∈TZSxy

Tr
(
ξTZ ΣξZ

)
Tr
(
ξTZ MZξZ

)
Next, we analyze Eq. (21). Recall that ξZ = (ξU, ξV) ∈ TZSxy where we have ξU ∈

TUStΣxx(p, dx) and ξV ∈ TVStΣyy(p, dy), thus we can rewrite the tangent vectors in the
following form:

ξU = UΩU + UΣxx⊥KU, ξV = VΩV + VΣyy⊥KV,

where UΣxx⊥ is Σxx-orthogonal to U so that the union of the columns of U and UΣxx⊥ is a
basis to Rdx , and similarly VΣyy⊥ is Σyy-orthogonal to V so that the union of the columns of
V and VΣyy⊥ is a basis to Rdy , ΩU = −ΩT

U ∈ Rp×p, ΩV = −ΩT
V ∈ Rp×p, KU ∈ R(dx−p)×p

and KV ∈ R(dy−p)×p. Note that we can always make the choice of the columns of UΣxx⊥

and VΣyy⊥ to be such that (Σ
1/2
xxUΣxx⊥,Σ

1/2
yyVΣyy⊥) are some min {dx − p, dy − p} left and

right singular vectors not necessarily on the same phase of the matrix R belonging to the
same singular values. Without loss of generality suppose dx ≥ dy. With this choice we have

ΣxyVΣyy⊥ = ΣxxUΣxx⊥Ã, ΣT
xyUΣxx⊥ = ΣyyVΣyy⊥Ã

T
,

and

UT
Σxx⊥ΣxyVΣyy⊥ = Ã ∈ R(dx−p)×(dy−p), VT

Σyy⊥ΣT
xyUΣxx⊥ = Ã

T ∈ R(dy−p)×(dx−p),

where Ã is a diagonal matrix (but not necessarily a square matrix), with the corresponding
values on the diagonal βp+1, ..., βdy , which satisfy |βi| = αi for i = p+ 1, ..., dy.

Now,

ξTZ ΣξZ =
[

ΩT
U ΩT

V

] [ ΩU

ΩV

]
+
[

KT
U KT

V

] [ KU

KV

]
and

ξTZ Σ∇2fCCA
ξZ =

[
ΩT

U ΩT
V

] [ A
A

] [
ΩU

ΩV

]
+
[

KT
U KT

V

] [ Ã

Ã
T

] [
KU

KV

]
.

Let

mZ := vec

([
ΩU

ΩV

])
, kZ := vec

([
KU

KV

])
Then,

Tr
(
ξTZ ΣξZ

)
= mT

ZmZ + kT
ZkZ,
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Tr

(
−
[

ΩT
U ΩT

V

] [ A
A

] [
ΩU

ΩV

]
N +

[
ΩT

U ΩT
V

] [ ΩU

ΩV

]
AN

)
=

mT
Z

(
AN ⊗ I2p − N ⊗

[
A

A

])
mZ

Tr

(
−
[

KT
U KT

V

] [ Ã

Ã
T

] [
KU

KV

]
N +

[
KT

U KT
V

] [ KU

KV

]
AN

)
=

kT
Z

(
AN ⊗ I2p − N ⊗

[
Ã

Ã
T

])
kZ

thus,

Tr
(
ξTZ
(
−Σ∇2fCCA

ξZ + ΣξZA
)
N
)

Tr (ξTZ ΣξZ)

=

mT
Z

(
AN ⊗ I2p − N ⊗

[
A

A

])
mZ + kT

Z

(
AN ⊗ I2p − N ⊗

[
Ã

Ã
T

])
kZ

mT
ZmZ + kT

ZkZ
.

Recalling that ΩU = −ΩT
U and ΩV = −ΩT

V, and both are real matrices (so the elements
of the main diagonals are 0), we have

mT
ZmZ = 2

 ∑
1≤j<i≤p

(ΩU)2
ij +

∑
1≤j<i≤p

(ΩV)2
ij

 , (23)

and

mT
Z

(
AN⊗ I2p −N⊗

[
A

A

])
mZ

=
∑

1≤j<i≤p

[
(µiβi + µjβj)

(
(ΩU)2

ij + (ΩV)2
ij

)
− 2 (βiµj + βjµi) (ΩU)ij (ΩV)ij

]
. (24)

Thus, only the p(p−1)/2 entries below the diagonal of ΩU and the p(p−1)/2 entries below
the diagonal of ΩV determine the values of Eq. (23) and Eq. (24). Let us now denote by
m̃Z the column stack of (ΩU,ΩV), but only with the the subdiagonal entries of ΩU and of
ΩV (i.e., mZ “purged” of the superdiagonal elements). We then have,

mT
ZmZ = 2m̃T

Zm̃Z

and

mT
Z

(
AN⊗ I2p −N⊗

[
A

A

])
mZ = m̃T

ZΨm̃Z

where Ψ ∈ Rp(p−1)×p(p−1) is a matrix defined as follows: Ψ is a block diagonal matrix, where
the blocks are of descending order: 2 (p− 1) , 2 (p− 2) , ..., 2 = 2. The jth (1 ≤ j ≤ p − 1)
block, denoted by Ψj , is of the order 2 (p− j) and has following form:

Ψj :=

[
Dj −Tj

−Tj Dj

]
,
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where
Dj = diag (µj+1βj+1 + µjβj , µj+2βj+2 + µjβj , ..., µpβp + µjβj) ,

and
Tj = diag (βj+1µj + βjµj+1, βj+2µj + βjµj+2, ..., βpµj + βjµp) .

We make the following change of variables: d̃Z :=
√

2m̃Z. Finally, Eq. (21) is rewritten in
the following way

Tr
(
ξTZ
(
−Σ∇2fCCA

ξZ + ΣξZA
)
N
)

Tr
(
ξTZ ΣξZ

) =

[
d̃T

Z kT
Z

]
blkdiag

(
1
2Ψ,AN⊗ Id−2p −N⊗

[
Ã

Ã
T

])[
d̃Z

kZ

]
[

d̃T
Z kT

Z

] [ d̃Z

kZ

] . (25)

Note that the mapping ϕ(·) : TZSxy → Rpd−p(p+1) defined by

ϕ(ξZ) :=

[
d̃Z

kZ

]
,

is a coordinate chart of the elements of TZSxy, since ϕ(·) is a bijection (one-to-one cor-
respondence) of the elements of TZSxy onto Rpd−p(p+1). Indeed, kZ is a column stack of
(KU,KV), thus we can retract the matrices KU and KV. Similarly d̃Z is proportional to
m̃Z which is a column stack of (ΩU,ΩV), but only with the the subdiagonal entries of ΩU

and of ΩV. Since ΩU and ΩV are skew-symmetric matrices, we can retract ΩU and ΩV.
With the matrices KU,KV,ΩU and ΩV at hand, we can fully retract ξZ = (ξU, ξV).

