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Abstract 

This paper applies deep learning models to predict Bitcoin price directions 
and the subsequent profitability of trading strategies based on these predictions. The 
study compares the performance of the convolutional neural network–long short-term 
memory (CNN–LSTM), long- and short-term time-series network, temporal convolu-
tional network, and ARIMA (benchmark) models for predicting Bitcoin prices using on-
chain data. Feature-selection methods—i.e., Boruta, genetic algorithm, and light gradi-
ent boosting machine—are applied to address the curse of dimensionality that could 
result from a large feature set. Results indicate that combining Boruta feature selection 
with the CNN–LSTM model consistently outperforms other combinations, achieving 
an accuracy of 82.44%. Three trading strategies and three investment positions are 
examined through backtesting. The long-and-short buy-and-sell investment approach 
generated an extraordinary annual return of 6654% when informed by higher-accuracy 
price-direction predictions. This study provides evidence of the potential profitability 
of predictive models in Bitcoin trading.

Keywords: Backtesting, Bitcoin, Cryptocurrency, Deep learning, Feature selection, 
On-chain data

Introduction
One of the earliest mentions of digital money was in the 1980s by Chaum (1981). Later, 
in 1990, he launched the first cryptocurrency, called DigiCash, but did not find much 
success. In 2008, a pseudonymous person/persons by the name Satoshi Nakamoto pub-
lished the Bitcoin white paper (Nakamoto 2008), which marked the inception of the 
cryptocurrency industry as known today. The Bitcoin protocol is built on a distributed 
ledger technology called blockchain. Blockchain is a system for recording information 
that makes changing, hacking, or cheating the system difficult. Since the launch of Bit-
coin—with Bitcoin trading and price data tracked through the BTC ticker symbol—other 
protocols have been created, including Ethereum, Ripple, Cardano, Polkadot, Cosmos, 
and Solana. This new technology has presented a plethora of promises that include pay-
ments, decentralized storage, digital voting, digital identity, and supply chain tracking.
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The fast growth of the cryptocurrency market has attracted worldwide attention 
from institutions and governments. However, this emerging financial market is noto-
rious for high volatility and is seen by many as a speculative phenomenon. Cryptocur-
rency’s volatility is caused by several factors, including investors’ irrationality, market 
immaturity, and exogenous shocks. Smales (2019) observed that Bitcoin exhibits 
greater volatility than traditional assets like gold, even under normal market condi-
tions. The 24/7 trading nature of cryptocurrencies could also result in greater price 
fluctuations. This is unlike stocks, which typically do not trade on weekends (De Leon 
et al. 2022). Cryptocurrency’s high volatility could result in uncertainty for investors 
and users. Therefore, predictive models are needed that can help guide investment 
decisions.

Predicting financial markets is a difficult task (Chen et al. 2022). This can be attributed 
to noise, uncertainty, and hidden relationships within market data (Huang et al. 2005; 
Alonso-Monsalve et al. 2020). Predicting the cryptocurrency market can be even more 
difficult and less reliable due to high price volatility and a lack of historical data that 
are typically available for the stock market (Park and Seo 2022). Therefore, predictive 
models capable of predicting the behavior of the cryptocurrency market are a topic of 
interest in the literature. High-performing predictive models are sought after due to the 
potential gains that can be achieved. Furthermore, the high intraday volatility observed 
in most cryptocurrencies makes them suitable for high-frequency trading.

The main policy-level problem considered by this work revolves around using cryp-
tocurrencies and distributed ledger technology (blockchain). There are advantages of 
such as system, yet cryptocurrencies that utilize blockchain technology are often volatile 
in price and therefore difficult to transact or use as a store of value. Often, this is due 
to a lack of price understanding among market participants. This has resulted in new 
regulations or failures to approve new financial securities that could be used to hedge 
cryptocurrency risk. To provide better forecasting ability for cryptocurrencies and 
reduce price/return volatility, the same combinations of inputs, outputs, and traditional 
modeling approaches cannot simply be used. Instead, features unique to the distributed 
ledger technology (blockchain) network must be used. Therefore, this work considers 
the unique on-chain data available from the blockchain to better understand the pric-
ing dynamics for one widely traded cryptocurrency—Bitcoin. As price transparency 
becomes more known and efficient, the approval of securities like a spot Bitcoin ETF 
should occur, providing more access to these cryptocurrencies, as well as more adoption 
and hopefully greater efficiency within these markets.

The models explored in the literature range from simple statistical models to more 
computationally expensive machine learning (ML) models. ML has often shown per-
formance superior to that of statistical models. This may be attributed to the ability of 
ML algorithms to uncover complex, nonlinear relationships within the input data, which 
lets them make accurate predictions without relying on the statistical properties of the 
input data (Alonso-Monsalve et  al. 2020). The development of ML models addresses 
three major considerations: input types, such as historical prices, technical analysis met-
rics, and sentiment, or on-chain, data; predictive model choice; and chosen output type, 
which may involve predicting the actual magnitude of prices (i.e., a regression problem) 
or determining the direction of price movements (i.e., a classification problem).
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The novelty in this research lies in combining deep learning (DL) models, input types, 
and output types that have not been sufficiently explored in the literature. The inputs 
for the model were Bitcoin price and a large set of on-chain data. Studies have shown 
that a large feature size could result in the curse of dimensionality problem (Zhong and 
Enke 2017a, 2017b; Aras 2021). Therefore, feature selection was carried out to obtain a 
smaller subset containing the most relevant data. Boruta, genetic algorithm (GA), and 
light gradient boosting machine (LightGBM) methods were used for this research. The 
performance of the convolutional neural network–long short-term memory (CNN–
LSTM), long- and short-term time-series network (LSTNet), and temporal convolu-
tional network (TCN) models were then compared. These models were chosen because 
studies have suggested using DL models over traditional ML models. In addition, the 
selected models have been understudied within the context of Bitcoin price prediction. 
To further solidify the credibility of the performance of DL models, a benchmark analy-
sis was conducted against a popular statistical model, ARIMA. For the type of output, 
the prediction of the Bitcoin price direction was utilized. This decision was informed by 
the literature discussed in the next section. Finally, trading strategies were implemented 
to investigate the profitability of predictions. To the authors’ knowledge, this unique 
combination has not been explored in the existing literature.

The objectives of the study include (1) investigating predictive improvements that can 
be achieved through feature-selection methods; (2) comprehensively comparing CNN–
LSTM, LSTNet, and TCN models, an under researched area; and (3) assessing the profit-
ability of the selected model using different trading strategies. This approach is designed 
to address the knowledge gaps in the current literature and offer actionable insights for 
researchers and cryptocurrency traders. Through this study, a clearer understanding of 
the potential and limitations of modern predictive techniques for the cryptocurrency 
market will be achieved, with the ultimate goal of providing a robust foundation for 
more intelligent investment decisions in this vibrant and evolving market.

