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Abstract 

This study proposes a quote-driven predictive automated market maker (AMM) plat-
form with on-chain custody and settlement functions, alongside off-chain predictive 
reinforcement learning capabilities, to improve the liquidity provision of real-world 
AMMs. The proposed architecture augments Uniswap V3, a cryptocurrency AMM pro-
tocol, by using a novel market equilibrium pricing to reduce divergence and slippage 
losses. Furthermore, the proposed architecture involves a predictive AMM capability, 
for which a deep hybrid long short-term memory (LSTM) and Q-learning reinforcement 
learning framework is used. It seeks to improve market efficiency through obtaining 
more accurate forecasts of liquidity concentration ranges, where liquidity starts moving 
to expected concentration ranges prior to asset price movement; thus, liquidity utiliza-
tion is improved. The augmented protocol framework is expected to have practical 
real-world implications through (1) reducing divergence loss for liquidity providers; 
(2) reducing slippage for crypto-asset traders; and (3) improving capital efficiency 
for liquidity provision for the AMM protocol. The proposed architecture is empiri-
cally benchmarked against the well-established Uniswap V3 AMM architecture. The 
preliminary findings indicate that the novel AMM framework offers enhanced capital 
efficiency, reduced divergence loss, and diminished slippage, which could potentially 
address several of the challenges inherent to AMMs.

Keywords: Predictive automated market maker architecture, Decentralized finance, 
Deep reinforcement learning, Divergence (or impermanent loss) and slippage losses, 
Capital efficiency, Liquidity utilization, concentration and depth

Introduction
The introduction of smart contracts, backed by public blockchains such as Ethereum, 
has allowed an entire financial system to be created in which different parties can oper-
ate under shared data and assumptions without trust issues arising from institutional 
intervention. This is known as decentralized finance (DeFi).

Decentralized exchanges (DEXs) are a crucial element of the DeFi market structure. 
Recent studies have revealed a significant shift in the landscape of crypto trading with 
the advent of such exchanges, which emphasizes their growing importance in the DeFi 
ecosystem (Ghosh et  al. 2023). Before DEXs, crypto-assets were generally traded in 
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off-chain, centralized settlement infrastructures called centralized exchanges (CEXs), 
which act as trusted third parties. Examples include Binance and Bitfinex. While CEXs 
offer an easy-to-understand order book format execution similar to conventional finan-
cial market exchanges, they have some drawbacks, such as server downtime, uncertain 
fair execution, slow withdrawals, and traders being wholly dependent on trust with the 
exchange on their custody of assets. Over time, some semi-custodial exchanges have 
sought to move partial functionality on-chain, such as EtherDelta and IDEX, which 
deploy an on-chain custody and settlement solution with an off-chain order book and 
trading engine. While CEXs’ original intent is to ensure improved performance, their 
downsides persist.

A new class of quote-driven crypto-asset trade execution systems has now been devel-
oped, which are called automated market makers (AMMs). They only require data 
structures and traversals and have low gas complexity (Moosavi and Clark 2021). Fur-
thermore, AMMs allow multiple parties to interact directly in a nonrivalrous and pro-
grammatic manner with smart contracts of the DEX protocol; thus, trade is executed 
automatically using a hard-coded pricing function (or a bonding curve), while the 
matching of individual buy and sell orders is not required. Lehar and Parlour (2021) evi-
dence the uptake of liquidity-sharing AMM protocols and empirically demonstrate that 
AMMs can provide liquidity more efficiently than CEXs. According to Mohan (2022), 
AMMs are reshaping the DeFi landscape by offering more efficient and trustless trading 
solutions.

As the DeFi space has rapidly evolved, various AMM protocols have emerged, each 
with its unique features and challenges. In terms of monthly trading volume, in Septem-
ber 2023, Uniswap led the AMM market by far with 19.4 billion trades, outstripping the 
next three highest AMM protocols’ (PancakeSwap, DODO, and Curve) 6.2, 2.5, and 2.4 
billion trades, respectively (Fig. 1). At its peak, Uniswap accounted for 86 billion trades. 
Other popular protocols include SushiSwap, Balancer, and QuickSwap.

Fig. 1 Monthly DEX transaction volume by project (Dune Analytics 2023). This figure highlights Uniswap as 
the leading AMM market, followed by PancakeSwap, DODO and Curve, in the month of September 2023
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Most key AMMs on Ethereum-based protocols implement a constant function mar-
ket maker (CFMM) for executing trades (Uniswap 2022; Curve 2022; Balancer 2022; 
SushiSwap 2022). CFMMs are AMMs that employ a fixed bonding curve for asset 
price determination and liquidity provision. Angeris and Chitra (2020) demonstrate 
that agents who interact with CFMMs are incentivized to price assets correctly in a 
computationally efficient manner.

In this study, we focus on Uniswap, the most used protocol. Uniswap has two 
actively traded versions, namely V2 and V3. Uniswap implements the XYC constant 
product market maker (CPMM) function, where given x units of token X and y units 
of token Y  , the liquidity of pool K  is the product of x · y = c . Upon choosing a pool 
to provide liquidity, V2 allows a liquidity provider to supply liquidity across the entire 
price range, whereas V3 applies a novel CPMM design that allows liquidity provid-
ers to specify the price range at which they wish to supply liquidity. Since its intro-
duction, V3 has overtaken V2 to become the AMM with the largest trading volume. 
However, despite the high trading volumes, issues persist for both the liquidity pool 
and market participants in V3.

In addressing the challenges in Uniswap V3, our problem statement centers on the 
critical issues faced by AMMs—namely capital inefficiency, significant slippage, and 
divergence loss. An imperative demand exists for an innovative AMM design that not 
only addresses these challenges but also sets a precedent for the next generation of 
AMM platforms. The following paragraphs introduce the three key terms liquidity 
pool, liquidity taker, and liquidity provider:

• Liquidity pool:
 Capital efficiency is a function of the amount of capital required to provide for 

efficient market making. The less capital required to make the market, the more 
efficient the liquidity provision. This also implies that total value locked is not a 
useful metric for measuring the liquidity productiveness of a liquidity pool.

• Liquidity taker:
 A liquidity taker is any party that exchanges assets by taking liquidity supplied by 

liquidity makers from the market. Liquidity takers expect the market to reflect the 
true price of assets, a low price change during the execution (or slippage) of trade, 
and the capacity to exchange assets on demand. In AMM protocols, trade is exe-
cuted through liquidity pools for each pair of tradable tokens, which are reserved 
in their respective smart contracts. A trader who seeks to exchange X tokens for 
Y  tokens can deposit X tokens in the liquidity pool and receive Y  tokens in an 
atomic swap, such that the aggregate liquidity of the pool remains unchanged, as 
defined by the bonding curve (Park 2022).

