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Abstract 

In the FinTech era, we contribute to the literature by studying the pricing of Bitcoin 
options, which is timely and important given that both Nasdaq and the CME Group 
have started to launch a variety of Bitcoin derivatives. We find pricing errors in the pres-
ence of market smiles in Bitcoin options, especially for short-maturity ones. Long-
maturity options display more of a “smirk” than a smile. Additionally, the ARJI-EGARCH 
model provides a better overall fit for the pricing of Bitcoin options than the other 
ARJI-GARCH type models. We also demonstrate that the ARJI-GARCH model can 
provide more precise pricing of Bitcoin and its options than the SVCJ model in term 
of the goodness-of-fit in forecasting. Allowing for jumps is crucial for modeling Bitcoin 
options as we find evidence of time-varying jumps. Our empirical results demon-
strate that the realized jump variation can describe the volatility behavior and capture 
the jump risk dynamics in Bitcoin and its options.
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Introduction
Bitcoin (BTC) has drawn extraordinary global attention and investors’ interest over the 
recent years.1 The “black swan” crypto event of Terra’s collapse and the FTX catastrophe 
in 2022 clearly catch regulators’ eyes around the world. The increased popularity of BTC 
is also evidenced from numerous studies on its key features such as jump dynamics (e.g., 
Dyhrberg 2016; Gronwald 2019; Hou et al. 2020) and unique properties of its derivative 
pricing (e.g., Cretarola et al. 2020; Hoang and Baur 2020; Chi and Hao 2021; Chen and 
Huang 2021). Due to BTC’s unique characters, it is not clear whether existing option 
pricing models can be applied to Bitcoin options. From the option pricing and risk man-
agement perspectives, modeling volatility dynamics is crucial for option valuation (e.g., 
Hoang and Baur 2020; Siu and Elliott 2021; Kapetanios et al. 2019). Unfortunately, stud-
ies on Bitcoin options are scarce and our understanding of Bitcoin options is limited. 
This study aims to investigate the volatility dynamics of BTC and its options as well as 
the information content of Bitcoin option pricing.
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1  A major innovation in the financial technology (FinTech), namely, blockchain, enables the existence of cryptocurrency 
that has a potential to dramatically impact the world economy.
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Although Bitcoin futures are available on major exchanges,2 Bitcoin options are rela-
tively new and have yet to be offered on organized exchanges. The Deribit Company, 
based in Netherlands, has provided Bitcoin futures and options trading platform since 
the summer of 2016, presenting a good opportunity to study Bitcoin option trading 
and pricing. On November 12, 2019, the CME Group announced its plan to launch Bit-
coin options, which have become available for trading since January 13, 2020.3 In addi-
tion, Nasdaq plans to launch a variety of Bitcoin derivatives.4 Deribit crypto options 
and futures exchange has been consistently ranked the top crypto option market. As 
depicted in Table A, approximately 88.3% of the open interest (OI) were from the Deribit 
exchange, while the second-ranked CME had only 8%, as of July 12, 2022. The collapse 
of FTX Trading Ltd. led to subsequent sale of its four main business divisions, including 
Ledger X. Consequently, the Deribit exchange has reached 93.82% of the OI on April 
4, 2023 and experienced an all-time high OI of $ 20 Billion. According to the Deribit, 
over 80% of their trading volume comes from large professional and institutional trad-
ers, implying that the Deribit exchange has the best liquidity and order book in crypto 
options with a wide range of contracts. As a result, our investigation of Bitcoin option 
pricing in Deribit can provide emerging insights and policy implications for exchanges 
and regulators.

Realizing the importance of incorporating market information from sudden shocks 
into option pricing models, we use a jump detection test to characterize the dynamic 
jump for Bitcoin options. Specifically, we adopt the extended Autoregressive Jump 
Intensity (ARJI)-GARCH models for the diffusive volatility of Bitcoin returns to allow for 
easy valuation of European options. We assume that the Blockchain progress is equiv-
alent to the Poisson process. The price manipulations in the Bitcoin ecosystem, news 
impact, affright sentiment, and hash war of Bitcoin all potentially lead to the Poisson 
distribution.5

From the price discovery perspective, the purpose of this paper is to determine 
whether the GARCH option pricing models can provide reasonable price discovery 
when applied to the volatile Bitcoin options market in the existence of jumps. To cap-
ture the evolution of the price discovery process, we consider some benchmark GARCH 
models in pricing options and show that the ARJI-EGARCH model produces more accu-
rate option prices as reflected from lower pricing error than those of other competing 
ARJI-GARCH forecasting models.

We contribute to the literature in several ways. First, this is the pioneer study attempt-
ing to empirically investigate the information content in Bitcoin options pricing. We 
find extractable mis-pricings on the Deribit options exchange. Although Hou et  al. 
(2020) apply the stochastic volatility with a correlated jump (SVCJ) model to the pric-
ing of cryptocurrency options, their approach is limited to an experimental simulation. 
Our analysis is based on the option trading data from the Deribit Company. Second, we 

2  Given the extreme volatility and strong interest in Bitcoin, the Chicago Board Options Exchange (CBOE) officially 
launched standardized futures products on Bitcoin in December 2017, giving rise to a new era for Bitcoin trades and 
opening the door for other standardized derivatives.
3  https://​www.​cmegr​oup.​com/​media-​room/​press-​relea​ses/​2019/​11/​12/​cme_​group_​annou​ncesj​an132​020la​unchf​orbit​
coino​ptions.​html
4  https://​www.​cnbc.​com/​2018/​11/​28/​nasdaq-​to-​launch-​bitco​in-​futur​es-​despi​te-​crypt​ocurr​encies-​bear-​market.​html
5  Concerned about the relative power of the attackers, Grunspan et al. (2017) compute the probability of success of the 
attackers using a Poisson distribution.

https://www.cmegroup.com/media-room/press-releases/2019/11/12/cme_group_announcesjan132020launchforbitcoinoptions.html
https://www.cmegroup.com/media-room/press-releases/2019/11/12/cme_group_announcesjan132020launchforbitcoinoptions.html
https://www.cnbc.com/2018/11/28/nasdaq-to-launch-bitcoin-futures-despite-cryptocurrencies-bear-market.html
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show that the ARJI-GARCH model can achieve better performance in forecasting vola-
tility than the competing SVCJ model. This finding implies that specifying asymmetric 
jumps in conditional jump intensity on Bitcoin and its options contains more unique 
information than the traditional jump-diffusion process. Third, from the price discovery 
perspective, we emphasize three ARJI-GARCH-type models of realized jump variation 
prediction and their implications on the Bitcoin and its options markets. Our empirical 
results indicate that the ARJI-EGARCH model performs well in out-of-sample tests. We 
also show that the ARJI-EGARCH model’s robust outperformance is partly due to its 
improved ability to describe the smirk and its distinctive ability to capture the volatil-
ity term structure. Our findings may provide reference for the newly introduced Bitcoin 
options at the CME Group and the planned Bitcoin derivatives at Nasdaq.

The remainder of the paper proceeds as follows. Section  "Related literature" reviews 
the related literature. Section  "Models for bitcoin prices and option valuation" dis-
cusses our models and develops the theoretical framework combined with jump 
detection methods from physical measure to risk neutralization for option valuation. 
Section "Empirical analyses and implications" presents empirical results on option valu-
ations using parameters estimated on BTC returns. Section  "Performance evaluation" 
performs the performance evaluation on option pricing models. Finally, Sect. "Conclu-
sion and suggestions for future work" concludes with suggestions for future work.