The structure of this paper is as follows. The literature review is outlined next and 
explains the methodology employed for the experiments. The results derived from these 
experiments are then thoroughly discussed. Key findings are summarized and directions 
for future work are presented.

Literature review
Historically, there has been growing interest in employing ML models to predict Bitcoin 
prices. Scholars have approached this challenge by focusing on one or an integration of 
three aspects: the nature of the input data, the structure of the model architecture, and 
the characteristics of the output.

Type of inputs used in Bitcoin price prediction

The nature of the input data employed is critical to crafting predictive models for Bitcoin 
prices. In the scholarly literature, the predominant input types investigated alongside 
Bitcoin price include technical indicators, sentiment data, and more recently, on-chain 
data. Twitter has emerged as a primary repository of textual information for sentiment 
analysis (Valencia et al. 2019; Huynh 2021, 2022; Critien et al. 2022; Shahzad et al. 2022). 
Additional platforms used in this analytical process include Google Trends, Reddit, and 
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Bitcointalk (Wołk 2020; Loginova et al. 2021). Passalis et  al. (2022) have further dem-
onstrated the feasibility of garnering sentiment data from news articles and financial 
documents. While the integration of sentiment data has led to reported enhancements 
in model performance, identifiable drawbacks exist. Wołk (2020) has noted that senti-
ment related to cryptocurrencies can be highly speculative. Documented challenges and 
limitations include expenses and restrictions tied to procuring textual data from social 
platforms like Twitter and the pervasiveness of bots on these platforms, potentially 
degrading the integrity of sentiment data (Kraaijeveld and De Smedt 2020). Technical 
indicators are another input that has been rigorously examined in the literature. A pleth-
ora of investigations have conveyed that incorporating technical indicators significantly 
boosts model performance (Huang and Huang 2019; Resta et al. 2020; Gyamerah 2021; 
Yang and Fantazzini 2022; Ye et al. 2022). For instance, Resta et al. (2020) used techni-
cal indicators, including oscillators, trend-following metrics, and moving averages. Yang 
and Fantazzini (2022) proposed a novel approach that formulated oscillators from pric-
ing models. Other studies have implemented a wide-ranging collection of technical indi-
cators, such as research by Huang and Huang (2019), whose tree-based model used 124 
features and observed improved subsequent performance. Furthermore, the fusion of 
technical indicators with other types of inputs, like sentiment data, has been pursued by 
researchers (Cavalli and Amoretti 2021; Ortu et al. 2022; Tripathi and Sharma 2022; Ye 
et al. 2022). Ranjan et al. (2022) emphasized the importance of high-dimensional feature 
sets and their ability to compensate for the simplicity of ML models.

In recent studies, transactional records found on the Bitcoin blockchain have been 
probed as a form of input for Bitcoin price prediction. A significant observation by 
Kukacka and Kristoufek (2023) highlighted that the dynamics of Bitcoin’s price are 
greatly influenced by on-chain activities. Various studies have integrated on-chain data 
into ML models, consequently observing improvements in predictions (Jagannath et al. 
2021; Kim et al. 2022; Casella and Paletto 2023). Although the current body of work has 
proven the potential efficacy of on-chain data in the context of Bitcoin price prediction, 
avenues for improvement still exist, particularly regarding the scope of on-chain data 
and the feature engineering methods used. Therefore, more research is needed within 
this domain.

Feature‑selection methods

Using many technical indicators or on-chain data creates a large feature set, which can 
lead to overfitting and consequently poor prediction performance (Zhong and Enke 
2017a, 2017b; Aras 2021). Various feature-selection methods have been used in the lit-
erature to identify the most relevant features. For instance, Ranjan et al. (2022) used a 
wrapper method to select 12 relevant features from 14 total, including price data, sen-
timent data, technical indicators, and on-chain data. Tripathi and Sharma (2022) used 
the Boruta method and correlation filtering to select relevant features from a dataset 
comprising price data, sentiment data, technical indicators, on-chain data, and mac-
roeconomic variables. Rafi et al. (2023) utilized the Boruta method to select 8 relevant 
features from a list of 21, significantly improving model performance. Zhu et al. (2023) 
compared XGBoost and random forest (RF) for feature selection. They observed that 
XGBoost-selected features resulted in greater improvement. Cho et  al. (2021) applied 
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GA for feature selection and reported an improvement in Gaussian process (GP) regres-
sion performance for Bitcoin price forecasting. Erfanian et  al. (2022) comprehensively 
compared five feature-selection methods—best first search, principal component analy-
sis, particle swarm optimization, variance inflation factor, and evolutionary algorithm. 
They observed that using no feature-selection method provided the best performance 
for their support vector regression (SVR) model. A similar observation was reported 
by Jang and Lee (2018). Although feature selection has not always resulted in improve-
ments, Tripathi and Sharma (2022) suggested that a well-implemented feature-selection 
method can significantly improve the generalization capability of ML models. This calls 
for more research to explore the impact of various feature-selection methods on ML 
models.

Bitcoin price‑prediction methods

Several ML models have been explored for Bitcoin price prediction. Zhu et  al. (2023) 
compared the performance of three ML models: SVR, least squares SVR, and twin SVR 
(TWSVR). They reported that TWSVR outperformed the other models for calculation 
speed and prediction accuracy, achieving an explained variance score of 0.9547. The 
model also showed significant improvement over the benchmark ARIMA model. Cho 
et al. (2021) compared SVR, extra trees, and GP regression models. Their results showed 
that the GP regression model performed best in both regression and classification tasks. 
Ranjan et al. (2022) compared logistic regression, linear discriminant analysis, quadratic 
discriminant analysis, RF, support vector machine, XGBoost, decision trees, and K-near-
est neighbors across two price intervals. They reported that logistic regression excelled 
in daily predictions, while XGBoost was best for 5-min interval predictions. They sug-
gested that leveraging DL models could yield even better results. Valencia et al. (2019) 
echoed this sentiment, recommending DL models like LSTM.

The existing literature offers varying opinions about the effectiveness of DL models 
versus traditional ML models. Derbentsev et  al. (2020) compared the performance of 
the artificial neural network (ANN), binary autoregressive tree (BART), and RF mod-
els. They observed that while the BART and ANN models performed best for predict-
ing price magnitude, the BART model outperformed the others for predicting price 
movements. Erfanian et al. (2022) compared linear regression, ensemble models, SVR, 
and MLP. They found that the SVR model outperformed the others, including the ANN 
model. Jang and Lee (2018) employed Bayesian neural networks for Bitcoin price and 
volatility predictions and reported that their method outperformed benchmark models 
like linear regression and SVR.

