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Abstract 

The availability of many variables with predictive power makes their selection 
in a regression context difficult. This study considers robust and understandable 
low-dimensional estimators as building blocks to improve overall predictive power 
by optimally combining these building blocks. Our new algorithm is based on general‑
ized cross-validation and builds a predictive model step-by-step from a simple mean 
to more complex predictive combinations. Empirical applications to annual financial 
returns and actuarial telematics data show its usefulness in the financial and insurance 
industries.
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Introduction
When selecting a particular submodel for a high-dimensional statistical problem, the 
noise to signal ratio must be monitored. The challenge is to obtain the optimal bias 
reduction for any additional noise and stop adding more noise at the right time (see, 
among many others, the popular book of James et al. 2013). In this study, we intro-
duce a simple approach for optimizing the model selection process in high-dimen-
sional problems with limited data. We consider a situation with several potentially 
useful covariates and limited data to estimate a complicated nonlinear underlying 
model. We propose building a potentially complex nonparametric model structure 
using simple low-dimensional components. With many available covariates, one can 
build many one- or two-dimensional models and then construct an optimal weighted 
average for these submodels. In principle, this is different from linear regression, 
in which the linear components involved can only be interpreted together with the 
entire linear model. We propose a forward model-selection method that begins with 
a simple mean. Through cross-validation, we then examine the noise-to-signal ratio 
when replacing a fraction of that mean with each of our many low-dimensional com-
peting submodels. We select the best replacement, as measured via cross-validation, 
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including the possibility of replacing with the mean itself (such that nothing is hap-
pening). If the mean itself is picked, then we stop the procedure. However, if any 
other submodel is picked, we continue the methodology of replacing a fraction of the 
mean with a fraction of other submodels until the method stops because the mean 
itself has been selected and nothing is happening. This method is described in detail 
in the following section. Our approach is an alternative to forward or backward 
model selection methods in linear regression (e.g., Steinberger and Leeb 2019) or 
robust linear regression via penalization (e.g., Filzmoser and Nordhausen 2021) and 
can be used for both standard and time-series regression problems. In the context 
of time-series regression, our method is similar to an ensemble method that com-
bines alternative forecasts in an optimal manner. Our method is different from most 
other non-parametric approaches because it does not assume an overall complicated 
model structure based on all covariates, such as linear regression, generalized addi-
tive models, or very general generalized structured models (see Mammen and Nielsen 
2003). Our final estimator is always a combination of estimators that are already rel-
evant and useful estimators. Therefore, our final estimator is easier to understand. It 
might also be more robust because it does not add noise from estimating residuals, as 
linear regression or generalized additive models—or other big model methods—are 
designed to do.

Consider K possible candidates m̂1, . . . , m̂K  when predicting Y (from low-dimen-
sional predictive models). Then, the combined forecast is

with weights w1, . . . ,wK  being chosen appropriately. We propose a step-wise (forward) 
procedure starting from the historical mean and adding “small” bits to the final model 
based on improvements of our validation criterion. Our new algorithm for prediction 
is based only on low-dimensional functions, and can therefore be used in high-dimen-
sional situations where the number of observations is low compared to the number of 
covariates. We consider our method to be a simple interpretable and robust alternative 
to popular regularization and shrinkage methods such as Lasso (Tibshirani 1996), “adap-
tive” Lasso (Zou 2006), or ridge regression (Hoerl and Kennard 1970), hyperparameter 
optimization (Bischl et al. 2023), among many others also aiming at the challenge of ana-
lyzing sparse data with many covariates.

In “Materials and methods” section, we formalize our approach in a general manner 
that applies to both standard regression data and time-series regressions. Our valida-
tion strategy can be defined according to the nature of the data, with leave-one-out 
cross-validation being the simplest and most common choice for non-autocorrelated 
data. When adding low-dimensional components to the final predictor, we also con-
sider limiting the number of covariates used to reduce the noise. In “An empirical 
application to time series data” section we provide a real data example for a time 
series regression for forecasting yearly stock returns. Our application adds to the 
results of previous studies by Nielsen and Sperlich (2003) and Kyriakou et al. (2020, 
2021a, 2021b) and obtain better prediction accuracy. In “An empirical application 
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to cross-sectional actuarial telematics data” section we present a real-data regres-
sion example for an actuarial telematics dataset. We present a finite-sample simula-
tion study in “Simulation studies” section where we consider two standard regression 
cases without any time-series dependency. The case we consider has only 200 obser-
vations and ten covariates and it turns out that our new approach performs as well for 
this case as linear regression, and performs better than ridge regression and Lasso, 
even when the linear regression is true. When the linear regression is not true and 
there is nonlinearity, our new simple non-parametric ensemble method performs 
much better than linear, Lasso, and ridge regression. This is also in line with the 
results of Scholz (2022), who show that Lasso and ridge regressions do not perform 
well for the nonlinear yearly stock prediction problem that we consider as our real-
life data example in “An empirical application to time series data” section. The con-
clusions of this study, including a discussion on possible extensions, are presented in 
“Conclusion” section.