 Slippage is an implicit cost to a liquidity provider that occurs when the price at 
which a trade is executed differs from the expected price of the trade. Slippage can 
occur when the market is volatile or when the sizes of the trades are large relative 
to the size of the liquidity pool. While slippage may not be entirely eliminated, it 
is to the benefit of liquidity takers to reduce this market inefficiency to the lowest 
possible level.
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• Liquidity provider:
 A liquidity provider is any party who contributes liquidity to the market. They cre-

ate an efficient market in which liquidity takers can trade assets. Liquidity provid-
ers commit pairs of X and Y  crypto-assets to the pool such that liquidity exists for 
traders to buy and/or sell X and Y  crypto-assets. Liquidity providers are incen-
tivized through market making incentive fees from the trades supported by their 
liquidity.

 Enabling liquidity providers to select specific price ranges for supplying liquid-
ity alters the risk–return profile of their investments. Providers who strategically 
choose optimal price positions and widths to concentrate their liquidity can sig-
nificantly mitigate divergence loss, thereby enhancing their potential rewards 
compared with those who do not employ such targeted strategies.

 Divergence loss, or impermanent loss, is an implicit cost to a liquidity provider tied 
to the risk of a decline in value of the liquidity position compared with the value of 
the initial deposited assets. Heimbach et al. (2022) demonstrate how liquidity provid-
ers’ risk–return profile of selected liquidity ranges in Uniswap V3 can exhibit signifi-
cant fluctuations, which may require active management strategies to circumnavi-
gate. Furthermore, such active management of positions can affect the market depth 
in volatile market conditions, which goes against the interests of the AMM protocol.

Recent research has delved into the intricacies of these challenges and highlighted 
the need for innovative solutions (Auer et  al. 2023; Frontier Research 2023; Phan 
2024). However, significant challenges remain that have not been comprehensively 
addressed in the literature. The dynamics of liquidity pools, especially in terms of 
capital inefficiency, significant slippage, and divergence loss, are not yet fully opti-
mized for liquidity pools, providers, and takers (Xu et al. 2021; Heimbach et al. 2022). 
Moreover, the potential of integrating deep learning predictive mechanisms (Zhang 
et al. 2023; Sabate-Vidales and Šiška 2022), especially for liquidity provisioning, rep-
resents relatively unexplored territory.

The present study proposes a quote-driven AMM with its original intent of on-
chain custody and settlement functions, alongside off-chain predictive reinforcement 
learning capabilities. First, the proposed AMM architecture augments the Uniswap 
V3 protocol by using novel market equilibrium pricing for reduced divergence and 
slippage loss. Second, the proposed protocol involves a predictive AMM capabil-
ity through utilizing a deep hybrid reinforcement learning framework that seeks to 
improve market efficiency through more accurate forecasts of liquidity concentration 
ranges; thus, liquidity starts moving to expected concentration ranges prior to asset 
price movement, such that liquidity utilization is improved.

This study introduces a transformative approach to enhancing liquidity provision 
in AMMs for the realm of DeFi. Our main contributions are summarized as follows:

1. Quote-driven predictive AMM platform: We propose a unique quote-driven predic-
tive AMM platform that integrates on-chain custody and settlement functions. This 
design is unique as it synergizes off-chain predictive reinforcement learning capabili-
ties, thus offering improved liquidity provision compared with conventional AMMs.
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2. Augmentation of Uniswap V3: Our architecture represents a significant advancement 
of the renowned Uniswap V3 cryptocurrency AMM protocol. By employing a novel 
market equilibrium pricing mechanism, we achieve reduced divergence and slippage 
losses, thereby addressing major challenges faced in the current AMM landscape.

3. Predictive capability with deep learning: Zhang et  al. (2023) and Sabate-Vidales 
and Šiška (2022) have used reinforcement learning to improve earnings for liquid-
ity providers. In this study, aside from drawing liquidity providers through improved 
incentive fees (vis-à-vis Uniswap V3), we focus on enhancing liquidity utilization in 
an AMM. Central to our approach is the incorporation of a deep hybrid long short-
term memory (LSTM) and Q-learning reinforcement learning framework. The said 
framework not only enhances market efficiency but also ensures more accurate fore-
casts of liquidity concentration ranges. The result is proactive liquidity movement to 
anticipated concentration ranges even before asset price shifts; thus, liquidity utiliza-
tion is optimized.

Through empirical simulations and methodical analysis, this research aims to evalu-
ate the proposed model’s effectiveness compared with the baseline Uniswap V3 AMM 
architecture. The augmented protocol framework is expected to reduce (1) divergence 
loss for liquidity providers and (2) slippage for crypto-asset traders while (3) improving 
capital efficiency for liquidity provision for the AMM protocol. The proposed innova-
tions not only set a new benchmark for AMM architectures but also hold the potential 
to revolutionize DeFi platforms’ efficiency and effectiveness.

Background and related works
AMMs have become a cornerstone of the DeFi landscape, significantly influencing the 
structure and functionality of DEXs (Meyer et  al. 2022). Schär (2020) notes that the 
evolution of DEXs and AMMs represents a pivotal shift toward more accessible and 
transparent financial markets. These AMMs function by converting inputs (tokens) into 
outputs (prices) through a defined “exchange function” (Mohan 2022). Malinova and 
Park (2024) posit that AMMs should be economically viable in traditional financial mar-
kets, especially with advancements in asset tokenization and the increasing regulatory 
recognition of crypto-tokens. Moreover, Schmitt (2023) explains that AMMs’ design 
efficiency is why they currently handle over 95% of all DEX transactions, overshadowing 
other exchange models. This dominance is due to their ability to offer continuous liquid-
ity and immediate pricing without requiring traditional order books.

Despite their successes, AMMs face significant challenges that affect their perfor-
mance and reliability. Auer et al. (2023) conduct an in-depth analysis of the technological 
foundations of DeFi and AMMs and note that while innovative designs have been devel-
oped, many existing models still struggle with various problems, such as price slippage, 
impermanent loss, and capital inefficiency. Frontier Research (2023) and Phan (2024) 
have further highlighted the need for innovative design mechanisms that can address 
these challenges, suggesting that such improvements could catalyze further growth and 
development in the DeFi sector.
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Economics of AMM DEXs

Current innovations in AMM design are primarily targeted at enhancing economic 
efficiency in DeFi markets. A pivotal innovation is concentrated liquidity mecha-
nisms. Fritsch (2021) notes their profound impact on liquidity provider returns and 
market dynamics, especially on platforms such as Uniswap. This approach allows 
liquidity providers to allocate funds to specific price ranges, significantly boosting 
potential returns and market efficiency.

Furthermore, Xu et  al. (2021) discuss the economics of AMM DEXs, including 
rewards such as liquidity incentive fees, and implicit costs such as divergence and 
slippage losses. Heimbach et al. (2022) analyze factors that influence the performance 
of liquidity positions in Uniswap V3, including divergence loss and the selection of 
liquidity positions. Moreover, Neuder et al. (2021) and Cartea et al. (2022) have intro-
duced optimal liquidity provision strategies to maximize liquidity provisioning earn-
ings. Additionally, Singh et al. (2023) discuss the problem of shallow liquidity in low 
trading volume token pairs, while Bar-On and Mansour (2023) examine the problem 
of determining optimal price intervals for liquidity provision using online learning.