The eigenvalues and corresponding eigenvectors of any linear operator over a finite di-
mensional vector space do not depend on the choice of coordinate chart and basis, thus
the eigenvalues and eigenvectors of HessfCCA(Z)[·] : TZSxy → TZSxy which are computed
using the Courant-Fischer Theorem for compact self-adjoint linear operators (Eq. (13) and
Eq. (14)), can be also computed by the Courant-Fischer Theorem for symmetric matrices
(Horn and Johnson, 2012, Theorem 4.2.6) after applying ϕ(·). In particular, Eq. (25) deter-
mines the signs of the eigenvalues of the Riemannian Hessian at any Z ∈ Sxy (in the special
case MZ := Σ, the eigenvalues of Eq. (26) are the eigenvalues of the Riemannian Hessian
at a critical point Z ∈ Sxy), and the bounds of Eq. (25) together with the bounds of the
term Tr

(
ξTZ ΣξZ

)
/Tr

(
ξTZ MZξZ

)
bound the condition number of the Riemannian Hessian

at Z? ∈ Sxy.
To that end, we perform the following computation. The righthand side of Eq. (25) is

a Rayleigh quotient, so according to the Courant-Fischer Theorem for symmetric matrices
the eigenvalues of the pd− p(p+ 1)× pd− p(p+ 1) symmetric matrix

blkdiag

(
1

2
Ψ,AN⊗ Id−2p −N⊗

[
Ã

Ã
T

])
, (26)
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are determined by critical values of Eq. (25). The set of eigenvalues of the matrix in Eq. (26)
is equal to the union of the set of eigenvalues of 1

2Ψ and

Φ := AN⊗ Id−2p −N⊗

[
Ã

Ã
T

]
.

The matrix Φ is a p(d−2p)×p(d−2p) block diagonal matrix, where all the blocks are p×p,
and the jth block is

µjβjId−2p − µj

[
Ã

Ã
T

]
.

Thus, the eigenvalues of Φ are µj (βj ± βi) and µjβj for j = 1, ..., p and i = p + 1, ..., dy.
In summary, we have p(dy − p) eigenvalues of the form µj (βj + βi), similarly p(dy − p)
eigenvalues of the form µj (βj − βi), and p(dx − dy) eigenvalues of the form µjβj . From
the definition of Ψ, we see that the eigenvalues of 1

2Ψ are: 1
2 [(µiβi + µjβj)± (βiµj + βjµi)]

for 1 ≤ j < i ≤ p. These eigenvalues can also be rewritten as: 1
2 (µj + µi) (βj + βi) and

1
2 (µj − µi) (βj − βi).

Now, we have all the eigenvalues of the matrix in Eq. (26): p(dy − p) eigenvalues of
the form µj (βj + βi) where j = 1, ..., p and i = p + 1, ..., dy, p(dy − p) eigenvalues of
the form µj (βj − βi) where j = 1, ..., p and i = p + 1, ..., dy, p(dx − dy) eigenvalues of
the form µjβj where j = 1, ..., p, p(p − 1)/2 eigenvalues of the form 1

2 (µj + µi) (βj + βi)
where 1 ≤ j < i ≤ p, and p(p − 1)/2 eigenvalues of the form 1

2 (µj − µi) (βj − βi) where
1 ≤ j < i ≤ p.

Finally, we bound the condition number of the Riemannian Hessian at Z? = (U?,V?) ∈
Sxy. In such case, β1 = σ1 > ... > βp = σp. Without loss of generality, we can always choose
UΣxx⊥ and VΣyy⊥ such that βp+1 = σp+1 ≥ ... ≥ βdy = σdy . Then, we have that Eq. (21)
is bounded by the minimal and maximal eigenvalues of Eq. (26). Thus,

0 < max
06=ξZ?∈TZ?Sxy

Tr
(
ξTZ?

(
−Σ∇2fCCA

ξZ? + ΣξZ?A
)
N
)

Tr
(
ξTZ?ΣξZ?

) =

max

{
µ1(σ1 + σp+1),

1

2
(µ1 + µ2)(σ1 + σ2)

}
,

and

min
06=ξZ?∈TZ?Sxy

Tr
(
ξTZ?

(
−Σ∇2fCCA

ξZ? + ΣξZ?A
)
N
)

Tr
(
ξTZ?ΣξZ?

) =

min

{
µp(σp − σp+1), min

1≤j<i≤p

1

2
(µj − µi) (σj − σi)

}
> 0.

We use Eq. (15) and Eq. (16) to bound the condition number of the Riemannian Hessian at
Z? = (U?,V?) ∈ Sxy:

λmax(HessfCCA(Z?)) = max
06=ξZ?∈TZ?Sxy

gZ?(ξZ? ,HessfCCA(Z?)[ξZ? ])

gZ?(ξZ? , ξZ?)

≤ max

{
µ1(σ1 + σp+1),

1

2
(µ1 + µ2)(σ1 + σ2)

}
· λ̃max ,
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and

λmin(HessfCCA(Z?)) = min
0 6=ξZ?∈TZ?Sxy

gZ?(ξZ? ,HessfCCA(Z?)[ξZ? ])

gZ?(ξZ? , ξZ?)

≥ min

{
µp(σp − σp+1), min

1≤j<p

1

2
(µj − µj+1) (σj − σj+1)

}
· λ̃min .

Finally,

κ(HessfCCA(Z?)) =
λmax(HessfCCA(Z?))

λmin(HessfCCA(Z?))
≤ κ?CCA · κ (Σ,MZ) ,

where

κ?CCA =
max

{
µ1(σ1 + σp+1), 1

2(µ1 + µ2)(σ1 + σ2)
}

min
{
µp(σp − σp+1),min1≤j<p

1
2 (µj − µj+1) (σj − σj+1)

} .
In the special case MZ? = Σ, the bound on the condition number of the Riemannian Hessian
at Z? = (U?,V?) ∈ Sxy is reduced to an equality

κ(HessfCCA(Z?)) = κ?CCA.