Some studies have highlighted the potential of neural network variants like recur-
rent neural networks and convolutional neural networks (CNNs). Research by Wu et al. 
(2019) incorporated LSTM to predict Bitcoin prices. They introduced two LSTM model 
variants: conventional LSTM and LSTM coupled with autoregression (AR). The hybrid 
LSTM outperformed the traditional LSTM model. Cavalli and Amoretti (2021) under-
scored the potential of one-dimensional convolutional neural networks (1D CNNs) to 
predict Bitcoin price movements. Their 1D CNN model demonstrated higher accuracy 
than that of LSTM models. Ye et al. (2022) proposed an ensemble model that stacked 
LSTM and gated recurrent unit (GRU) models for price predictions. They observed that 
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their stacking ensemble model provided better prediction performance than the indi-
vidual LSTM and GRU models and the average and blending ensemble methods. Ortu 
et  al. (2022) comprehensively compared the performance of MLP, CNN, LSTM, and 
MALSTM-FCN models for Bitcoin and Ethereum predictions. They determined that no 
single model was universally best, as different models excelled under varying conditions. 
Nonetheless, they emphasized the criticality of appropriately tuning these models. This 
outcome is commonplace in the literature, with models showing varied performance 
under varying conditions.

Nature of the output

The nature of the output often presents researchers with a choice between predicting 
price magnitudes (regression) or predicting price directions (classification). This deci-
sion affects which predictive model is chosen and the metrics used in evaluating its per-
formance. For example, regression-based models have been used in studies by Jang and 
Lee (2018); Wu et al. (2019); Erfanian et al. (2022). However, some studies have adopted 
a classification-based approach (Ortu et  al. 2022; Ranjan et  al. 2022). Moreover, other 
researchers have chosen to compare both approaches to leverage their respective ben-
efits, as seen in the works of Ji et al. (2019) and Derbentsev et al. (2020). Ji et al. (2019) 
contrasted the profitability of regression-based and classification-based predictions. 
They observed that prediction with the classification approach was more profitable than 
using the regression approach. Similarly, Livieris et  al. (2021) suggested that knowing 
the direction of price movements holds greater significance for investors and researchers 
than knowing the exact price magnitude.

Research gap

Despite the advancements that have been made in applying ML models for Bitcoin price 
prediction, a research gap persists when using DL models with on-chain data. The exist-
ing literature has marginally explored using CNN–LSTM, while TCN and LSTNet have 
not been explored for Bitcoin price prediction. Furthermore, using feature-selection 
methods—Boruta, GA, and LightGBM—for feature engineering of the large feature sets 
of on-chain data has been under researched. This paper explores this gap by combining 
the identified features of selected on-chain data and stated DL models to predict direc-
tional Bitcoin price movements. This combination presents a novel approach and con-
tributes to the understanding of the dynamics of Bitcoin prices.

Methodology
The methodology employed in this study is shown in Fig. 1. The framework begins with 
data preparation, where the raw data is cleaned and transformed into a suitable format 
for models. The next stage involves feature engineering to select the most relevant fea-
tures. The models are then trained, evaluated, compared, and benchmarked to select the 
best-performing combination of feature selection and model. Finally, trading strategies 
are implemented to investigate the profitability of the predictions.
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Data preprocessing

Preprocessing is usually the first stage in an ML pipeline. It involves cleaning and 
transforming data into a form that can be efficiently utilized by models. Preprocessing 
addresses issues within the data, including missing data, outliers, inconsistent scale, 
and noise. These activities are crucial for improving the performance of predictive 
models.

Directional movements in price

As suggested by Livieris et  al. (2021), this study considers directional movements and 
not actual price magnitude. Thus, the prediction problem becomes a classification prob-
lem using binary classification, as described below:

• Class 1: This represents the scenario where the price of Bitcoin shows an increase 
from day t to day t + 1 ( yt+1 > yt ) and is encoded as 1.

• Class 0: This denotes a scenario where the Bitcoin price either decreases or stays the 
same from day t to day t + 1 ( yt+1 ≤ yt ). This is encoded as 0.

Handling missing data

The strategy for handling missing data depended on whether the data was assessed 
to be missing completely at random (MCAR) or missing not at random (MNAR). In 
cases where the data was determined to be MCAR, the listwise deletion method was 
employed. This approach removes any row containing missing values and was specifi-
cally used for data records unavailable before a certain date. For instance, transaction 
volumes for cryptocurrency exchanges are naturally unavailable before the date the 
exchanges were launched. Conversely, when the data was found to be MNAR, regression 
imputation was used to estimate the missing values, leveraging existing relationships 
among the variables.

Fig. 1 Methodological framework
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Data splitting and transformation

The dataset was categorized into training and testing sets using an 80–20 split, with the 
first 80% used for training and the remaining 20% used for testing. To preserve the tem-
poral nature of the data, no shuffling was applied during this split. The input features 
were then standardized to ensure they have the same scale. This step was necessary to 
ensure that no feature dominates the learning process because of its larger scale. The 
decision to standardize the data after splitting was made to avoid any potential data leak-
age and maintain the integrity of the experiment. Data leakage could lead to overly opti-
mistic performance metrics, as the model may have access to information from the test 
set during training.

Feature selection

High-dimensional data often result in the curse of dimensionality and high compu-
tational costs for running ML algorithms. Feature selection is a common preprocess-
ing method used to find the most relevant feature subset. Feature selection is broadly 
grouped into filter, wrapper, and embedded methods. Filter methods use statistical char-
acteristics inherent in the data to select the most relevant features, whereas embedded 
and wrapper methods use ML algorithms to perform their selections. In this research, 
Boruta, GA (wrapper method), and LightGBM (embedded method) are used to perform 
feature selection. The feature-selection process created three additional datasets, one for 
each method. A univariate dataset containing just the price was also created, thereby 
resulting in five datasets (including the original set) for each DL method.

Boruta feature selection

Boruta is a wrapper feature-selection method built on the RF algorithm (Kursa and 
Rudnicki 2010). It aims to capture all relevant features, including those that may exhibit 
weak associations yet still augment the predictive capacity of the model. The procedure 
of the Boruta algorithm is as follows:

Step 1: The original dataset is duplicated, creating a “shadow dataset.” Each feature in 
the original dataset has a corresponding feature in the shadow dataset.