Materials and methods
This section presents the mathematical formulation and implementation of the pro-
posed approach. The “Prediction framework” section begins with a general definition of 
loss measures incorporating both the loss measure used in this study and the popular 
penalty loss measures that the Lasso and ridge regressions—which we compare our new 
method to in “Simulation studies” section—are based on.

Prediction framework

We assume the general prediction framework described in Hastie et al. (2017) as follows:

where yt+h is the variable to be predicted h periods ahead, Zt is the set of (all available) D 
covariates, H is a space of possible functions f that combine the data to form the predic-
tion, p is a penalty on f, τ is a set of hyperparameters (for example, � in the Lasso, typi-
cally chosen via a version of cross-validation), and L is a loss function that defines the 
optimal forecast. Typical loss functions are the L2 and L1 norms.

When choosing a predictor in a high-dimensional situation where the number of 
covariates D is large, the sparsity of the data becomes a crucial problem. Therefore, it is 
necessary to avoid the estimation of high-dimensional objects and their inherent vari-
ability. Our proposal is a forward algorithm, where at each step, combinations of only 
low-dimensional (and potentially nonlinear) functions, fk ∈ H ( 1 ≤ k ≤ K  ), are consid-
ered based on a subset of dk covariates, Zk ,t ⊆ Zt . For example, in the data application 
we describe later, we have seven potential covariates; however, we only consider one- 
and two-dimensional functions based on them.

Our proposal

Our proposal consists of three elements: low-dimensional predictors, a method for 
evaluating their predictive power, and a criterion for defining combinations of low-
dimensional predictors with good predictive power. The reason for this is to introduce 

(1)min
f ∈H

{

L
(

yt+h, f (Zt)
)

+ p(f , τ )

}

, t = 1, . . . ,T ,
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robustness into the forecasting approach. We want to avoid estimators such as the 
Lasso or Elastic Net (Rapach and Zhou 2020), or even linear regression, where enter-
ing many covariates may introduce noise that is difficult to handle in the validation 
analyses. We use the same validation measure (out-of-sample R2 ) as Rapach and Zhou 
(2020), Yae and Luo (2023), and Kelly et  al. (2022). However, although these three 
studies cite Campbell and Thompson (2008) for the introduction of this measure, we 
cite Nielsen and Sperlich (2003) (see also McGibney and Smith 1993; Anh et al. 2017). 
We know from Scholz (2022) that machine learning methods, such as Lasso and 
Elastic Net, do not help improve forecasting when combined with our simple low-
dimensional forecasting candidates. Our combined forecast out-of-sample R2 val-
ues generally seem higher than the out-of-sample R2 values obtained in Rapach and 
Zhou (2020) and Kelly et al. (2022). Although these validation scores are not directly 
comparable because the datasets used are not exactly the same, they do indicate 
that combining low-dimensional forecasts might be the most efficient way forward. 
In addition, the simple model selection procedure of this study may compete very 
well with more complicated machine learning combinations, whether these machine 
learning techniques are applied directly to the covariates, as in Rapach and Zhou 
(2020) and Kelly et  al. (2022) or to the low-dimensional forecasts suggested in this 
study, see Scholz (2022). See also Leeb and Steinberger (2021) for another approach 
to simple linear models used directly on the covariates when forecasting stock returns 
and Anatolyev (2019) for a simple and friendly guide to maintaining simplicity in 
regression studies with complex data. We do not think that the promising results of 
this study can be attributed to p-hacking (Brodeur et al. 2020) because we select sim-
plicity over complexity, and we are very careful in our validation technique. It could 
be interesting, but beyond the scope of this study, to generalize our approach to allow 
for a hierarchical structure of combined forecasts, as in Spiliotis et  al. (2021), or to 
robustify the output of the methodology by combining quantile regression rather 
than standard regression when forecasting, as in Belloni et al. (2019).

