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Abstract

Decentralized optimization over time-varying graphs has been increasingly common in
modern machine learning with massive data stored on millions of mobile devices, such as in
federated learning. This paper revisits the widely used accelerated gradient tracking and
extends it to time-varying graphs. We prove that the practical single loop accelerated gradient

tracking needs O((—= » )2\/2) and O((+= )1'5\/%10g 1) iterations to reach an e-optimal

l1—0o € l1—0o,

solution over time-varying graphs when the problems are nonstrongly convex and strongly
convex, respectively, where v and 0., are two common constants charactering the network
connectivity, L and p are the smoothness and strong convexity constants, respectively, and
one iteration corresponds to one gradient oracle call and one communication round. Our
convergence rates improve significantly over the ones of O() and (’)((%)5/7 (17(17)1_5 log 1),
respectively, which were proved in the original literature of accelerated gradient tracking
only for static graphs, where 1107 equals ﬁ when the network is time-invariant. When
combining with a multiple consensus subroutine, the dependence on the network connectivity
constants can be further improved to O(1) and (9(1_7%) for the gradient oracle and
communication round complexities, respectively. When the network is static, by employing
the Chebyshev acceleration, our complexities exactly match the lower bounds without hiding

any poly-logarithmic factor for both nonstrongly convex and strongly convex problems.

Keywords: decentralized optimization, accelerated gradient tracking, time-varying graphs

1. Introduction

Distributed optimization has emerged as a promising framework in machine learning mo-
tivated by large-scale data being produced or stored in a network of nodes. Due to the
popularity of smartphones and their growing computational power, time-varying graphs are
increasingly common in modern distributed optimization, where the communication links
in the network may vary with time, and the devices may not be active all the time such
that the network may be even unconnected at each time. A typical example is federated
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learning (Li et al., 2020b; Kairouz et al., 2021), which involves training a global statistical
model from data stored on millions of mobile devices. The physical constraints on each
device typically result in only a small fraction of the devices being active at once, and it is
possible for an active device to drop out at a given time (Bonawitz et al., 2019). Although
centralized network is the predominant topology in most machine learning systems, such
as TensorFlow, decentralized network has been a potential alternative because it reduces
the high communication cost on the central server (Lian et al., 2017). This motivates us to
study decentralized optimization over time-varying graphs. In this paper, we consider the
following convex optimization problem:

: 1 ¢
g&ﬂ@—mgymw, (1)
where the local objective functions f;) are distributed separately over a network of nodes.
The network is mathematically represented as a sequence of time-varying graphs {G°, G!, ...},
and each graph instance G¥ consists of a fixed set of agents V = {1,...,m} and a set of
time-varying edges £F. Agents i and j can exchange information at time k if and only if
(i,§) € €. Each agent i privately holds a local objective J(5), and makes its decision only
based on the local computations on f(;) and the local information received from its neighbors.
The local objective functions are assumed to be smooth. We consider both strongly convex
and nonstrongly convex objectives in this paper.

Although decentralized optimization over static graphs has been well studied, for example,
lower bounds on the number of communication rounds and gradient or stochastic gradient
oracle calls for strongly convex and smooth problems are well-known (Scaman et al., 2017,
2019; Hendrikx et al., 2021), and optimal accelerated algorithms with upper bounds exactly
matching the lower bounds are developed (Kovalev et al., 2020; Li et al., 2022), for the
time-varying graphs, the problem is more challenging. It is unclear how to design practical
accelerated methods with the optimal dependence on the precision ¢ and the condition
number of the objectives, exactly matching that of the classical centralized accelerated
gradient descent. In this paper, we aim to address this question.

1.1 Notations and Assumptions

Throughout this article, we denote x(;) to be the local variable for agent i. We use the
subscript (i) to distinguish the ith element of vector xz. To write the algorithm in a
compact form, we introduce the aggregate objective function f(x) with its aggregate variable
x € R™*P and aggregate gradient V f(x) € R™*P as

m Ty Vi (zm) '
Fx) = foy(@e), x= : , V(%)= : : (2)
=1 ) V fmy (@) T

Denote x* to be the value at iteration k. For scalars, for example, 0, we use ), instead of 9%
to denote the value at iteration k, while the latter represents its kth power. Specially, z
means the transpose of . We denote || - || to be the Frobenius norm for matrices and the /,
Euclidean norm for vectors uniformly, and || - ||2 as the spectral norm of matrices. Denote
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as the identity matrix and 1 as the column vector of m ones. Assume that problem (1) has
a solution, and let z* be any one of them. Define the average variable across all the local
variables as

m

1 1 & 1 1
Ezazw(m y:mz;y(i)’ EZ*Z%)? 52@25@7 3)

i=1

3

where x, Y, 2, and s will be used later in the development of the algorithm. Define operator
II=7I- % to measure the consensus violation such that

[Ix = . . (4)

We make the following assumptions for each local objective function in problem (1).

Assumption 1

1. Each fu)(x) is p-strongly convez: fiy(y) > fuy(x) + (Vi (x),y —z) + &lly — =
Especially, we allow p to be zero throughout this paper, and in this case we say f(; ()
1S convezx.

2. Each f;)(x) is L-smooth, that is, f(;(x) is differentiable and its gradient is L-Lipschitz
continuous: ||V fi)(y) — Vi) (@)| < Llly — z|.

A direct consequence of the smoothness and convexity assumptions is the following property
(Nesterov, 2004):

L
< =

iuvm W) = Vi @I < fo ) = fo @) = (Vin@)y—2) < Slly—al*. ()

The information exchange between different agents in the network is realized through a
gossip matrix such that communication can be represented as a matrix multiplication with
the gossip matrix. When the network is static, we make the following standard assumptions
for the gossip matrix W € R™*™ (Qu and Li, 2018):

Assumption 2

1. (Decentralized property) W; ; > 0 if and only if (i,7) € € ori = j. Otherwise, W; ; = 0.
2. (Double stochasticity) W1 =1 and 1TW =1T.

Note that we do not assume that W is symmetric. If the network is connected, Assumption
2 implies that the second largest singular value o of W is less than 1 (its largest one equals
1), that is, o = ||W — %11T||2 < 1. Moreover, we have the following classical consensus

contraction:
1 1
= H (W - 11T> <I — 11T> X
m m
1

We often use ;= as the condition number of the communication network.

T = H (W _ 111T> X
m

< o|Tx[|.  (6)
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When the network is time-varying, each graph instance G* associates with a gossip
matrix W¥. Denote

WhY = whwh=L...wk+ forany k>~ — 1, (7)

WkO = I, and we follow (Nedi¢ et al., 2017) to make the following standard assumptions for
the sequence of gossip matrices {IWW* 1o

Assumption 3
1. (Decentralized property) Wzk] > 0 if and only if (i,j) € E¥ ori = j. Otherwise,
Wi =0.

2. (Double stochasticity) WF1 =1 and 1T Wk =1T.

3. (Joint spectrum property) There exists a constant integer v such that

1
oy <1, where o,= sup Wwh — %11—r

k>y—1

2

Assumption 3 is weaker than the assumption that every graph G* is connected. A typical
example of the gossip matrix satisfying Assumption 3 is the Metropolis weight over ~-
connected graphs. The former is defined as
1/(1 + max{df,dh}), if (i,j) € €F,
Wk ={ 0, if (i,7) # EF and i # j, (8)
L= Yent wk, if i = j,

where ./\/(’Z‘) is the set of neighbors of agent i at time k, and d¥ = \./\/'(li)] is the degree. The
~v-connected graph sequence is defined as follows (Nedié et al., 2017).

Definition 1 The time-varying undirected graph sequence {V, Ek},‘zozo is y-connected if there
exists some positive integer v such that the union of these v consecutive undirected graphs
{V, Ufig_lé’r} is connected for all k =0,1,....

When Assumption 3 holds, we have the following ~-step consensus contraction:
IIW* x| < o || TIx]|, for any k >y — 1. 9)
When the algorithm proceeds less than ~ steps, we only have
[TIW*tx|| < ||TIx]|, forany 0 <t <~yand k>t —1. (10)

In decentralized optimization, people often use communication round complexity and
gradient oracle complexity to measure the convergence speed. The former means the number
of communication rounds to reach an e-optimal solution with F(x) — F'(z*) < ¢, while the
latter means the number of gradient oracle calls. In one communication round, all the agents
can receive O(1) vectors, such as x](“j), from each of its neighbors in parallel, which can be

represented as W¥*xF mathematically. In one gradient oracle call, all the agents call the
oracle to compute their local gradients V ;) (l'ﬁ)) in parallel.

4
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1.2 Literature Review

In this section, we briefly review the decentralized algorithms over static graphs and time-
varying graphs, mainly focusing on the accelerated methods. We emphasize gradient tracking
(Nedié et al., 2017) and its acceleration (Qu and Li, 2020), which are mostly relevant for our
work. Tables 1 and 2 sum up the complexity comparisons of the state-of-the-art methods.

1.2.1 DECENTRALIZED OPTIMIZATION OVER STATIC GRAPHS

Decentralized optimization has been studied for a long time (Bertsekas, 1983; Tsitsiklis et al.,
1986). The representative decentralized algorithms include distributed gradient/subgradient
descent (DGD) (Nedi¢ and Ozdaglar, 2009; Nedié¢, 2011; Ram et al., 2010; Yuan et al., 2016),
EXTRA (Shi et al., 2015b,a), gradient tracking (Nedi¢ et al., 2017; Qu and Li, 2018; Xu
et al., 2015; Xin et al., 2018), NIDS (Li et al., 2019), as well as the dual based methods,
such as dual ascent (Terelius et al., 2011), dual averaging (Duchi et al., 2012), ADMM
(Wei and Ozdaglar, 2013; Iutzeler et al., 2016; Makhdoumi and Ozdaglar, 2017), and the
primal-dual method (Lan et al., 2020; Scaman et al., 2018; Hong et al., 2017; Jakovetic,

2019). Among these methods, gradient tracking has the (9((% + ﬁ) log %) communication

round and gradient oracle complexities for strongly convex problems and the O(ﬁ)
complexities for nonstrongly convex ones. Recently, accelerated decentralized methods have

gained significant attention due to their provable faster convergence rates.

Accelerated Methods for Strongly Convex and Smooth Decentralized Optimization. The
accelerated methods which can be applied to this scenario include the accelerated distributed
Nesterov gradient descent (Acc-DNGD) (Qu and Li, 2020), the robust distributed accelerated
stochastic gradient method (Fallah et al., 2022), the multi-step dual accelerated method
(Scaman et al., 2017, 2019), accelerated penalty method (APM) (Li et al., 2020a; Dvin-
skikh and Gasnikov, 2021), the multi-consensus decentralized accelerated gradient descent
(Mudag) (Ye et al., 2023, 2020), accelerated EXTRA (Li and Lin, 2020; Li et al., 2022), the
decentralized accelerated augmented Lagrangian method (Arjevani et al., 2020), and the
accelerated proximal alternating predictor-corrector method (APAPC) (Kovalev et al., 2020).

Scaman et al. (2017, 2019) proved the £2(,/ u(lﬁa) log 1) and Q(\/glog 1) lower bounds for

communication rounds and gradient oracle calls, respectively. To the best of our knowledge,
APAPC combined with the Chebyshev acceleration (CA) (Arioli and Scott, 2014) is the first
to exactly achieve these lower bounds without hiding any poly-logarithmic factor. Although
gradient tracking has been widely used in practice, its accelerated variant, Acc-DNGD, only
has the (9((%)5/ 7@ log 1) communication round and gradient oracle complexities (Qu
and Li, 2020).