Step 2: The shadow features are then shuffled randomly to eliminate their correlation 
with the target variable. This shuffling generates a set of random variables that have no 
predictive capability.

Step 3: The original and shadow datasets are concatenated, and an RF classifier is 
trained on this combined dataset. The Z-scores are then calculated and recorded.

Step 4: The maximum Z-score among the shadow features, known as MZSA (Maxi-
mum Z-score among shadow attributes), is determined. Each feature’s score is ranked 
and any feature scoring higher than this MZSA is labeled as important, with other fea-
tures labeled as unimportant.

Step 5: To evaluate the importance of each feature, a two-sided test on MZSA is per-
formed. Features that are found to be significantly less critical than MZSA are consid-
ered unimportant and permanently removed from the feature set. Features found to be 
significantly more important than MZSA are considered important and retained in the 
feature set.
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Step 6: All shadow features are subsequently discarded, and steps are reiterated until 
all features are classified as important or unimportant, or until a predefined stopping 
criterion is reached.

Genetic algorithm feature selection

GAs can be used as a wrapper method, wherein the population consists of solutions 
(Chen and Zhou 2020). Each potential solution, referred to as an “individual,” represents 
a subset of features derived from the dataset. The process involves steps such as initial-
izing the population, evaluating the fitness function, conducting selection, performing 
crossover and mutation, and ultimately reaching termination. In this particular context, 
the fitness function involves training an RF classifier on the selected features and assess-
ing its performance. Compared with other feature-selection methods, the GA method 
is less likely to become trapped within local optima and is therefore more capable of 
finding a global optimum. The drawback of this method is its computational expense, 
particularly for high-dimensional datasets, as it requires training a model for each subset 
of features in the population during every iteration.

Light gradient boosting machine feature selection

LightGBM is an embedded method that uses a gradient-boosting framework to perform 
feature selection. It calculates a feature’s importance by considering the number of times 
it is used during model training and the improvement it provides when used. Once the 
model has been trained, features can be ranked based on their importance scores. Fea-
tures with higher scores are considered more important. A threshold can be set to select 
the top n features or a recursive procedure can be implemented that iteratively elimi-
nates the least important features, retrains the model, and continues this process until 
a stopping criterion is met. LightGBM has the advantage of considering interactions 
between features because feature selection is part of its training process.

Deep learning models
Convolutional neural network–long short‑term memory

The CNN–LSTM model combines the strengths of CNN and LSTM models. It captures 
spatial features through CNN units and temporal dependencies through LSTM units (Lu 
et al. 2020). The CNN component starts with a 1D convolutional layer, a filter size of 64, 
and a kernel size of 3. Rectified linear unit (ReLU) was used as the activation function. 
Next, a batch normalization layer standardizes inputs for stability and performance. An 
average pooling layer with a pool size of 1 is then employed to reduce dimensions while 
minimizing parameters and computational requirements. To prevent overfitting, a drop-
out layer with a rate of 0.5 was applied. The LSTM component consists of two layers; 
the first layer has 128 units, and the second has 80 units, with both employing the TanH 
activation function. After each LSTM layer, batch normalization and dropout layers with 
a rate of 0.5 are added. The information extracted by the LSTM component is then fed 
into a dense layer that consists of one unit and uses the sigmoid function for activation. 
This final layer maps the features learned by the previous layers to the final output. The 
architecture of the CNN–LSTM model is shown in Fig. 2.
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Long‑ and short‑term time‑series network

The LSTNet is a DL model specifically designed to capture both term and long-term 
patterns in time series data (Lai et al. 2018; Ouyang et al. 2022). This model consists of a 
CNN, an LSTM, and an AR component. The CNN component is responsible for captur-
ing dependencies and short-term patterns within the data. It includes two layers of 1D 
CNN with filter sizes of 128 and 64, along with kernel sizes of 3. These layers are fol-
lowed by three time-distributed dense layers with units set to 64, 32, and 1. Afterward, 
a global average pooling layer is applied. The LSTM component focuses on capturing 
long-term dependencies within the data. It utilizes two LSTM layers with units set to 
256 and 128. Following these layers are three time-distributed dense layers with units set 
to 64, 32, and 1. An additional global average pooling layer is performed after the LSTM 
layers. The AR component consists of two layers with units set to 64 and 32, followed 
by a dense layer with one unit. After these AR layers, a global average pooling layer is 
applied. The AR component captures any relationships between the target sequence and 
its lag values, allowing for the modeling of patterns that might not have been accounted 
for by the other components. A combination of ReLU, TanH, and linear activation func-
tions was used in the model architecture, as shown in Fig. 3.

The outputs from these three components are combined using the addition operation. 
The combined output then goes through two dense layers with 64 and 32 units, followed 
by dropout layers with a rate of 0.5. Finally, an output-dense layer is present with one 
unit and a sigmoid activation function.

Temporal convolutional network

The TCN is suitable for tasks involving sequence modeling (Bai et al. 2018). Its unique 
architecture allows it to handle inputs of varying lengths and to capture long-range 
dependencies. The initial layer employs 64 filters, a kernel size of 3, and dilations of 1, 
2 4, and 8. The ReLU activation function was used. This layer produces 3D output to 
ensure compatibility with the next TCN layer. A dropout layer with a rate of 0.5 follows 
is then applied. The second TCN layer is similar in structure to the first but includes 

Fig. 2 Architecture of convolutional neural network–long short-term memory model
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an additional dilation of 16. This layer produces 2D output and is followed by a drop-
out layer with a rate of 0.5. Finally, the TCN layer output is passed to a dense layer that 
consists of one unit and employs a sigmoid activation function. This final layer maps the 
features learned to generate predictions for Bitcoin price movement. The architecture of 
the TCN model is shown in Fig. 4.

Hyperparameter tuning

For hyperparameter optimization, this study adopts a random search method. Contrary 
to grid search, which comprehensively investigates each feasible permutation of hyper-
parameters, random search randomly explores a subset of the hyperparameter space. 
This enables a more diverse exploration of configurations and often yields satisfactory 
solutions faster than grid search techniques. The optimization process is initiated by 
defining a range for each hyperparameter. These encompass the learning rate, batch size, 
epoch count, dropout coefficient, LSTM units, CNN filter dimensions, convolutional 

Fig. 3 Architecture of the LSTNet model

Fig. 4 Architecture of TCN model
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kernel dimensions, and activation functions. Subsequently, random combinations of 
these hyperparameters are curated, and the model undergoes training and validation via 
cross-validation techniques. The ultimate selection of hyperparameters is contingent on 
the model’s performance metrics.

Evaluation metrics

Since this is a binary classification problem, the following evaluation metrics were used 
to assess the performance of the models discussed above.