Related literature
The literature related to our work can generally be classified into three streams. The first 
stream of studies has shown that Bitcoin prices are highly volatile (see e.g., Yermack 
2014). Furthermore, a steadily increasing number of studies also investigate Bitcoin 
prices and shed new light on the GARCH volatility dynamics of this cryptocurrency (see 
Ardia et  al. 2019) and its bubble behavior (see Cheah and Fry 2015; Baek and Elbeck 
2014). These papers demonstrate that speculative motivation is the main driver of the 
Bitcoin prices and it is less likely to be demanded by risk-averse investors. Given the 
high volatility of Bitcoin prices, it is important to appropriately estimate its risk metrics,6 
which are critical for evaluating margin requirements, developing hedging strategies, 
and pricing derivatives. To appropriately estimate the risk metrics of Bitcoin, it is thus 
crucial to model jumps in a volatility model that incorporates returns.

The second stream of the literature considers jump dynamics. Several models have 
been proposed to model jumps (Aysan et  al. 2024; Zhang et  al. 2022; 2023a; 2023b). 
Popular ones include the jump-diffusion model pioneered by Merton (1976) and Bates 
(1991), the double exponential jump model by Kou (2002), and the GARCH-Jump 
Model (Duan et al. (2006). A volatility jump model assumes that the logarithm return 
of a risky asset is driven by the Brownian motion plus a compound Poisson process 
with jump sizes distributed in the model. Christoffersen et al. (2016) and Li (2019) dis-
cuss the key factors on pricing derivatives in crude oil and natural gas futures markets. 

6  In this regard, a number of studies, such as Rogers and Satchell (1991) and Yang and Zhang (2000), have introduced 
alternative measures of volatility to achieve a better understanding of the nature of ranges and their significance in pre-
dicting volatility. Gillaizeau et al. (2019), Sheraz et al. (2022), and Chen and Yang (2023) specifically apply those volatility 
measures for their study of Bitcoin and cryptocurrencies.
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These models have two major advantages. First, they lead to analytical solutions for solv-
ing options valuation issues. Second, they help explain the two empirical phenomena, 
namely the asymmetric leptokurtic feature and the volatility smile. In general, the pres-
ence of price jumps provides a better explanation for the skewness and leptokurtosis of 
return distributions as well as implied volatility smiles. In addition, Siu and Elliott (2021) 
adopt both the GARCH model and the self-exciting threshold autoregressive (SETAR) 
model for modeling Bitcoin return dynamics and find Bitcoin to be extremely volatile. 
Walther et al. (2018) use the BEKK-GARCH model to estimate time-varying correlations 
between Bitcoin and the S&P 500 returns. They find that the correlation is highly volatile 
and characterize Bitcoin as extremely unstable.

The third stream of the literature takes nonparametric jump tests into consideration 
and primarily focuses on issues that are relevant to estimate ex post realized jumps. Sev-
eral studies document that effective modeling of asset price jumps in realized volatil-
ity is a critical procedure for predicting index option prices (Andersen et al. 2007; Qiao 
et al. 2020; Feunou & Okou 2019). Specifically, Duan et al. (2007) show that the GARCH 
option pricing model with jumps significantly improves the fit of historical time series 
of the S&P 500 index returns and the benefits of incorporating these jumps extend to 
option pricing by capturing the volatility smile in option prices. However, only scant 
research considers the applications of realized jumps for Bitcoin options. Thus, our study 
fills the gap in the aforementioned related but different streams of research by consider-
ing realized jumps in Bitcoin options.

Models for bitcoin prices and option valuation
Volatility jump detection in BTC prices

Consider a market with a risky asset (like Bitcoin in this study) whose price at time t is 
denoted by S(t) . In a jump detection (JD) model, the stochastic differential equation for 
the Bitcoin price is given:

where µ is the expected return; σ is volatility; { W (t): t ∈ [0, τ]} is a standard Brownian 
motion; Y (t) denotes the jump size of S(t) ; N (t) is a jump process. The postulated pro-
cess differs from the process seen in the jump-diffusion stream finance literature (e.g., 
Merton (1976) and Kapetanios et al. (2019)) in several significant aspects. First, jumps 
are allowed to be asymmetric, and possibly with nonzero means. In addition, the jump 
risk is systematic and nondiversifiable.7 More importantly, the BTC option valuation 
depends heavily on not only the spot BTC price but also the underlying value.

Jump detection methodology

In this study, our analysis focuses on daily returns and volatilities. Therefore, for nota-
tional simplicity, we recall the corresponding daily returns, and normalize the daily time 
interval to unity as follows:

(1)dlogS(t) = µ(t)dt + σ(t)dW (t)+ Y (t)dN (t),

7  The authors are thankful to an anonymous reviewer for suggesting that the continuous model used is quite common in 
the finance literature and the jump risk is nondiversifiable for all jump-diffusion models.
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rt denotes the logarithm (log) returns at time t. Also, to formally postulate our empirical 
volatility measures for trading day t, RV  can then be computed from the squared j-th 
intraday returns as follows:

where M denotes the number of intraday returns that can be formed on one day. Follow-
ing the literature, the realized Bipower variation (BV) can be described as:

where µ−2
1 =π

2  , µ ∼ N (0,1).
To precisely distinguish the continuous variation from the jump specification, based 

on Barndorff-Nielsen and Shephard (2006), we define the realized variance as follows.

where Js is the jump size and nt denotes the number of jumps within day t. In other 
words, the RV t is a consistent estimator of the integrated variance t

t−1σ
2
s ds and the 

discontinuous jump 
∑nt

s=0J
2
s .

Based on the Eq. (4), the realized bi-power variation can also be described as:

where the M
M−1 denotes a finite sample bias correction term, which provides unbiased 

estimates in the Brownian motion case.

Jump detection test

The difference between the realized variance process and the Bipower variation process 
represents ‘significant’ jumps and implies a simple and consistent nonparametric estima-
tor where the pure jump component contributes to the total return variance. Therefore, 
following the suggestion of Huang and Tauchen (2005), we develop an empirically more 
robust measure by the following relative jump statistic:

or the corresponding (approximate) logarithmic form as:

Furthermore, we can rely on a joint model approach for both BV t and RJt to capture 
the distinct components that account for the total price variation. Lee and Mykland 

(2)rt = ln

(
St

St−1

)

(3)RV t =
∑M

j=1
r2t,j ,

(4)BV t ≡ µ−2
1

M

M − 1

∑M

j=2

∣∣rt,j
∣∣∣∣rt,j−1

∣∣,

(5)RV t ≡
∑M

j=1
r2t,j →

∫ t

t−1
σ 2
s ds +

∑nt

s=0
J2s ,

(6)BV t ≡
π

2

M

M − 1

∑M

j=2

∣∣rt,j
∣∣∣∣rt,j−1

∣∣ →
∫ t

t−1
σ 2
s ds,

(7)RJ t =
RV t − BV t

RV t
,

(8)RJt = logRV t − logBV t
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(2008) propose that the volatility estimated by employing the realized Bipower variation 
preceding BV t is robust to jumps. Hence, the jump detection statistic can be described 
as:

where σ̂t,i2= 1
K−2

∑i−1
j=i−K+2

∣∣rt,j
∣∣∣∣rt,j−1

∣∣,
K denotes the window size. To examine the null hypothesis test of no jump at (ti−1, ti] , 

if the test statistics locate in the rejection region at a given significance level α . The corre-
sponding observation is detected a jump if the following condition is met.

where Cn =
√

2logn

0.7979 − logπ+log(logn)

1.5958
√

2logn
 and Sn = 1

1.5958
√

2logn
.