Accelerated Methods for Nonstrongly Convex and Smooth Decentralized Optimization.
The accelerated methods for this scenario are much scarcer. Examples include the distributed
Nesterov gradient with consensus (Jakovetié¢ et al., 2014a), Acc-DNGD (Qu and Li, 2020),
APM (Li et al., 2020a; Dvinskikh and Gasnikov, 2021), accelerated EXTRA (Li and Lin,
2020), and the accelerated dual ascent (Uribe et al., 2021), where the last one adds a
small regularizer to translate the problem to a strongly convex and smooth one. Scaman

et al. (2019) proved the £2( ﬁ) communication round complexity lower bound and
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Table 1: Comparisons among the state-of-the-art complexities of decentralized methods
over static graphs, as well as those of gradient tracking and its accelerated variant
Acc-DNGD. Double loop means the method needs to call a subroutine with multiple
steps at each iteration, such as the Chebyshev acceleration, the multiple consensus,
the gradient evaluation of Fenchel conjugate, or the minimization of a subproblem.

gradient oracle communication round single or
Methods . .
complexity complexity double loop
Nonstrongly convex and smooth functions
Gradient tracking
O(—L—_ O(—L_ inel
(Qu and Li, 2018) (€<1*f’>2> (4170)2) smele
Acc-DNGD
_1 1 .
(Qu and Li, 2020) © (65”) © (65”) single
APM
(Li et al., 2020a) @ ( %) @ ( ﬁ log %) double
(Dvinskikh and Gasnikov, 2021)
Acc-EXTRA 7 1 I 1
(L and Lin, 2020) 6] (, [ty log ;) o ( ity log ;) double
1 L 1 L .
Our results for Acc-GT @ (m \/;) @) (m \/;> single
L L
Our results for Acc-GT+CA O (\E) O ( m) double
Lower bounds
o L o L
(Scaman et al., 2019) ( 6) ( 6(1_")) \

Gradient tracking
O(( + o) rost) | O((k+rem)rost) | sine
(Alghunaim et al., 2021) W T amae ) o8 T (1*‘”2) 08 swge
Acc-DNGD L\3/7 L | L\5/7 L L )
(Qu and Li, 2020) @ ((;) A—0)I5 10g g) o ((;) A—0)i5 log ;) blngle
APAPC+CA
o (\/Zlog l) o (,/ﬁlog l) double
(Kovalev et al., 2020) ® € pit=e €
Our results for Acc-GT (@] (\/ﬁ log %) (@] (\/#(150)3 log %) single
Our results for Ace-GT+CA @) (\/%log %) @) ( u(ﬁo) log %) double
Lower bounds
O(/Llogt @ L logl
(Scaman et al., 2019) (\/: o8 €> ( wi-0) 108 6) \

the Q(\/g) gradient oracle complexity lower bound. To the best of our knowledge, there
is no method matching these lower bounds exactly without hiding any poly-logarithmic
factor. APM comes close to this target, but with an additional O(log %) factor in the
communication round complexity. Acc-DNGD, acceleration of gradient tracking, only has
the (’)(Fs%) complexities of communication rounds and gradient oracles, originally proved
in (Qu and Li, 2020). Note that the dependence on 1 — o, a small constant charactering
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the network connectivity, was not explicitly given in (Qu and Li, 2020). Xu et al. (2020)
proposed an accelerated primal dual method, however, their complexities remain (’)(%)

1.2.2 DECENTRALIZED OPTIMIZATION OVER TIME-VARYING GRAPHS

We review the decentralized algorithms over time-varying graphs in two scenarios. In the
first scenario, the network may not be connected at every time, but it is assumed to be
~v-connected. In the second scenario, the network is assumed to be connected at every time.

Not Connected at Every Time but y-connected. In this scenario, DIGing (that is, gradient
tracking over time-varying graphs) (Nedi¢ et al., 2017), PANDA (Maros and Jalden, 2018,
2019), the time-varying AB/push-pull method (Saadatniaki et al., 2020), the decentralized
stochastic gradient descent (SGD) (Koloskova et al., 2020), and the push-sum based methods
(Nedié¢ and Olshevsky, 2016, 2015; Nedié et al., 2017) are the representative non-accelerated
methods over time-varying graphs for convex problems, as well as NEXT (Lorenzo and
Scutari, 2016) and SONATA (Scutari and Sun, 2019) for nonconvex problems. When combing
with Nesterov’s acceleration, to the best of our knowledge, the decentralized accelerated
gradient descent with consensus subroutine (DAGD-C) (Rogozin et al., 2021b,a) is the only
accelerated method for strongly convex and smooth objectives with explicit complexities in
this general time-varying setting. However, the communication round complexity of DAGD-
C has an additional O(log %) factor compared with the classical centralized accelerated
gradient method. For nonstrongly convex and smooth problems, no literature studies the
accelerated methods over time-varying graphs. While APM (Li et al., 2020a) was originally
designed for static graphs, it can be easily extended to the time-varying case. However,
as introduced in the previous section, APM also has an additional O(log %) factor in the
communication round complexity. Both DAGD-C and APM are double-loop methods, where
one gradient is computed at each iteration of the outer loop, and multiple rounds of consensus
communications follow up in the inner loop. The multiple consensus double loop may limit
the applications of DAGD-C and APM. See the discussions in Remark 16.

Connected at FEvery Time. In this scenario, the literature is rich and many distributed

methods originally designed over static graphs, such as Acc-DNGD, can be directly used.
Kovalev et al. (2021b,a) proposed a dual based method named ADOM and its primal-only

extension ADOM+, where the latter has the state-of-the-art O(ﬁ\/% log 1) communication

round complexity and the O(\/% log %) gradient oracle complexity for strongly convex and
smooth problems. Kovalev et al. (2021a) also established the lower bounds showing that

their ADOM+ is optimal. Rogozin et al. (2020) gave the complexity of O( M(lL_U) log %)
under a stronger assumption that the network changes slowly in the sense that the number
of network changes cannot exceed some percentage of the number of total iterations. Nguyen
et al. (2024) studied the accelerated AB/push-pull method over directed graphs, but no

accelerated rate is proved.

1.3 Contributions

In this paper, we study accelerated gradient tracking over time-varying graphs with sharper
complexities. We give our analysis over static graphs and time-varying graphs in a uni-
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Table 2: Comparisons among the state-of-the-art complexities of decentralized methods over
time-varying graphs. We only compare with the methods working over y-connected

graphs.
gradient oracle communication round single or

Methods . :

complexity complexity double loop

Nonstrongly convex and smooth functions
DGD' z z
VL v L ) ( VL ol A) i
(Koloskova et al., 2020) © (<1*"7)f3/2 o © oz T 1=ay single

APM
@] L o= Ly, l) doubl
(Li et al., 2020a) (\/j) (1*% \/t 08 ¢ ouble

Our results for Acc-GT @ (ﬁ \/§> @ (ﬁ \/g) single
Our results for Acc-GT+
) 0 ( A) 0 (lj ﬁ) double
multiple consensus € gy Vo€
Strongly convex and smooth functions
DGD = =
_ VL 7 Liggl VL 7 Lgg L i
(Koloskova et al., 2020) |~ (sl + o o d) |0 (il + 2 flog )| single
DIGing L\ L3 L AP 8 ) )
(Nedié et al., 2017) | (\/ﬁ (ﬁ> =07 108 €> © <\/m (ﬁ) o 108 2) single
DAGD-C 2
O(y/£logt O(12%=1/% (log? doubl
(Rogozin et al., 2021b) (\/: & 5) (1_‘” \/: ( o8 6) ) ouble
* - 1.5 1.5
Our results for Acc-GT @) (( 1_17 ) % log %) @) (( 1_”%) \/%log %) single
Our results for Acc-GT+
O(y/Elogt O(2—/Elog? doubl
multiple consensus (\/: & 5) (1"’7 \/: & 5) ouble

fied framework. The former scenario provides the basis and insights for the latter. Our
contributions are summarized as follows:

1. For time-varying graphs, our contributions include:

(a) When the local objective functions are nonstrongly convex and smooth, we prove
the (’)(ﬁ \/g) complexities of communication rounds and gradient oracle
calls for the practical single loop accelerated gradient tracking (Acc-GT). When

combing with a multiple consensus subroutine, our complexities can be improved

to (’)(1_707 \/g) for communication rounds and (’)(\/g ) for gradient oracles. The
number of our communication rounds is less than that of the state-of-the-art
APM (Li et al., 2020a) by a O(log %) factor, while that of our gradient oracle

calls is the same as that of APM.

1. The method in (Koloskova et al., 2020) was designed for stochastic decentralized optimization. We recover
the complexities for deterministic optimization by setting the variance of the stochastic gradient to be
zero. On the other hand, ¢ = = 37 ||V f(;) (z*)|*.
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(b) When the local objective functions are strongly convex and smooth, we prove
the O((ﬁ)m\/% log%) communication round and gradient oracle complex-

ities for the practical single loop Acc-GT. When combing with the multiple
consensus subroutine, we can improve the communication round complexity to

O(+2 \/% log 1) and the gradient oracle complexity to (’)(\/% log ). The num-

1—04
ber of our communication rounds is less than that of the state-of-the-art DAGD-C
(Rogozin et al., 2021b) by a O(log %) factor, while our gradient oracle calls remain
the same as that of DAGD-C.

(c) To the best of our knowledge, this is the first time that the communication
round upper bound with the optimal dependence on the precision € and condition
number L/ is given for both nonstrongly convex and strongly convex problems.
More importantly, they are established for a practical single loop algorithm.

2. For static graphs as a special case, our contributions include:

(a) When the local objective functions are nonstrongly convex and smooth, we prove

the O( ﬁ \/g) complexities of communication rounds and gradient oracles for
the practical single loop Acc-GT, which significantly improve over the existing
(’)(65%) ones originally proved in (Qu and Li, 2020). When combing with the

Chebyshev acceleration, we can improve the complexities to O(, /ﬁ) for

communication rounds and O(\/g) for gradient oracles, which exactly match the
complexity lower bounds. As far as we know, we are the first to establish the
optimal upper bounds for nonstrongly convex and smooth problems, which exactly
match the corresponding lower bounds without hiding any poly-logarithmic factor.

(b) When the local objective functions are strongly convex and smooth, we prove the

O(\/% log %) communication round and gradient oracle complexities for the

practical single loop Acc-GT, which improves over the existing O((%)‘r’/ 7 (1—i—)1< s log 1)
ones originally given in (Qu and Li, 2020). When combing with the Chebyshev
acceleration, the complexities can be further improved to match the corresponding

lower bounds and existing optimal upper bounds.

2. Accelerated Gradient Tracking over Time-varying Graphs

We first review the gradient tracking and its accelerated variant, where the latter was only
designed over static graphs, and then give our extensions of the accelerated gradient tracking
to time-varying graphs with sharper complexities.

2.1 Review of Gradient Tracking and Its Acceleration

Gradient tracking (Nedi¢ et al., 2017; Qu and Li, 2018; Xu et al., 2015; Xin et al., 2018)
keeps an auxiliary variable s@) at each iteration for each agent i to track the average of the

gradients Vf(j)(:cé“j)) for all j =1,...,m, such that if x’(“i) converges to some point x>, s’(‘ci)

9
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converges to — Ez 1 Vfiy(x>°). The auxiliary variable is updated recursively as follows:

sty = D Wigsty " + Vo (aly) = Ve i,

JEN(’L

and each agent uses this auxiliary variable as the descent direction in the general distributed
gradient descent framework:

= Y Wiafy — as(,

JEN )
where « is the step size. Writing gradient tracking in the compact form, it reads as follows:

sk = wsk-1 ¢ Vf(xk) — Vf(Xk_l),

k1 — wxk — as”.

X
Gradient tracking can be used over both static graphs and time-varying graphs (Nedi¢ et al.,
2017).

To further accelerate gradient tracking, Qu and Li (2020) employed Nesterov’s acceleration
technique (Nesterov, 2004) and proposed the following accelerated distributed Nesterov
gradient descent for nonstrongly convex problems:

y¥ = 012" + (1 — 0,)x", (12a)
sF=WsF 1 Vi) - vy, (12b)
xFH = Wyt — as®, (12¢)
= W2k — L, (12d)

Ok

It can be checked that step (12c¢) is equivalent to the following one:
xFH = 0, 2M 1 (1 - 0,) WP

When strong convexity is assumed, Qu and Li (2020) fixed 6j at each iteration and replaced
steps (12a) and (12d) by the following two steps:

k:M R (

—O\WzF + owyF — Sk,
1160 ° JW2" + oWy S

y 0

The main idea behind the development of the above accelerated algorithms is to relate it to
the inexact accelerated gradient descent (Devolder et al., 2014) by taking average of the
local variables over all i = 1,...,m. See Section 3.1 for the details. Tables 1 and 2 list the
complexities of gradient tracking and its accelerated variant.