Accuracy

This measures the ratio of correctly classified observations to total observations,

 where TP is the count of true positives, TN is the count of true negatives, FP is the 
count of false positives, and FN is the count of false negatives.

Precision

This measures the proportion of true positive predictions to total positive predictions:

Recall

This measures the ratio of true positive predictions to the number of actual positive 
observations:

F1‑score

This is the harmonic mean of precision and recall and calculates a balance between the 
two:

Area under the receiver operating characteristic curve score

This measures the model’s performance in a binary classification problem and is particu-
larly useful for imbalanced datasets. It is obtained by calculating the area under the plot 

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1− score =
2 ∗ (Precision ∗ Recall)
Precision+ Recall
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of the true positive (TP) rate against the false positive (FP) rate for different classification 
thresholds.

Matthews correlation coefficient (MCC)

This metric considers true and false positives and negatives. The MCC addresses the 
limitations of other performance metrics by providing a balanced measure of the quality 
of binary classifications:

Backtesting approach

To ascertain not only the predictive accuracy but also the financial viability of the mod-
el’s forecasts, this study proposes a backtesting framework. Backtesting was used to 
simulate trades predicated on three strategies for understanding how the model’s predic-
tions would have performed over a defined historical period (Piravechsakul et al. 2021; 
Sebastião and Godinho 2021; Kalariya et al. 2022). The trading strategies developed for 
backtesting include.

1. Buy-and-sell: This strategy capitalizes on the basic principle of buying low and selling 
high. Specifically, the trading algorithm is programmed to buy when the model fore-
casts an increase in price for the subsequent day, and conversely, to sell when a price 
decrease is forecasted for the next day.

2. Buy-and-sell with price protection: This approach is an extension of the first, with an 
additional constraint. While the trading algorithm still buys and sells based on the 
model’s predictions, it is restricted from selling at a price lower than the entry price. 
This strategy attempts to minimize losses by holding onto the asset during short-
term price dips.

3. Baseline strategy: The third strategy uses moving average convergence divergence 
(MACD) as a baseline strategy. MACD is a momentum indicator that shows the 
relationship between two moving averages of an asset’s price. Mathematically, the 
MACD line is the difference between the 12-day and 26-day exponential moving 
averages (EMAs), while the signal line is the 9-day EMA of the MACD line. A buy 
order is initiated when the MACD line crosses above the signal line, while a sell order 
is triggered when the MACD line crosses below the signal line. The former indicates 
a bullish momentum, while the latter indicates a bearish momentum:

(5)MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP) ∗ (TP + FN ) ∗ (TN + FP) ∗ (TN + FN )

(6)MACDline = EMA12−day − EMA26−day

(7)Signalline = EMA9−day(MACDline)
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For testing these strategies, three potential investment positions were considered: 
long only, short only, and both long and short. The performance and risk of each strat-
egy were evaluated using the Rate of Return (ROR), Sharpe ratio, maximum draw-
down (MDD), market exposure, and volatility metrics calculated from Eqs. (8)–(12).

Results and discussion
This study uses an extensive set of 87 distinct on-chain metrics alongside price data 
sourced from Glassnode (2023). The data were collected from February 6, 2013, to 
February 18, 2023, thus comprising 3665 days. Figure 5 plots the price of Bitcoin over 
the study period.

(8)ROR =
End Portfolio− Starting Portfolio

Starting Portfolio
x100

(9)MDD =
TroughValue − Peak Value

Peak Value

(10)Sharpe Ratio =
Expected Return− Risk Free Rate

σExcess Return

(11)Market Exposure =
Trade Duration

Total Period

(12)Volatility = σReturn%

Fig. 5 Plot of Bitcoin price over study duration
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Experimental datasets
The original dataset for this study comprises 87 on-chain data metrics, including price. 
To address the potential for the curse of dimensionality, three feature-selection meth-
ods, namely Boruta, GA, and LightGBM, were applied to the original dataset to create 
three subsets as additional datasets. In addition, a univariate dataset consisting solely of 
the Bitcoin price was created to serve as a benchmark. Table 1 shows the results for the 
feature-selection methods used. A comprehensive list of the features and resulting data-
sets can be found in Table 07 in the Appendix.

The experiments were carried out using the CNN–LSTM, LSTNet, TCN, and ARIMA 
models to predict the five datasets. Trading strategies were then used to assess the prof-
itability of the best model, as presented later in this section.

Parameter study

To assess the sensitivity and robustness of the four models, a parameter study was car-
ried out. Unlike hyperparameter tuning, which focuses on model-specific settings, the 
focus here is on the influence of external parameters such as seed values and window 
sizes. This study identifies how these variables influence each model’s performance accu-
racy, thereby guiding model reproducibility and reliability.

Setting the seed value

A predetermined seed value was set for Python’s random number generator so that 
whenever the model runs, the initial values for its parameters, such as weights and 
biases, are always the same. This ensures that the results can be reproduced and that all 
models use the same starting point. Starting values have been shown to influence model 
accuracy (Madhyastha and Jain 2019; Dusenberry et al. 2020). To better understand how 
the seed value affects model performance, an experiment was conducted that varied the 
seed value and compared how well the model performed in each case. The findings are 
presented in Fig. 6.

Figure 6 shows no clear performance trend for the DL models for all datasets as the 
seed value is increased from 0 to 10. The CNN–LSTM model generally outperforms the 
others for feature-selected datasets regardless of the seed value. The TCN model mostly 
surpasses the other models when no feature selection is applied. The LSTNet model 
consistently performs worst of the three DL models for all feature-selected datasets. The 
benchmark model’s performance was the same for all seed values in each dataset; this is 
because the ARIMA model is set in a deterministic manner and therefore does not rely 
on random seed values for parameter estimation. Interestingly, ARIMA outperformed 

Table 1 Original and feature-selected datasets

Feature selection method Number of features

Boruta 26

GA 42

LightGBM 43

None 87 (all features)

Univariate (price) 1
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the DL models for most scenarios involving univariate input. This superior performance 
can be attributed to the DL models’ propensity to underfit when provided with insuf-
ficient input features.

Window sizing

The impact of changing window size on model performance was also investigated for a 
constant seed value. Window size refers to the number of lag days used to create input 
features for the models. The explored window sizes are 3, 5 7, 14, and 30 days, with the 
results presented in Fig. 7.