In practice, Lee and Mykland (2008) suggest the jump statistic under a significance level 
of α = 0.05, one can reject the null of no jump if L(i)−Cn

Sn
>β *, with β * such that exp(—e−β∗

 ) = 
1− α  = 0.95, i.e. β*= −log

(
−log(0.95)

)
= 2.9702 . This stabilizing procedure can identify 

only a spurious jump in a given sample of data observations.

The extended ARJI‑ GARCH‑type model specifications

To determine whether including jump components in modelling Bitcoin volatility can 
improve the forecasting accuracy, we follow Andersen et al. (2007) to incorporate the sud-
den discontinuous jump variation to our model. Specifically, to capture the volatility risk 
and jump dynamics of BTC, the extended ARJI-GARCH model can be expressed as:

In the above postulation, μ and m are the expected return and the coefficient of AR, 
respectively. ht represents the conditional variance of the Bitcoin price process over the 
interval (t-1, t), and Yt denotes a compound Poisson process, which is expressed as the 
combination of the diffusion process Zt and the Poisson jump process. nt is expressed as 
the number of jumps at Poisson events occurring at (t-1, t) and the independent l and time 
t determine the normally distributed jump innovation magnitude J lt  . To describe the time-
varying jump on BTC returns, we incorporate the framework in Chan and Maheu (2002) 
and Christoffersen et al. (2015) to specify the jump-arrival intensity of Bitcoin return as an 
exogenous variable in an autoregressive moving average form, which is expressed as:

(9)L(i) =
rt,i

σ̂t,i

(10)
|L(i)| − Cn

Sn
> −log

(
−log(1− α)

)
,

(11)Rt = ln

(
St

St−1

)
= µ+mRt−1 +

√
htYt

Yt = Zt +
nt∑

l=1

J lt ,

Zt ∼ NQ(0, ht),Yt ∼ NQ
(
θ , δ2

)
, dnt ∼ Poission(�, dt)

(12)Rt = µ+mRt−1 − d�t + ǫt ,
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where the parameter d captures the effect of jump intensity on the conditional mean of 
Bitcoin returns. Then, the conditional jump intensity �t is assumed time-varying and dis-
tributed with an autoregressive conditional jump intensity as follows:

Given the observed Rt and the Bayes’ rule, the ex-post probability of the arrival of j 
jumps at time t with the filter is expressed as:

where the filter in Eq. (14) has a crucial component of time-varying jump intensity. The 
conditional density of returns can be obtained by integrating the number of jumps nt , 
which is given as:

where P(nt = j
∣∣�t−1) = e

−�t (�t )
j

j!  denotes the probability density of counting j jumps, 
which is assumed to be governed by the Poisson distribution. Consider the comprising j 
jumps during the unit interval (t-1, t), the ex-post conditional probability density func-
tion is therefore written as:

where Rt = ln
(

St
St−1

)
 and ũ = µt+mRt−1 − d�t.

The log-likelihood function of the ARJI-EGARCH model is then calculated as the 
product of the conditional distributions across the sample as follows:

where �= (α,β , d, γ ,µ, δ, φ, ρ,m,ω) denotes all the parameters to be estimated. We 
then employ the maximum likelihood estimation technique to obtain the estimates.

Variance decomposition and dynamic jump components

To improve the precision in measuring volatility and accuracy in forecasting the jump 
variation, we develop an extended specification of the GARCH model in Eq.  (18) that 
considers the realized jump variation parameter ( RJ  in Eq. 8) as an exogenous variable 
into the variance equation of GARCH(1,1) model to construct a GARCH-RJ model, 
which is expressed as:

where RJ  describes the impact of realized jump variation on the conditional variance of 
Bitcoin returns. This step to separate realized jump variation from the realized variance 

(13)�t = �0 + ρ1�t−1 + γ ξ t−1

(14)P(nt = j
∣∣�t) =

f (Rt |nt = j,�t−1

)
P(nt = j

∣∣�t)

P(Rt |�t−1)
, j = 0, 1, 2, . . . . . .

(15)P(Rt |�t−1) =
∑n

j=0
f (Rt |nt = j,�t

)
P(nt = j

∣∣�t−1),

(16)f (Rt , nt = j
∣∣�t) =

1√
2π(ht + jδ2t )

exp

[
−
(Rt − ũ− jθt

)2

2π(ht + jδ2t )

]
,

(17)L(�) =
T∑

t=1

f (Rt |�t−1,�),

(18)ht = ω + αǫ2t−1 + βht−1 + δRJ ,
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is crucial to obtain an accurate Bitcoin option pricing. A similar extension is applied to 
the CGARCH(1,1) and EGARCH(1,1) process.

To identify the conditional variance of the BTC returns, we use selected GARCH-type 
models of the form ht = F ( ǫt−1,ht−1 ), where ht refers to the conditional volatility. Basi-
cally, the GARCH of Engle (1982), the exponential GARCH (EGARCH) of Nelson (1991) 
and the component GARCH (CGARCH) of Engle and Lee (1999) are widely applied 
and considered special cases of GARCH-family models. For the following GARCH-type 
models, we assume returns follow a GARCH process with Gaussian innovations under 
martingale measure P . Duan (1995) proposes an alternative option pricing model which 
utilizes the locally risk‐neutral valuation relationship (LRNVR) and then applies the 
LRNVR method under the risk-neutral measure Q to the GARCH option pricing model. 
The conditional volatility can be modeled by those GARCH models with and without 
LRNVR as follows8:

GARCH model:

GARCH model under LRNVR can be expressed as:

CGARCH model:

CGARCH under LRNVR can be expressed as:

EGARCH model:

where zt−1 = ǫt−1√
ht−1

EGARCH under LRNVR is expressed as:

where ǫt−1 = zt−1 + � is the standard normal random variable under the LRNVR Q.

(19)ht = ω + αǫ2t−1 + βht−1

(20)ht = ω + α(ξt−1 − �

√
ht−1)

2
+ βht−1

ht = qt + α(ǫ2t−1 − qt−1)+ β(ht−1 − qt−1)

(21)qt+1 = ω + ρqt + ϕ(ǫ2t−1 − ht−1)

ht = qt + α

[(
ǫt−1 − �

√
ht−1

)2
− qt−1

]
+ β(ht−1 − qt−1)

(22)qt+1 = ω + ρqt + ϕ

[(
ǫt − �

√
ht

)2
− ht

]

(23)log(ht) = ω + ϕ|zt−1| + γ zt−1 + βlog(ht−1),

(24)ln(ht) = ω + α(|ǫt−1 − �| + γ |ǫt−1 − �|)+ βln(ht−1),

8  For detailed explanations of those models, please refer to Engle (1982), Nelson (1991), Engle and Lee (1999), and Duan 
(1995).
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The parameter γ determines how the EGARCH specification model incorporates the 
leverage effect. In this study, we also apply jump detection applications to address the 
BTC price jump issue in the pricing of BTC options.