B.4 Proof of Theorem 8

Proof We prove that the global minimizer of fCCA(Z) subject to Z ∈ Sxy, denoted by Z?,
is the only local minimum of fCCA(Z) (and it is also strict) and all other critical points are
either saddle points or strict local maximizers.

Eq. (20) helps to determine the signs of the eigenvalues of the Riemannian Hessian
at any critical point Z ∈ Sxy and in particular at Z?: the matrices Σ and MZ are both
SPD matrices, therefore for ξZ 6= 0 the term Tr

(
ξTZ ΣξZ

)
/Tr

(
ξTZ MZξZ

)
> 0, thus only

Eq. (21), where 0 6= ξZ ∈ TZSxy determines the signs. In addition, at a critical point
Z ∈ Sxy, Eq. (21) equals to the quotient R(ξZ) for the choice MZ := Σ, since in (Absil
et al., 2008, Proposition 5.5.6 and Eq. 5.35) it is shown that at a critical point the term
gZ(ξZ,HessfCCA(Z)[ξZ]), which is the numerator of R(ξZ), does not depend on the choice of
Riemannian metric. Thus, the optimal values of Eq. (21) satisfying Eq. (13) or Eq. (14) are
the eigenvalues of the Riemannian Hessian at Z ∈ Sxy with the choice MZ := Σ. Obviously,
classification of the critical points does not depend on the Riemannian metric. Therefore, we
can classify the critical points using the signs of the eigenvalues of the Riemannian Hessian
at any critical point Z ∈ Sxy with the choice MZ := Σ.

Recall from the proof of Theorem 9 that in the special case MZ :== Σ, the eigenvalues
of Eq. (26) are also the eigenvalues of the Riemannian Hessian at a critical point Z ∈ Sxy.
The eigenvalues are: p(dy − p) eigenvalues of the form µj (βj + βi) where j = 1, ..., p and
i = p + 1, ..., dy, p(dy − p) eigenvalues of the form µj (βj − βi) where j = 1, ..., p and
i = p + 1, ..., dy, p(dx − dy) eigenvalues of the form µjβj where j = 1, ..., p, p(p − 1)/2
eigenvalues of the form 1

2 (µj + µi) (βj + βi) where 1 ≤ j < i ≤ p, and p(p−1)/2 eigenvalues
of the form 1

2 (µj − µi) (βj − βi) where 1 ≤ j < i ≤ p. µi > 0 for i = 1, ..., p, and µj−µi > 0
for j < i. Also |βi| = αi for i = 1, ..., dy. Thus, the signs of the eigenvalues of the matrix in
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Eq. (26) are only determined by βj , βj + βi and βj − βi, where βj are up to their sign the
p singular values of the matrix R := Σ

−1/2
xx ΣxyΣ

−1/2
yy corresponding to left and right singular

vectors which are the columns of (Ũ, Ṽ) = (Σ
1/2
xxU,Σ

1/2
yyV). In particular, for an optimal

Z? = (U?,V?) ∈ Sxy such that the columns of (Ũ, Ṽ) = (Σ
1/2
xxU?,Σ

1/2
yyV?) are ordered left

and right p-dominant singular vectors of the matrix R on the same phase, then we have that
β1 = σ1 > ... > βp = σp. We conclude that βi such that i = p + 1, ..., dy satisfies |βi| = σi,
which leads to βj > 0, βj + βi > 0 and βj − βi > 0 where j = 1, ..., p and i = p+ 1, ..., dy or
1 ≤ j < i ≤ p. Therefore, in this case all the eigenvalues of the matrix Eq. (26) are strictly
positive, the matrix Eq. (26) is SPD, and consequently the eigenvalues of the Riemannian
Hessian at Z? ∈ Sxy are all strictly positive. This proves that Z? is a strict local minimum
of fCCA(Z) on Sxy, see (Boumal, 2022, Proposition 6.5.).

If we prove that Z? is the only local minimum (up to the signs of the columns of U? and
V?), then Z? is the only asymptotically stable critical point following Theorem 6. In order
to prove it we further assume that for all i = 1, ..., q the values σi are distinct, then we can
conclude the following. Suppose Z = (U,V) is any other critical point differs from Z? at
the optimal value, i.e., such that the columns of (Ũ, Ṽ) = (Σ

1/2
xxU,Σ

1/2
yyV) are left and right

singular vectors corresponding to some p singular values of the matrix R not necessarily on
the same phase, so that Eq. (17) and Eq. (18) hold, and there exists at least one 1 ≤ j ≤ p
for which βj 6= σj . We consider the different cases:

1. Suppose β1, . . . , βp are not ordered in any particular order (possible for p ≥ 3), then
there exists j such that βj is larger than some βk and smaller than βm where j < k,m ≤
p, then βj − βk > 0 and βj − βm < 0. In this case there are both strictly positive and
strictly negative eigenvalues of the Riemannian Hessian at Z for the choice MZ := Σ,
therefore, Z is a saddle point.

2. Suppose β1, . . . , βp are ordered in a descending order. Since Z is not an optimal
solution of Problem (3), then there exists at least one 1 ≤ j ≤ p for which βj 6= σj .
Thus, on the one hand βj − βi > 0 where 1 ≤ j < i ≤ p, but on the other hand
there exists at least one pair of indexes j = 1, ..., p and i = p + 1, ..., dy such that
βj +βi < 0 or βj−βi < 0, otherwise, it contradicts the assumption that there exists at
least one 1 ≤ j ≤ p for which βj 6= σj . In this case there are both strictly positive and
strictly negative eigenvalues of the Riemannian Hessian at Z for the choice MZ := Σ,
therefore, Z is a saddle point.

3. Suppose β1, . . . , βp are ordered in an ascending order. Then, βj − βi < 0 where
1 ≤ j < i ≤ p. Now, we consider two sub-cases:

(a) There exists at least one 1 ≤ j ≤ p for which βj 6= −σj . Then, there exists at
least one pair of indexes j = 1, ..., p and i = p + 1, ..., dy such that βj + βi > 0
or βj − βi > 0, otherwise it contradicts the assumption that there exists at least
one 1 ≤ j ≤ p for which βj 6= −σj . In this case there are both strictly positive
and strictly negative eigenvalues of the Riemannian Hessian at Z for the choice
MZ :== Σ, therefore, Z is a saddle point.