For the first element we formulate K predictive regression models, based on 
dk << D ( k = 1, . . . ,K ) covariates, of the type

where

is an unknown function and ξk ,t is an error term. The predictors f̂k for the unconditional 
means fk can be computed by assuming a linear structure using ordinary least squares 
(OLS) or more flexible nonparametric techniques such as kernel smoothing (Wand and 
Jones 1994). It is important that these underlying low-dimensional objects, the esti-
mated fk’s, fit the job at hand. In real data problems, both linearities and nonlineari-
ties should be considered. Nonparametric smoothing methods, such as the popular local 
linear estimation, can adapt to both situations; therefore, in our empirical studies, we 
consider local linear smoothers with an optimal data-driven bandwidth choice. Other 
types of non-parametric estimators of the underlying fk are also possible. One simple 

(2)yt+h = fk(Zk ,t)+ ξk ,t ,

(3)fk(z) = E(yt+h |Zk ,t = zk ,t), zk ,t ∈ R
dk ,
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approach would be to allow for local neighborhood bandwidths rather than the constant 
bandwidths used in this study. Many other nonparametric, semiparametric, or even par-
ametric choices of fk are possible, as long as they fit the problem at hand.

To evaluate the predictive power of a model of type (2), we consider the validated 
R-squared of Nielsen and Sperlich (2003) (see also Kyriakou et al. 2021b) defined as

with Y = (y1+h, . . . , yT )
⊤ , loss function L, and where f̂−t and Ȳ−t are the estimators of 

the conditional mean function fk (2) and the unconditional historical mean of Y, respec-
tively, computed without the information contained in Yt . This involves defining a 
general validation set, which we estimate with all but the t observation and the 2l obser-
vations around it. Leave-one-out cross-validation or the more general K-fold cross-
validation are common choices for models with uncorrelated errors. For time series 
forecasting, and because of inherent serial correlation, forecasters tend to prefer out-of-
sample evaluation. One problem with out-of-sample evaluation is that it only evaluates 
once, whereas cross-validation involves several evaluations, which may be more con-
venient, especially for small sample sizes. Other approaches for the case of correlated 
errors include cross-validation excluding (2l + 1) observations (with l > 1 ) as defined 
above, as well as other versions, such as the so-called h-block cross-validation (h obser-
vations preceding and following the observation are omitted from the test set). However, 
most of these time-series alternatives have problems that require additional corrections. 
Hence, a simple leave-one-out cross-validation may be a better option in many practical 
situations. See Bergmeir et al. (2018) for a discussion on the validity of cross-validation 
for autoregressive time-series predictions and some recommendations in practice.

The validated R-squared value in (4) measures the predictive power of a given model 
against a benchmark, that is, the historical mean (a classic benchmark for financial time 
series). The positive values of R2

V  for a given predictor f̂  indicate that it outperforms the 
corresponding historical mean forecast. Considering this, our algorithm chooses pre-
dictors that maximize R2

V  , which is equivalent to the minimization of the loss function 
L(Y , f̂−t).

The last element of our proposal is a combination of predictors to increase predictive 
power. For predictors f̂k ( k = 1, . . . ,K  ), we define a combination of types

for certain weights w1, . . . ,wK  . It is well known in forecasting literature that forecast 
combinations often lead to better forecast accuracy (Clemen 1989). These and other 
methods were recently analyzed by Scholz (2022), who show that single predictors can 
perform better in terms of the validated R-squared than the combination f̂ comb.

Based on the previous definitions, we propose an algorithm to construct optimal com-
binations of predictors. Starting with the historical mean Ȳ  , we combine it linearly with 
a portion of f̂i . The idea is to think like an investor; that is, using the most promising 
candidates (the models with R2

V > 0 ), allowing for leverage (weights could sum up to a 

(4)R2
V = 1−

L(Y , f̂−t)

L(Y , Ȳ−t)
,

(5)f̂ comb =

K
∑

k=1

wk f̂k ,
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value larger than one), use only small “bits” of the candidate at hand (say a 10% weight), 
validate its impact immediately and discard it if no further improvement in predictive 
power is achieved. For a fixed α ∈ (0, 1) (e.g., α = 0.1 ), we calculate

where i ∈ {1, . . . ,K } is selected such that the validated R-squared of f̂FW  is the maximal. 
Then, we iterate in the same manner as long as the predictive power improves,

where i ∈ {1, . . . ,K } is chosen again such that the validated R-squared of f̂ newFW  is the 
maximal.

Based on the definitions above, our forward Algorithm  1 is described by the following 
steps.