Pricing accuracy within AMMs is a critical concern. Aoyagi (2020) proposes the use 
of an equilibrium valuation point to enhance pricing accuracy in AMM DEXs. Build-
ing upon this, Engel and Herlihy (2021b) analyze how the equilibrium valuation price 
and divergence and slippage losses can be minimized in AMM DEXs based upon the 
formal model, axioms, and notations in the paper of Engel and Herlihy (2021a). Engel 
and Herlihy (2021a; 2021b) provide the foundational work for this paper.

Deep reinforcement learning on AMM DEXs

The application of reinforcement learning to market making started as early as 2001 
(Chan and Shelton 2001). More recently, Hambly et al. (2021) provide an account of 
the state-of-the-art of reinforcement learning’s application to market making.

Market making is generally applied in market microstructure modeling research 
using the stochastic control or reinforcement learning approaches, where optimal 
bidding (e.g., pricing strategy in limit order books [LOBs]) is studied (Sun et al. 2022). 
This study restricts the focus to the application of reinforcement learning on AMM 
DEXs, which operates in an algorithmically deterministic market making manner, as 
opposed to using LOBs. Pourpouneh et al. (2020) provide a survey of current AMM 
models.

Research on this subdomain is sparse. Most crypto-asset–based research that has 
applied deep reinforcement learning is related to automated trading from an investment 
management perspective. Lucarelli and Borrotti (2019) cover this to some extent. In 
relation to DEXs, Sadighian (2019, 2020) proposes—and later enhances—a deep rein-
forcement learning framework for a crypto-asset DEX. They use a policy gradient–based 
algorithm to interact with data from an LOB and order flow arrival statistics to solve 
a stochastic inventory control problem. Later, Sabate-Vidales and Šiška (2022) use the 
actor-critic approach to investigate the potential earnings from liquidity provision in 
constant product markets, and they recommend the introduction of adjustable fee lev-
els for liquidity providers. Moreover, Zhang et al. (2023) use the Double Dueling Deep 
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Q-Learning Network for optimal liquidity provisioning for enhanced return on invest-
ment for liquidity providers. Despite these recent studies, research that has applied deep 
reinforcement learning to crypto-asset–based AMM DEXs is limited.

Preliminaries and proposed method
Notation

We define the notations in this paper following Engel and Herlihy (2021a). Italics are 
used for scalars ( x ) and bold typography for vectors ( x ). Constants are defined from the 
beginning of the alphabet ( a, b, c ), and variables, vectors, or scalars from the end ( x, y, z ). 
We use “ = ” to represent equality and “ := ” for definitions. We also use subscript “ obs ” a 
market observed price and a subscript “ p ” for a predicted valuation.

Informally, to represent the CPMM function, an AMM in state ( x, y) has custody of x 
units of token X and y units of token Y  , subjected to x · y = c , where x, y > 0 and some 
constant c > 0 . For any trade to occur, liquidity invariance is achieved when a buyer pur-
chasing the δX of token X deposits the δY  of token Y  , such that (x − δX ) · (y+ δY ) = c.

To formally represent the CPMM, an AMM state space with trading assets X and Y  is 
represented by ( x, y)ǫR2

>0 . The state space is represented by curve ( x, f (x)) , such that 
f : R>0 → R>0 . This study assumes that the pool of assets is not exhausted, while 
boundary conditions are set as lim

x→0
f (x) = ∞ and lim

x→∞
f (x) = 0.

Uniswap charges fees of 0.3% for each trade back to the asset pool, which are in part 
used to incentivize liquidity providers. This study ignores the effects of these fees as they 
have a minimal impact on costs. In general, fees cause a slight reduction in divergence 
loss for liquidity providers and in slippage cost for liquidity takers.

Equilibrium state

For asset pricing, it is assumed that only one market valuation is acceptable to 
most liquidity takers at any time. Valuation vǫ(0,1) is assigned, such that v units 
worth of X equate to (1− v) unit worth of Y  . At valuation v , a profit is made when 
v
(

x − x′
)

+ (1− v)(f (x)− f
(

x′
)

) is positive when the AMM state space moves from 
(x, f (x)) to (x′, f

(

x′
)

) . Otherwise, a loss is incurred.
An equilibrium point, or the state at which no arbitrage profits can be made, is defined 

as a valuation v at point (x, f (x)) that solves the optimization problem (Eq. 1):

where vobs is the market observed price on the asset obtained from a trusted price oracle.
For (x, f (x)) to be the equilibrium point, df (x)

dx
= − v

1−v . The exchange rate of asset Y  in 
units of asset X is defined as −f ′(x) . This is the negative of the curve’s slope at the point.

To carry each valuation v to the equilibrium state x that minimizes the dot product 
vobs · x , or vx + (1− v)f (x) , we define φ(v) = f ′−1(− v

1−v ) , where φ : (0,1) → R>0 . For 

instance, the equilibrium state for AMM at 
(

x, 1x

)

 is φ(v) =
√

1−v
v  . It is useful to express 

φ in vector representation �(v) :=
(

φ(v), f (φ(v))
)

, where � : (0,1) → R
2
>0 . The inverse 

of φ is represented by ψ(x) = − f ′(x)
1−f ′(x) , where ψ : R>0 → (0,1) . The vector representa-

tion is �(x) := (ψ(x), 1− ψ(x)).

(1)v := min
x

vobs · x
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Every x is the equilibrium point for some valuation v . For instance, for a CPMM AMM 
:= 

(

x, 1x

)

 , the point 
(

x, 1x

)

 is the equilibrium point for 
(

1

1+x2
, 1− 1

1+x2

)

 . To generalize, for 

a CPMM AMM :=
(

x, f (x)
)

 , the point 
(

x, f (x)
)

 is the equilibrium point for 
(

f ′(x)
f ′(x)−1

,
f ′(x)

1−f ′(x)

)

 (Engel and Herlihy 2021a).

Total value of AMM holdings

Let the valuation with equilibrium point (x, f (x)) be defined as (v, 1− v) . Given 
v = (v, 1− v) and x =

(

x, f (x)
)

, the total value (or capitalization) of the total AMM 
holding is given as follows (Engel and Herlihy 2021b):

When v represents the current market valuation, the AMM is in the equilibrium state 
�(v) =

(

φ(v), f (φ(v))
)

 , giving

In the case of a CPMM AMM := 
(

x, 1x

)

 , the capitalization at the equilibrium point is 

given by

Divergence loss, slippage loss, and load

To improve the performance of an AMM using the CPMM function, we seek to reduce 
divergence and slippage losses. This subsection defines divergence and slippage losses 
(Engel and Herlihy 2021b) and identifies a composite loss function to reduce them.

• Divergence loss:
 Divergence loss is incurred when a difference in value arises from the funds remain-

ing in the wallet, against the initial fund amount deposited into the AMM. If the val-
uation v moves to v′ , the equilibrium state will shift from x to x′ . The shift away from 
v creates an unstable state, such that arbitrageurs will be able to profit the amount of 
v
′ · x − v

′ · x′.
 Divergence loss is defined as a function of liquidity pool size as follows:

where �(v, 1− v) =(φ(v), f (φ(v))).