(b) Consider the case β1 = −σ1 < ... < βp = −σp. Then, βj < 0, βj + βi < 0 and
βj − βi < 0 where j = 1, ..., p and i = p+ 1, ..., dy or 1 ≤ j < i ≤ p. Therefore, in
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this case all the eigenvalues of the Riemannian Hessian at Z are strictly negative
for the choice MZ := Σ, therefore, Z is a strict local maximizer. Since it is the
only local maximizer up to the signs of the columns of U and V, and it is also a
global maximizer, it is the unique maximizer.

In all cases, Z is not a local minimizer. Thus, Z? is the only local minimum (up to the signs
of the columns of U? and V?). According to Theorem 6 all the other critical points are
unstable.

B.5 Proof of Corollary 11

Proof The condition number bound follows from Lemma 2 and Theorem 9 with one
additional argument. From Lemma 2 we know that with probability of at least 1−δ we have
that all the generalized eigenvalues of the pencil (Σxx,M

(xx)) are contained in the interval
[1/2, 3/2], and the same is true for the pencil (Σyy,M

(yy)). Recall that all the generalized
eigenvalues of the pencil (Σxx,M

(xx)) are also generalized eigenvalues of the pencil (Σ,M),
and the same is true for the generalized eigenvalues of (Σyy,M

(yy)). Indeed, after an
appropriate padding with zeros each generalized eigenvector of (Σxx,M

(xx)) or (Σyy,M
(yy))

is also a generalized eigenvector of (Σ,M). Thus, since (Σxx,M
(xx)) and (Σyy,M

(yy)) have
dx and dy generalized eigenvalues and corresponding eigenvectors, they characterize all the
generalized eigenvalues and corresponding eigenvectors of (Σ,M). Thus, also the eigenvalues
of the pencil (Σ,M) are contained in the interval [1/2, 3/2], and subsequently κ (Σ,M) ≤ 3.
Using Theorem 9 we get the require bound for the condition number.

The costs are evident from Table 2, once we observe that none of the operations re-
quire forming Σxx,Σyy or Σxy, but instead require taking product of these matrices with
vectors. These products can be computed in cost proportional to the number of non-zeros
in X and/or Y by iterated products. In addition, we use the fact that SX and SY can
be computed in O(nnz (X)) = O(ndx) and O(nnz (Y)) = O(ndy) operations. The re-
quired preprocessing is to factorize M(xx) and M(yy), so we can efficiently take products

with
(
M(xx)

)−1
and

(
M(yy)

)−1
, which can be done in O(sd2 + d2) as explained in Sec-

tion 3. Assuming a bounded number of line-search steps in each iteration of Riemannian
CG, each iteration requires a bounded number of computations of each of the following:
objective function evaluation costs O (p (nnz (X) + nnz (Y))) = O (pnd), retraction costs
O
(
p (nnz (X) + nnz (Y)) + dp2

)
, vector transport and Riemannian gradient computation

take O
(
p (nnz (X) + nnz (Y)) + dp2 + d2p

)
.

Appendix C. Omitted Proofs From Section 5

In this section we give omitted proofs from Section 5.
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C.1 Proof of Theorem 14

Proof Recall that the critical points are defined to be the points where the Riemannian
gradient is zero, and as such, whether a point is a critical point or not does not depend on
the choice of Riemannian metric (see Absil et al., 2008, Eq. 3.31). Thus, for the sake of
identifying the critical points, we can assume that MW := Sw + λId and use a simplified
form for the Riemannian gradient:

gradfFDA(W) = ΠW

(
(Sw + λId)

−1∇f̄FDA(W)
)

= −ΠW

(
(Sw + λId)

−1SBWN
)

= −
[
(Sw + λId)

−1SBWN−Wsym
(
WTSBWN

)]
= −

[(
Id −WWT(Sw + λId)

)
(Sw + λId)

−1SBWN

+ Wskew
(
WTSBWN

)]
.

Let α1, . . . , αp be some generalized eigenvalues of the matrix pencil (SB,Sw + λId), and let
w1, ...,wp be the corresponding generalized eigenvectors (making them some p FDA weight
vectors). Writing w1, ...,wp as the columns of W, the following equation holds:

SBW = (Sw + λId)WA

where A = diag (α1, . . . , αp). Letting W ∈ St(Sw+λId)(p, d), we have

gradfFDA(W) = −
[
(Sw + λId)

−1SBWN−Wsym
(
WTSBWN

)]
= − [WAN−Wsym (AN)] = 0d×p.

To show the other side, note that if the Riemannian gradient nullifies, then[(
Id −WWT(Sw + λId)

)
(Sw + λId)

−1SBWN + Wskew
(
WTSBWN

)]
= 0d×p .

By using similar reasoning as in (Absil et al., 2008, Subsection 4.8.2),(
Id −WWT(Sw + λId)

)
(Sw + λId)

−1SBWN,

belongs to the orthogonal compliment of the column space of W (with respect to the matrix
(Sw + λId)), and Wskew

(
WTSBWN

)
belongs to the column space of W. Thus, we get

that the gradient vanishes if and only if the following two formulas hold:(
Id −WWT(Sw + λId)

)
(Sw + λId)

−1SBWN = 0d×p , (27)

and
Wskew

(
WTSBWN

)
= 0d×p . (28)

From Eq. (27) we get
(Sw + λId)

−1SBW = W
(
WTSBW

)
,

since N is an invertible matrix. Also, since W ∈ St(Sw+λId)(p, d) it is a full (column) rank
matrix then Eq. (28) vanishes if and only if

skew
(
WTSBWN

)
= 0p ,
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which leads to
(
WTSBW

)
N = N

(
WTSBW

)
. This implies that

(
WTSBW

)
is diagonal

because any rectangle matrix that commutes with a diagonal matrix with distinct entries is
diagonal. Finally we get

(Sw + λId)
−1SBW = WD ,

where D = WTSBW is a diagonal matrix. This implies that the columns of W correspond
to some p generalized eigenvectors the matrix pencil (SB,Sw + λId), thus, making the
columns some p FDA weight vectors.

Finally, to identify the optimal solutions, note that at the critical points the objective
function is a sum of the generalized eigenvalues corresponding to the columns of W multi-
plied by a diagonal element of N. Thus, the optimal solutions that minimize fFDA(W) on
St(Sw+λId)(p, d) are W ∈ St(Sw+λId)(p, d) such that the columns correspond to the p lead-
ing FDA weight vectors. Otherwise, we can increase the value of the objective function by
replacing a weight vector with another that corresponds to a smaller generalized eigenvalue.
Moreover, if we assume that ρ1 > ρ2 > ... > ρp+1 ≥ 0, then for the aforementioned W, the
columns belong each to a one dimensional generalized eigenspace, i.e., unique solution up
the the signs of the columns. In the case where some ρi = ρj for 1 ≤ i, j ≤ p, permutations
of the columns of W associated with ρi keep the solution optimal making it non-unique.