Algorithm 1  Require: A validation criterion, α ∈ (0, 1) and the historical mean Ȳ .
Step 1: Provide K predictors f̂i , 1 ≤ i ≤ K  , based on low-dimensional sets of covari-

ates Zk ,t . If f̂i does not have a better validation than Ȳ  , stop, and return Ȳ .
Step 2: Construct f̂FW = Ȳ + α(f̂i − Ȳ ) with i such that f̂FW  has the best validation 

with respect to the chosen criterion. If f̂FW  does not improve compared with the best 
predictor f̂s , then stop and return f̂s.

Step 3: Construct f̂ newFW = f̂ oldFW + α(f̂i − Ȳ ) with i such that f̂ newFW  has the best validation 
with respect to the chosen criterion.

Step 4: Repeat Step 3 as long as the validation of f̂ newFW  improves. Return f̂ newFW .

To simplify the model choice, it may be appropriate to limit the number of candidates. 
Thus, in the practical application and simulation study, we also include a variant of Algo-
rithm 1, in which the use of five maximal predictors f̂i is allowed. We denote the predic-
tor based on Algorithm 1 as forward and the variant as forward5.

Results and discussion
This section provides a finite sample simulation study in “Simulation studies” section, 
empirical applications to time-series data in “An empirical application to time series 
data” section, and cross-sectional data in “An empirical application to cross-sectional 
actuarial telematics data” section. The finite-sample study in “Simulation studies” sec-
tion shows that linear, Lasso, and ridge regression are competitive with our new method 
when the comparison is on their home turf: the linear model is true. However, linear 
regression, Lasso, and ridge regression are not competitive with our new method when 
the linear model is not true. Therefore, it is clear that our new method is superior in 
performance to linear, Lasso, and ridge regression. The first empirical application revis-
its a well-studied dataset of Robert Shiller that is often used for forecasting yearly stock 
returns. It is a time series of more than 100 yearly data points with a number of relevant 
covariates, such as dividend yield, earnings, inflation, and interest rates. This dataset 
is in line with the objective of our study, in which we want to consider small datasets 
with many covariates. The combination of covariates results in 28 low-dimensional 

(6)f̂FW = Ȳ + α(f̂i − Ȳ )

(7)f̂ newFW = f̂ oldFW + α(f̂i − Ȳ )
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competing predictors that could all be used for forecasting. Our new approach uses 
only three of these predictors and the mean to forecast yearly stock returns. The sec-
ond empirical application uses telematics data on individual driving patterns to predict 
traffic accident claims costs, which is a major problem in motor insurance. The dataset 
consists of around 500 individuals (of age 18–35) and includes information on the poli-
cyholder (like age, age of car, or years holding a driver’s license) and the policyholder’s 
driving style and driving patterns (“telematic covariates” like annual distance driven or 
percentage of kilometers driven above the speed limit or at night). The combination of 
available covariates again results in 28 low-dimensional competing predictors that could 
potentially be used to predict traffic accident claims costs. With our new approach, we 
use only five of these predictors and the mean.

Simulation studies

In this section, we compare the performances of the forward and forward5 methods 
proposed in Algorithm 1 with those of the five related methods on the simulated data. 
The first method is standard linear regression based on OLS, denoted by linreg. The 
second and third methods are regularization techniques that ideally shrink the weights 
wk of the predictors f̂k without predictive power to zero. We use only two of the many 
different approaches and their variants:  Lasso (Tibshirani 1996) and ridge regression 
(Hoerl and Kennard 1970), denoted by lasso and ridge. To compute the Lasso and ridge 
regressions, we use the R package glmnet. The fourth method is a fully nonparametric 
local-linear smoother based on the quartic (product) kernel, whose bandwidths are cho-
sen with cross-validation, as described in “Materials and methods” section. We denote 
this method by loclin. The final method is a simple average ȳ denoted by the mean. In 
all these methods, the full set of available covariates is used in the prediction procedure.

We consider two cases: a linear data-generating process (dgp) and a nonlinear process. 
Both simulations are similar in the choice of a maximum of ten covariates, of which four 
are relevant and six are irrelevant. We evaluate the predictions based on two measures: 
(i) the cross-validation (CV) as discussed in “Materials and methods” section, that is, 
L(y, f̂−t) = ||y− f̂−t ||

2
2 and (ii) the out-of-sample mean squared forecast error (MSFE), 

that is, L(yoos, f̂ oos−t ) = ||yoos − f̂ oos−t ||
2
2 based on additional observations from the same 

dgp that have not been used in the estimation step. In each case, we generate T = 200 
observations for the estimation and Toos = 50 observations for the out-of-sample valida-
tion in a total of 500 iterations.