2.2 Extension of Accelerated Gradient Tracking to Time-varying Graphs

10
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Algorithm 1 Accelerated Gradient Tracking (Acc-GT)
nitialize: o) = 1fy) = ;) = Tons 506 = Vi W) 2 = Liene, Vi) ~ ot
and ) = Oozy) + (1= 60) Xjens,, Wi(y)-
for k=1,2,... do

yﬁ) = kaég‘) +(1- Hk)xl(“-)
sty = 2 Whsty' + Vil - Vol

JeNw)
1 «
k+1 k
2N = —|— — Sy
= | X (Gt t) -t )
1+ 0% JEN 0.
?_)H kaé—)"_l —I— 1 — Ok) Z Wkltk

JENG)

end for

In this paper, we study the following accelerated gradient tracking with time-varying
gossip matrices:

F = 0pz" + (1 — 0,)x", (13a)
sF = WhsP L L VF(yF) — VFE, (13b)
1 «
k+1 _ ke &k 1
z 1+’5:<W <9y+ ) 0kS>, (13c)
xFH = 0,27 4 (1 — 0)WhxF, (13d)

where we initialize x° such that IIx? = 0. We give the specific descriptions of the method in
Algorithm 1 in a distributed way. Step (13b) is the standard gradient tracking, while steps
(13a), (13c), and (13d) come from Nesterov’s classical accelerated gradient descent (Nesterov,
2004), except that one round of consensus communication is performed by multiplying the
aggregate variables with a gossip matrix. We see that algorithm (13a)-(13d) is equivalent
o (12a)-(12d) when the gossip matrix is fixed and p = 0. However, when p > 0, it is not
equivalent to the method proposed in (Qu and Li, 2020). In fact, Nesterov’s accelerated
gradient methods have several variants, and we choose the one in the form of (13a)-(13d)
due to its simple convergence proof.

We follow the proof idea in (Jakoveti¢ et al., 2014a; Qu and Li, 2020) to rewrite the
distributed algorithm in the form of inexact accelerated gradient descent. However, we use
a different proof framework from (Qu and Li, 2020) with much simpler proofs, and give
sharper complexities. See Remark 23 for the differences and the reasons of the convergence
rates improvement. On the other hand, for time-varying graphs, unlike the classical analysis
relying on the small gain theorem (Nedi¢ et al., 2017), we construct a different way to bound
the consensus errors such that the proof framework over static graphs can be extended to
time-varying graphs. See the proof of Lemma 25 and the remark following it. Our proof
technique may shed new light to decentralized optimization over time-varying graphs, and

11
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gives an alternative to the small gain theorem. There are two advantages of our proof
technique: it can be embedded into many algorithm frameworks from the perspective of error
analysis, and it can be applied to both strongly convex and nonstrongly convex problems,
while the small gain theorem only applies to strongly convex ones.

Our main technical results concerning the convergence rates of the accelerated gradient
tracking are summarized in the following two theorems for nonstrongly convex and strongly
convex problems, respectively.

Theorem 2 Suppose that Assumption 1 holds with u = 0 and Assumption 8 holds for

the sequence {WR}ZL] Let the sequence {Gk}k o satisfy = ek = 921 with 6y = 1, let
k—1
a < %. Then for algorithm (13a)-(13d), we have for any T > 1,
2C
FE@) - Fa*) < ————
@) = Fa*) < e
and
1
*HHXTVHQ < Lw
m aL(Tvy+1)
(1-0
where C = ||2° — x*||? + 10mL1y) max,—,.. - [|[1Is"||%.

Theorem 3 Suppose that Assumption 1 holds with > 0 and Assumption 3 holds for the
sequences {Wk};‘:lo Let o < 51;453)3 and 0, =0 = @ Then for algorithm (13a)-(13d),
we have for any T > 1,

2
F(ET’Y-H) . F(.T*) + <29a + [;9> ||—T’y+1 *||2 < (1 o Q)T’Y—i-lcr7

and

1 4C
KT < (1 — o) 2
L2 < (1 - gyt €
— * 2 0 1459L~3 ;
where C = F(7°) — F(z*) + (2% + %) 120 — %1% + 49mL'y(1 Ms” + m(l—O)(lza,Y)Zi M7+
77,1(1,6'96)%110”/\/11’7, ML = max,—1__~ |Us"||2, and similarly for M3 and M.

When the local objectives are nonstrongly convex, we see from Theorem 2 that algorithm

(13a)-(13d) needs O((ﬁ)% / %) communication rounds and gradient oracle calls to find

an e-optimal averaged solution (see Remark 31). When strong convexity is assumed, we see
from Theorem 3 that both the communication round and gradient oracle complexities are

((ﬁ)”\/% log %) Our complexities have the optimal dependence on the precision € and

the condition number L/u, matching that of the classical centralized accelerated gradient
method. As illustrated in Table 2, our communication round complexities improve over
the state-of-the-art APM (Li et al., 2020a) and DAGD-C (Rogozin et al., 2021b) on the
dependence of € since they have an additional O(log %) factor. However, our dependence on

1~ is not state-of-the-art. We will improve it in Section 2.4.
>

12
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Remark 4 In order to establish the proof, we use very small stepsizes with huge constants
in the theorems, which is impractical. We suggest to tune the best stepsize in practice, rather
than the ones used in the theorems.

Remark 5 We measure the convergence rates at the averaged solution, which ccm be ob-
tained by an additional consensus average routine u't' = Whal initialized at u® = xT7+1,
and O(1= l) rounds of communications are enough. So the total complexities are

O((12%-)? \/EH@( “log 1) and O((2-)'9 [Elog 1) + O(:2

convex and strongly com;ex problems, respectively, and they are dommated by the first parts.

) for nonstrongly

Remark 6 For nonstrongly convexr problems, we can also prove the convergence rate mea-
sured at the point :r:g;’ﬂ for any i:

2C vm(l—o,)
Tv+1 * 8
F(x T4 )— F(z*) < o(Ty £ 172 max{ Lor ,Sm} .

However, the complezities increase to O(max{y/m, y/m(g 707)1'5}(ﬁ)2\/z) For strongly

=Ty+1 Tv+1

convex problems, the complexities stay the same no matter measured at T or Ty

because the additional terms, such as max{y/m, /m (m)1 °Y in the nonstrongly conver

case, appear in the constant C' in O((ﬁ)lf’\/%log &)

Remark 7 In Theorems 2 and 3, we measure the convergence rates at the (T + 1)th
iteration for simplicity. In fact, the same rates hold for any K =T~y + 71 with 1 <r <~y
by regarding the (r — 1)th iteration as the virtual initialization, which only influences the
constant C' in Theorems 2 and 5. In addition, since 0,_1 < 1, the constant C' in Theorem 2
contains an additional term %(F(E"_l) — F(x%)).

Remark 8 Due to the physical constraints such as the battery dies, the device shuts down,
or the WiFi network is unavailable, the agents may not be active all the time. Most literature
let the agents wait and use the old iterates when rejoining the network. Alternatively, we can
formulate this case by local updates (Stich, 2019; Koloskova et al., 2020) and use our analysis
framework to ensure the convergence. Mathematically, letting Wk =1 and Wk =0 for all
j#iandk=1t+1,t+2,...,t', which means that agent i drops out from the communication
network during the time [t + 1,t], algorithm (13a)-(13d) reduces to the following steps for
agent i at iterations k =t + 1,t +2,...,t

Yy = 91«25‘) + (1= Ox)afy, (14a)
sty =56 + VoW — Ve, (14D)
1
k+1 _ Ho k ko) a k
0 Ty << o, Yo T Z(z)) 9k5(1)> ’ (14c)
T = Gk%“ (1= )y, (14d)

which are a serious of local updates without communications. When joining the network
again, we require agent i to make up the delayed computations by performing (14a)-(14d)

13
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fort' —t iterations. Note that (14a)-(14d) has much lower cost than the same number of
iterations (13a)-(13d) because the CPU speed is much faster than the communication speed
over TCP/IP or the slow WiFi (Lan et al., 2020).

2.3 Special Cases over Static Graphs

When we fix W* = W, algorithm (13a)-(13d) can be applied to static graphs. As a special
case of Theorems 2 and 3, we have the following theorems over static graphs.

Theorem 9 Suppose that Assumptz’ons 1 and 2 hold with connected graphs and p = 0. Let

the sequence {0 }5_ satisfy L 9’“ = 92 with 6y = 1, let a < (53724. Then for algorithm
-1

(13a)-(13d) with fized gossip matmx W we have for any K > 1

P~ P < e (29 ).

a(K +1)2 2mL
and
1 1 9a(1 — o)
2K 2 < 530 — %2 02 )
I < s (10— g2 4 2 )

Theorem 10 Suppose that Assumptions 1 and 2 hold with connected graphs and p > 0. Let

a< (111523 and O, =60 = ‘/;Ta Then for algorithm (13a)-(13d) with fized gossip matriz W,

we have for any K > 1

62 b
P = P + (5, + 1) 99 - e P < -0,
and
1 e,
S msK2 < (1 — oK+
IR < (- 0)F
— * 2 0 — * 4(
where C = F(z%) — F(z*) + (5 + &) |20 — 27|12 + i 0 2

The above theorems give the (’)(ﬁ \/g) and O(,/ M(TLUP log 1) convergence rates for

nonstrongly convex and strongly convex problems, respectively. As illustrated in Table 1, our

convergence rates significantly improve over the ones of O( —-) and O(( Lys/7 (17;1‘5 log 1),

respectively, which were originally proved in (Qu and Li, 2020)

Remark 11 In our Theorem 10, we require each fg(w) to be strongly convex. Some
literatures study the weaker assumptions where only F(x) is required to be strongly convex
and each f(; can be convex and smooth. Sun et al. (2022) established the (’)((/LOL_U))2 log 1)
complexity for gradient tracking over general undirected graphs. As a comparison, when
each J) s strongly convez, the state-of-the-art complexity of gradient tracking is (’)((% +

o) ) )log ) (Alghunaim et al., 2021). Currently, it is unclear how to combine our techniques

with those in (Sun et al., 2022) and we conjecture that the complezity would be higher than the
one given in Theorem 10. On the other hand, for some algorithms relying on multi-consensus
(Ye et al., 2025, 2020), the weaker assumptions have no influence on the complezity.

14
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2.4 Improved Dependence on the Network Connectivity Constants

As shown in Tables 1 and 2, the dependence on the network connectivity constants in our
complexities is not optimal. We improve it over static graphs and time-varying graphs in
the next two sections, respectively.

2.4.1 CHEBYSHEV ACCELERATION OVER STATIC GRAPHS

Chebyshev acceleration was first used to accelerate distributed algorithms by Scaman et al.
(2017), and it has become a standard technique now. Define the Chebyshev polynomials
as To(x) = 1, Th(z) = x, and Ty41(x) = 22Tk (x) — Tp—1(z) for all & > 1. For symmetric
W, define A=1—W with 2> XA > Xy > ... > A1 > A = 0 being its eigenvalues. We

know A\;,—1 = 1 — 0. Define v = )"/'\Ll_l, c = };%, cy = %v c3 = )\1++7n—1’ and Py(z) =
1— W Then, P;(c3A) is a symmetric matrix satisfying P;(c3A)1 = 0 with its spectrum

in [1— %, 1+ %] U0 (Auzinger and Melenk, 2017). Let ¢t = % so to have ¢t < é and
t t

[1— 1—2i-6012t 14 1_2;1%] C [0.35,1.65]. Thus, we can replace the fixed gossip matrix W in algorithm
1 1

(13a)-(13d) by I — Pi(c3A) because its second largest singular value o’ satisfies o/ < 0.65,
which is independent of 1 — o. From Theorems 9 and 10 with o replaced by o', we see that

. Ly = . i} L 1
the algorithm needs O(\/;) iterations for nonstrongly convex problems and (9(\/; log )

iterations for strongly convex ones to find an e-optimal solution, which corresponds to the
gradient oracle complexity. On the other hand, we can compute (I — P;(c3A))x by the
following procedure (Scaman et al., 2017):
Input: x. Initialize: ag =1, a; = ¢2, 2° = x, 2! = co(I — c3A)x.
for s=1,2,....,t—1do
as11 = 2c2a5 — As—1,
z°Tl = 2co(1 — c3A)z° — 25 1.
end for
Output: (I — Py(csA))x = Z

at”
Thus, the communication round complexities for nonstrongly convex and strongly convex

_L

6(170)) and O(,/—L— log %), respectively.

problems are O( o)

Corollary 12 Under the settings of Theorem 9 with symmetric and fixed gossip matriz W,

algorithm (13a)-(13d) with Chebyshev acceleration requires time of O, /ﬁ) communica-

tion rounds and (’)(\/%) gradient oracle calls to find an e-optimal averaged solution such
that F(T) — F(z*) <.