Figure 7 illustrates that model performance varies significantly with window size. For 
the CNN–LSTM model, no trend is observed as window size increases across data-
sets. Conversely, the LSTNet model shows a clear pattern, with improved performance 
through a window size of 5 that declines with further increases in the window size. Sim-
ilarly, the TCN model initially shows improved performance through varying window 
sizes for the five datasets, but its performance eventually declines. In contrast to the DL 
models, the ARIMA model consistently underperformed across all scenarios. ARIMA 

Fig. 6 Impact on model accuracy from varying the seed values of each dataset (A Boruta Dataset; B Genetic 
Algorithm Dataset; C Light Gradient Boosting Machine Dataset; D All Dataset; E Univariate Dataset)
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showed more stable performance for multivariate scenarios but a downward trend for 
the univariate scenario.

Table 2 summarizes model performance for variations in the seed values and win-
dow sizes of the datasets. Interestingly, the CNN–LSTM model consistently achieved 
higher accuracy across all datasets except when all the data were used as input fea-
tures. The Boruta + CNN–LSTM combination shows the best performance, with an 
overall max of 0.8244. It also demonstrates good consistency, with means of 0.7439 
(± 0.050) for the seed value experiment and 0.7934 (± 0.030) for the window size 
experiment. The weakest performer was the GA + ARIMA combination model, with 
an overall max of 0.5061 and means of 0.5061 (± 0.000) and 0.5045 (± 0.001) for the 
seed value and window size experiments, respectively. Interestingly, poor ARIMA 
performance was observed across all datasets, indicating that the model’s simplicity is 
insufficient for predicting Bitcoin price movements.

The CNN–LSTM model’s performance suggests that it struggles to accurately dif-
ferentiate between noise and signal, so feature selection becomes necessary. The 

Fig. 7 Impact of changing window size on model accuracy for each dataset (A Boruta Dataset; B Genetic 
Algorithm Dataset; C Light Gradient Boosting Machine Dataset; D All Dataset; E Univariate Dataset)
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LSTNet model consistently underperformed on test data despite exhibiting excellent 
training performance. This indicates that the model is overly complex and prone to 
overfitting. Of the three models, TCN appears most effective at distinguishing noises 
and signals. It performed best when all data were used as input features. However, it 
suffers from underfitting when feature selection reduces the number of features.

To assess the significance of performance variations between models, Wilcoxon 
signed-rank and Friedman tests were conducted. The Wilcoxon signed-rank test allows 
for pairwise comparisons, whereas the Friedman test makes multiple comparisons (Der-
rac et al. 2011; Li et al. 2022). In both tests, the null hypothesis assumes no performance 
differences among the models. A p-value less than 0.05 indicates significant performance 
differences, leading to rejection of the null hypothesis. Summaries of these test results 
are provided in Tables 3 and 4.

Table 3 compares the outcomes of the Boruta + CNN–LSTM model with the others. 
The Boruta + CNN–LSTM model outperforms all others except the LightGBM + CNN–
LSTM model. The two models cannot be assumed to have similar performance, how-
ever, because the value of W = 13 is not sufficiently large to be conclusive. Furthermore, 
the results of the Friedman test strongly suggest that one model performs differently 
from the rest. This implies that Boruta + CNN–LSTM is significantly better than the 
other models. These findings highlight how feature selection can potentially enhance 
ML model performance. The performance metrics of the Boruta + CNN–LSTM model 
are presented in Table 5.

Table 2 Summary of deep learning performance on datasets when seed value and window size are 
varied

Task Seed Window size Overall max

Boruta + CNN–LSTM 0.7439 (± 0.050) 0.7934 (± 0.030) 0.8244

GA + CNN–LSTM 0.6099 (± 0.050) 0.6090 (± 0.099) 0.7431

LightGBM + CNN–LSTM 0.6959 (± 0.057) 0.6623 (± 0.049) 0.7662

AllData + CNN–LSTM 0.5667 (± 0.058) 0.5642 (± 0.053) 0.6891

Univariate + CNN–LSTM 0.5048 (± 0.006) 0.5059 (± 0.007) 0.5099

Boruta + LSTNet 0.5930 (± 0.033) 0.5806 (± 0.062) 0.6488

GA + LSTNet 0.5372 (± 0.026) 0.5334 (± 0.078) 0.6667

LightGBM + LSTNet 0.5588 (± 0.027) 0.5752 (± 0.085) 0.7064

AllData + LSTNet 0.5647 (± 0.036) 0.5705 (± 0.101) 0.7449

Univariate + LSTNet 0.5088 (± 0.004) 0.5090 (± 0.013) 0.5298

Boruta + TCN 0.6701 (± 0.042) 0.7016 (± 0.016) 0.7194

GA + TCN 0.5958 (± 0.057) 0.5734 (± 0.037) 0.6699

LightGBM + TCN 0.5963 (± 0.045) 0.5935 (± 0.056) 0.6602

AllData + TCN 0.6546 (± 0.049) 0.5867 (± 0.059) 0.7194

Univariate + TCN 0.5114 (± 0.008) 0.5093 (± 0.004) 0.5282

Boruta + ARIMA 0.5280 (± 0.000) 0. 5381 (± 0.006) 0.5416

GA + ARIMA 0.5061 (± 0.000) 0.5045 (± 0.001) 0.5061

LightGBM + ARIMA 0.5198 (± 0.000) 0.5042 (± 0.011) 0.5198

AllData + ARIMA 0.5225 (± 0.000) 0.5203 (± 0.003) 0.5225

Univariate + ARIMA 0.5184 (± 0.000) 0.5078 (± 0.013) 0.5184
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Backtesting results
This section discusses the outcome of the backtesting process conducted to assess the 
profitability of the best model, Boruta + CNN–LSTM. For simplicity, it is assumed 
that slippages are negligible, with no liquidity constraints. These assumptions help to 
focus the evaluation on the capability of the model within a controlled environment 
that is removed from real-world trading complexities. The MACD model was used 
as a benchmark for comparison. As described previously, a buy signal was triggered 
when the MACD line crossed above the signal line, whereas a sell signal was triggered 
when it fell below. The trading simulation involved the test data and covered the last 