Case 1
We generate data using the model:

with ε, xi ∼ N (0, 1) , i = 1, . . . , 10 . As the model is linear in this case, we use OLS for the 
estimation in forward and forward5 to reduce the computational burden. Note that the 
dgp is linear, such that using a local-linear smoother would also estimate the true linear 
model without any bias, and thus deliver similar results.

Box plots of the CV (left) and MSFE (right) are shown in Fig. 1. The median CV for 
the forward5 is clearly smaller than that of the other competitors. The second is for-
ward, followed by linreg. For  MSFE, the performance is similar for our forward and 

y = 1.0+ 0.8x1 + 0.6x2 + 0.4x3 + 0.2x4 + ε
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forward5  methods and the standard local linear regression. As expected, loclin and 
linreg perform comparably well. Interestingly, both shrinkage methods perform worse 
than the other model-based approaches. The mean produces the worst results. For the 
MSFE measure, forward5, forward, loclin, and linreg perform similarly. Lasso and 
ridge are again slightly worse. Again, the mean is the worst predictor under the consid-
ered approaches.

Case 2
In this case, the dgp is given by:

where ε, xi ∼ N (0, 1), i = 1, . . . , 10 . Note again that only the variables x1, . . . , x4 are 
used; that is, there are six irrelevant variables. In forward and forward5, we now use a 
local linear smoother instead of OLS as in Case 1.

Box plots of the CV (left) and MSFE (right) are shown in Fig. 2. forward5 again per-
forms best in terms of the lowest value in the CV measure followed by forward. In 

y = −x21 − 2 sin

(

π

2
x2

)

+ x3x4 + ε

linreg lasso ridge loclin forward forward5 mean
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Fig. 1  Results of the simulation study for the linear data generating process of Case 1. Left: CV, right: MSFE

linreg lasso ridge loclin forward forward5 mean

2
4

6
8

CV

linreg lasso ridge loclin forward forward5 mean

2
4

6
8

10
12

MSFE

Fig. 2  Results of the simulation study for the non-linear data generating process of Case 2. Left: CV, right: 
MSFE
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addition, the fully non-parametric approach, which is usually ideally suited for such 
nonlinear dgp’s is outperformed by our new approaches. The linreg, lasso, and ridge 
approaches cannot account for the nonlinearities in the dgp and perform much worse 
than the other model-based approaches. Even the mean shows CV values similar to 
those of the purely linear methods. When considering the MSFE, a similar ranking of the 
methods can be obtained. Again, forward and foreward5 outperform their competitors.

We have carried out simulations in dimensions up to 200 for our new method and 
allowed it to compete with linear, Lasso, and ridge regression on the home turf of these 
three methods: when the problem is linear. Our proposed method outperforms the oth-
ers—even when the true model was indeed linear—when the measure is cross-valida-
tion, which is the most used measure of machine learning methods. However, if we also 
look at the out-of-sample performance MSFE, that is, we simulate a sample to estimate a 
model and use another simulated sample for evaluation; then, it is not clear whether the 
Lasso, ridge, or our proposal would be preferable. The simulations yield mixed messages. 
Linear regression without variable reduction is not competitive for such high dimen-
sions, even when estimating the true linear regression model. The noise of the standard 
linear regression in high dimensions is too large. What is clear is that our new method is 
very competitive with Lasso and ridge, even on their home turf. It should also be added 
that, unsurprisingly, when nonlinearities are present, Lasso and ridge are not competi-
tive with our proposed method.

An empirical application to time series data

We apply the methods described in “Materials and methods” section to annual US stock 
market data from 1872 to 2019. We use a revised and updated version of the series 
described in Shiller’s Chapter 26 (Shiller 1989) which consists of the Standard and Poor’s 
(S &P) Composite Stock Price Index, dividends and earnings accruing to the index, a 
1-year interest rate, a long government bond yield, and the consumer price index (http://​
www.​econ.​yale.​edu/​~shill​er/​data.​htm). We replace the original risk-free rate series 
(which was discontinued in 2013) with an annual yield based on the 6-month Treasury 
bill rate (https://​fred.​stlou​isfed.​org/​series/​TB6MS) secondary market. This new series is 
only available from 1958 onwards. Therefore, we regress the Treasury bill rate on the 
original commercial paper rate from Shiller’s data and instrument the risk-free rate from 

Table 1  US market data (1872–2019)