Corollary 13 Under the settings of Theorem 10 with symmetric and fized gossip matriz

W, algorithm (13a)-(13d) with Chebyshev acceleration requires time of O( N(IEU) log%)

communication rounds and (’)(\/%log %) gradient oracle calls to find an e-optimal averaged
solution such that F(Z) — F(z*) < e.
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2.4.2 MuULTIPLE CONSENSUS OVER TIME-VARYING GRAPHS

Although Chebyshev acceleration has been widely used in decentralized optimization, it is
unclear how to extend it to time-varying graphs. In this section, we use a multiple consensus
subroutine as an alternative to improve the dependence on the network connectivity constants.
Motivated by Chebyshev acceleration, our idea is to replace W* in (13a)-(13d) by virtual
gossip matrices W< with carefully designed ¢ such that

IIW x| < —||TIx||, r=1,2,3.

1

e

Here, é can be replaced by any constant not close to 1. Then, it can be regarded as running

the resultant algorithm over time-varying graphs with each graph instance being connected
1

at every time, and moreover, o = ¢. Note that we do not require the symmetry of the gossip

matrices in Assumptions 2 and 3, thus our theorems apply to the virtual gossip matrices

W<, From Theorems 2 and 3 with v = 1 and 0, = 1, we see that (9(\/%) iterations for

nonstrongly convex problems and (9(\/% log %) for strongly convex problems suffice to find

an e-optimal solution, which correspond to the gradient oracle complexity. Next, we consider

the communication round complexity. Letting { = [1_"’%], it follows from (9) that

1

L 1 1
W x| < o™ [TIx ]| = (1= (1 = 0)) 7 |[TIx]| < - I,

where we use the fact that (1 — 2)/* < 1/e for any = € (0,1). Since W*<x can be
implemented by the multiple consensus subroutine

ut+1 — Wtut

with ¢ rounds of communications initialized at u® = x, the communication round complexity
is O(1=2 \/%) for nonstrongly convex problems and O(7-L \/% log 1) for strongly convex

O~ 1—0o4

ones, respectively.

Corollary 14 Under the settings of Theorem 2, algorithm (13a)-(13d) combined with the

multiple consensus subroutine requires time of (’)(1_70 %
Y

) communication rounds and

O(\/g) gradient oracle calls to find an e-optimal averaged solution such that F(Z)— F(z*) <
€.

Corollary 15 Under the settings of Theorem 3, algorithm (13a)-(13d) combined with the

multiple consensus subroutine requires time of O(ljg \/%log%) communication rounds
Y

L 1 . . .
and O(\/;log =) gradient oracle calls to find an e-optimal averaged solution such that
F(z)— F(z*) <e.
Remark 16 The multiple consensus subroutine is only for the theoretical purpose. It may

be impractical in a realistic time-varying network because communication has been recognized
as the magjor bottleneck in distributed optimization. The multiple consensus may place a
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larger communication burden in practice, although it gives theoretically lower communication
round complezities. A similar issue also happens in APM (Li et al., 2020a) and DAGD-C
(Rogozin et al., 2021b), which also need a multiple consensus subroutine.

On the other hand, decentralized optimization over time-varying graphs is important
because of two reasons. Firstly, in many applications, the communication network varies
with time, and algorithms for this scenario are needed. Secondly, many other scenarios can
be reformulated as optimization over time-varying graphs, such as asynchrony (Spiridonoff
et al., 2020), local SGD (Koloskova et al., 2020), and sparsification (Chen et al., 2022). In
these scenarios, the real network may be fived, and the time-varying graphs are only used for
analysis. So the single loop methods are much more favored.

Remark 17 Unlike the scenario over static graphs, the communication round complezity
lower bounds over ~y-connected time-varying graphs have not been established, and it is

unclear whether the O(=5-1/%) and O(= \/%log 1) communication round complexities

O~ € 1—0oy

can be further improved. We leave it as an open problem. On the other hand, Kovalev et al.
(2021a) established the O(ﬁ\/%log %) communication round complezity lower bound and

the (’)(\/glog %) gradient oracle complexity lower bound for the special scenario of connected

graphs at every time. That is, v = 1 in our scenario.

3. Proofs of Theorems

In this section, we prove the theorems in Sections 2.2 and 2.3. We first reformulate algorithm
(13a)-(13d) as the inexact accelerated gradient descent and give its convergence rates in
Section 3.1, and then bound the consensus errors. To help the readers get a quick start on
our proof framework, we first bound the consensus errors over static graphs in Sections 3.2,
and then extend it to the time-varying graphs in Section 3.3. The former scenario provides
some basis and insights for the complex proofs of the latter.

3.1 Convergence Rates of the Inexact Accelerated Gradient Descent

Following the proof framework in (Jakoveti¢ et al., 2014a; Qu and Li, 2020), we multiply
both sides of (13a)-(13d) by %IT and use the definitions in (3) and (2) to yield

7" = 07" + (1 - 0,)7", (15a)
P P -

5" — m va(z‘)(y@)) =35kt~ - ZVf(i)(yZ) 1)7 (15b)

=1 i=1
_ 1 o a_
k+1 _ e R )

z 1+@f<9ky +z 9k3>, (15¢)
= 02 4 (1 )7, (15d)

where we use the column stochasticity of 1" W* = 17. From the initialization s” = V f(y")
and (15b), we have the following standard but important property in gradient tracking:

= LS k). (16)
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Iterations (15a)-(15d) can be regarded as the inexact accelerated gradient descent (Devolder
et al., 2014) in the sense that we use = "7, Vi ( ) as the descent direction, rather than

the true gradient % it Vi (7*). In fact, when we replace 5% in step (15¢) by the true

gradient, steps (15a), (15¢), and (15d) reduce to the updates of the standard accelerated
gradient descent, see (Nesterov, 2004; Lin et al., 2020) for example.

The next lemma demonstrates the analogy properties of convexity and smoothness with
the inexact gradients. The proof can be found in (Jakovetié et al., 2014a; Qu and Li, 2020).
For the completeness and the readers’ convenience, we give the proof in the appendix.

Lemma 18 Define

f@ ;;( (u() <Vf (yz)?k—yﬁ;»)- (17)
Suppose that Assumption 1 holds. Then, we have for any w,

F(w) 2 £ y") + (0 7" ) + Sl = 5", (18)

Fw) < fG 59 + (3w =) + Sl =77 + o myh e (9)
FEspecially, we allow p to be zero.

Define the Bregman divergence as follows:

Dy(ev") = £ 3 (@) — foluly) — (T )z —oty)) (20)
=1

The next lemma gives the convergence rates of the inexact accelerated gradient descent.
The techniques in this proof are standard, see (Lin et al., 2020) for example. The crucial
difference is that we keep the Bregman divergence term Dy (z*,y*) in (21) and (22), which
is motivated by (Tseng, 2008).

Compared with the standard accelerated gradient descent, for example, see (Nesterov,
2004; Lin et al., 2020), there are two additional error terms (a) and (¢) in our lemma due to
the inexact gradients. In the next two sections, we bound the two terms carefully by (b) and
(d), respectively, such that the convergence rates of the accelerated gradient tracking match
those of the classical centralized accelerated gradient descent, which is the main technical

contribution of this paper compared with the existing work on accelerated gradient tracking
in (Qu and Li, 2020).

Lemma 19 Suppose that Assumption 1 with p =0 and part 2 of Assumption 3 hold. Let

the sequence {Qk}k o satisfy L 9" = 92 with 6y = 1. Then for algorithm (13a)-(13d), we
—1
have
F(zFth) - F(a¥) K1 ox2 o~ L0 w2
gl IS )
K
1 L _ 1 _ (21)
+Z 02||Hy #=> ((m - 2) I8 = 241% + %Df(wk,yk)) .
terr?lr(a) terr;lr(b)
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Suppose that Assumption 1 with u > 0 and part 2 of Assumption 5 hold. Let 0 = 0 = @
for all k and assume that ap < 1. Then for algorithm (13a)-(13d), we have
1 0% uf
F —K+1 o F * 7 —K+1 *|2
e (FE <x>+@a+2)n |
< F(E0) — F(z* ‘iz 0 *q2 k|2
< P@) - P+ (o + 2 ) 12— +—§j s gy
22
term (c) ( )
K
1 0 LO*\ | ki1 kg2 1 —k K
Z( k+1<2a2)H2+2H Jr(l_e)kDf(an))-
k=0 _
terr:’lr(d)
Proof From the inexact smoothness (19), we have
L L
F@ ) <@ y5) + (5,85 =) + S —7F 2 + -y
m
Lo? L
LPE Y + 0 (355 ) 4 I =2+ Ty
mn (23)

=f(@7",y* +0k<5k,:17 -z >+9k<§ ,Ek+1—x*>
LO?
+ k||2k+1 7k\|2+f2 TLy" 1%,
m

where we use (15a) and (15d) in =. Next, we bound the two inner product terms. For the
first inner product, we have

F@*,y*) + 0p (55, 2" —z’f}
_fyy <k 1—9k)x —y>
o (0 (=) + -0 (3940 + (54— )
éekF(x*)_“;”wyyk_x*Her“ﬂﬁi(f(i)(y@)) +(Viawh) 7 o))

=1
= ()~ PR 0P (1 0 F ()
— 0
L= O Z (f(i)(fk) — Foy (i) — <Vf(¢)(y@-))7fk - y@)>>

m
=1

= OrF (") — qu I15° — 2™ + (1 — 65 F(T*) — (1 — 0) Dy (T*, ¥"),
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where we use (15a) in i, (18), (17), and (16) in % For the second inner product, we have

2
« 0.
61% —k *(12 —k+1 * (12 —k+1 =k 12

=k (112 — |2 — 24+ — |2 — 2 —2F)2)

WOk (1 ko« —k « —k —k
+ 55 (I =22 = 25 =22 - 25 - 74,
where we use (15¢) in £ Plugging into (23) and rearranging the terms, it gives

2
F(@*h) — F(a*) + <9k + M) 25+ — 2|2

2c 2
92
< (L B)(F()  Pa') + o [ — o 24)
92 L92 k+1 k2 k ok L k
22— (1 —6,)Dy(x — || TIy* .
~ (g5 - T5E) I = 2P - (1 00Dyt )+ s

Case 1: Each f;) is nonstrongly convex. In this case, (24) holds with ¢ = 0. Dividing
Gk _ 021
k—1

both sides of (24) by 9]%, summing over k = 0,1, ..., K, usmg and 0y = 1, we

have (21).
Case 2: Each f(;) is p-strongly convex. Letting 0y = 0 = F for all k, we know
2 < (% + “79) (1 — ) holds if ap < 1. Dividing both sides of (24) by (1 — 6)**! and

200 —

summing over k = 0,1,..., K, it gives (22). |

3.2 Bounding the Consensus Errors over Static Graphs

In this section, we bound the term (a) by (b) appeared in (21), and the term (¢) by (d)
in (22) over static graphs. We first bound ||ITy*||? in the next lemma. The crucial trick is
to construct a linear combination of the consensus errors with carefully designed weights
such that it shrinks geometrically with an additional error term. Moreover, the step size «
remains to be a constant of the order O(%) as large as possible. Another trick is that we
use a constant 7 to balance Ds(Z" 1, y" 1) and |27+ — z"||? in ®", which is generated by
Young’s inequality and will be specified later.