 In the case of a CPMM AMM := 
(

x, 1x

)

 , the divergence loss for trade size δ is given by

cap(x, v) := vx + (1− v)f (x) = v · x

cap(v) := cap(φ(v), v) = v ·�(v)

cap

(

v; (x,
1

x
)

)

:= 2
√

v(1− v)

lossdiv
(

v, v′
)

:= v
′ ·�(v)− v

′ ·�
(

v′
)

= v′φ(v)+
(

1− v′
)

f (φ(v))−
(

v′φ
(

v′
)

+
(

1− v′
)

f
(

φ
(

v′
)))

lossdiv(x, x + δ) :=
δ2

2δx2 + x3 + δ2x + x



Page 9 of 29Lim  Financial Innovation          (2024) 10:144  

• Slippage loss:
 Slippage loss is defined by how an increase in trade sizes can reduce a liquidity tak-

er’s return. Suppose that a trade of size δ is placed, where δ > 0. Here, the state of 
the AMM changes from (x, f (x)) to (x + δ, f (x + δ)) . In a linear rate of exchange, in 
an exchange of δ units of X , the trader receives −δf ′(x) units of Y  . Therefore, the 
trader makes a loss of −δf ′(x)− f (x)+ f (x + δ) , resulting in the final receipt of 
f (x)− f (x + δ).

 Slippage is defined as a function of liquidity pool size as follows:

 In the case of a CPMM AMM :=
(

x, 1x

)

 , the divergence loss for trade size δ is given 

by

• Composite divergence and slippage loss:
 To reduce the overall effect of the cost of divergence loss to liquidity providers and 

slippage loss to liquidity takers, a composite function known as load (Engel and Her-
lihy 2021b), which considers both divergence and slippage losses, can be useful. Load 
across an interval, with respect to X , is defined as the product of the interval’s slip-
page and divergence loss and is given by

 Given a probability density for future valuations, one can compute an expected load 
when exchanging X tokens for Y  tokens, starting in the equilibrium state for valua-
tion v , given that p(v′) is the distribution over possible future valuations (Eq. 2):

Pricing and changes to liquidity provision

Suppose that for an AMM := (x, f (x)) , the valuation moves from v with equilibrium 
state (a, b) to v′ with equilibrium state (a′, b′) . Then, an arbitrageur can make an arbitrage 
profit by moving from (a, b) to (a′, b′).

One can eliminate this arbitrage, which results in divergence loss, by moving the 
bonding curve in the AMM protocol, as a pseudo arbitrage, as Engel and Herlihy 
(2021b) refer to it. Suppose that a > a′ and b′ > b , then the transformed AMM becomes 
AMM′ :=

(

x, f
(

x −
(

a− a′
))

−
(

b′ − b
))

. The new equilibrium state v′ = the new mar-

ket price and continues to lie on the shifted curve with a slope of v′

v′−1
.

lossslip
(

v, v′
)

:= (
1− v′

1− v
)(v ·�

(

v′
)

− v ·�(v))

lossslip(x, x + δ) := −
δ2(δ + x)

x2(δ2 + x2 + 2δx + 1)

loadX (v, v
′) := lossdiv(v, v

′) · lossslip(v, v′)

(2)Ep
[

load
(

v′
)]

:=
∫ v

0

p
(

v′
)

loadX
(

v, v′
)

dv′ +
∫ 1

v
p
(

v′
)

loadY
(

v, v′
)

dv′
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A downside of this pseudo arbitrage is that the AMM now has more units of X and 
a shortage of Y  to cover all possible trades (Engel and Herlihy 2021b). However, this 
imbalance is small as each price action is generally driven by small tick changes, assum-
ing an efficient market, but they can add up over time and become problematic. The 
AMM will have to account for this shortfall by making minor liquidity provision adjust-
ments to rebalance the pool. This implies that, as part of liquidity provision, liquidity 
providers will deposit an additional X or Y  tokens as stated by the AMM. Incentives 
will be provided for all tokens deposited, including the additional X or Y  tokens. This 
study proposes incorporating this in its configurable virtual AMM, as demonstrated in 
the proposed AMM architecture presented in a later section. Thus, the bonding curve 
will revert to its primary CPMM bonding curve formula.

Deep reinforcement learning

In instances where an interaction exists between the agent (AMM) and the environment 
(i.e., the financial market, including market participants such as liquidity takers and pro-
viders), one can execute actions and receive observations and rewards as a Markov deci-
sion process. At each time stept , the agent selects an action atǫA at statestǫS , where S 
is the set of possible states. This step of action selection depends on the policyπ , which is 
a description of the agent behavior, and it guides the actions taken by the agent for each 
possible state. Upon the execution of each action, the agent receives a scalar reward rtǫR 
and the next state st+1 is observed. This learning sequence is repeated in a (possibly infi-
nite) horizon T  until the algorithm is halted. The transition probability of possible future 
state st+1 is given byP(st+1|st , at) , while the reward probability is given by P(rt |st , at). 
Therefore the expected reward is computed as follows:EP(rt |st ,at )(rt |st = s, at = a).

• Event-driven environment:
 This study considers a state based AMM agent that acts on events as they occur. The 

action space is based on a typical market making strategy where the agent cannot 
exit the market and is restricted to executing a single order. An event constitutes an 
observable change in the state of the environment and can occur due to a change in 
price. This implies that actions are not regularly spaced in time. The agent is required 
to quote prices at which it is willing to buy and sell at valid timepoints unless con-
straints on the asset inventory prevail.

 In line with Sadighian (2020), this study proposes the use of a price-based approach 
for an event-driven environment, where an event is defined as a change in equilib-
rium valuation v′ , and if this is greater than or less than a threshold βv , βv allows the 
adjustment of the learning rate’s sensitivity.

 These price change events are not regularly spaced in time, which reduces the time 
required to train the agent per episode (i.e., an executed trading action that results 
in a price change). Algorithm 1 presents the algorithm used to evaluate price-based 
events (Sadighian 2020):
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Algorithm 1: Evaluating a Price-Based Event

• Reward function:
 To improve market efficiency and provide optimal liquidity, this study ties the reward 

objective function for trading agents to the quality of forward prediction of valua-
tion v′p , against the equilibrium valuation v′ at this future time, and implicit costs for 
liquidity takers and providers.

 In most state-of-the-art reinforcement learning literature for market making, the 
obvious reward functions selected are profit-seeking (Spooner et al. 2018; Sadighian 
2020; Haider et  al. 2022) or utility-maximizing (Selser et  al. 2021) as the natural 
choices of reward functions.

 We propose the following single-step loss function ℓ (Eq. 3):

 The loss function in Eq.  (3) computes the prediction slippage, or the difference 
between the valuation v′p as predicted by an AMM prediction model, against the 
equilibrium point v′ (computed from Eq.  1). The latter is a function of the actual 
observed valuation from a trusted price oracle. We take the modulus of this differ-
ence as we seek to identify absolute deviations between prediction and equilibrium 
prices; thus, we can minimize this difference using reinforcement learning. Further-
more, we add the expected load (computed from Eq. 2), which represents divergence 
and slippage losses. Our overall objective is to minimize this function by reducing 
prediction slippage and expected load, in turn improving capital efficiency.