Table 3 Wilcoxon signed-rank test comparison of model performance

Pair of models compared Statistic P‑value Conclusion

Boruta + CNN–LSTM vs GA + CNN–LSTM 2 0.0029 Reject null

Boruta + CNN–LSTM vs LightGBM + CNN–LSTM 13 0.0830 Accept null

Boruta + CNN–LSTM vs AllData + CNN–LSTM 0 0.0010 Reject null

Boruta + CNN–LSTM vs Univariate + CNN–LSTM 0 0.0010 Reject null

Boruta + CNN–LSTM vs Boruta + LSTNet 0 0.0010 Reject null

Boruta + CNN–LSTM vs GA + LSTNet 0 0.0010 Reject null

Boruta + CNN–LSTM vs LightGBM + LSTNet 0 0.0010 Reject null

Boruta + CNN–LSTM vs AllData + LSTNet 0 0.0010 Reject null

Boruta + CNN–LSTM vs Univariate + LSTNet 0 0.0010 Reject null

Boruta + CNN–LSTM vs Boruta + TCN 5 0.0098 Reject null

Boruta + CNN–LSTM vs GA + TCN 0 0.0010 Reject null

Boruta + CNN–LSTM vs LightGBM + TCN 0 0.0010 Reject null

Boruta + CNN–LSTM vs AllData + TCN 1 0.0019 Reject null

Boruta + CNN–LSTM vs Univariate + TCN 0 0.0010 Reject null

Boruta + CNN–LSTM vs Boruta + ARIMA 0 0.0010 Reject null

Boruta + CNN–LSTM vs GA + ARIMA 0 0.0010 Reject null

Boruta + CNN–LSTM vs LightGBM + ARIMA 0 0.0010 Reject null

Boruta + CNN–LSTM vs AllData + ARIMA 0 0.0010 Reject null

Boruta + CNN–LSTM vs Univariate + ARIMA 0 0.0010 Reject null

Table 4 Friedman test for overall comparison

Test Statistic P‑value Conclusion

All models 178 7.202e-28 Reject null

Table 5 Performance metrics of Boruta + convolutional neural network–long short-term memory 
model

Metrics Values

Accuracy 0.8244

Recall 0.8078

Precision 0.8309

F-1 Score 0.8192

AUC-ROC 0.8242

MCC 0.6489
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729 days in the Boruta feature-selected dataset. The starting capital was $1000, and 
the simulation was designed to reinvest the compounded capital after each trade. A 
30% tax rate was applied to each realized profit. Additionally, transaction costs were 
set at a constant rate of 0.5% to ensure the consistency of the simulation parameters. 
Table 6 shows the results of the backtesting process.

Table 6 shows that the “long-only buy-and-sell” strategy generated an annual return of 
437%, indicating that it capitalized on predicted upward price movements. However, this 
strategy had a significantly negative MDD and would thus experience losses during mar-
ket downturns. Similarly, the “short-only buy-and-sell” strategy generated a yearly return 
of 1084%, suggesting it is particularly effective during bearish markets. Interestingly, 
it also had a marginally better Sharpe ratio than the “long-only buy-and-sell” strategy, 
which suggests a better risk-adjusted return. The standout, however, was the “long-and-
short” strategy. It eclipsed both previous strategies, with a staggering annual return of 
over 6600%. It also had the highest Sharpe ratio, suggesting that the “long-and-short” 
strategy effectively balanced risk and return. Additionally, this strategy had the lowest 
MDD, indicating resilience during market downturns. To solidify the credibility of these 
outcomes, a separate simulation was carried out using actual price movement values 
(“ground truth”) and theoretically achieved 100% accuracy. The annual returns obtained 
were 918%, 1803%, and 20,453% for the “long-only buy-and-sell,” “short-only buy-and-
sell,” and “long and short” strategies, respectively. The backtesting returns appear believ-
able given the model accuracy score of 82.44%.

The Boruta + CNN–LSTM model demonstrates a precision of 0.8309, as reflected 
in returns achieved through the “long-only buy-and-sell,” “short-only buy-and-sell,” 
and “long-and-short” strategies. Essentially, this model excels at accurately identify-
ing trades. Moreover, the model’s recall score of 0.8078 likely influenced the number of 

Table 6 Summary of results of trading simulation

* It might be anticipated that the MDD for a strategy involving price protection should be zero, as price protection prevents 
the closing of positions at a loss. However, the strategies resulted in a negative MDD because they were at a loss at the end 
of the simulation period (day 729)

Strategy Annual returns 
(%)

Sharpe ratio Market 
exposure

Volatility MDD Trading days

Long-only buy-
and-sell

437.2461 0.1312 0.4787 3.1488 − 0.1131 203

Short-only buy-
and-sell

1084.1600 0.1814 0.5213 3.1562 − 0.0582 204

Long and short 6653.7497 1.8583 0.5583 3.1759 − 0.0704 406

Long-only with 
price protection

− 8.6255 -0.0003 0.9369 12.3345 − 0.5761* 25

Short-only with 
price protection

107.7501 0.0075 0.7901 7.2039 − 0.5035* 84

Long and short 
with price protec-
tion

35.5278 0.0022 0.0658 9.3113 − 0.5761* 48

Long-only buy-
and-sell (baseline)

− 45.0594 − 0.0023 0.5199 10.2983 − 0.7116 33

Short-only buy-
and-sell (baseline)

− 29.3954 − 0.0023 0.4801 8.0177 − 0.4840 32

Long and short 
(baseline)

− 55.5873 − 0.0032 0.0892 9.2961 − 0.7968 65
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trading days. A higher recall score suggests missed profit opportunities, thereby increas-
ing trading frequency. Alternatively, strategies that incorporate price-protection mecha-
nisms, such as “long-only with price protection,” “short-only with price protection,” and 
“long-and-short with price protection” resulted in lower annual returns. This implies 
that while these mechanisms help avoid selling at a loss during short-term price dips, 
they may limit opportunities for profit during market rebounds. Compared with the 
baseline strategies that recorded returns, the DL-based strategies show a clear advan-
tage. However, this superior performance comes with increased risk, as indicated by 
volatility and MDD. The observations from this simulation align with the findings of 
Piravechsakul et al. (2021) and emphasize the importance of predictive models in guid-
ing trading decisions.

Conclusions and future work
In this work, extensive experiments were conducted to investigate the performance of 
DL models, namely CNN–LSTM, LSTNet, and TCN, as well as an ARIMA benchmark 
model, in predicting short-term Bitcoin price movements. A multivariate approach 
incorporating on-chain data was employed for model training, with a univariate 
approach serving as the performance benchmark. Furthermore, the influences of vari-
ous feature-selection techniques—i.e., Boruta, GA, and LightGBM—on model accuracy 
were scrutinized. Finally, the profitability of the best-performing model was evaluated 
through trading strategies.