Max Min Mean Sd Skew Exc.kurt

S &P stock price index 2789.80 3.25 277.58 558.13 2.43 5.50

Dividend accruing to index 53.75 0.18 6.04 10.56 2.45 6.00

Earnings accruing to index 132.39 0.16 13.96 26.31 2.43 5.35

Dividend-by-price 9.88 1.17 4.31 1.71 0.46 0.25

Earnings-by-price 17.75 1.72 7.28 2.75 1.05 1.39

Short-term interest rate 14.93 0.07 3.97 2.50 0.96 2.34

Long-term interest rate 14.59 1.88 4.53 2.27 1.81 3.63

Inflation 20.69 − 15.65 2.23 5.96 0.26 1.60

Spread 3.64 − 3.71 0.56 1.32 − 0.05 0.02

http://www.econ.yale.edu/%7eshiller/data.htm
http://www.econ.yale.edu/%7eshiller/data.htm
https://fred.stlouisfed.org/series/TB6MS
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1872 to 1957 with the corresponding predicted values. For further details, see Kyriakou 
et al. (2020) and Mammen et al. (2019).

Our analysis focuses on the nonlinear predictive relationships between 1-year stock 
returns in excess of a reference rate (or benchmark) and a set of explanatory variables. 
We use the data analyzed recently by Kyriakou et al. (2021a). Table 1 summarizes the 
available variables using their basic descriptive statistics. In our analysis, we focus on 
1-year-ahead forecasts, but we can also consider longer horizons, T > 1 ; however, in that 
case, we should account for overlapping observations and related econometric problems 
(see Kyriakou et  al. 2020 for more details). The approach considered here estimates a 
fixed forecast function for dynamic time-varying covariates. The time-varying forecast-
ing dynamics of our approach are derived only from the time-varying covariates. This 
differs from approaches such as Fan et al. (2022), in which time dependency is modelled 
explicitly and applied to portfolio optimization.

We investigate stock returns St = (Pt + Dt)/Pt−1 , t = 1, . . . ,T  , where Dt denotes the 
(nominal) dividends paid during year t and Pt is the (nominal) stock price at the end of 
year t, in excess (log scale) of the given benchmark B(A)

t−1

where A ∈ {R, L,E,C} with, respectively,

Rt is the short-term interest rate and Lt is the long-term interest rate rate, Et is earn-
ings accrued to the index in year t, and CPIt the consumer price index for year t. We are 
interested in 1-year-ahead forecasts yt , that is, h = 1 , via Eq. (2) using low-dimensional 
combinations of popular time-lagged predictive variables Zt−1 ∈ R

q and 1 ≤ q ≤ 2 , 
including the: (1) dividend-by-price ratio dt−1 = Dt−1/Pt−1 ; (2) earnings-by-price ratio 
et−1 = Et−1/Pt−1 ; (3) short-term interest rate rt−1 = Rt−1/100 (4) long-term interest 
rate lt−1 = Lt−1/100 , (5) inflation πt−1 = (CPIt−1 − CPIt−2)/CPIt−2 ; (6) term spread 
st−1 = lt−1 − rt−1 ; and vii) excess stock return yt−1 . This gives us K = 28 different 
(potentially highly correlated) predictors, f̂1, . . . , f̂K  that can be ranked based on their 
predictive power measured by the validated R-squared in (4).

(8)yt = ln
St

B
(A)
t−1

,

(9)B
(R)
t = 1+

Rt

100
, B

(L)
t = 1+

Lt

100
, B

(E)
t = 1+

Et

Pt
, B

(C)
t =

CPIt

CPIt−1
,

Table 2  Predictive power (in percent) of the 28 low-dimensional models

Model with best predictive power highlighted in bold

Model RV
2 Model RV

2 Model RV
2 Model RV

2

1 y − 1.4 8 y, d − 1.6 15 d, r 0.8 22 e, s 5.4

2 d − 0.2 9 y, e − 3.4 16 d, l − 1.2 23 r, l 5.2

3 e − 1.5 10 y, r − 0.9 17 d,π 9.5 24 r ,π 9.5

4 r 0.8 11 y, l − 2.5 18 d, s 7.9 25 r, s 7.4

5 l − 0.8 12 y ,π 9.7 19 e, r − 0.4 26 l,π 9.9

6 π 10.3 13 y, s 4.8 20 e, l − 2.5 27 l, s 7.4

7 s 7.2 14 d, e − 1.9 21 e,π 10.9 28 π , s 15.4
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As stated above, we focus on all one- and two-dimensional non-parametric models 
for predicting real excess stock returns (using the benchmark B(C) ), which gives us 28 
different predictors f̂i , 1 ≤ i ≤ 28 , all estimated with the local linear smoother using the 
quartic (product) kernel. The smoothing parameters (bandwidths) were chosen by leave-
one-out cross-validation, that is, by maximizing the in-sample performance measure R2

V  
introduced in “Materials and methods” section. Table 2 lists the predictive powers of the 
candidates. For each candidate, we indicate the variables involved (one or two variables 
maximum) and the value of the R2

V  that provides the predictive power of the candidate 
model. We can see that the best candidate model has an R2

V  of 15.4% and is based on the 
inflation rate ( π ) and term spread (s) as predictive variables.