 The cumulative reward function R is obtained as follows:

(3)ℓ := |v′t − v′p,t | + Ep
[

load
(

v′
)]

Rt :=
k=T
∑

k=0

γ krt+k
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where γ ǫ(0,1) is a parameter called the discount rate, and r is defined as follows:

where βc represents a threshold within which prediction slippage and expected load 
can be tolerated. This threshold determines the sensitivity of the reward function to 
the loss function (Eq. 3).

• Action space:
 The agent action space consists of the following two possible actions:

where ε represents a Gaussian input parameter to the learning model, where εǫ(−1,1) 
and ε ∼ N (µε , σε) . This input parameter effects changes to the learning model with 
the goal of helping to reduce prediction slippage and expected load.

• State space observations:
 An environment state is constructed from an attribute set that describes the 

condition of the market and the agent. The market state comprises observations 
derived from the following, among others:

• A market valuation obtained from an external trusted price oracle, represented by 
vobs;

• Preprocessed alternative data that indicate price signals that effect changes in market 
liquidity, represented by τ;

 An example of such alternative data sources is market signals generated from Twit-
ter data processed using natural language processing to make predictions (Abraham 
et  al. 2018; Kraaijeveld and De Smedt 2020). In this study, we pretrain an LSTM 
supervised learning model and use the LSTM outputs as observation inputs for rein-
forcement learning (Liu 2020).

 The agent state comprises observations derived from the trading agent’s own records, 
including the following:

• The number of units of token X , represented by x , and the number of units of token 
Y  , represented by y.

• Q-learning:
 The expected discounted return at time t is defined as follows: 

Rt := E[
∑k=T

k=t γ k−t rk−t+1]. By applying Q-learning as a recursive update proce-
dure, the Q-value function Qπ (s, a) is defined as follows:

rt+k :=







−1, if ℓt > βc
0, if ℓt = βc
+1, if ℓt < βc

At :=
{

Insert input parameter εt+k , if ℓk−t > βc
Do nothing , if ℓt ≤ βc

Qπ
i+1(s, a) := Eπ [rt + γ

k=T
∑

k=0

γ krt+k+1|st = s, at = a]

= Eπ [rt + γQπ
i (st+1 = s′, at+1 = a′)|st = s, at = a]
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 Reinforcement learning learns the optimal policy π∗ , whose expected value is 
greater than or equal to all other policies, to converge at an optimal Q-value Q∗(s, a).

where B represents the Bellman operator that maps any function K : S × A �→ R 
into another function S × A �→ R . The Bellman operator is given as follows:

where T  represents the function for computing the transaction value to move from s 
to s′ , given an action a.

• Deep reinforcement learning architecture:
 To perform prediction for the forward valuation v′p , Liu (2020) finds a hybridized 

advantage actor-critic agent to be useful through performing the pretraining of a 
supervised recurrent neural network (RNN) in the form of LSTM, before using the 
LSTM outputs as observation inputs for reinforcement learning. This paper proposes 
a hybrid LSTM–Q-learning architecture, the architectural derivatives of which are 
proposed by Lucarelli and Borrotti (2019) and Liu (2020).

 The unique advantage of LSTM lies in its ability to remember short-term patterns 
for long periods. This is especially useful when one is dealing with sequences of mar-
ket events, such as time-series financial data. Furthermore, LSTM’s memory cell 
structure mitigates the vanishing gradient problem of traditional RNNs, enabling the 
network to learn from important experiences observed n periods ago. In addition, 
LSTMs can be combined with other deep learning architectures, which makes them 
versatile for various prediction challenges. In financial markets, numerous studies 
have indicated the superior performance of LSTMs in predicting stock prices, trad-
ing volumes, and other relevant metrics (Hu et al. 2021; Rundo 2019).

 Our hybrid LSTM–Q-learning approach synergizes the strengths of both LSTM and 
Q-learning algorithms. LSTM is used for its capability to model and predict time-
series data, providing a forecast of future market valuations. Q-learning’s primary 
role is to guide the AMM’s actions to optimize liquidity provision. Given a state (pre-
dicted future market valuation), it provides the AMM with an action that aims to 
maximize expected future rewards. These rewards are related to enhanced capital 
efficiency, reduced slippage, and minimized divergence loss.

 Algorithm 2 presents the LSTM algorithm. One LSTM layer was applied with 100 
neurons, with a sliding window of 50 interval inputs, including the following: (1) the 
market observed price from the trusted oracle vobs ; (2) preprocessed alternative data 
representing market movement signals τ ; and (3) a Gaussian input parameter from 
the action space ε that aims to reduce prediction slippage and load.

Qi+1(s, a) := Eπ [rt + γmax
a′ǫA

Qi(s
′
, a′)|s, a]

Q∗(s, a) := (BQ∗)(s, a)

(BK)(s, a) :=
∑

s′ǫS

T (s, a, s′)[R(s, a, s′)+ γmax
a′ǫA

K (s′, a′)]
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Algorithm 2:  The LSTM Algorithm

Q-learning is employed to derive optimal action policies for the agent. In this context, it 
determines the optimal liquidity provision strategy based on the predicted market valu-
ations from LSTM. The hybridization works as follows: (1) LSTM predicts future mar-
ket valuations; (2) these predicted valuations serve as the state input for the Q-learning 
algorithm; and (3) based on these states, Q-learning determines the optimal action to 
maximize the expected reward.
In addition, this study uses the Dueling Double Deep Q-Learning Network (DD-DQN) 
architecture. DD-DQN combines the benefits of Double Deep Q-Network (D-DQN), 
which mitigates overestimations of Q-values in traditional DQNs for more stable and 
robust learning. Moreover, the dueling network divides the Q-value estimation into two 
streams—one for estimating the state value function and the other for estimating the 
advantage function for each action. The separation of the latter provides a more nuanced 
estimation of Q-values, especially in situations where the difference between actions is 
minimal.
Algorithm 3 presents the hybrid LSTM–Q-learning algorithm. The predicted output of 
v′p with a sliding window of 10 interval inputs, computed equilibrium price v′ , and com-
puted load Ep

[

load
(

v′
)]

 are used as inputs for the Q-learning model. In the DD-DQN 
architecture, two CNN layers are applied, each with 100 neurons, followed by two fully 
connected layer streams—one with 50 neurons for estimating the value function and 
another with 50 neurons for estimating the advantage function. Both epochs and batch 
sizes are set to 50. For weight optimization, the Adam algorithm is applied (Kingma 
and Ba 2015), while for the activation function, the Leaky Rectified Linear Units (Leaky 
ReLU) algorithm is applied (Maas et al. 2013), where γ is set to 0.98 (Lucarelli and Bor-
rotti 2019). Given Eq. 3, the loss function is defined as follows (Eq. 4):
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Algorithm 3: The Hybrid LSTM-Q-learning Algorithm

Figure  2 depicts the proposed recursive LSTM–Q-learning DD-DQN reinforcement 
learning architecture:

Figure 3 presents details of the neural network layers:

Table 1 presents the key parameters used in both LSTM and Q-learning:

Predictive liquidity distribution

At present, liquidity concentration ranges, in which incentives to liquidity providers 
are distributed, are created on a look-back basis by relying on observed market val-
ues (Uniswap 2022). A market maker is responsible for providing liquidity for trade 
execution. Liquidity pooling requires time to form. Through the advanced prediction 
of valuation v′p , incentivization for liquidity provision can be altered in n intervals in 
advance (e.g., 1, 5, or 10 intervals); therefore, liquidity shifts before the actual mar-
ket change. The shifting of incentive fee distribution can help to motivate liquidity 

(4)
L :=

1

n

k=T
∑

k=0

{|v′t − v′p,t | + Ep
[

load
(

v′
)]

}
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providers who seek higher yields to support predicted new liquidity concentration 
ranges; thus, pooled capital efficiency can be achieved.