Lemma 20 Suppose that Assumptions 1 and 2 hold with > 0. Let a < (=9 ond the
80L,/1+

sequence {Hk}kK:o satisfy Ox+1 < 0 < 1. Then for algorithm (13a)-(13d) with ﬁxed gossip
matriz W, we have

k
max { [Ty |2, [t 2 < 04 00 Y phreior, (25)
r=0
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_ 1 _
where p = 1= 152, C1 = s 0P, Ca = 55t
2mL(1
Pr = WDf(errl:errl) + 2mL2 ( ) HfrJrl —rH27 (26)
T

and T can be any positive constant.

Proof Multiplying both sides of (13a)-(13d) by II, using (6) and ||IIx|| < ||x||, we have

ITIy*]) < G ITI2*] + (1 — 6,)[Tx*| < 04 | TL4]| + | TIx* (27)
1)) < st + [V AR = V() (28)
o 0. a
I12+1)| <o ( . ||sz||> ; s
O + po O + po O + po
aog(ua+1)60 logi%e’
2ot DOy TEO ey st (29)
O, + po O, + pa Or + po

b
no «
S e R e
I < 0 1125 | + o] (30)

a b
where < uses (27), < uses 0 < 1 and (“QH)@’“ < 1 with 6, < 1. Next, we bound ||V f(y**+1)—

TOptna
V"I

V£ = V)2 = an — VW)
< S U+ I Y - Ve @2
=1

1
+Y (14 ) : (||Vf@ @) = VLo @ + 19 o (@) = ¥ Fiy )7

=1

d m
£ 2mL(1+ 1) Dy(E", y ) + 212 ( ) S (1754 = 7412 + g = o 12)

1=1

(31)

= 2mL(1 4 7)Dp(z*H, y"*) + 217 <1 + i) (mez”z’f“ —2"* + ||Hka2>
= 020% + 212 (1 + i) [Ty * ||?
L gk 1 ar? (1 + i) (ez\\nzkH? + ]]kaHz) :
Where < uses Young’s inequality of ||a — b||?> < (1 + 7)||al|® + (1 + l)||bH2 for any 7 > 0,

S uses (5), the smoothness of f(;), and the definition of Dy in (20), = uses (15a), (15d),

f
and the definition of ITy in (4), < uses (27). Denote ¢g = 4L* (1 + %) for simplicity in the
remaining proof of this lemma.
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Squaring both sides of (28), it follows that

l-0o
[TIs* 1% < (1 + ) o ||TIs™|1* + <

U—|—0

) VAR — VY

sk |2 + +U||Vf(y’““) Ol (32)

1+

g
ST st 4 2 (6 4 oI + ol T

g
where we use 0 < 1 and (31) in <. Similarly, for (29) and (30), we also have

1 + o 4 pula? a?
T2 < == (T2 4 o = [T 5 [T ) (33)
—o \ 0 0

1

20?2
It 2 < ﬁunka + gt 2 (34)
— 0

Adding (32), (33), and (34) together with the weights c1, 620,%“, and cg, respectively, we
have

c1 [ TI8™ 4|2 + ol [T12" 7|2 + 3| T2

h 9 1
SclHHSk+1H2+< 0k+ 103 )HH k+1”2 MHH k||2

(1+O') 263 40{ k2

( o (et 7 ) o ) s
26061 203 +o

v (222 ( ) ' )eknnzkr\?

2 2 1 2
< c001 c3 > wla N es( +O’)> HHXkHQ 2 c1 Qkfbk,
9cocy

l1—0 2
where we use 011 < 0 and (34) in S. Letting c3 = T C2 = (Slof%";ﬁ > (800032 +a 803)

(1-0)% (1—0)*
1600co * 1600u2

1—0

such that

and o2 < min{

c1(l1+0) N < o+ 2c3 > 40?2 < ci(l+0)  400cycia? < c1(3+0)
1-—

2 1—0~ 2 (1—0)> — 4
2cpct 2c3 1+0 2cpcy 02(1 + (7) 2c3 62(3 + U)
< <
1—0+<C+1—J> 2 1o 2 ‘1o 1
2coc1 N 2c3 \ 442’ n cs(1+0) < 2coc1 400cocip®a®  c3(1+0) < c3(3+0)
1-0 \*"1-¢)1-0 2 ~1-0 ' (1—o0)p 2 = 4
we have
er[[TI* Y| 4 cof T2 |2 + e[ T2
3 3+o 2c
< S (eollmist? + cabf T2 |2 4 e[ 11 2) + T 60"
k+1 k
3+o 340
<(PF7) (s e )+ 2052 (% )
r=
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From (27), c2 > c3, and the initialization such that IIx°? = ITy°? = I1z° = 0, we have

2
k k k k
Ty < (eall T o [T e T )

k41 k ker
3+o 2c1 0112 4cq 3+0 9

< i _ta 020"
<(17) ms) taiea 2 (h :

k+1 2 k k—r
3+o (1-o0) 1-0 3+o
(o) e s Y () e
4 18(1+ 1)L 91+ 1)Lz &=\ 4

which is exactly (25). |

Having (25) at hand, we are ready to bound the term (a) by (b) appeared in (21). The
remaining challenge is to upper bound the weighted cumulative consensus errors.

Lemma 21 Suppose that Assumptions 1 and 2 hold with = 0. Let the sequence {Ok}kK:O

satisfy =0 = 1 with 6y = 1, let o < ﬁ. Then for algorithm (13a)-(13d) with

0; O

fizxed gossip matriz W, we have

SN k2 L k2
max ZQmH,%HHy | ,ZQm%HHX |

k=0 k=0

16
~3mL(1+1)(1-0)

|18 +
m

where T and ®" are defined in Lemma 20.

Proof We first give some properties of the sequence {Gk}fzo. From 1;29’€ = 921 and 6y = 1,
k
1

k—1
we have 0 < 0;_1, é —-1< ﬁ, and é -5 ﬁ, which further give

— <1, —— << —. (36)

From (25), we get

K

K K

3 L k2 chka Zch k=112
QszHHy " < 2m9,%, + 2m02 P 0
k=1 k=1

k Kk 2
Gl o Gl g r N gy (37)
k
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Recall that for scalars, 6, means the value at iteration k, while p* is its kth power. Next,
k k

we compute Zfzr 41 5z for any r > 0. Denote S = Zfzr 1 5z for simplicity. We have
k k

+1 K+1

5P p
Z 02 202 _g2+9%<’

k=r+1 k k=r+1 -

and

1 pT-l-l pK+1
-3 (e?‘e@)* . X 7

k=r+1 k= r+1
where we use 1_29 B = L in £ Tt further gives
ek gk 1
K Pl prt2 K2 K o il KL 2 K2
PU=p)S= 2 Gt = 2 g e Y e e
k=r+1 k r K k=r+1 k-1 T K r K
and
(1—p)*S=(1—p)S—p(l—p)s
K e 1 Pl pEHL gl pRHL e K2
:Zp<e_9 >+92_92+9_9_92+92
k=r+1 ke Ukl r K r K r K
K
_ Z pk<1_ 1 >+(1_p)pr+1_(1_p)pK+1+pr+1_pK+1
Nt Or Ok 62 6% 0, Ox
K
b (1 _ p)pr-l-l pr+1 p'r+1 2pr+1
<) A +=— < + :
k;l 02 0, —1—p 02
b
where we use (36) in <. Thus, we get
K ok +1 r+1 r+1
1 " 2
> s e (0 ) < 39
W50 A=p \1=p 67 (1—p)*0;
Plugging into (37), it follows from ITy® = 0 and 6y = 1 that
i L imykp2 < 3Cike 3C,L Kzl
2 — )3
— 2mb;, —2m(1 - p)3 2m 1
16
< TIs’||? + P,
—:’)mL(1+$)(1—a)H I+ L(1+ 0)? Z

where the last inequality uses the definitions of C, Cs, and p given in Lemma 20. Replac-
ing ||TTy*|| by ||TIx*|| in the above analysis, we have the same bound for ZkK:o ﬁ [ TIx* 2. =
k

In the next lemma, we bound the term (c) by (d) appeared in (22) in a similar way to
the proof of Lemma 21.

24



ACCELERATED GRADIENT TRACKING OVER TIME-VARYING GRAPHS

Lemma 22 Suppose that Assumptions 1 and 2 hold with p > 0. Let o < =9 g
80Ly/14+1

0, =0= @ Then for algorithm (13a)-(13d) with fized gossip matric W, we have

K I K I
JE—— ) N | k|12 I —hs k|2
max{kz_om(l_ gyl 13 g e
. ) (39)
K—1
4(1 - o) o2 862 o"
< II + ’
~ 2TmL(1+ %)(1 —0) sl 2TmL(1 + %) Tz:(:) (1—-06)+1
where T and ®" are defined in Lemma 20.
Proof From (25), we get
K
L k2
> g =gy Ty
— 2m(1 —0)
K K k—1
Cle k—1—rp2F7r
;2m k+1+;2m k+1ZP 0"
_ Gl i p ’“+ 62Cy L i ’“’“Zl
2m(1 —6) —\1- 0 2mp(1 —0) P
:ClLip"’mKlepk
2m(1 —0) 1-6 2mp(1 —0) 1-6
k=1 r= =r+1
5(1—0’)

From the settings of 8 and «, we know 0 < 11_6”. Thus we have 1 g <1, 1- 0 —

k r
and Z§:r+l (1—%) < (ﬁ) ﬁf’_p with p = 1 — 152. It follows from ITy° = 0 that

16 >

i L Myt 2 < Cil P 0L KZI o
Zaam(T— )Y oI =0 T—0—p  2m(1—0-p) = (1- 0+
K-1
4(1 - o) 012 802 ol
< 11 + ,
~27TmL(1 + 1)(1- 0) s L+ I ;) 1= )+

where the last inequality uses the definitions of C; and Cs given in Lemma 20 and
1—-0—p> 3(11?7). Replacing ||TIy*|| by [|[TIx*|| in the above analysis, we have the same
bound for TIx*. |

Now, we are ready to prove Theorems 9 and 10. We first prove Theorem 9. The crucial
trick in this proof is to make the constant before Dy (z*, y*) positive by setting the constant
7 small, and make the constant before ||z/T! — Z!||? positive by setting the step size o small.
This is the reason why we introduce the constant 7 in the definition of ¥" in (26).
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Proof Plugging (35) into (21) and using the definition of ®" in (26), we obtain

F =K+1 — F(x* 1
S e &
GK 2c
1 16
S gl =" IP+ : s
20 3mL(1+ 1)(1 - o)
K
1 L 22L St ot)2 1 221+ 1) I
- % 2 (-op)lF TEINT 1 - Dy (",
k:zo (<2“ 2 (1—0>2) : "5 1+ (1 ~0)? sy
K
a 1 -0 *1(2 16 0112 1 bl —t2 1 kg
— || — T + HS - —||Z —7Z + D T ,

L ), X 11{2_1@“
20 8mL 5mL ~ ’

IA

(1-0)?

a
where in < we let 7 = 11— so to have —220+7)

1+ 1) (1-0)2

< (1—0)* < (1-0)®

1
= = [0 ~
2 537L 80L\ /141

1 L 22L
525—’—@ Sowehave

_ . 1 . 1-0
FE ) = P < 6 (ol - oI+ T s

1 KA 1 l—0o
5””’2; < 5o ll7 =27+ g TS

It follows from (35) that

= L k|2 X L k|2
mas 37 5 I Y 5 |

k=0 k=0
K—1
16 11
< | T1s(2 + >
— 1 1 2
3mL(1+;)(1 —0) mL(l—i—;)(l—a) =
l—0o 1 =
< 1I 0112 - q)r
— 8mL ITIs7]1 + 4dmL ;
5 o *|2 9(1 - o) 012
< — — — |11 .
< 2 — o + = s

From (36), we have the conclusions.