C.2 Proof of Theorem 15

Proof To prove the asymptotic stability of a W ∈ St(Sw+λId)(p, d) such that the columns
are the p leading FDA weight vectors we use (Absil et al., 2008, Proposition 4.4.2). Recall
from Theorem 14 that W that solve Problem (8) are unique up the the signs of the columns
of W, making these points isolated global (and consequently local) minimizers of fFDA on
St(Sw+λId)(p, d). According to (Absil et al., 2008, Proposition 4.4.2), such points W are
asymptotically stable.

Suppose W is a critical point of fFDA(W) on St(Sw+λId)(p, d) which is not a local mini-
mum. Then, there exists compact neighborhoods with either no other critical points, if there
are no multiplicities of the generalized eigenspaces, or where all other critical point achieve
the same value for the cost function, if there are multiplicities of the generalized eigenspaces.
Thus, according to (Absil et al., 2008, Proposition 4.4.1), such W are unstable.

C.3 Proof of Theorem 18

Proof The proof is similar to the proof of Theorem 9. In order to bound the condition
number of the Riemannian Hessian at W?, we need to bound its maximal and minimal
eigenvalues. Thus, to prove the theorem we analyze the eigenvalues of the Riemannian
Hessian at some critical point W ∈ St(Sw+λId)(p, d) (in particular at W?) using the Courant-
Fischer Theorem for the compact self-adjoint linear operator

HessfFDA(W)[·] : TWSt(Sw+λId)(p, d)→ TWSt(Sw+λId)(p, d),
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over the finite-dimensional vector space TWSt(Sw+λId)(p, d), see (Kato, 2013, Chapter 1,
Section 6.10):

λk(HessfFDA(W)) = min
U,dim(U)=k−1

max
06=ξW∈U⊥

R(ξW), (29)

λk(HessfFDA(W)) = max
U,dim(U)=k

min
0 6=ξW∈U

R(ξW), (30)

where
R(ξW) :=

gW(ξW,HessfFDA(W)[ξW])

gW(ξW, ξW)
,

λk(HessfFDA(W)) = ρk is the kth largest eigenvalue (descending order) of HessfFDA(W),
and U is a linear subspace of TWSt(Sw+λId)(p, d). In particular, the maximal and minimal
eigenvalues are given by the formulas:

λmax(HessfFDA(W)) = max
0 6=ξW∈TWSt(Sw+λId)(p,d)

R(ξW), (31)

λmin(HessfFDA(W)) = min
0 6=ξW∈TWSt(Sw+λId)(p,d)

R(ξW). (32)

We begin by simplifying the quotient R(ξW). Recall that any critical point of fFDA(·)
is a matrix W ∈ St(Sw+λId)(p, d) such that the columns are some p generalized eigenvectors
of the matrix pencil (SB,Sw + λId) (see Theorem 14). Let α1, . . . , αp be some generalized
eigenvalues of the matrix pencil (SB,Sw + λId), and let w1, ...,wp be the corresponding
generalized eigenvectors. Writing w1, ...,wp as the columns of W, the following equation
holds:

SBW = (Sw + λId)WA

where A = diag (α1, . . . , αp). Letting W ∈ St(Sw+λId)(p, d), plugging in the ambient coor-
dinates formula for the Riemannian Hessian (Eq. (10)), the Riemannian gradient nullifies
(see Theorem 14) and we have

HessfFDA(W)[ξW] = ΠW

(
M−1

W

[
−SBξWN + (Sw + λId)ξW

(
WTSBWN + gradf(W)

)])
= ΠW

(
M−1

W

[
−SBξWN + (Sw + λId)ξW

(
WT(Sw + λId)WAN

)])
= ΠW

(
M−1

W [−SBξW + (Sw + λId)ξWA] N
)
. (33)

Plugging in the formula for the Riemannian Hessian at a critical point (Eq. (33)), the
quotient R(ξW) reduces to

R(ξW) =
Tr
(
ξTWMWΠW

(
M−1

W [−SBξW + (Sw + λId)ξWA] N
))

Tr
(
ξTWMWξW

) .

Now using the fact that the projection to the tangent space is self-adjoint with respect to the
Riemannian metric, and that for any ξW ∈ TWSt(Sw+λId)(p, d) we have ΠW (ξW) = ξW,
we further see that

Tr
(
ξTWMWΠW

(
M−1

W [−SBξW + (Sw + λId)ξWA] N
))

Tr
(
ξTWMWξW

) =

Tr
(
ξTW [−SBξW + (Sw + λId)ξWA] N

)
Tr
(
ξTWMWξW

)
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Obviously, we can also write

Tr
(
ξTW [−SBξW + (Sw + λId)ξWA] N

)
Tr
(
ξTWMWξW

)
=

Tr
(
ξTW [−SBξW + (Sw + λId)ξWA] N

)
Tr
(
ξTW(Sw + λId)ξW

) ·
Tr
(
ξTW(Sw + λId)ξW

)
Tr
(
ξTWMWξW

) . (34)

Using Eq. (34), a simplified form of the quotient R(ξW), we can estimate upper and lower
bounds on R(ξW) where 0 6= ξW ∈ TWSt(Sw+λId)(p, d) in order to bound the condition
number of the Riemannian Hessian at W?. Since for ξW 6= 0 the term

Tr
(
ξTW(Sw + λId)ξW

)
/Tr

(
ξTWMWξW

)
> 0,

the upper and lower bounds on

Tr
(
ξTW [−SBξW + (Sw + λId)ξWA] N

)
Tr
(
ξTW(Sw + λId)ξW

) , (35)

together with the upper and lower bounds of Tr
(
ξTW(Sw + λId)ξW

)
/Tr

(
ξTWMWξW

)
bound

the condition number of the Riemannian Hessian at W?.
We begin by estimating the term Tr

(
ξTW(Sw + λId)ξW

)
/Tr

(
ξTWMWξW

)
. We use the

vectorization operator and the Kronecker Product to rewrite it in the following form

Tr
(
ξTW(Sw + λId)ξW

)
Tr
(
ξTWMWξW

) =
vec (ξW)T (Ip ⊗ (Sw + λId)) vec (ξW)

vec (ξW)T (Ip ⊗MW) vec (ξW)
. (36)

The righthand side of Eq. (36) is the generalized Rayleigh quotient for the matrix pencil

(Ip ⊗ (Sw + λId), Ip ⊗MW) .