Option pricing simulation and its closed‑form valuation

Our jump detection approach is to conduct the model-free estimation of jump component 
and then fit the specific parametric models by the maximum likelihood estimation (MLE) 
method. In this subsection, we refer to Christoffersen et al. (2016) and introduce the jump-
diffusion model with continuous-time jump risk measures. We now proceed to the alternative 
option valuation on an underlying asset with jump-diffusion process. European call options 
are priced as the discounted expected value of their terminal payoffs, assuming that the termi-
nal distribution is determined under the risk-neutral world. The dependence of BTC option 
valuation on both spot BTC price and underlying value can be expressed as:

In conjunction with a strike price X , spot BTC price Sτ , time-to-maturity τ, and a risk-
free interest rate r , the price of a European call option that expires within time τ can 
then be calculated. As in the work of Bates (1991), suppose the Bitcoin price follows the 
dynamics expressed in Eq.  (1), the corresponding model for the European call option 
price C is given by: 

where d1j =
ln

St
X +(bj−�

∗k∗+
σ2j
2 )τ

σ 2τ+jσ 2
S

 and d2j = d
1j
− σi

√
τ ,

�
∗= �

∗(1+ k∗) is defined as before.

k∗ = exp
(
µ+ σ 2

s
2

)
− 1 is jump size.

µ ≡ µ+ γ σ 2
s  i.e., unconditional mean,

bj = (b− �k)τ + (µ− σ 2
s
2 )j i.e., cost of carry,

σ 2
j = σ 2τ + jσ 2

s  or σj =
√
σ 2τ + jσ 2

s  i.e., standard deviation,
τ ≡ T − t is time to expiration.
In addition to the above pricing formula, we provide more detailed procedure of 

numerical technique for the closed-form valuation in Appendix A.

4 . Empirical analyses and implications
Data description and Deribit crypto options exchange

The historical Bitcoin data cover the periods of 01/01/2014 to 6/30/2021. The daily log-
returns of the Bitcoin are calculated as Rt = log(St/St−1) with 10,932 observations. We 
obtain the data from https://​www.​coinb​ase.​com/​price/​data which provides data on a 
number of liquid BTC exchanges. For option prices, this paper applies the data from the 
Deribit9 website at https://​derib​it.​com. Jalan et al. (2021) also employ near-the-money 

(25)C(S,V , τ ;X , θ) = e−rτEQmax(Sτ − X , 0)

(26)C(S, τ ;X) =
∑∞

j=0

e−�
∗τ (�∗τ )j

j!

[
Ste

−bjτN
(
d1j

)
− Xe−rτN

(
d2j

)]
,

9  The Deribit Company provides Bitcoin futures and options trading platform and has started operation since summer 
2016, presenting a good opportunity to study Bitcoin option trading and pricing. The company is based in the Nether-
lands and operating under that country’s laws to ensure reliable transactions.

https://www.coinbase.com/price/data
https://deribit.com
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call and put options on the Deribit traded platform as of 27 January 2020 and analyze the 
risk inherent in Bitcoin options by computing their Greeks. The BTC options data con-
tain 2,252 observations during the sample period from September 14, 2018 to November 
27, 2021.

Deribit crypto options and futures exchange is currently the largest in terms of daily 
volume and offers about 93.82% open interest in crypto options market. More than 9 out 
of 10 BTC and ETH options are actively traded at Deribit, with over 80% of their trad-
ing volume coming from large professional and institutional traders. Among all option 
exchanges, Deribit has the best liquidity and offers a wide range of contracts, such as 
dated, perpetual, linear, and inverse. In addition, the Deribit exchange remains anony-
mous for traders and allows settlements in BTC to prevent frequent conversion between 
crypto and fiat currencies.

The evolution process of bitcoin returns

After Bitcoin launched in January 2009, the Bitcoin price stayed under $1,200 until 
February 22, 2017, as shown in Fig. 1. The price continued to fall in 2018, reaching the 
$3,500 level. BTC price has been very volatile, with several small or large jumps and 
experienced the peak in December 2017. Consistent with this observation, Scaillet et al. 
(2020) show that jumps are an indispensable component of the Bitcoin price dynamics. 
The properties of Bitcoin returns display extremely movement and volatility clustering. 
In addition, considerable evidence of persistence of volatility exists. To depict Bitcoin 
volatility, the middle Panel of Fig.  1 shows that Bitcoin is very volatile, with the log-
return ranging from 21% to − 48%.

Empirical stylized results

We report the first four moments (mean, variance, skewness, and kurtosis) of Bitcoin 
and its option returns, realized variance, Bipower variance, and realized jump variations 
in Table 1. Those variance and variation figures are computed based on high frequency 
intra-day five-minute returns. The logarithmic returns of Bitcoin exhibit a substantial 
amount of variation. Each of the series of the volatility measures ( BV t ,RV t,RJ t ) are 
highly skewed with leptokurtic distribution or “fat-tails”. The values of skewness show 
evidence of asymmetry in the distribution of variances, especially the BV t and RV t 
series of 8.74 and 6.83, respectively. The Jarque–Bera test confirms the departure from 
the normal distribution.

We also empirically examine the null hypothesis of a white-noise process for Bitcoin 
returns by employing the Liung-Box test Q(21) for the logarithmic returns and jump 
components. Our results show that we can reject the null hypothesis of no serial correla-
tion at the 1% significance level. Accordingly, this empirical evidence implies significant 
serial dependence in the return and its jump component. In addition, Table  1 depicts 
the results of two unit root tests: augmented Dickey–Fuller (ADF) and Phillips–Perron 
(PP) tests of nonstationary, for the sample returns. The null hypothesis of a unit root is 
rejected and thus we conclude that the Bitcoin return series is stationary.

Figures 2 and 3 provide a bird’s eye view on the time series of the Bipower variation 
BV, the daily realized volatility RV, the relative jump component RJ, and the jump inten-
sity λ on the volatile Bitcoin and its options. The RV, BV, and RJ display the existence 
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of volatility persistence and asymmetry features, while the jump intensity λ depicts the 
phenomenon of time-varying diffusion. The GARCH volatility form is appropriate for 
modelling those phenomena. Those volatility estimators are also robust in identifying 
sudden jump arrivals and market structure noise, which are both desirable properties in 
volatility proxies based on the semiparametric model of Barndorff-Nielsen & Shephard 
(2006). Some of these volatility estimators are also robust to sudden jump arrivals, but 
they are not robust to market structure noise. The mean and variance of the realized 
variance exceeds that of the Bipower variation series. Andersen et al. (2012) also show 
that the Bipower variation is preferred to RV t . The RJ t depicted in the second Panel of 
Fig. 2 displays mostly positive and small values, but Table 1 shows that the minimum is 
− 0.164. These small negative values can be due to discretization error measurement, 
errors owing to the usage of finitely many returns in the establishment of the under-
lying measurements (Bollerslev et  al. 2008). The series also displays several extreme 

Fig. 1  The Trajectory, Log-Returns and the Bipower Variation of Bitcoin
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observations (outliers), indicative of realized large-sized jumps on those trading days. 
Bollerslev et  al. (2009), among others, have provided similar results for the volatility 
jump from other markets. We contribute to the literature by providing strong evidence 
for the presence of jumps in the daily Bitcoin and its option price series.