Using our new algorithm and setting α = 0.1 , the predictive power can be increased by 
8% to R2

V = 16.6 . The single rounds are listed in Table 3. The first round corresponds to 
steps 1–2 of our forward algorithm (see Algorithm 1 in “Our proposal” section) and only 
considers the model candidate with the best predicted power, that is a two-dimensional 
model based on π and s as predictive variables (see Table 2). Step 3 of the algorithm is 
iterated until no improvement is achieved. The optimal model (28) is chosen in the first 
seven consecutive rounds, reaching almost 100 % predictive power with this 70 % input. 
In rounds 8 and 11, model  21 is selected, followed by model  18 in rounds 9, 10, and 12. 
The final forecast is given by (7), which yields the following combination of predictors

where 12 rounds are used and the model weights sum to 1.2. Note that already the model 
produced in round 9 (using a total weight of 0.9) has a larger predictive power than the 
best individual model.

An empirical application to cross‑sectional actuarial telematics data

We apply the new method described in “Materials and methods” section to a cross-
sectional dataset obtained from a Spanish insurance company (Bolancé et al. 2022). It 
consists of 488 car insurance policyholders who reported at least one claim in 2011, 

f̂FW = −0.2Ȳ + 0.3f̂18 + 0.2f̂21 + 0.7f̂28

Table 3  Predictive power (in percent) of the round-based forward algorithm fixing α = 0.1

Steps in Algorithm 1 with improved predictive power compared to the single best predictor f̂28 highlighted in bold

Round Model Covariates R2V

1 28 π , s 3.1

2 28 π , s 5.9

3 28 π , s 8.4

4 28 π , s 10.5

5 28 π , s 12.2

6 28 π , s 13.5

7 28 π , s 14.5

8 21 e,π 15.2

9 18 d, s 15.8
10 18 d, s 16.2
11 21 e,π 16.5
12 18 d, s 16.6
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covering, among others, the following information: cost per policyholder in thousands 
of euros (co), age in years (ag), number of years holding a driver’s license (ad), age of 
car in years (ac), annual distance driven in thousands of kilometers (tk), percentage of 
kilometers driven at night (nk), percentage of kilometers driven on urban roads (uk), and 
percentage of kilometers driven above the speed limit (sk). We use the same data ana-
lyzed recently by Bolancé et al. (2023) (see also Bolancé et al. and 2018). Table 4 lists the 
variables and their basic descriptive statistics.

We analyze the logarithm of claim costs, y = log(co) , and focus on all one- and two-
dimensional models. This provides 28 different predictors f̂i and 1 ≤ i ≤ 28 , all esti-
mated with the local linear smoother using the quartic (product) kernel. Smoothing 
parameters (bandwidths) were chosen using leave-one-out cross-validation. Table  5 
summarizes the predictive power of the models as measured by the R2

V  . Only 2 of the 
28 models show a validated R-squared larger than zero, indicating predictive power. The 
best individual model has an R2

V  of 0.15% and is based on the percentage of kilometers 
driven at night. Using our new algorithm (setting α = 0.1 ), the predictive power can be 
increased by a factor of 3.3 to 0.5%. Note that the relative signal to noise ratio is much 
lower in this study than in the previous annual financial returns study in “An empirical 
application to time series data” section. The single rounds are presented in Table 6. The 
final model is given by