Furthermore, the current incentivization program for Uniswap V3 liquidity pro-
viders is binary in nature. Thus, fees are only earned if liquidity providers provide 
liquidity within a certain range in the bonding curve, and they are not compen-
sated if their liquidity provision falls outside of that range. However, research dem-
onstrates that the proportion of time where asset prices remain within a liquidity 
position relative to a liquidity width is not uniformly distributed (Heimbach et  al. 
2022). While active liquidity providers benefit from range targeting to earn the 
best possible fees in a uniform distribution fee structure in Uniswap V3, it is useful 
to consider a different distribution structure that can help to insure against sharp 
price movements. This can in turn help to improve the attractiveness of liquidity 
provision.

We use v′p to help to determine the position of the new liquidity concentration 
range on the bonding curve. The distribution of the incentive fee ϕ is proposed to 
be Gaussian in nature (Fig. 4), such that ϕ ∼ N

(

µvϕ , σϕ
)

 and µϕ = v′p . It is given as 
follows:

In effect, the LSTM predicted v′p formulates the new liquidity concentration region on 
the bonding curve in n intervals in advance; thus, the liquidity pool rebalances its liquid-
ity before an actual market change occurs. Active yield seekers who shift liquidity to new 
liquidity concentration positions will be rewarded positively. Furthermore, as incentivi-
zation distribution is Gaussian in nature, liquidity providers continue to be incentivized, 
albeit to lesser amounts, even if they do not correctly identify the optimal prices and 
length of time for positioning their liquidity provision. Compared with Uniswap V3, this 
relative lowering of “incentive penalization” due to incorrect liquidity positioning seeks 
to help to draw liquidity providers.

For this purpose, this study also proposes including transparency in v′p and the histori-
cal shifts in v′p in the AMM design to liquidity providers, thereby positively improving 
the market’s ability to analyze and preposition resource allocation.

ϕ(x) :=
1

σϕ
√
2π

e
− 1

2
(
x−v′p
σϕ

)

2

Fig. 2 Recursive LSTM-Q-learning reinforcement learning architecture. This figure shows how a Q-learning 
network with LSTM units can be used to model and predict forward valuation v′p for optimal liquidity pooling
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Fig. 3 LSTM-Q-learning reinforcement learning architecture layers. Sliding window input observations are 
first directed to a linear layer with a size of 100. Following this, a Leaky ReLU activation function is applied. 
The resulting output is then channelled separately to both the policy and value components. The policy is 
optimized using the policy gradient method, with the loss function defined by Eq. (4)

Table 1 Key parameters of LSTM and Q-learning

Adjustments to the values stated herewith can be made based on specific use cases or further tuning

Parameter Description Algorithm Value/range

W LSTM network weights LSTM Initialized randomly

e Epoch count for training LSTM LSTM 50

α Learning rate for Q-learning Q-learning 0.1 (typical starting value)

γ Discount factor for future rewards in 
Q-learning

Q-learning 0.98

ϵ Exploration rate for epsilon-greedy policy 
in Q-learning

Q-learning Starts at 1.0, decays over time

Q (s,a) Q-value for state-action pairs Q-learning Initialized to zeros

s and s′ Current and next state, respectively Q-learning Based on LSTM predictions and environ-
ment

a and a* Chosen and optimal action, respectively Q-learning Determined by policy and Q-values

r Reward received after taking an action Q-learning Computed based on state transition and 
reward function
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Experiment
To ascertain the efficacy of the proposed AMM architecture, this study performs an 
experiment that aims to systematically evaluate and compare the architecture’s capital 
efficiency, divergence loss, and slippage reduction against those of the baseline Uniswap 
V3 AMM architecture. We compare the baseline and proposed architectures by inte-
grating LSTM and Q-learning reinforcement.

A synthetic dataset of trading prices and volumes is simulated, including 7,000 trading 
hours of data for training, 2,000  h for testing, and 1,000  h for validation. The simula-
tions operate under efficient market conditions, with price actions driven by small tick 
changes. Trade volume variations in the simulations are reflective of the real-world trad-
ing variations in AMM architectures.

To ascertain capital efficiency in terms of performance metrics, this study examines 
liquidity utilization, liquidity concentration, and liquidity depth as follows:

• Liquidity utilization:
 Liquidity utilization measures how effectively the deposited capital (liquidity) is used 

in facilitating trades. It is computed as follows:

LiquidityUtilization =
Trade Volume

Average Liquidity

Fig. 4 Incentive distribution for liquidity providers. This figure shows that LSTM-predicted v′p formulates 
the new liquidity concentration region with mean v′′p  on the bonding curve in 1 interval in advance, so the 
liquidity pool rebalances its liquidity before actual market change occurs
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For comparative purposes, this study computes liquidity utilization for both the pro-
posed AMM architecture and the baseline Uniswap V3. Then, it compares the results 
to determine which architecture has a better liquidity utilization rate.

• Liquidity concentration:
 Liquidity concentration indicates how liquidity is distributed within an AMM. 

Liquidity should ideally be concentrated around the current price, ensuring that 
trades close to the current price experience minimal slippage.

 For comparative purposes, this study simulates the liquidity distribution over a range 
of prices for both AMM architectures to understand how liquidity is distributed 
within an AMM.

• Liquidity depth:
 Liquidity depth refers to the amount of an asset that can be bought or sold at a par-

ticular price point without causing a significant change in its price. A deeper liquidity 
pool means that larger trades can be executed without a significant impact on prices.

 For comparative purposes, this study computes trade sizes that result in a price 
impact closest to a reasonable acceptable threshold of 1% for both AMM architec-
tures to ascertain the liquidity depth.

To ascertain the divergence loss, this study compares the difference in values arising 
from the funds remaining in the AMM with the initial fund amount deposited. This is 
done for the baseline Uniswap V3 AMM architecture, with its constant product formula, 
and also the proposed AMM architecture, which makes use of pseudo arbitrage to adjust 
the bonding curve and reduce divergence loss. Given that large trades can lead to more 
significant divergence, this study introduces more diverse trading patterns with variable 
price fluctuations and varying trade sizes to simulate both small and large trades as well 
as rapid price changes to stress-test the system.