Note that Ip⊗ (Sw + λId) and Ip⊗MW are both SPD matrices, thus the eigenvalues of the
matrix pencil

(Ip ⊗ (Sw + λId), Ip ⊗MW)

are equivalent to the eigenvalues of the matrix (Ip ⊗MW)−1 (Ip ⊗ (Sw + λId)) = Ip ⊗
M−1

W(Sw + λId) and all positive. According to (Minka, 2000, Section 2) the eigenvalues
Ip ⊗M−1

W(Sw + λId) are p copies of each of the eigenvalues of M−1
W(Sw + λId). Thus, the

maximal and minimal eigenvalues of the matrix pencil (Ip ⊗ (Sw + λId), Ip ⊗MW) denoted
by λ̃max and λ̃min are equivalent to the maximal and minimal eigenvalues of the matrix
pencil (Sw + λId,MW), and so is the corresponding condition number

κ (Ip ⊗ (Sw + λId) , Ip ⊗MW) =
λ̃max

λ̃min

= κ ((Sw + λId) ,MW) .

Therefore, using the Courant-Fischer Theorem

λ̃max =: λmax(Ip ⊗ (Sw + λId), Ip ⊗MW)

= max
06=ξW∈Rd×p

vec (ξW)T (Ip ⊗ (Sw + λId)) vec (ξW)

vec (ξW)T (Ip ⊗MW) vec (ξW)

≥ max
0 6=ξW∈TWSt(Sw+λId)(p,d)

vec (ξW)T (Ip ⊗ (Sw + λId)) vec (ξW)

vec (ξW)T (Ip ⊗MW) vec (ξW)
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and

λ̃min =: λmin(Ip ⊗ (Sw + λId), Ip ⊗MW)

= min
0 6=ξW∈Rd×p

vec (ξW)T (Ip ⊗ (Sw + λId)) vec (ξW)

vec (ξW)T (Ip ⊗MW) vec (ξW)

≤ min
0 6=ξW∈TWSt(Sw+λId)(p,d)

vec (ξW)T (Ip ⊗ (Sw + λId)) vec (ξW)

vec (ξW)T (Ip ⊗MW) vec (ξW)

Next, we consider Eq. (35). Recall that we can rewrite any tangent vector, ξW ∈
TWSt(Sw+λId)(p, d), in the following form:

ξW = WΩW + W(Sw+λId)⊥KW,

where W(Sw+λId)⊥ is (Sw + λId)-orthogonal to W so that the union of the columns of W

and W(Sw+λId)⊥ is a basis to Rd, and ΩW = −ΩT
W ∈ Rp×p. Note that we can always make

the choice of the columns of W(Sw+λId)⊥ to be some d − p generalized eigenvalues of the
matrix pencil (SB,Sw + λId). With this choice we have

SBW(Sw+λId)⊥ = (Sw + λId)W(Sw+λId)⊥Ã, WT
(Sw+λId)⊥SBW(Sw+λId)⊥ = Ã,

where Ã ∈ R(d−p)×(d−p) is a diagonal matrix with the corresponding generalized eigenvalues
on the diagonal αp+1, ..., αd.

Now, we have
ξTW(Sw + λId)ξW = ΩT

WΩW + KT
WKW

and
ξTWSBξW = ΩT

WAΩW + KT
WÃKW .

Substitute these computations into Eq. (35)

Tr
(
ξTW [−SBξW + (Sw + λId)ξWA] N

)
Tr

(
ξTW(Sw + λId)ξW

) =
Tr

(
−

(
ΩT

WAΩW + KT
WÃKW

)
N +

(
ΩT

WΩW + KT
WKW

)
AN

)
Tr

(
ΩT

WΩW + KT
WKW

)
=

vec (ΩW)T D1vec (ΩW) + vec (KW)T D2vec (KW)

vec (ΩW)T vec (ΩW) + vec (KW)T vec (KW)
,

where
D1 := AN⊗ Ip −N⊗A, D2 := AN⊗ Id−p −N⊗ Ã.

RRecall that ΩW = −ΩT
W ∈ Rp×p, and both are real matrices (so the elements of the

main diagonals are 0), we have

vec (ΩW)T vec (ΩW) = 2
∑
p≥i>j

(ΩW)2
ij (37)

and

vec (ΩW)T (AN⊗ Ip −N⊗A) vec (ΩW) =
∑

1≤j<i≤p
(ΩW)2

ij (µj − µi) (αj − αi) . (38)
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Thus, only the p(p − 1)/2 entries below the diagonal of ΩW determine the values of Eq.
(37) and Eq. (38). Let us now denote by mW the column stack of ΩW, but only with the
the subdiagonal entries of ΩW (i.e., vec (ΩW) purged of the superdiagonal elements). We
then have

vec (ΩW)T vec (ΩW) = 2mT
WmW

and
vec (ΩW)T (AN⊗ Ip −N⊗A) vec (ΩW) = mT

WΨmW

where Ψ ∈ Rp(p−1)/2×p(p−1)/2 is a block diagonal matrix, where the blocks are of descending
order from p− 1, p− 2, ..., 1, and each block is a diagonal matrix as well. The jth (1 ≤ j ≤
p− 1) block, denoted by Ψj , is of the order p− j and has the following form

Ψj = diag ((µj − µj+1) (αj − αj+1) , (µj − µj+2) (αj − αj+2) , ..., (µj − µp) (αj − αp))

Now, we make the following change of variables: dW :=
√

2mW, kW := vec (KW). Finally,
Eq. (35) is rewritten in the following way

Tr
(
ξTW [−SBξW + (Sw + λId)ξWA] N

)
Tr (ξTW(Sw + λId)ξW)

=

[
dT
W kT

W

]
blkdiag

(
1
2
Ψ,AN ⊗ Id−p − N ⊗ Ã

)[ dW

kW

]
[

dT
W kT

W

] [ dW

kW

] . (39)

Note that the mapping ϕ(·) : TWSt(Sw+λId)(p, d)→ Rpd−p(p+1)/2 defined by

ϕ(ξZ) :=

[
dW

kW

]
,

is a coordinate chart of the elements of TWSt(Sw+λId)(p, d), since ϕ(·) is a bijection (one-to-
one correspondence) of the elements of TWSt(Sw+λId)(p, d) onto Rpd−p(p+1)/2. Indeed, kW is
a column stack of KW, thus we can retract the matrices KW. Similarly dW is proportional
to mW which is a column stack of ΩW, but only with the the subdiagonal entries of ΩW.
Since ΩW is a skew-symmetric matrix, we can retract ΩW. With the matrices KW and
ΩW at hand, we can fully retract ξW.