f̂FW = −0.4ȳ+ 0.3f̂4 + 0.3f̂5 + 0.3f̂7 + 0.1f̂13 + 0.4f̂16

Table 4  Spanish claim costs data

Max Min Mean Sd Skew Exc. kurt

co 17.03 0.02 1.55 2.03 3.36 18.27

ag 34.07 20.59 27.01 3.25 0.09 1.99

ad 14.69 2.00 6.44 2.83 0.76 2.95

ac 20.47 2.11 8.90 4.15 0.79 3.11

tk 35.10 1.22 8.36 4.53 1.30 6.27

nk 42.83 0.04 7.52 6.51 1.86 7.84

uk 80.66 3.81 27.07 14.12 0.96 3.92

sk 48.00 0.12 7.21 7.10 1.90 7.47

Table 5  Predictive power (in percent) of the 28 low-dimensional models

Model with best predictive power highlighted in bold

Model R
2

V
Model R

2

V
Model R

2

V
Model R

2

V

1 ag − 0.33 8 ag, ad − 0.64 15 ad, tk − 0.60 22 ac, sk − 0.52

2 ad − 0.20 9 ag, ac − 0.78 16 ad, nk 0.08 23 tk, nk − 0.26

3 ac − 0.41 10 ag, tk − 0.72 17 ad, uk − 0.83 24 tk, uk − 0.83

4 tk − 0.18 11 ag, nk − 0.42 18 ad, sk − 0.41 25 tk, sk − 0.45

5 nk 0.15 12 ag, uk − 0.88 19 ac, tk − 0.81 26 nk, uk − 0.65

6 uk − 0.51 13 ag, sk − 0.30 20 ac, nk − 0.45 27 nk, sk − 0.25

7 sk − 0.04 14 ad, ac − 0.70 21 ac, uk − 0.98 28 uk, sk − 0.58
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where 14 rounds are used, and the model weights sum to 1.4. Note that the second round 
produces a model with improved predictive power compared with the single best model. 
Interestingly, models based on telematics variables (annual distance driven in thousands 
of kilometers, percentage of kilometers driven at night, and percentage of kilometers 
driven above the speed limit) and their interactions with the age of the driver and the 
number of years of holding a driver’s license were selected. Bolancé et al. (2023) report a 
mean squared prediction error for their preferred model of 1.303. When calculating the 
mean squared prediction error for our f̂FW  using the 488 observations in the dataset, we 
find a smaller value of 1.220, indicating better predictive performance than the single-
index model used in Bolancé et al. (2023).

Conclusion
This study introduces a new regression methodology applicable to both standard regres-
sion and time-series regression settings. Our new approach uses low-dimensional esti-
mators as building blocks for a larger system instead of going directly to a large system, 
as its main competitors do. The new approach is particularly useful when many covari-
ates but only a few observations of the dependent variable are available. Our data and 
simulation sections illustrate that our new approach is superior to its main competi-
tors in our chosen finite sample studies (inspired by typical datasets of interest), and 
also seems superior in our important real-life data examples taken from the finance and 
insurance industries.

Our new methodology can also be considered an addition to the toolbox of machine 
learning methodology in insurance and finance; see, for example, Asimit et  al. (2020). 
It is, of course, not only the mean values that can be modelled via our new approach to 

Table 6  Predictive power (in percent) of the round-based forward algorithm fixing α = 0.1

Steps in Algorithm 1 with improved predictive power compared to the single best predictor f̂5 highlighted in bold

Round Model Covariates R
2

V

1 16 ad, nk 0.127

2 16 ad, nk 0.228
3 16 ad, nk 0.303
4 16 ad, nk 0.351
5 13 ag, sk 0.385
6 5 nk 0.410
7 4 tk 0.432
8 7 sk 0.453
9 5 nk 0.467
10 4 tk 0.480
11 7 sk 0.493
12 7 sk 0.498
13 4 tk 0.503
14 5 nk 0.504
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machine learning, but also volatility or other moments that can be modelled in a similar 
way; see Mammen et al. (2019) for the second moment case, see also Gong et al. (2022). 
Further developments in the second moments might facilitate improvements to ARCH- 
or GARCH type structures, along the same lines as in Wu and Karmakar (2023), but 
with the transparency and robustness of the methodology of this study. Therefore, our 
new approach could be an alternative or supporting methodology for other volatility 
forecasts; see Zahid et al. (2022) among many others, for forecasting clusters of volatility 
based on GARCH-type models. Our technique can also be envisioned for higher-fre-
quency data making it relevant, for example, for trading data; see, for example, Frattini 
et al. (2022). It would also be interesting to provide a non-supervised learning version 
(e.g., classification) of our supervised learning approach (regression) to provide an alter-
native methodology to practical problems, such as those in Brunhuemer et al. (2022). We 
hope that our new approach can help determine an optimal level of complexity within a 
much wider range of applications than the two financial applications indicated in this 
study. Note that any sophisticated modern alternative technique to our approach can 
be enlisted as a function to be included in our approach when validating our method for 
the optimal model. Our approach is therefore very flexible and can perhaps be imagined 
to work together with other modern techniques and applications; for example, see Kou 
et al. (2021, 2024a, 2024b) and Xu et al. (2024).
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