Inference of number of jumps and jump intensity

The bottom Panels in Figs.  2 and 3 depict the jump-arrival intensity of Bitcoin and 
its options, respectively. As expected, they both exhibit time-varying jump dynamics. 
Specifically, Fig.  3 illustrates the stylized characteristics of leptokurtosis that arises 
from a pattern of time-varying volatility and clustering nature in the Bitcoin options 
market where periods of high (low) volatility are followed by periods of high (low) 

Table 1  Summary statistics of log-returns, realized variance, Bipower variation and jumps

1. ** and *** denote statistical significance levels of 5%, and 1%

2. Rt denotes the log- returns computed from daily closing prices of the BTC. Q (21) denotes Ljung–Box statistics and lags 21 
in parentheses

3. Both realized variance and realized jump variations are computed based on high frequency intra-day five-minute returns. 
The realized jumps (RJt) identification mechanism is based on the Bipower variation (BVt) method

4. These realized measures of BTC daily variance are calculated as the sum of 5-min intraday squared returns. The market 
prices of European-style Deribit options written on BTC futures traded on the CME Bitcoin Futures are obtained from the 
Risk Lab (provided through Booth School of Business, University of Chicago) https://​dachx​iu.​chica​goboo​th.​edu/#​riskl​ab

5. Range‐based volatility estimators of Parkinson (1980) are measured as following:

σ 2
Parkinson

= σ̂ 2
PK

= 1
4ln(2)n

∑
n

i=1 ln

(
Hi
Li

)2

where Hi and Li represent the high and low prices, respectively, on the trading day i

Rt BVt RVt RJt λ σ̂ 2
PK

Panel A: Bitcoin spot prices

Mean 0.001399 0.009479 0.008117 0.268404 0.106606 0.027852

Median 0.001539 0.003024 0.002235 0.186838 0.104839 0.021601

Maximum 0.214508 0.504477 0.358519 5.566198 0.228571 0.293944

Minimum − 0.479934 7.18E−08 4.55E−08 − 0.163900 0.008333 0.001509

Std. Dev 0.040836 0.021800 0.019138 0.499181 0.039105 0.024004

Skewness − 0.792997 8.741236 6.834358 2.475781 0.269519 2.629541

Kurtosis 13.33273 139.3435 76.22375 13.59514 3.039272 15.66039

Jarque–Bera 12,467.11 2,155,625 632,997.2 15,603.74 33.23901 21,824.92

Probability (0.000***) (0.000***) (0.000***) (0.000***) (0.000***) 0.0000***

Q (21) 35.34 (0.026**) 717.05 
(0.000***)

1186.9 
(0.000***)

39.869 
(0.008***)

66.457 
(0.000***)

Unit-Root Test 
ADF

− 55.33 
(0.000***)

PP − 55.25 
(0.000***)

Panel B: Call Bitcoin options prices in the derivatives market

Mean − 0.004768 0.271628 0.326609 0.222383 0.174599 0.005365

Median − 0.002811 0.225902 0.312368 0.130638 0.175000 0.002472

Maximum 0.567365 0.795598 0.805863 1.506230 0.250000 0.116571

Minimum − 0.629462 0.025867 0.023120 − 1.134348 0.075000 0.00000

Std. Dev 0.180631 0.163849 0.167181 0.346220 0.037401 0.007848

Skewness − 0.048997 0.953270 0.561982 0.934208 − 0.329271 5.831186

Kurtosis 3.846065 3.418426 2.728009 4.714722 2.437947 65.26500

Jarque–Bera 15.23401 80.00946 28.08275 135.0563 15.74121 147,141.2

Probability (0.00049***) (0.000***) (0.0000***) (0.000***) (0.00038***) 0.0000***

https://dachxiu.chicagobooth.edu/#risklab
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volatility. Apart from the realized variance, the Bipower variation of Bitcoin options 
exhibits time-varying behavior, suggesting the presence of stylized feature depicted 
by the dependence structure of Bitcoin markets. To further investigate the jump 
dynamics, we provide more information on quarterly estimates of the significant 
jump components with a significance level of α = 0.05 in Table 2. We refer to the work 
of Novotný et al. (2015) on the selection of K = 10 in the jump test. The proportion of 
observations with a jump ranges from 0.049 in Q4 of 2020 to 0.151 in Q2 of 2018 dur-
ing the sample period, with an average of 0.107. On an annual basis, the jump inten-
sity appears to be the highest in 2018, relative to any other year of the sample period. 
More specifically, there are 54, 55, 43, and 51 jumps in Q1, Q2, Q3, and Q4 of 2018, 
respectively. Hence, this finding sheds new light on jump intensity in Bitcoin prices 
and highlights the importance of incorporating jumps in empirical models for Bitcoin 
returns and volatility.
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Fig. 2  Time series of the realized volatility, relative jump and jump intensity component for Bitcoin prices
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Bitcoin option empirics

We classify the options data into six distinct levels based on the moneyness and days-
to-maturity (DTM). Table 3 presents descriptive statistics of Bitcoin options for both 
bid and ask prices as well as comparisons across various moneyness. The average call 
(put) option prices range from $186.55 ($317.27) for the shortest maturity (within 
7 days) to $1,263.35 ($1,493.70) for the longest maturity (greater than195 days). For 
each given scenario of maturities, the smile across moneyness is evident. When the 
time to maturity increases, the bid-ask spreads tend to widen. For the calls, the mean 
bid-ask spread is $31.58, near 5.24% of the average premium for all maturities. For the 
puts, the bid-ask spread is $39.79, about 4.92% of the average premium. We observe 
that the skewness of option prices appears positive and the distribution is skewed to 
the right. It is thus important for a pricing model to capture the asymmetric distribu-
tion of Bitcoin option prices.

As depicted in Fig. 4, market implied volatilities for options with the shortest matur-
ities display a smile shape on average, similar to that found at different moneyness. For 
the longer maturities, the shape is closer to the smirk. These patterns suggest the rela-
tive importance of return skewness and kurtosis at different maturities for character-
izing the option data because excess kurtosis is sufficient to generate a smile but not a 
smirk. Moreover, in the previous literature, several studies have argued that volatility 
jumps are useful in explaining option volatility smiles and smirks. See for instance 
Eraker et al. (2003) and Eraker (2004). Therefore, we incorporate jumps into Bitcoin 
option pricing models to capture the volatility smile and smirk in option prices.

Building on the findings in Panels A and B of Fig. 4, we analyze the source of differ-
ences in the observed implied volatility and plot the smiles/smirks across moneyness 
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Fig. 3  Log-Returns and the Realized Variation Measures of Bitcoin Options
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for different days-to-maturity buckets. In Panels C and D of Fig. 4, we repeat the same 
analysis for two maturity scenarios, 7 days and 36 days. The major conclusion from 
Fig. 4 is that whereas the models differ greatly with regard to the level of the smile, 
the slope of the smile does not seem to differ much. In some cases, the slope is a little 
steeper.