To ascertain the slippage loss, this study compares the difference between the expected 
trade execution price (based on a model’s prediction or provided liquidity) and the actual 
trade execution price.

Results and discussion
This section discusses the (1) efficacy of the proposed model and then presents the (2) 
proposed architecture to be used for practical implementations.

Empirical results: capital efficiency, divergence loss, and slippage reduction

The results for capital efficiency, in terms of liquidity utilization, concentration, and 
depth, are presented as follows:

• Liquidity utilization:
 The proposed AMM architecture demonstrates enhanced capital efficiency, as evi-

denced by its significantly higher liquidity utilization rate compared with the base-
line Uniswap architecture. The simulated liquidity utilizations for the baseline and 
proposed architectures are 56% and 93%, respectively (Figure 5). This indicates that, 
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on average, 93% of the provided liquidity is effectively used to facilitate trades. This 
underlines the capital efficiency of the proposed architecture.

• Liquidity concentration:
 Next, this study simulates the liquidity distribution across a range of prices for both 

architectures. The results are presented in Figure  6. For the baseline Uniswap V3 
AMM architecture, the liquidity is more evenly spread across the price range, rang-
ing mostly between 40 and 60 units. For the proposed AMM architecture, the liquid-
ity is highly concentrated around the current price (around 100 in our simulation), 
where we observe values close to 90–100 units. Away from the current price, the 
liquidity drops significantly, with values of mostly 10–20 units.

 Moreover, the baseline architecture exhibits a relatively uniform liquidity distribution 
across the entire price range. By contrast, the proposed architecture exhibits a pro-
nounced peak around the current price, which indicates a high liquidity concentra-
tion at that point. Away from the current price, the liquidity significantly decreases, 
which is advantageous because it implies that less capital is “wasted” where it is not 
immediately required. The pronounced peak for the proposed AMM architecture 
signifies that it can handle larger trades around the current price with minimal slip-
page, thus enhancing capital efficiency. These results affirm the premise that the pro-
posed AMM architecture offers better capital efficiency by concentrating liquidity 
around the most traded (or current) price levels. This provision of adaptive liquidity 
is crucial for AMMs to be effective and efficient in real-world trading scenarios.

• Liquidity depth:
 For both AMM architectures, the trade sizes that result in a price impact closest to a 

reasonable acceptable threshold of 1% are described as follows:
 A trade size of 1 unit results in the closest price impact to the acceptable thresh-

old for the baseline Uniswap architecture, whereas a trade size of 100 units results 
in the closest price impact for the proposed AMM architecture. This indicates that 
the proposed architecture has a significantly deeper liquidity pool around the current 
price compared with the baseline. Specifically, the proposed AMM architecture can 
handle trades 100 times larger than the baseline before the price impact reaches 1%. 
Figure 7 visualizes the price impact for various trade sizes in both architectures:

 Furthermore, the baseline Uniswap V3 AMM architecture starts with a slightly 
higher price impact even for small trade sizes, and it exhibits a steeper increase in 
price impact as the trade size increases. By contrast, the proposed AMM architec-
ture begins with a smaller price impact for lower trade sizes and maintains a more 
gradual increase in price impact as the trade size grows. At a trade size of 100 units, 
the price impact of the proposed architecture is still around the acceptable thresh-
old, while the baseline architecture’s price impact exceeds it with a much smaller 
trade size. These findings underscore the enhanced capital efficiency of the pro-
posed AMM architecture, which can accommodate larger trades with minimal price 
impact. This is crucial for maintaining a stable and efficient market, especially during 
periods of high trading volume.
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Regarding divergence loss, the average losses are 1.465 units for the baseline Uniswap 
V3 AMM architecture and 0.482 units for the proposed AMM architecture (Fig. 8). The 
proposed architecture thus significantly reduces the average divergence loss compared 
with the baseline architecture. This demonstrates not only the efficacy of the proposed 
architecture’s adaptive liquidity management but also its ability to handle diverse trading 
patterns with reduced divergence loss.

Fig. 5 Liquidity utilization comparison between the proposed AMM and baseline Uniswap V3 models. The 
bar chart provides a visual comparison of liquidity utilization between the baseline Uniswap V3 AMM (in red) 
and the proposed AMM structure (in blue)

Fig. 6 Comparison of liquidity distribution across price range between the proposed AMM and baseline 
Uniswap V3 models. The graph illustrates the liquidity distribution across a range of prices for both the 
baseline Uniswap V3 AMM (in red) and the proposed AMM structure (in blue). The vertical dashed line 
represents the current price
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Regarding slippage loss, the average losses are 0.4779 units for the baseline architec-
ture and 0.2389 units for the proposed AMM architecture (Fig. 9). The proposed archi-
tecture has a slippage approximately half that of the baseline architecture. Evidently, the 
proposed AMM architecture can potentially offer a considerable reduction in slippage 
for traders. This would translate into better trade execution prices, thus improving the 
overall efficiency of the AMM architecture and potentially attracting more traders and 
liquidity providers due to the enhanced trade quality.

In summary, the innovative design and predictive capabilities of the proposed AMM 
architecture offer considerable improvements in terms of divergence loss reduction, 
enhanced capital efficiency, and slippage reduction compared with the baseline Uniswap 
V3 AMM architecture. The proposed architecture could thus potentially directly address 
several of the challenges faced by existing AMM architectures.

Proposed architecture

The proposed architecture, depicted in Fig. 10, comprises the following protocol layers 
(Xu et al. 2021), which augment the deployment by Shrivastava (2022):

• Aggregator layer:
 This layer extends the application layer and is designed to create user-centric plat-

forms to connect several protocols and applications. Thus, users can connect to 
multiple protocols and perform tasks, such as trading across services and compar-
ing services.

• Application layer:
 The application layer comprises two components, namely the user interface and 

the blockchain layer interaction service:

Fig. 7 Comparison of price impact across trade sizes between the proposed AMM and baseline Uniswap 
V3 models. The graph illustrates the price impact across different trade sizes for both the baseline Uniswap 
V3 AMM (in red) and the proposed AMM structure (in blue). The dashed line represents the acceptable price 
impact threshold of 1%
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• User interface: This is designed to allow AMM users to interact with the various 
system functions provided by the AMM architecture. This is usually abstracted 
by a web browser or mobile app–based front end.

• Blockchain layer interaction service: This is designed to communicate and inter-
act with the smart contract protocol layer. The interaction service allows func-
tion calls to be applied in the clearing house to perform specific actions that a 
liquidity provider or taker conducts.

• Blockchain protocol layer:
 This is the protocol layer for asset pooling and transaction settlement. The system 

logic is contained in the smart contracts deployed on a blockchain (e.g., Ethereum 
blockchain). A layer 2 solution may be implemented to allow off-chain transac-
tions that can be rolled up to the layer 1 Ethereum main chain, thus lowering 
Ethereum gas fees and improving the processing rate.