The eigenvalues and corresponding eigenvectors of any linear operator over a finite dimen-
sional vector space do not depend on the choice of coordinate chart and basis, thus the eigen-
values and eigenvectors of HessfFDA(W)[·] : TWSt(Sw+λId)(p, d) → TWSt(Sw+λId)(p, d)
which are computed using the Courant Fischer Theorem for compact self-adjoint linear op-
erators (Eq. (29) and Eq. (30)), can be also computed by the Courant Fischer Theorem
for symmetric matrices (Horn and Johnson, 2012, Theorem 4.2.6) after applying ϕ(·). In
particular, Eq. (35) determines the signs of the eigenvalues of the Riemannian Hessian at
any W ∈ St(Sw+λId)(p, d) (in the special case MW := Sw +λId, the eigenvalues of Eq. (40)
are the eigenvalues of the Riemannian Hessian at W ∈ St(Sw+λId)(p, d)), and the bounds
of Eq. (35) together with the bounds of the term Tr

(
ξTW(Sw + λId)ξW

)
/Tr

(
ξTWMWξW

)
bound the condition number of the Riemannian Hessian at W? ∈ St(Sw+λId)(p, d).

To that end, we perform the following computation. The righthand side of Eq. (39) is a
Rayleigh quotient, so according to the Courant-Fischer Theorem for symmetric matrices the
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eigenvalues (in particular, the maximal and the minimal) of the pd−p(p+1)/2×pd−p(p+1)/2
symmetric matrix

blkdiag

(
1

2
Ψ,AN⊗ Id−p −N⊗ Ã

)
, (40)

are determined by optimal (in particular the maximal and the minimal) values of Eq. (39).
The set of eigenvalues of Eq. (40) is equal to the union of the set of eigenvalues of 1

2Ψ and
AN ⊗ Id−p −N ⊗ Ã. Since Eq. (40) is a diagonal matrix, its eigenvalues are simply the
diagonal elements:

1

2
(µj − µi) (αj − αi) , 1 ≤ j < i ≤ p,

and
µj (αj − αi) , j = 1, ..., p, i = p+ 1, ..., d.

Finally, we bound the condition number of the Riemannian Hessian at an optimal point,
W? ∈ St(Sw+λId)(p, d). In such case, α1 = ρ1 > ... > αp = ρp. Without loss of generality,
we can always choose W(Sw+λId)⊥ such that the corresponding eigenvalues to its columns
are in a descending order, thus, αp+1 = ρp+1 ≥ ... ≥ αd = ρd ≥ 0. Then, we have that Eq.
(35) is bounded by the minimal and maximal eigenvalues of (40). Thus,

0 < max
0 6=ξW?∈TW?St(Sw+λId)(p,d)

Tr
(
ξTW? [−SBξW? + (Sw + λId)ξW?A] N

)
Tr
(
ξTW?(Sw + λId)ξW?

) ≤ µ1 (ρ1 − ρd) ,

and

min
0 6=ξW?∈TW?St(Sw+λId)(p,d)

Tr
(
ξTW? [−SBξW? + (Sw + λId)ξW?A] N

)
Tr
(
ξTW?(Sw + λId)ξW?

) ≥

min

{
µp (ρp − ρp+1) , min

1≤j<p

1

2
(µj − µj+1) (ρj − ρj+1)

}
> 0.

We use Eq. (31) and Eq. (32) to bound the condition number:

λmax(HessfFDA(W?)) = max
0 6=ξW?∈TW?St(Sw+λId)(p,d)

gW?(ξW? ,HessfFDA(W?)[ξW? ])

gW?(ξW? , ξW?)

≤ µ1 (ρ1 − ρd) λ̃max ,

and

λmin(HessfFDA(W?)) = min
0 6=ξW?∈TW?St(Sw+λId)(p,d)

gW?(ξW? ,HessfFDA(W?)[ξW? ])

gW?(ξW? , ξW?)

≥ min

{
µp (ρp − ρp+1) , min

1≤j<p

1

2
(µj − µj+1) (ρj − ρj+1)

}
λ̃min .

Finally,

κ(HessfFDA(W?)) =
λmax(HessfFDA(W?))

λmin(HessfFDA(W?))
≤ κ?FDA · κ (Sw + λId,MW) ,
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where
κ?FDA =

µ1 (ρ1 − ρd)
min

{
µp (ρp − ρp+1) ,min1≤j<p

1
2 (µj − µj+1) (ρj − ρj+1)

} .
In the special case MW? = Sw +λId, the bound on the condition number of the Riemannian
Hessian at W? ∈ St(Sw+λId)(p, d) is reduced to

κ(HessfFDA(W?)) = κ?FDA.

C.4 Proof of Theorem 17

Proof To show that W? is a strict local minimum of fFDA(W) we show that the eigenvalues
of the Riemannian Hessian at W? are strictly positive (see (Boumal, 2022, Proposition 6.5.)).
Moreover, under the assumption that for all i = 1, ..., d the values ρi are distinct, we prove
that W? is the only local minimum of fFDA(W) (and it is also strict) and all other critical
points are either saddle points or strict local maximizers.

Eq. (34) helps to determine the signs of the eigenvalues of the Riemannian Hessian at
any critical point W ∈ St(Sw+λId)(p, d) and in particular at W?: the matrices Sw +λId and
MW are both SPD matrices, therefore for ξW 6= 0 the term

Tr
(
ξTW(Sw + λId)ξW

)
/Tr

(
ξTWMWξW

)
> 0,

thus only Eq. (35), where 0 6= ξW ∈ TWSt(Sw+λId)(p, d) determines the signs. In addition,
at a critical point W ∈ St(Sw+λId)(p, d) Eq. (35) equals to the quotient R(ξW) for the choice
MW := Sw +λId, since (Absil et al., 2008, Proposition 5.5.6 and Eq. (5.25)) show that at a
critical point the term gW(ξW,HessfFDA(W)[ξW]) which is the numerator of R(ξW) do not
depend on the choice of Riemannian metric. Thus, the optimal values of Eq. (35) satisfying
Eq. (29) or Eq. (30) are the eigenvalues of the Riemannian Hessian at W ∈ St(Sw+λId)(p, d)
with the choice MW := Sw + λId. Obviously, classification of the critical points does not
depend on the Riemannian metric. Therefore, we can classify the critical points using the
signs of the eigenvalues of the Riemannian Hessian at W ∈ St(Sw+λId)(p, d) with the choice
MW := Sw + λId.