As can be seen from the preliminary results of the foregoing content in Section "Jump 
detection test"–Section "Variance decomposition and dynamic jump components", it is 
clear that the benefits of incorporating these jumps flow into option pricing so those 
models can capture the volatility smile in option prices. Accordingly, building an exten-
sion class of ARJI-GARCH-type models for predicting realized jump variation is our 
next task.

Model estimations

This subsection presents our model estimations based on historical time series of BTC 
returns under measure P and emphasizes some important stylized facts. We use daily 
returns of the BTC from January 1, 2014 to June 30, 2021 to estimate the ARJI-GARCH 
model parameters and report the outcomes among the models from the perspective of 
option valuation under measure Q . The calculation of the GARCH α, β and γ parameters 

Table 2  Descriptive statistics on jumps detected by LM statistics

1. Regarding the jump intensity (λ), it is computed from the total number of jumps over the number of sample observations, 
their proportion (%) as shown in Eq. (2a), and their mean of full sample observations

P(jump fre.) = Number of Jumps
Number of sample observations

 (2a)

2. Quarterly estimates for no. of jumps for BTC is the number of detected jumps, and P (jump freq.) is evaluated jumps with a 
significant level at α = 0.05

3. Lee and Mykland (2008) jump test statistics is described as LM statistics with the selected window width K, which is set to 10

Q1 Q2 Q3 Q4

No. of Jumps P(Jump 
fre)

No. of Jumps 
P(Jump fre.)

No. of Jumps 
P(Jump fre.)

No. of Jumps 
P(Jump fre.)

2014  33 0.0916 30 0.083 42 0.117 41 0.114

# Observations 360 360 360 360

015 41 0.1138 44 0.122 53 0.144 36 0.0978

# Observations 360 364 368 368

2016 46 0.1263 33 0.091 43 0.117 33 0.089

# Observations 364 364 368 368

2017 29 0.081 27 0.074 43 0.117 32 0.087

# Observations 360 364 368 368

2018 54 0.150 55 0.151 43 0.118 51 0.137

# Observations 360 364 364 372

2019 24 0.066 30 0.083  42 0.114 49 0.133

# Observations 360 364  368 368

2020 49 0.135 44 0.122 34 0.092 18 0.049

# Observations 364 364 368 368

2021 22 0.061 42 0.115

# Observations 360 364

# Jumps 1,163

Mean 0.107

Total # Obs 10,932
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requires the maximum likelihood estimation on historical data under measure P and 
the option valuation by changing measure10 from P to Q.

Table  4 presents the results obtained with the historical parameter estimates ω = 
5.59 × 10−5, α = 0.171, and β = 0.783 in the ARJI-GARCH (1, 1) model. These param-
eter values indicate a volatility persistence of 0.954 (i.e., α + β), a level consistent with 
empirical findings documented in the previous literature, under measure P . The Ljung-
Box-Q statistic for testing autocorrelations in Table 4 shows that those GARCH models 
are adequate for the data at the 5% significance level. The p-values with the ARCH-LM 
test implemented to the residuals of the GARCH, C-GARCH and EGARCH models are 
0.882, 0.888 and 0.821, respectively. Results in Table 4 rejects the null hypothesis of the 
existence of ARCH effect at the 5% significance level. It is thus apparent that the ARCH 
effect no longer exists, and our models can fit well the daily returns of BTC.

As reported in Table  4, coefficients d (0.1136, 0.1138 and 0.076) of the jump inten-
sity (λ) among the three ARJI-GARCH type models are very close to the mean of jump 
intensity in Table  1 (λ = 0.1066). The coefficient of the jump intensity is significant in 
each of our models for Bitcoin prices. Indeed, compared to jumps with constant inten-
sity, time-varying jumps on the occurrence of sudden shocks can better capture Bitcoin’s 

Fig. 4  IV (implied volatility) comparison by Moneyness and Maturity

10  The authors are thankful to an anonymous reviewer for suggesting the estimated model for the change of measure. 
The proof of the physical measure P transformed into risk-neutral measure Q is shown in Appendix B.
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price behavior. On the contrary, as shown in Table 5, the jump intensity is insignificant 
for Bitcoin options. This finding suggests that the Bitcoin spot market contains relatively 
more information than the Bitcoin option market in related to the jump intensity. That 
is, Bitcoin options quoted in the Deribit reflect relatively less information for predicting 
time-varying jumps on the occurrence of price shocks.

As shown in Tables 4 and 5, the lower AIC and BIC values as well as the higher log-
likelihood indicate that the ARJI-EGARCH model is a better fitting model than the other 
two models, in support of findings from previous studies (see, e.g., Zhang et  al. 2011; 
Dyhrberg 2016). Overall, although the data display substantial richness and variation, 
our proposed models appear to capture them reasonably well.

Variance decomposition and jump components

Regarding the impact of realized jump variation on the variance decomposition in 
Eq. (18), we find that the coefficients ( δ=1.52E−04, 1.53E−04, 0.376) shown in Table 4 
as well as those coefficients ( δ=0.021, 0.02, 0.761) depicted in Table 5 are statistically dif-
ferent from zero at any conventional levels. This empirical evidence provides support for 
the explanatory capacity of realized jump variation on the conditional volatility of both 
Bitcoin and Bitcoin options.

In sum, the results in Tables  4 and 5 indicate that allowing for realized jump 
variation is crucial for jump models in both Bitcoin and its option markets. The 

Table 4  MLE of ARJI-GARCH-type models on Daily Bitcoin Returns

1. *, ** and *** denote the significance levels of 10%, 5%, and 1%, respectively

2. The numbers in parentheses are z-statistic.AIC and BIC are the Akaike and Bayesian information criteria, respectively. 
Heteroskedasticity Test is the ARCH -LM test in p-value of ChiSq

3. Where the estimated parameter µ̂ is approximated to the term i  n Eq. (12)

GARCH (1,1) CGARCH (1,1) EGARCH (1,1)

coeff Pr( >|t|) coeff Pr( >|t|) coeff Pr( >|t|)

Mean equation

µ̂ 0.0142*** [7.967] 0.000 0.0143*** [7.979] 0.0001 0.0121*** [8.203] 0.000

m − 0.052** [− 2.313] 0.021 − 0.053*** [− 2.247] 0.000 − 0.075*** [− 3.614] 0.000

d 0.1136*** [7.119] 0.000 0.1138*** [7.967] 0.000 0.076*** [5.267] 0.000

Variation equation

ω 5.59E−05*** [10.558] 0.000 0.0012 [7.378] 0.000 − 0.946*** [− 20.838] 0.000

ρ −  −  0.954*** [146.977] 0.000 −  − 

ϕ CGARCH −  −  0.169*** [11.789] 0.000 −  − 

γ EGARCH −  −  0.012 [0.587] 0.55–7 0.093** [7.583] 0.000

α 0.171*** [13.393] 0.000 0.012 [0.587] 0.557 0.312*** [17.451] 0.000

β 0.783*** [63.339] 0.000 − 0.206 [− 0.137] 0.891 0.906*** [174.463] 0.000

δ 1.52E−04*** [15.094] 0.000 1.53E−04*** [14.740] 0.000 0.376*** [28.837] 0.000

AIC − 3.822 − 3.820 − 3.837

SIC − 3.806 − 3.801 − 3.856

DW-stat 2.023 2.021 1.969

Log likelihood  5,225.14 5,225.24 5,297.26

ARCH-LM (5) Test 0.882 0.888 0.821

Out of sample model performance metrics

RMSE 0.043 0.043 0.0429

MAE 0.027 0.028 0.0265

MAPE 139.87 139.097 137.891
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discontinuous jump variation can describe the volatility behavior of Bitcoin prices 
and capture the jump risk dynamics. In addition, these estimates are statistically sig-
nificant and consistent across models. Bates (1996) argues that the most rigorous test 
of an option pricing model is determined by its fitting capacity to the option data and 
the underlying returns. Our findings suggest that the ARJI-GARCH type models are 
appropriate in the Bitcoin spot and options markets because they fit the data reason-
ably well.