Next, we prove Theorem 10.
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Proof Plugging (39) into (22) and using the definition of ®" in (26), we have
1 0%  ub
F —=K+1\ F * - —K+1 * (12
gy (FE - Fa) + (5 + ) 170 -]
02 ub 4(1 - o)
<F43_F *_|_ 4 4)_*2+ H02
< F@) < P+ g5+ ) 1900l oS

1 62  Lo> 16L6%\ , _ _
( > sz+1 o Zk:”2>

a 02 ub 4(1 - o)
<F—O _ F(z* e =0 * (12 H02
ERE) - P+ g+ ) 1900l g e

K 1 62
_ E - D =k Kk s 7k+1 k 2

02 o 4(1 —
+,U,> “Eo_x*“2+ ( 0) 0H2_

59mL(1—0) |

. @ o 16(14+7) _ 1 (1—0)3 (1—(7)3 1 L
where in < we let 7 = 32 so to have 7+ L) =3, a< < ,and4—2§+2—.

Thus, we have the first conclusion and

892 = @r 02 b 41— o)
somL 2~ G —gpa =@ ") - F@n)+ (2a T3 ) Iz ="+ sz =g M 1™

Il
=)

T

It follows from (39) that

K
L
= || T ?
kZO 2m(1 — 9)k+1
K-1
4(1-0) 862 "
< 1 ||HSOH2 + 1 Z — g)yr+1
27TmL(1+ L)(1 - 0) 2TmL(1+ 1) <= (1-10)
K-1 r
4(1-o0) ") + 862 P

59mL z; (1—g)r+1

2
<2 (F@) - P + (g + 15 ) I =P 4 s 2 ISR

" 59mL(1 - 0)

Thus, we have the second conclusion. |

We end this section by summarizing the differences from (Qu and Li, 2020) and the

reasons of the convergence rates improvement.
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Remark 23 As shown in Lemmas 19 and 20, we keep the Bregman divergence term
D¢(z*,y*), and use a constant T to balance this divergence term and ||zF+1 — ZF|2. As
shown in the proofs of Theorems 9 and 10, we make the constant before Df(fk,yk) positive
by setting T small. As a comparison, Qu and Li (2020) did not use this Bregman divergence
term, and they bounded the term ||T% — 5% ||%, which is generated by the consensus errors and
is an analogy to our term Dy (T*,y*) generated in (31), by setting much smaller step sizes
than ours. See (32) and (53) in (Qu and Li, 2020) for the details. To make the constant
Ay in their (32) positive, Qu and Li (2020) set the step size of the order a = O(+(4)3/7).
Since \/po dominates the convergence rate for strongly convex problems, Qu and Li (2020)
only got the slower convergence rate of O((1 — (%)5/7)’“). For nonstrongly convex problems,
Qu and Li (2020) set the step size of the order O(ﬁ) to bound the corresponding term in
their (53), which gives the slower convergence rate of O(ﬁ).

As shown in Lemma 20, to bound the consensus errors, we construct a linear combination
of the consensus errors such that it shrinks geometrically with an additional error term. As
a comparison, Qu and Li (2020) used the linear system inequality, which needs to upper
bound the spectral radius of a system matrixz and thus it is quite involved. See the proofs of
Lemmas 7 and 13-15 in (Qu and Li, 2020). Our proof is much simpler than those in (Qu
and Li, 2020), and it can be extended to the time-varying graphs in a unified framework.

3.3 Bounding the Consensus Errors over Time-varying Graphs

In this section, we consider algorithm (13a)-(13d) over time-varying graphs. Our analysis
follows the same proof framework in the previous section for static graphs, but with more
involved details. In the next lemma, we first give the analogy counterparts of (32)-(34).

Lemma 24 Suppose that Assumptions 1 and 3 hold with p > 0. Let the sequence {Qk}kKZO
satisfy % < Opy1 <0 < 1. Then, we have for any k > v —1,

k
1+o _ 2y
T2 < TP =y (6707 + o TP + ol TIxT) - (40)
T r=k—~y+1
k+1
1 5.5
12 < 2O k2 220 SN 22, (41)
2 1-— Oy
r=k—y+2
k
l1+o _ 4y
O 02 < =6 [P = ST (e I+ o 1T
v r=k—vy+1

(42)
where we denote ¢y = 4L? (1 + %), and 7 and ®" are defined in Lemma 20.
Proof From (13b) and the definition of W in (7), we have for any k > v — 1,

S WS 4 T f(rF) - V()

k+1 k k
(I )]s 3 (H Wt“) (VA1) = VIG")
t=k—~y+2 r=k—vy+1 \t=r+1
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k
=W ST WV - V)
r=k—vy+1
where we denote Hf:k 41 Wil = . Multiplying both sides by II, using (9) and (10), it gives
k

Ts* ) < o [T+ Y (V™) = V- (43)

r=k—vy+1

Similar to (32), squaring both sides of (43) yields
k

1 + o _ 2 r

[TIs* )2 STWHHS]C 2+ F—— Z IVFy™) = Vil

T\ ek
r=k—vy+1 (44)
1+o 2 b
STWHHS’C*VHHZ T o Z IVFy™) = ViIP.
v r=k—vy+1
From (31), we have (40). It follows from (13d) that
xk+l =(1- Qk)Wka + kak—H
k k k
=| JI a-ow" |y (]I(l—@ﬂW)&f“
t=k—vy+1 r=k—y+1 \t=r+1
k k k
=Rk T (a-6)+ Y wRFTert T (1-6y).
t=k—vy+1 r=k—y+1 t=r+1
Similar to (43) and (44), we also have
k k+1
T < o [T Y 6T | = o [T Y 6|12
r=k—vy+1 r=k—y+2
and
k+1
1 2
e L [ DI - 1 24
I r=k—vy+2

Using 6,_; < 1.620,., we obtain (41). Similarly, for (13c), we have

9 a o
k+1 __ k k k ol ko k k
4 = Whg 4+ —— _ s
O + po 0y, + pov y Or+ o
a Ot ne) e O =) e @
O, + pa O + jc R
k
= H th L1
tia1 Do
k k 0:(1 + po) a(l—6,) o
oy (1 ) (e
r=k—y+1 \t=r+1 ¢ + po r -+ po -+ por
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k
— kgt T 0:(1 + pa)

t=k—~+1 O + no
k
— 0, 0:(1
+ Z Wklc r< 9( )Wrxr_e o Sr> H tg( —|—,LLO£)’
r=k—y+1 + o rtpe Sy Sh et e

and

k
b
_ po(l —6,)
T2 | <o T2+ ) <HH I+ e WHHSTH)

r=k—y+1 0 +
b Jite’ !
k—
<oz S0 (e i)
r=k—vy+1 " "

b
where we use (13a) in =, %—ﬁ <1 with 6, <1 in <. Similar to (44), squaring both sides
yields

k
140 _ 4ry ura?
k k
Ikt < BT o Y (1

2 o? 2
T T

v r=k—vy+1

Multiplying both sides by 67 41 and using the non-increasing of {6}, it further gives (42) B

Motivated by the proof of Lemma 20, we want to construct a linear combination of the
consensus errors. However, due to the time-varying graphs and the ~y-step joint spectrum
property in Assumption 3, we see from (40)-(42) that they shrink every ~ iterations, rather
than every iteration. By exploiting the special structures in (40)-(42), we define the following
quantities:

MERT = xR MER = max T
r=k+1,....k+~ r=k+1,.. ,k+
k4, — I 2 k+y,y — 92 I 2‘
My e, [Ty" |7, M, L max, - (1Lz" |

Motivated by (25), we define the following quantity in the form of summation, instead of
the maximum, and we sum up to k + v — 1, rather than k + -,

k+~y—1
k+’7 1,’7 Z 02@7"

The next lemma is an analogy counterpart of Lemma 20. Unlike the classical analysis relying
on the small gain theorem (Nedi¢ et al., 2017), which is unclear how to be used to the
accelerated methods, and especially for nonstrongly convex problems, our main idea is to
construct a linear combination of M]Sﬁ%v, METYand MEFYY with carefully designed
weights such that it shrinks geometrically with the additional error term S§+7_1’7, which
is crucial to extend our analysis over static graphs to time-varying graphs in a unified
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framework, both for nonstrongly convex and strongly convex problems. Moreover, our proof
technique to bound the consensus errors can be embedded into many algorithm frameworks,
because it is separated from the analysis of the inexact accelerated gradient descent in
Lemma 19.

(- ‘77)3

T we have for any
gl

Lemma 25 Under the settings of Lemma 24, letting a <

t>0,
(t+1)y—1
max {M$+1)V,V7M§f+l)%v} < Cgp” + Oy Z p(tfl)'Y*Seg(I)s‘ (45)
s=0

_ _ 2
where p = 1—1%, C3 = (#‘%M;v (4427) M77+2M77), and Cy =

1—0y
38L2y(1+1)"

Proof For any t satisfying k <t < k+ v — 1 with k > 7, we can relax (40) to
t

1+o0 _ 2
st 12 <=Lt 2 S (6207 T + oI )

Y r=t—y+1
4o %y k+vy—1 %y k+y
Y t—y+112 2HT 2 12 T2
<— s | +—1_U7 P +—1_% > (cof?||TIz"||? + co|[TIx" %)
r=k—-y r=k—vy+1
ttoy +UV||H L2 27 (Sz—l,w +S§+wfm)
-0
9 k+vy
+ 2 il 3 (COMIZM + eoMEFTY oMb COMiﬂﬁ)
— v r=k—y+1
1 + J’YHH t— ’H—lHZ 27 (82—177 +S§+7—177>
— 0y
4 2
+1 70 (co./\/l];” + coMETTY o MEY 4 co./\/lff””) .
— 0y

Taking the maximum over ¢t = k,k+ 1,...,k + v — 1 on both sides, we have

140 2y E— _
kv Y ARy Ly k+y—1,9
MET S MET 4+ = (s~ + s

4’)/2

1-o0,

+ (COM’;” + coMETTY o MET 4 coMf(*%V) .

Similarly, for (42) and (41), we also have

1 8+°
MEFTT < —;U’YMk'y + 70 (;ﬂoﬂ/\/tfﬂ 4 22 MEFTY 2 MR azM’;*W) ,
Y%

My <LET gy IV S (M’;’” + M’;”’V)
2 1-o, ’
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where for the second one, the relaxation of fo;LV Lo 02|27 |2 < Efiz
holds for any t satisfying k <t < k+ vy — 1.