• Clearing house: This is designed to securely execute trade positions and facili-
tate the deposit and returning of funds when called upon by a liquidity provider 
or taker. It is also responsible for the returning of details about the vault, price 
of the token pair, and token reserves in the AMM architecture.

• Configurable virtual AMM (cAMM): This protocol allows the flexibility to 
adjust the token pair price v′ based on spot market prices vobs to minimize the 
expected load. Liquidity is also recalibrated based on v′p for the determination 
of the liquidity concentration range and the distribution of the incentive fee ϕ.

• Vault: This smart contract vault holds deposits securely for liquidity providers 
and takers.

• Oracle: This protocol allows the discovery of the spot price for a token pair.

Fig. 8 Comparison of average divergence loss between the proposed AMM and baseline Uniswap V3 
models. The graph illustrates the average divergence losses between the baseline Uniswap V3 (in blue) and 
the proposed AMM structure (in green). The proposed AMM structure demonstrated a significant reduction 
in divergence loss compared to the baseline, aligning with the findings
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Fig. 9 Comparison of average slippage loss between the proposed AMM and baseline Uniswap V3 models. 
The proposed AMM structure (in green) demonstrates a significantly reduced average slippage when 
compared to the baseline Uniswap V3 structure (in red)

Fig. 10 Architecture layers of proposed AMM. The proposed architecture comprises the following protocol 
layers—Aggregation Layer, Application Layer, Middleware Smart Contract Layer, and Infrastructure Layer
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• Infrastructure layer:
 This layer contains the trusted execution environment (TEE), which provides an 

enclave for secure intensive computation (e.g., the proposed LSTM–Q-learning 
reinforcement learning model), where external applications outside the enclave 
will not be able to interfere with the state or control flow shielded by the TEE 
(Pandl et al. 2020).

• TEE: This physical server environment is designed to enable the computa-
tion of resource-intensive machine learning applications while preserving the 
integrity and security of data throughout. Through smart contracts, proto-
cols can be designed to define policies on how data are shared. These poli-
cies may include requests for reward and differential privacy requirements 
(Hynes et  al. 2018). As the deep reinforcement learning model is shielded by 
the smart contract and inference executions count toward the contract poli-
cies, this improves privacy against potential inference attacks, which aims to 
execute the predictive system to extract the model or underlying data (Cheng 
et al. 2019).

Interactions between key architecture layer components are summarized in Fig. 11.

Fig. 11 Interaction between key architecture layer components of proposed AMM. Herein shows the key 
interactions between the Application Layer, Middleware Smart Contract Layer and Infrastructure Layer
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Conclusion
AMM DEXs are a recent development in their early stages of growth. Present market 
solutions, while innovative in nature, can be further optimized.

This study introduces a predictive AMM architecture that utilizes a loss-minimizing 
market pricing mechanism as well as a deep reinforcement learning architecture that 
seeks to reduce divergence and slippage costs. The objective is to enhance the capital 
efficiency of liquidity provision. This paper formalizes and analytically expounds the 
implicit costs to a liquidity taker and provider, as well as the deep reinforcement learning 
mechanism for market making, thus benefiting both research and industry uses.

The empirical analysis based on the experimental simulations showcases the proposed 
AMM architecture’s superiority in several key metrics. With a 93% liquidity utilization 
rate, a pronounced liquidity concentration around current prices, and a deeper liquid-
ity pool, the new architecture outperforms the baseline Uniswap V3 AMM architecture. 
Furthermore, it demonstrates a significant reduction in both divergence and slippage 
losses. These findings underscore the potential of the proposed AMM architecture to 
revolutionize the DeFi space by directly addressing the challenges inherent to existing 
AMM architectures. The results pave the way for further refinements and real-world 
implementations of the proposed framework, promising a more efficient and effective 
DeFi trading landscape.

While our research offers a deep dive into the technical aspects of AMMs, it also 
bridges the gap between theory and practice, offering clear implications across various 
domains. It thus offers profound implications for both academia and the industry at 
large. We highlight these implications across various spectrums as follows:

• Academic implications: Our approach to enhancing liquidity provision in AMMs 
can serve as a foundation for future research, encouraging explorations into deeper 
integrations of machine learning in DeFi. The proposed architecture and its novel 
market equilibrium pricing mechanism also open avenues for studies into optimizing 
other related financial protocols, which could provide innovative solutions to exist-
ing problems.

• Practical implications: For practitioners in the DeFi domain, our findings offer 
actionable insights into optimizing AMM performance, reducing divergence, and 
minimizing slippage losses. Decision-makers in financial institutions can harness 
the findings to refine their trading strategies, thereby optimizing liquidity provision 
and maximizing returns. Managers who oversee AMM platforms can implement the 
proposed architecture to enhance the efficiency of trading platforms as a differentia-
tor in an increasingly competitive market.

• Policy and societal implications: As DeFi grows in prominence, policymakers can 
use our research as a basis to frame regulations that foster innovation while ensuring 
market stability. At a societal level, improved AMM architectures can lead to more 
efficient and transparent financial transactions, which will promote trust and the 
wider adoption of decentralized platforms.

An AMM DEX liquidity provision optimization strategy is an attractive topic for both 
practitioners and researchers. In terms of future work, practitioners could include a 
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physical implementation of the proposed AMM DEX grounded in a profitable business 
model, aiming to bridge the gap between theoretical innovation and practical utility. 
This includes simplifying the presentation of the proposed model to enhance its acces-
sibility to a broader audience. Future work can enrich the study’s endeavors with prac-
tical examples, case studies, and—potentially—the development of a software toolkit 
designed to lower the barriers to adoption. The goal would be to transform the research 
into valuable, actionable resources for industry application.

For researchers, future work could involve the following avenues: (1) conducting eval-
uations of a broad spectrum of preprocessed alternative data to enhance the precision of 
market liquidity predictions; (2) evaluating incentive fee distribution structures beyond 
the Uniswap V3 uniform distribution and the Gaussian distribution mechanisms pro-
posed in this paper; (3) investigating an integrated TEE architecture within the infra-
structure layer, augmented with relevant specific security protocols; (4) exploring the 
integration of the predictive AMM model with layer 2 solutions and assessing its per-
formance and feasibility in a scaled environment; (5) expanding the empirical testing 
framework by including rigorous stress testing against a wide variety of market scenar-
ios (including those marked by extreme volatilities); (6) improving the proposed hybrid 
LSTM–Q-learning reinforcement learning framework to enhance predictions of liquid-
ity concentration ranges; (7) modeling and learning complex relations in transaction 
networks within AMMs (Zhao et al. 2023a; Zhang and Kou 2022); and (8) performing 
representation learning of transaction networks within AMMs, thereby enabling more 
accurate and dynamic predictions of liquidity and price movements, such as through the 
use of graph-based dual attention networks (Zhao et al. 2023b) or contrastive learning 
(Chen and Kou 2023).

Through these multifaceted future research initiatives, practitioners and researchers 
can bridge the gap between theoretical innovation and practical utility, providing contri-
butions that not only enhance the academic discourse but also deliver significant, meas-
urable benefits to the DeFi space.
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