Performance evaluation
Out‑of‑sample prediction

We now proceed to assess the performance of various models on BTC option pricing, 
with special attention to the out-of-sample predictive capacity. In order to appropri-
ately evaluate the out-of-sample predictive performance, we divide the sample into 
two subsamples separated by the COVID-19 Pandemic outbreak in Dec. 2019. The 
first subsample covering the pre-COVID-19 pandemic period is adopted for model 
estimation, while the second subsample of the post-COVID-19 pandemic period is 
applied to model prediction. From the model performance metrics depicted in the 
bottom of Tables  4 and 5, we can assess the forecast performance in out-of-sample 

Table 5  Maximum Likelihood Estimation on Daily Bitcoin Returns, Realized Measures, and Options

To evaluate the option pricing performance of jump models, we select the out-of-the-money (OTM) Bitcoin call option data 
for the sample period of September 14, 2018 to November 27, 2021. The Bitcoin option data are retrieved from Deribit with 
maturities within two weeks. We eliminate quotes with zero trading volume. The data is filtered only OTM option quotes 
since they tend to have high liquidity

GARCH (1,1) CGARCH (1,1) EGARCH (1,1)

coeff Pr( >|t|) coeff Pr( >|t|)) coeff Pr( >|t|)

Mean equation

 µ̂ − 0.006 [− 0.463] 0.644 − 0.008 [− 0.648] 0.517 − 0.009 [− 0.332] 0.740

 m 0.231*** [4.829] 0.000 0.234*** [5.037] 0.000 0.144*** [2.867] 0.004

 d 0.008 [0.116] 0.908 0.026 [0.332] 0.740 0.025 [0.148] 0.883

Variation equation

 ω 0.011*** [3.528] 0.000 0.026 [7.418] 0.000 − 2.324*** [− 5.905] 0.000

 ρ – – 0.434*** [2.575] 0.01 – –

 ϕ CGARCH – – 0.517 [0.694] 0.488 – –

 γ EGARCH – – – – 0.047 [0.735] 0.462

α 0.202*** [3.344] 0.000 − 0.342 [− 0.459] 0.646 0.524*** [5.259] 0.000

 β 0.323*** [2.739] 0.006 0.536 [0.489] 0.624 0.512*** [5.238] 0.000

 δ 0.021*** [5.319] 0.000 0.02*** [5.919] 0.000 0.761*** [4.771] 0.000

 AIC − 0.578 − 0.575 − 0.736

 SIC − 0.519 − 0.498 − 0.669

 DW-stat 1.886 1.902 1.808

 Log likelihood  152.4 153.48 193.18

 ARCH-LM (5) 
Test

0.151 0.242 0.394

Out of sample Model Performance Metrics

RMSE 0.196 0.198 0.194

MAE 0.141 0.142 0.139

MAPE 165.035 192.869 140.184
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predictions for the three ARJI-GARCH models. The metrics of RMSE, MAE, and 
MAPE show that the ARJI-EGARCH model outperforms in the out-of-sample per-
formance among the estimated ARJI-GARCH models. We further examine the 
out-of-sample performance of all models by plotting the  forecasts  with plus and 
minus  two standard error bands as well as the predicted variance in Fig. 5. Overall, 
ARJI-EGARCH model in the Panel C of Fig. 5 exhibits the smallest value of standard 
error bands and predicted variance.

Panel A: ARJI-GARCH model

Panel B: ARJI-CGARCH model

Panel C: ARJI-EGARCH model
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Fig. 5  Forecast ± 2 standard errors and predicted variance from the models
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Robustness check

Table B of Appendix C reports the parameter estimates and the goodness-of-fit results 
with the SVCJ model for Bitcoin and its options. The empirical results clearly show the 
superiority of ARJI-GARCH model over existing BTC models in the pricing ability (see 
the lower AIC and BIC, and higher log-likelihood results in Tables 4 and 5). Therefore, 
the ARJI-GARCH model can achieve better performance than the SVCJ model in terms 
of the AIC, BIC, and log-likelihood.

Apart from classical performance evaluation criteria, this study further uses the 
known Diebold–Mariano (1995) DM  test to compare the forecasting performance 
among the competing ARJI -GARCH models.11 The results are displayed in Table C of 
Appendix D. The observed differences in forecasting performances are significant at 
the 5% level. Therefore, we conclude that the ARJI -EGARCH model outperforms other 
ARJI -GARCH type models.

This subsection also examines whether our empirical findings are robust. Table 6 dem-
onstrates overall pricing errors for European call options. The overall RMSEs are 0.1814, 
0.1012, and 0.2519 for the GARCH, EGARCH and CGARCH, respectively. Perhaps sur-
prisingly, on average, the EGARCH stands out as having a superior performance than 
the GARCH and CGARCH specifications. A closer look at the RMSE by moneyness 
and DTM categories would provide further insight as it ranges from 0.034 to 0.6686. 
We observe some interesting empirical results. First, compared to the GARCH and 
CGARCH models, the EGARCH model appears to have the smallest valuation error for 
each DTM category. Second, all three models exhibit the lowest RMSE from the longest 
DTM options. This evidence is similar to the findings from Bitcoin’s volatility prediction 
in Naimy et al. (2018).

The behavior of RMSE results on the BTC put options regarding different moneyness 
and maturity is illustrated in Table  7. Similar to the results for the call options, the 
EGARCH model also provides a better overall fit for put options than the GARCH and 
CGARCH models with Poisson jumps. Unlike the call option results, all three models 
seem to perform better for short DTM put options. In addition, in terms of moneyness, 
all three models perform better for deep in-the-money put options within each DTM 
category. A critical determinant of model performance is the ability to describe some 
important stylized aspects about option prices, including volatility clusters and the jump 
effect. The overall low RMSE from the EGARCH model confirms its ability.

In sum, we find important stylized empirical features as follows. The EGARCH models 
adequately capture the stylized feature of fat tails or term structure of volatility than do 
the GARCH (1,1) and CGARCH models in the sample period.

A close look at some facts on option pricing bias

Figure  6 exhibits the plots of the percentage errors and illustrates the bias in per-
centage errors. The plots in Panels A-C of Fig. 6 reveal large smile patterns associ-
ated with the GARCH-type models in shorter-maturity options. The biases for this 
model are particularly large on average and increase as the contract moves out of the 

11  We thank an anonymous reviewer for suggesting this additional test.
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Ĉ
m
o
d
e
l

i
 is

 th
e 

es
tim

at
ed

 p
ric

e 
fr

om
 th

e 
m

od
el

 c
on

si
de

re
d,

 a
nd

 θ
 re

pr
es

en
ts

 th
e 

pa
ra

m
et

er
 s

et
 o

f o
ur

 m
od

el
s. 