Adding the above three inequalities together with weights c¢1, co, and c3, respectively, we
have
CIMISH%V + 02M§+'Y"Y + 03/\/15(*7’7

2.2 2 2 2 2,2 2
< 8coy a MISH%A’-F <4clco'7 N 1lcsy >M]z€+%7+ <401007 N 8coy )Mff'm

1 02||T1z" ||? also

T 1—o0y 1—-0y 1—-o0, 1-o0, 1—-0y
c(l+o 8cov2a? ca(l+o deregy? 1lezy?
n 1( ) I 27 M;SM i 2( ~) 4 1¢0Y 1 37 M];;y
2 1—-o0, 2 1-o0, 1-o0,
2 2,2 2
n c3(1+oy) n dercoy n Bcoy p MET ¢ 21y (Skflq _|_Sk+'yfl,'y) ‘
2 1-o, 1-o, 1—0, \? ¢
We want to choose c1, co, c3, and « such that the following inequalities hold,
8cay?a? (1 —oy) ca(l+0,)  8cav?a® _ c1(3+0y)
< , + < )
l—0o, & 20 2 1—o, 4
2 2 _ 2 2
4ercoy N 11lesy < co(1 07)’ c2(1+0y) N 4ercoy N 11lesy < c2(3 —i—aﬁy)7
1-o0, 1-o0, 20 2 1-o0, 1-o0, 4
2 2,2 2 _ 2 2,2 2
dercoy” | Seryiptat cs(1 Gw)’ c3(1+0y) L Aacy” | Beyute” c3(3 + 07)7
1-o0, 1—o0y, 20 2 1—o0, 1—-0, 4
which are satisfied if the three inequalities in the left column hold. Accordingly, we can choose
_ 81 2 __ 17900 4 80 2 220c37> 2 . (1—04)8 (1—o4)*
= (16—1;:?2 » 02 = (1—3176)93 = (10—13;2 + (1—?])27 and a” < mln{28640080076’ 5864000777 }
Thus, we have for any k > v,
192‘;‘77 (cl/\/l’s”%'y + eoMETTY 03Mi+7’7)
3+o 2c _ _
< _ v <c1/\/l]§’7 + oMb 4 Cng(n) i % (S(’; 1y +5§+v 1,7)
— Oy
19+ oy L —oy kv kv oy 2c1y k—1,y k+y—1,y
<= <1—5> (clMS + o MEY 4 eaME >+1_U’y (S¢ + ) )
and

ClMgtH)%v + CQM;t+1)%’Y + chgH)%v

1—0o,\!
< (1_ . V) (LM + M + s ML)

+ 40c1y i 1— l—oy o (Smfl,v +S(T+1)w—1n)
19(1 — 0y) &~ 5 ¢ ¢ '

r=

(46)

It follows from (27) and cp > c3 that

%3 max {Mgf—&-l)vﬂ,M}((t—&-l)%v} < e MDY o D gD
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On the other hand, denoting p = {/1 — 1750”, we have

zt:pv(t—r) (Sg’_l’“’ + Sgﬂ)w—lw)

r=1
t 1\" ry—1 (r+1)y—1
=) <7> oot Y oo
r=1 p s:(r—l)'y S=r7y

s

=l o\ LB (t+1)vy—1 1\ 5]
="y (7) 030" +p" Y <> 629*
p

s=0 s=y pV
(t+1)y—1 1 %J’,l (t+1)y—1
<ty () mwen Y s
s=0 s=0

Plugging the above two inequalities and the settings of c¢3 and ¢y into (46), we have the
conclusion. |

Remark 26 We briefly demonstrate the advantage of introducing the quantities of M’SH%W,
M§+%77 MI;,+7’7, and M’;—H’V. As discussed in Remark 23, researchers in the control com-
munity often use linear system inequality to prove the convergence, which is quite challenging
to use over time-varying graphs. For example, Saadatniaki et al. (2020) constructed a ~yth
order linear system inequality in the form of

okt My My --- M, M, aktr—1
OékJr'yfl I ak+’yf2
aktr—2 < I aktr—3 <47)
akz—i—l I Oék

for the AB/push-pull method, which is an extension of gradient tracking to time-varying
directed graphs. They only proved that the spectral radius of the system matriz is strictly less
than 1 without any explicit upper bound. Thus, no explicit convergence rate was given in
(Saadatniaki et al., 2020).

On the other hand, the system (47) can be simplified by defining similar quantities
of MISH_WY, MTﬁﬁ, M’;,—M’V, and METTY . Moreover, the proof can be further simplified
by avoiding analyzing the spectral radius if our technical trick of constructing the linear
combination is used.

Following the same proof framework over static graphs, our next step is to bound the
weighted cumulative consensus errors. However, the details are much more complex. The
proof of Lemma 21 provides some insights.
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Lemma 27 Suppose that Assumptions 1 and 3 hold with u = 0. Let the sequence {Gk}k 0

satisfy 1= 92 = 9271 with 8g =1, let a < 338;27%. Then for algorithm (13a)-(13d), we

have

T~ I T~ I
I k|12 I k12
k=0 k=0
93573C5 L 107 Til
@S

m(l—oy)®  mL(1+ 1)(1

where 7 and ®" are defined in Lemma 20, and Cs is deﬁned in Lemma 25.

Proof We first verify Hk < 1.62041 for all k£ > 0, which is required in Lemmas 24 and 25.

1—=0k41 9 _ 1 1
In fact, from 7, 92 and 0o = 1, we have g = € (1, \/1791] € (1,1.62] for
any k > 0. Next, we upper and lower bound p. From the definition of p = ¢/ 1;‘”
the fact that (1 — %)7 >1—x for any z € (0,1) and v > 1, we know
1-o0 4
<1- 1 > 49
p=< 5 0 P2y (49)
The remaining proof is similar to that of Lemma 21. From the definition of MWJW 7 and
(45), we have
L T-1 v T—1 I o)
Dy
Iy*|* = My *7)* < g My
Z:: 2mo; =0 TZ: 2m 937” t= ; 2mO, 4+
T-1 v ‘ T-1 v (t+1)v-1
e I I I D M
> 2 2 s
t=0 r=1 2mby t=0 r=1 2mby s=0 (50)

-1 v T-1 v (t+1)y—1
CgL pt’y-i-r C4L ptW/—i-r 92
Som 22 T w2 Y

s
ty+r =0 =1 PV s P

k
T~ k [;"’Y_l

o CsL X pt AR Vgl s 03 o5
= PRIy AN ) Pt
2mp? k=1 Op ~ 2mp= k=1 O 5=0 p?

where (t +1)y—1= [%h — 1 in £ comes from the variable substitution k = ¢ty + r with

r=1,2,...,7. Next, we compute the second part in =. It gives
T~ [ Ty—1
Z Z o

Ty— kk:+“/ 1

<Y 53 Lo > JZ

k=Ty—~+1 O =0

02
—=® (51)
ps

P 1 Ty—y kkﬂ Ly Tyl po Ty o
=(zmzw+z > & ) > e ¥ 4
k=1 "~k s=0 =0 k=T~—y+1 K
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y—1 02 Ty—y  Th—1 02 Ty—y
ey ey e v 4
- s 2 s 2
P
s=0 k=1 'k s=y k=s—vy+1 k
=1 o T k Ty—1 .9 T~ k
5 B P 05 & p
+ ® 24N Zo L
S 2 ps 2
5=0 k=Ty—~+1 k  s=v k=Ty—y+1 "k
v—1 92 v Tvy—1 92 Ty k
- s 92 s 2
5=0 k=1 "k s=y k=s—vy+1 k

T~
Sy
2mb? y
k=0
T —1 T Tv—1 T
CSL Y pk‘ C4L i ﬁ@s Y &k+ i: 03 5 2l pk‘
— 2 2 2 2
2mp? Pt 0;  2mp>Y — s pt 07 =~ p° 0
—1 T~—1
2 CsL  3p n CyL 3p 7§:£¢8+ i: 073(1)5 3p5~ 7+
= 2mpY (1= p)3 " 2mp*7 \ (1 - p)3 = p* = (1-p)P07,
_ Tv—1
c 3C3L CuL p1H1
< o
— 2mp'y—1(1 _ P)3 + Qmp2'y ( p'y—l SZ;) + 1 _ 3 Z
3C3L 3C4L (e
< — +—3 I Z ®
2mp =11 —=p)®  2mpPr-
d 23573C3L 107 o
< Sy e

m(l—o,)3  mL(1+1)(1-o0,) ~

b d
where < uses (38), % uses 0y <1 for s <y—1and 0, <0,_, for s >, < uses (49) and the
definition of Cy given in Lemma 25. Replacing ||IIy*|| by ||[IIx*|| in the above analysis, we
have the same bound for ||TIx*||2. [ ]

The next lemma is an analogy counterpart of Lemma 22, and the proof is similar to that
of the above Lemma 27.

_ 3
Lemma 28 Suppose that Assumptions 1 and 3 hold with p > 0. Let a < S G2
3385Ly3,/1+1

0, =0 = @ Then for algorithm (13a)-(13d), we have

max iLrn dE iLon’fn?
om(1 — o)1 Y 2o gyt

k= k=
° ’ Ty—-1 (52)
3.3C3Ly 62 Z N

“ml-0)(1-0,)  TmL(1+1) & (105
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where T and ®" are defined in Lemma 20, and Cs is defined in Lemma 25.

Proof From the definition of M?’V and (45), we have

L P
om(i — gyt MY
k=1

T-1 I T—1 ~ ( )
_ ty+r 2 t+1)7,y
- Z Z 2m(1 — f)trtr+1 [y I < 2m(1 t7+r+1M

t=0 r=1 t=0 r=1

T-1 v . T-1 v (t+1)y—1
233 C3Lp™ Ty CuL S g
- 2m(1 — @)trtr+l 2m(1 — @)tr+r+l

t=0 r=1 t=0 r=1 s=0

CsL T-1 v pt'err C4L92 T-1 v t’y+r (t+1)y-1 Ps
ST PR e e T PR M ey M
[E]y-1

et S (1) S () ”z =

2mpY (1 —0) ~\1-90 2mp?7 (1 — k:l 1-6 —

Similar to (51), we have

T~y o k[ =1 =1 2 ¢ k Tvy—1 Ps Ty P k
> (%) T 5l ( )X X ()
k=1 s=7y k=s—vy+1

From the settings of 6 and «, we know 6 < 11;& From (49), we further have 2; <1

k r
and1—p—0> W_ So we have Zi(:r—s—l (ﬁ) < (ﬁ) ﬁ. It follows from
ITLy°|| = 0 that

Ty
Z %Hnyﬂp < - CBL
— 2m(1 — G)~+ 2mpY~1(1—0)(1 — 0 — p)
. CyL6? ’Vz‘:l 10\ ( p —7%‘:1 P
2mp*r—1(1—-0)(1 -6 — p) g (1-0)s p 1-0 = (1-0)s
o CsL CyLO2(1 — 0) Til o*
T 2mprT (1 =0)(1—-0-p)  2mp*TH(1—0—p) = (1-0)5F!
L 33Csly 62 Til o
T m(l-0)1-0y)  TmL(+1) = (1- f)s 1

a 1-6 1-0\° 1-0\" b
where < uses % > 1 such that (%) < (%) for all s < v —1, < uses (49),

l—p—0> 0.19(5@)

by ||TIx*|| in the above analysis, we have the same bound for ||TIx*||2. [ ]

, and the definition of Cy4 given in Lemma 25. Replacing ||ITy*||
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Now, we are ready to prove Theorems 2 and 3. We first prove Theorem 2.
Proof Plugging (48) into (21) and using the definition of ®" in (26), we have

FEI Y — F(z* 1
(.%' ) (l’ ) + 7||ET7+1 _ .’E*HQ

9%7 2c
T
1 . 2357v3C3L 1 20L7
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a 1 235v3C3 L _ _
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< —|zY —x* o
- 204”Z wI"+ m(l —0,)%  5mL Z
. @ _ (1—04)? 20(1+7)72 1 _ (l—oy)* (1-04)3
where in < we let 7 = 40”2 so to have (1+%)(71T—Z7)2 =3, Q 2167527 < 3385L73”\’/1+T,
d > Ly 2% 8o weh
and y; 2 3 + =0y )2 0 we have
_ 1. 2357v3C3L
Ja Tvy+1 _F *<92 =0 %12 53
@) = P <08, (52— o P+ s ). (5)
1 1 235v°C3 L
- Pr < — 0 %2 Sttt Sy 54
SmL = =~ 2a||z "+ m(l —o,)3 (54)
It follows from (48) that
) TZ LIt
= QmH,% ’ — 2m€2
9357303 L 107 Ti o
“m(l-0y)3  mL(1+41)(1-0,)? (55)
2357303L 1 T’Yzl o
m(l—o,)3 4mL
9 /1 12 2357 CsL
<Z (= 290 &3
<3 (5= P+ EURES
From the definition of ('3 given in Lemma 25, we have
iHEO_ *HQ 2357303[/
2 m(l —o,)3 (56)
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The conclusion follows from Lemma 29. [ |

The next lemma gives a sharper bound of the constant C5 appeared in the above proof.