Recall from the proof of Theorem 18 that in the special case MW := Sw + λId, the
eigenvalues of Eq. (40 are also the eigenvalues of the Riemannian Hessian at a critical point
W ∈ St(Sw+λId)(p, d). The eigenvalues are:

1

2
(µj − µi) (αj − αi) , 1 ≤ j < i ≤ p,

and
µj (αj − αi) , j = 1, ..., p, i = p+ 1, ..., d.

Now, we can conclude the signs of the eigenvalues of the Riemannian Hessian at any
critical point W ∈ St(Sw+λId)(p, d) for the choice MW := Sw + λId, and classify these
critical points. Recall that µi > 0 for i = 1, ..., p, and µj − µi > 0 for j < i. Also αi ≥ 0.
Thus, the signs of the eigenvalues of Eq. (40) are only determined by the differences between
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αj , j = 1, ..., p which are some generalized eigenvalues of the matrix pencil (SB,Sw + λId),
corresponding to the generalized eigenvectors on ordered 1 ≤ j < i ≤ p, but on the other
hand there exists at least one pair of indexes j = 1, ..., p and i = p + 1, ..., d such that
αj − αi < 0, otherwise it contradicts the assumption on the columns of W, and the d − j
trailing αi’s, i.e., αj − αi where 1 ≤ j < i ≤ p or j = 1, ..., p and i = p+ 1, ..., d.

In particular, for W? such that the columns are the p-dominant generalized eigenvectors
of the matrix pencil (SB,Sw + λId), then by the assumption that α1 = ρ1 > ... > αp = ρp,
we have αj − αi > 0 where 1 ≤ j < i ≤ p or j = 1, ..., p and i = p + 1, ..., d. Therefore, in
this case all the eigenvalues of Eq. (40) are strictly positive, thus the matrix in Eq. (40)
is SPD, and consequently the eigenvalues of the Riemannian Hessian at W? are all strictly
positive. Thus, W? is a strict local minimum of fFDA(W) on St(Sw+λId)(p, d).

If we prove that W? it is the only local minimum (up to the signs of the columns), then
it is the only asymptotically stable critical point according to Theorem 15. In order to prove
it we further assume that for all i = 1, ..., d the values ρi are distinct, then we can conclude
the following. Suppose W is any other critical point differs from W? at the optimal value,
i.e., such that the columns of W are ordered generalized eigenvectors corresponding to some
p singular values of the matrix pencil (SB,Sw + λId), α1, ..., αp, which are not the leading
p values. We consider the different cases:

1. Suppose α1, ..., αp are not ordered in any particular order (possible only for p ≥ 3),
then there exists j such that αj is larger than some αk and smaller than αm where
j < k,m ≤ p, then αj − αk > 0 and αj − αm < 0. In this case there are both strictly
positive and strictly negative eigenvalues of the Riemannian Hessian at W for the
choice MW := Sw + λId, thus W is a saddle point.

2. Suppose α1, ..., αp are ordered in a descending order. Since Z is not an optimal solution
of Problem (8), then there exists at least one 1 ≤ j ≤ p for which αj 6= ρj . Thus, on the
one hand αj −αi > 0 where 1 ≤ j < i ≤ p, but on the other hand there exists at least
one pair of indexes j = 1, ..., p and i = p+ 1, ..., d such that αj − αi < 0, otherwise it
contradicts the assumption that there exists at least one 1 ≤ j ≤ p for which αj 6= ρj .
In this case there are both strictly positive and strictly negative eigenvalues of the
Riemannian Hessian at W for the choice MW := Sw + λId, therefore, W is a saddle
point.

3. Suppose α1, ..., αp are ordered in an ascending order. Then, αj − αi < 0 where 1 ≤
j < i ≤ p. Now, we consider two sub-cases:

(a) There exists at least one 1 ≤ j ≤ p for which αj 6= ρd−j+1. Then, there exists at
least one pair of indexes j = 1, ..., p and i = p + 1, ..., d such that αj − αi > 0,
otherwise it contradicts the assumption that there exists at least one 1 ≤ j ≤ p
for which αj 6= ρd−j+1. In this case there are both strictly positive and strictly
negative eigenvalues of the Riemannian Hessian at W for the choice MW :=
Sw + λId, therefore, W is a saddle point.

(b) Consider the case α1 = ρd < α2 = ρd−1 < ... < αp = ρd−p+1. Thus, αj − αi < 0
where 1 ≤ j < i ≤ p or j = 1, ..., p and i = p + 1, ..., d. In this case all the
eigenvalues of the Riemannian Hessian at W are strictly negative for the choice
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MW := Sw + λId, thus, W is a local maximizer. Since it is the only strict
local maximizer up to the signs of the columns of W, and it is also the global
maximizer.

In all cases, W is not a local minimizer of fFDA(W) on St(Sw+λId)(p, d). Thus, W? is the
only local minimum (up to the signs of the columns. According to Theorem 15 all these
critical points are unstable.

C.5 Proof of Corollary 20

Proof The condition number bound follows immediately from Lemma 2 and Theorem 18.
For the costs, the same arguments as in the proof of Corollary 11 hold: none of the opera-
tions require forming SB or Sw, but instead require taking product of these matrices with
vectors. These products can be computed in cost proportional to the iterated products of
the matrices X̂ and/or Ŷ with vectors. Computing a product of the matrix X̂ = X−Y with
a vector is equivalent to computing the product of the same vector with the matrices X and
Y and subtracting the result. Computing the product of X with a vector is proportional
number of non-zeros in X, and the cost of the product of Y with a vector is O(ld) since Y
has exactly l distinct rows. Computing a product of the matrix Ŷ with a vector costs O(ld)
since Ŷ is a l×d matrix. The preprocessing steps follow from Table 2. Assuming a bounded
number of line-search steps in each iteration of Riemannian CG, the costs follows from Table
2, as each iteration requires a bounded number of computations of each of the following:
objective function evaluation O (p (nnz (X) + ld)), retraction O

(
nnz

(
X̂
)
p+ dp2

)
, vector

transport and Riemannian gradient O
(
p (nnz (X) + ld) + nnz

(
X̂
)
p+ dp2 + d2p

)
.
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