Fo
r 

ro
bu

st
ne

ss
, w

e 
al

so
 u

se
 th

e 
fo

llo
w

in
g 

m
ea

n 
ab

so
lu

te
 p

er
ce

nt
ag

e 
er

ro
r (

 M
A
P
E

 ) t
o 

ev
al

ua
te

 th
e 

pe
rf

or
m

an
ce

 o
f t

he
 a

lte
rn

at
iv

e 
op

tio
n 

m
od

el
s. 
M
A
P
E
θ
=

 1 N

∑
N i=

1

∣ ∣ ∣ ∣C
m
a
rk
e
t

i
−
Ĉ
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money. Our results are analogous to findings from other studies, such as Hsieh and 
Ritchken (2005), and consistent with classical market volatility that forms a “smile” 
pattern. For instance, on average, pricing errors measured by RMSE for deep out-
the-money call options are almost 30%. Indeed, more than one in four contracts 
(25th quantile (Q25)) in this category exhibit pricing errors of at least 19%, and 
the 75th quantile (Q75) extends to 44%. In longer-maturity options, as depicted in 

Panel A: Pricing errors of the 7-days calls (left) and the corresponding put (right) GARCH options

Panel B: Pricing errors of the 7-days calls (left) and the corresponding put (right) CGARCH options

Panel C: Pricing errors of the 7-days calls (left) and the corresponding put (right) EGARCH options
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Fig. 6  The residuals for the GARCH type models in the form of box-whisker plots for each 
moneyness-maturity bucket
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Panels D-F of Fig. 6, the volatility smile does not change. In contrast, the plots reveal 
volatility semi-smile patterns associated with the GARCH-type models.

Empirical implications

Bitcoin has gradually been recognized as an asset class. Gronwald (2019) shows that 
Bitcoin shares some similar features with commodities such as gold. In May 2021, 
Goldman Sachs officially states that Bitcoin is now considered an investable asset. 
Exchange-traded funds on Bitcoin are being introduced in some exchanges. As a 
result, Bitcoin options will become more popular given the growing need for hedging 

Panel D: Pricing errors of the 42-days calls (left) and the corresponding put (right) GARCH options

Panel E: Pricing errors of the 42-days calls (left) and the corresponding put (right) CGARCH options

Panel F: Pricing errors of the 42-days calls (left) and the corresponding put (right) EGARCH options
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Fig. 6  continued



Page 26 of 29Chen and Yang ﻿Financial Innovation          (2024) 10:132 

Bitcoin risk. Our results are thus relevant to investors, corporations, and policy mak-
ers. In this section, we provide specific implications from our key findings.

First of all, from the pricing error perspective, our empirical findings specifically sug-
gest that it is quite adequate to capture stylized facts using the GARCH option pricing 
model for price discovery in the presence of a volatile Bitcoin options market. In addi-
tion, we show that the Bitcoin spot market contains relatively more information than 
the Bitcoin options market in relation to the jump intensity. Perhaps surprisingly, risk 
premia may lead to Bitcoin options quoted in the Deribit reflecting relatively less infor-
mation for predicting time-varying jumps in the occurrence of price shocks. The pres-
ence of pricing inefficiencies in the Bitcoin options market suggests that cryptocurrency 
enthusiasts, arbitragers, corporate hedgers, and other investors operating in the BTC 
option markets should be aware of the unique BTC market microstructure created by 
a set of decentralized, unregulated (such as the Deribit), and highly speculation-driven 
markets.

Second, theoretically, Bitcoin prices can show highly volatile behavior due to govern-
ment interventions, speculative interests, and the potential contemporaneous news-
driven shocks in the market. Our empirical results suggest that the realized jump 
variation can describe the volatility behavior and capture the jump risk dynamics in Bit-
coin and its options. Although Bitcoin behaves as an extremely volatile asset, the model‐
based forecasting evaluation outlined above has shown that ARJI-GARCH type models 
could help substantially to pin down the option pricing errors and achieve better perfor-
mance in forecasting volatility than the SVCJ model. This finding implies that specifying 
asymmetric jumps in conditional jump intensity on Bitcoin and its options contain more 
unique information than the traditional jump-diffusion process. Sophisticated investors 
of Bitcoin and Bitcoin options should consider ARJI-GARCH type models to better cap-
ture relevant pricing information.

Third, considering the Bitcoin price evolution over the past decade, our results also 
provide important policy implications. It’s plausible that Bitcoin’s volatility is what 
makes it valuable and attractive to investors. Although it can be unstable at times, Bit-
coin is emerging as an asset class and can offer investors an opportunity to diversify their 
portfolios. Government policies and regulations should be directed to make sure that 
investors are aware of the risk involved and the potential benefit associated with Bit-
coin and its options. Our empirical analyses provide investors and policy makers tools to 
appropriately assess risks and pricing errors of Bitcoin options. Specifically, the GARCH 
option pricing model with jumps significantly improves the fit of historical time series of 
Bitcoin prices and captures the volatility smile and smirk in Bitcoin option prices.

Conclusion and suggestions for future work
In the FinTech era, the national motto “In God We Trust” printed on the U.S. paper and 
coin currencies could lead to the new phrase “In Bitcoin We trust?” We borrow the idea 
that Bitcoin prices are driven by jump dynamics on the Bitcoin system and underlying 
technology (Kristoufek 2015; Gronwald 2019). Given the fact that both Nasdaq and the 
CME Group plan to launch a variety of Bitcoin derivatives, this study provides research-
ers and practitioners appropriate models to help them price Bitcoin options when they 
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become available for trading. Recognizing the difficulty of estimating jump parameters, 
we consider models with jump detection to capture the dynamic jump condition.

Based on the jump diffusion framework in Lee and Mykland (2008) via jump detec-
tion test, we conduct an easy-to-implement practical approach for detecting “signifi-
cant” jumps in BTC prices and study its application on option pricing. We provide 
plausible results for the presence of jumps in the BTC options market. When the mar-
ket risk is high, jumps occur more frequently, especially during the period of crypto-
currency bubbles in late 2017. The primary benefit of modeling jumps in BTC option 
markets is that the negative skewness (or equivalently volatility clustering) of the dis-
tribution can be better modeled.

Our empirical evidence has several major implications for market participants in the 
Bitcoin markets. First, how much cryptocurrency should be included in an investor’s 
portfolio ultimately relies on the investor’s risk tolerance and beliefs about crypto assets. 
Moreover, for risk managers, they must be innovators and notice that the intensity and 
magnitude of jumps are time varying, which is attributed to the jump-arrival intensity. 
We emphasize the stylized fact that the presence of jump risk should not be ignored and 
report the mean absolute hedging error for hedging options in the Bitcoin market. The 
substantial improvements can be achieved by utilizing robust procedures.

We suggest several interesting extensions. First, this study uses the jump detection 
statistics and corresponding nonparametric tests to detect irregular jump arrivals of 
Bitcoin prices. It would be interesting to examine the Bitcoin market microstructure 
in high-frequency observations. Second, market sentiments about Bitcoin or, more 
importantly, on cryptocurrencies or IT finance are not directly observed, so some 
indicator variables can be considered in the future work. Lastly, Bitcoin options are 
now available for trading on the CME Group, so our model can be used to test its per-
formance when sufficient trading data become available.
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