Lemma 29 Under the settings of Theorem 2, we can further bound Cs by

1 1—o0o
< =0 . 2 Y T 2'
Cs < 5l =P+ g max || (57)

Proof From step (13c) with u = 0, we have for any k <~ — 1,

Ot [Tz | <O | TI2"H| < 9kIIHZk\\ + o TIs”|

v—1
<o|1T12°| + Z s < @) [|TIs"|
t=0 t=0
where we use I1z° = 0. Squaring both sides gives
v—1
G2 < 02 3 IS < 0242 o 05"
t=0
From the setting of a and the definition of M7, we have
103870L 1-—
77/\/177 <77 pax ||Is"|2.
m(l —o,)> 4523'mL’y r=0,...,y
On the other hand, it follows from step (13d) that
k y—1
T < G T2 | [[TIxE(| < D 02" || < 1,62 O, [|T12" .
t=0 t=0
Squaring both sides gives
v—1
TIxF Y12 < 2,63y > 607, |z < 2.63v%a | Tmax (| TIs™||2.
it
t=0
From the setting of a and the definition of M37, we have
470L~3 1—
O My < T max |IsT2
m(l—o,)3 380070m L~y r=0,....y
So we have the conclusion. |
ty+1

In the next lemma, we measure the convergence rate at ) for any i = 1,...,m.
Lemma 30 Under the settings of Theorem 2, we have for anyt <T —1,
F( t7+1) F(.Z'*)

(i)

1 vm(l — 2 1-—

S WmaX{M,Sm} <||§0 — x*”Q + 571?—7 Ir(l)a.X ’HSTHQ) .
Y ary (% mdaiLsy r=0,...,
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Proof We first bound F(:):](“l)) — F(Z%) for any i. From Lemma 18, we have
Fzh)) <f@ k—1)+<§k—l 2k _—k—1>+£”xk _7k—1H2+£HH k—lHQ
(OVESTACENED 4 Ly — Y o @ =¥ om Y
_ ke _ _ & ke L _
SF(*) + (37 aby ) + Lllady — 742 + LIzt — 7P 4 o Iy P
I T k k2 > ok k-1y2, L yrok—1)2
SE@") + = 1277 =2 ]| + LTI + L 127 =257 + o~ [ Hy™ %,

where we use (15¢) with © = 0, (15a), and (15d) in % From the definition of ®" in (26), it
follows from (54) that for any k < Ty,

k—1 b

5(1-0y)? (1 12— ¥ 4 23573C3 L
T 2mL2(1+ 1) 80L~2 2 ’

12 m(l —o,)3

b
where < uses the setting of 7 = (1;0:”2)2 given in the proof of Theorem 2. From (53) and

(55), we have for any ty+ 1 with ¢t <T — 1

1-— 1 23573C3L
Vil =oy) o V(10 ey 285°GL
Loy 2 m(l —o,)3

F(xzy)ﬂ) — F(z*) < 9?,7 max {

From (56), (57), and (36), we have the conclusion. [ |

Next, we prove Theorem 3.
Proof Plugging (52) into (22) and using the definition of ®" in (26), we have

1 . ) AN ;
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< —0\ * v HY =0 %2 3
< F(z°) F(x)+< + >||z | +m(1—9)(1—07)

2 2
il 1 2(1 4 7) _
> <<1 = (1 T i>> Py

1 62  Lo> 2L6%\ _ _
+7k+1 ( = ) ”Zk+1 o Zk||2)

2« 2 7

) P 3.305Ly
< F(@@°) - F(z* oo+ ) 127 =2
< P@) (””)*(2@*2)” Sl Bty T g
el 1 Kok 6> k+1 _ k)2
_kZO<MDf(x,y)+W||Z -z H>
0 b 3.3C3Ly Gl S

< 0y % v MY =0 %2 —
<) =P (gt ) 1 S G e X

39



L1 AND LIN

.. _ 7 2047) _ 1 _ (1-0y)® (1-0v) 1 < L, 2L
where in < we let 7 = 1 so to have D) = 2 o= 4245373 < 3385]:7‘;7 — and g5 > 5+
Thus, we have the first conclusion and

Ty—1

62 o 0 1o 3.3C5 L~
7 - < F =0 _ F(g* ha [atdl =0 %2
11mL ;) A—g s F@) - Fa)+ <2a T > [z ==l 1-0)(1—0,)
It follows from (52) that
T
L k(2
> g g I
— 2m(1 —0)
__ 33Csly 62 Til P
“m(l-0)(1-0y) TmL(1+ %) ~ (1—g)s+1
02 b 3.3C3 Ly
<92 F —0 — F(g* e [andl =0 %2
<2 (F@) - P+ (415 ) I -] e e
Thus, we have the second conclusion by plugging the definition of ('3 in Lemma 25. |

Remark 31 We rewrite the convergence rates in Theorems 2 and 3 in the form of com-

plexities. For the nonstrongly convex case, letting F(z1 /1) — F(2*) < #ﬁl)z =€, we
have Ty +1 = 4/ % = O((ﬁ)% / %) FEach iteration only requires O(1) communication

round and gradient oracle call. For the strongly convex case, letting F(z77H1) — F(z*) <
(1—0)T7+1C =€, we have Ty + 1= O(31log €) = O((12 )1.5\/%1%%)‘

1—0oy

4. Numerical Experiments

In this section, we test the performance of the accelerated gradient tracking (Acc-GT) over
time-varying graphs. The performance of Acc-GT over static graphs has already been
verified in (Qu and Li, 2020). Moreover, Qu and Li (2020) reported in their experiment that
algorithm (12a)-(12d) with fixed step size (our theoretical setting) performs faster than the
one with vanishing step sizes (their theoretical setting). Thus, we omit the comparisons over
static graphs.

We consider the following decentralized regularized logistic regression problem:

m

1 n
min fe) (z), where fe) (x) = HHxHQ + — log (1+ exp(—y(i)JA: Jx) ,
9 n (4)
=1

=1

where (A ;,Y3),;) € RP x {1, -1} is the data point with A ; being the feature vector,
and y;) ; the label. We use the cifarl0 dataset with p = 3072, n = 50, and m = 1000.
Each feature vector is normalized to have unit norm, and the data are divided into two

12
classes to fit the logistic regression model. We observe that L = max; ”Ai;ZHQ ~ 0.215. We

consider both strongly convex (u = 107%) and nonstrongly convex (4 = 0) problems. We
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test the performance on the 2D grid graphs, where at each iteration, m nodes are uniformly
placed in a [5y/m] X [5y/m] region in random, and each node is connected with the nodes
around it within the distance of d. We test on d = 20 and d = 2, which correspond to
(7,04) = (1,0.9858) and (v, 0y) ~ (32,0.9471), respectively. When d = 20, the network is
connected almost every time. When d = 2, we observe that at each iteration, almost 61
percent of the nodes drop out from the communication network in average, which means
that they have no connection with the other nodes. We use the Metropolis gossip matrix
given in (8).

For strongly convex problem, we compare Acc-GT and Acc-GT-C (Acc-GT with multiple
consensus) with DIGing (Nedié et al., 2017), DAGD-C (Rogozin et al., 2021b), as well as
the classical non-distributed accelerated gradient descent (AGD), where AGD runs on a
single machine, and it gives the upper limit of the practical performance of the distributed
algorithms. We do not compare with the time-varying AB/push-pull method (Saadatniaki
et al., 2020) and the push-sum based methods (Nedi¢ and Olshevsky, 2016, 2015; Nedi¢ et al.,
2017) because they are designed for directed graphs. We tune the step sizes o = %1 for
Acc-GT and Ace-GT-C, a = %2 for DIGing, and a = % for AGD. For DAGD-C, when d = 2,

L

we test on the number of inner iterations sa T = 3(%07) ~ 201 and T = 2(%@) ~ 302,
and name the methods DAGD-C1 and DAGD-C2, respectively. When d = 20, we test

on T = ~ 14 and T = 3 ~ 17, respectively. For Acc-GT-C, we set the

_ry

(1*7‘7“/) ~
mQIQaHdT:m%7f0rd=2andd:20,
respectively. The other parameter settings follow the corresponding theorems of each method.
For nonstrongly convex problem, we compare Acc-GT and Acc-GT-C with DIGing (Nedié

et al., 2017), APM (Li et al., 2020a), and AGD, and set the same step sizes as above. We

Y
5(1—0~)
number of inner iterations as T =

tune the step size a = % for APM, and set the number of inner iterations as T} = %ﬁg
and Ty = vlog(k+1) ot each outer loop iteration for d = 2 and d = 20, respectively. Although

10(1—0)
the convergence of DIGing was only proved for strongly convex problem in (Nedié et al.,
2017), it also converges for nonstrongly convex ones by using our proof techniques.
Figures 1-4 plot the results, where the objective function error is measured by F(z*) —

e el Y :
W. Since F'(z*) is unknown,

we approximate it by the output of the classical non-distributed AGD with 50000 iterations
for strongly convex problem, and 200000 iterations for nonstrongly convex one. One round
of communications means that all the nodes, if they are active, receive information from
their neighbors once, and one round of gradient computations means that all the nodes
compute their gradient V f(;y(x) once in parallel. Especially, for AGD, one round of gradient
computations means computing the full gradient y ;*, V f(s)(x) once. We have the following
observations:

F(x*), and the consensus error is measured by

1. Acc-GT converges faster than DIGing, both on the decrease of the objective function
errors and consensus errors. This verifies the efficiency of the acceleration technique.
Moreover, for strongly convex problem, Acc-CT is only three times slower than the
classical non-distributed AGD.

2. Acc-GT-C needs more communication rounds than Acc-GT to reach the same precision
of the objective function error, although Acc-GT-C has lower theoretically communi-
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cation round complexity. Thus, Acc-GT-C is only for the theoretical interest, and it is
not suggested in practice.

3. DAGD-C and APM need less gradient computation rounds than Acc-GT to reach the
same precision of the objective function error, but they require more communication
rounds. This supports that the multiple consensus subroutine places more communica-
tion burdens in practice. But on the other hand, DAGD-C and APM have almost the
same computation cost as the classical non-distributed AGD. Comparing DAGD-C1
with DAGD-C2, we see that less inner iterations give larger consensus errors, and our
settings of the inner iteration numbers are fair to DAGD-C.

4. The network connectivity, that is, the different settings of d in our experiment, has
little influence on the decrease of the objective function errors for both DIGing and
Acc-GT3. We think this is because we set the same step sizes for d = 2 and d = 20.
From Theorems 2 and 3, we see that the network connectivity constants impact on the
step sizes, and the step sizes impact on the decrease speed of the objective function
errors. On the other hand, from the proofs of Theorems 2 and 3, we see that the
decrease speed of the consensus errors given in the two theorems is not tight, and we
observe in the experiment that the consensus errors decrease faster when d = 20 for
both DIGing and Acc-GT.

5. Conclusion

This paper extends the widely used accelerated gradient tracking to time-varying network,
which was originally proposed in (Qu and Li, 2020) only for static network. We prove the
state-of-the-art complexities for both nonstrongly convex and strongly convex problems with
the optimal dependence on the precision € and the condition number L/u, matching that
of the classical centralized accelerated gradient descent. When the network is static, our
complexities improve significantly over the previous ones proved in (Qu and Li, 2020). When
combing with the Chebyshev acceleration, Our complexities exactly match the lower bounds
for both nonstrongly convex and strongly convex problems over static graphs.

This paper only considers the y-connectivity of time-varying graphs. Some researchers
formulate the time-varying graphs as random graphs (Hong and Chang, 2017; Jakovetié
et al., 2014b; Ananduta et al., 2020) and use the mean connectivity in expectation. It
is an interesting future work to extend our proof techniques to random graphs. Another
interesting direction is to study the acceleration over time-varying unbalanced directed
graphs (Nedié¢ et al., 2017). Besides gradient tracking, EXTRA is another important family
of decentralized optimization algorithms. However, it remains an open problem to extend
EXTRA to time-varying graphs.

3. This phenomenon depends on the data. We also test on the simulated data with p = 100, n = 50, and
m = 1000, where each element of the feature vectors is generated randomly in [0, 1] from the uniform
distribution, we observe that Acc-GT with d = 20 performs about 1.1 times as fast as that with d = 2.
The difference is not significant.
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Appendix A. Proof of Lemma 18

Proof From the p-strong convexity and L-smoothness of f;), we have

3

F(w) =

Z fay(w)

=1

3=

3

m

lZ(f(z (yfyy) + <Vf(z (yﬁ))w—yﬁ> *Hw v, H)
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where = and = use the definition of 7* in (3), 2 and £ use the definition of f@*,y*) in
(17), (16), and the definition of Ily in (4). [ |
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