A dataset of 87 on-chain data metrics was used in this study. Feature-selection meth-
ods were then applied to generate three additional datasets. Additionally, a univariate 
dataset consisting solely of price was created. Therefore, five datasets were used in total. 
Extensive experimentation revealed that the combination of Boruta feature selection 
and the CNN–LSTM model consistently outperformed other configurations, attaining 
an accuracy of 82.44%. Meanwhile, the weakest performer was the combination model 
of GA with ARIMA, which exhibited a max performance of 0.5061. This result under-
scored the importance of feature selection in enhancing DL model performance, which 
aligns with the findings of Li et al. (2020). To further solidify the credibility of CNN–
LSTM model performance, Wilcoxon signed-rank and Friedman tests were conducted. 
The outcomes showed that the CNN–LSTM model significantly outperformed the oth-
ers, including the benchmark ARIMA model. A backtesting process was then conducted 
to ascertain the financial viability of the model’s forecasts. The results showed that a 
“long-and-short” trading strategy, which takes advantage of both upward and downward 
price movements, had better performance than all other strategies, including the bench-
mark strategy of momentum trading using MACD. The “long-and-short” strategy gener-
ated a 6653% return while maintaining a manageable MDD of 0.0704.

This study establishes an approach for making intelligent investment choices in the 
highly unpredictable cryptocurrency market. It can serve as a tool for traders and port-
folio managers. Predictive models can effectively manage traders’ risks by accurately 
forecasting price trends. Portfolio managers could use these findings to improve their 
investment decisions, ultimately maximizing returns.

Unique on-chain data can provide greater predictability in cryptocurrency price fore-
casting. With more cryptocurrency price modeling (in this case, Bitcoin pricing), price 
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transparency should increase along with efficiency in these historically volatile markets. 
Thus, proper modeling and better price transparency should make it possible for securi-
ties exchanges and regulators to offer and approve new security offerings, such as a spot 
Bitcoin ETF, for greater adoption and liquidity while offering a vehicle for both specula-
tion and risk management. Providing more access to various cryptocurrencies should 
increase adoption and use, hopefully providing greater market price efficiency within 
these markets.

This study’s limitations should be acknowledged along with potential areas for future 
research. This study focused on using on-chain and price data as inputs without con-
sidering factors such as sentiment data and technical analysis indicators. Future stud-
ies could benefit from exploring the advantages of incorporating these data types for 
improved prediction accuracy. Additionally, the study’s prediction time frame was rel-
atively short. Future research could investigate how predictive models perform under 
varying market conditions to provide a comprehensive understanding of their effective-
ness at capturing long-term trends.

Appendix
See Table 7.

Table 7 List of on-chain features and resulting feature selected datasets

Features All dataset GA dataset LightGBM 
dataset

Boruta dataset Univariate 
dataset

90-day coin days destroyed ✓ ✓
Adjusted circulating supply ✓
Adjusted SOPR ✓ ✓ ✓
Aggregate security spend thermocap 
(USD)

✓

Average coin dormancy ✓ ✓ ✓
Average spent output lifespan ✓ ✓
All exchange balance (BTC) ✓
Balanced price (USD) ✓ ✓
Circulating supply ✓
Coin days destroyed ✓ ✓ ✓
Coin years destroyed ✓ ✓
Cumulative value days destroyed ✓ ✓
Delta cap (USD) ✓
Difficulty ribbon compression ✓ ✓
Entity-adjusted dormancy flow ✓ ✓ ✓
All exchange net position change (BTC) ✓ ✓ ✓
HODL waves (1D-1W) ✓ ✓ ✓
HODL waves (1 M-3 M) ✓
HODL waves (1W-1 M) ✓ ✓ ✓
HODL waves (1Y-2Y) ✓ ✓
HODL Waves (24H) ✓ ✓ ✓
HODL waves (2Y-3Y) ✓ ✓
HODL waves (3 M-6 M) ✓ ✓
HODL waves (3Y-5Y) ✓
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Table 7 (continued)

Features All dataset GA dataset LightGBM 
dataset

Boruta dataset Univariate 
dataset

HODL waves (5Y-7Y) ✓
HODL waves (6 M-12 M) ✓ ✓
HODL waves (7Y-10Y) ✓
HODL waves (over 10Y) ✓ ✓
Inflation rate ✓ ✓
Investor capitalization ✓
Issuance (BTC) ✓ ✓
Liveliness ✓
Market cap to thermocap ratio ✓
Market cap (USD) ✓ ✓
MVRV ratio ✓ ✓
Median Spent output lifespan ✓ ✓ ✓
MVRV Z-score ✓ ✓ ✓
Net realized profit/loss (USD) ✓ ✓ ✓ ✓
All exchanges net transfer volume (BTC) ✓ ✓ ✓
Net unrealized profit/loss ✓ ✓ ✓
Network value to transactions ratio ✓ ✓ ✓
NVT signal ✓ ✓
Active addresses ✓ ✓
Non-zero balance addresses ✓ ✓
Addresses with balance over 10 K ✓
Total addresses ✓
New addresses ✓ ✓
Number of transfers from all exchanges ✓ ✓
UTXOs in loss ✓ ✓ ✓
UTXOs in profit ✓ ✓ ✓
Percent balance on all exchanges ✓
Percent miner revenue from fees ✓
Percent of supply last active 1 year ago ✓
Percent of UTXOs in profit ✓ ✓ ✓ ✓
Percent of supply in profit ✓ ✓ ✓ ✓
PI cycle top indicator (MA111) ✓
PI cycle top indicator (MA350 × 2) ✓ ✓
Drawdown from ATH ✓ ✓ ✓
OHLC close (USD) ✓ ✓ ✓
OHLC high (USD) ✓ ✓ ✓
OHLC low (USD) ✓ ✓ ✓
OHLC open (USD) ✓ ✓ ✓ ✓
Price (USD) ✓ ✓ ✓

Puell multiple ✓ ✓ ✓
Realized Cap (USD) ✓
Realized HODL ratio ✓ ✓
Realized loss (USD) ✓ ✓ ✓ ✓
Realized price (USD) ✓
Realized profit/loss ratio ✓ ✓ ✓ ✓
Realized profit (USD) ✓ ✓ ✓
RPV ratio ✓ ✓ ✓ ✓
Relative unrealized loss ✓ ✓ ✓ ✓
Relative unrealized profit ✓ ✓ ✓
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Features All dataset GA dataset LightGBM 
dataset

Boruta dataset Univariate 
dataset

Reserve risk ✓ ✓ ✓ ✓
Seller exhaustion constant ✓ ✓
Stock to flow deflection ✓
Stock to flow ratio (days till halving) ✓ ✓
Stock to flow ratio (USD) ✓ ✓
Supply-adjusted CDD ✓ ✓ ✓ ✓
Supply-adjusted CYD ✓
Total supply in loss (BTC) ✓ ✓ ✓ ✓
Total supply in profit (BTC) ✓ ✓ ✓
Transaction fees (BTC) ✓
Transfer volume between exchanges 
(BTC)

✓ ✓ ✓

Transfer volume from all exchanges (BTC) ✓ ✓
Transfer volume to all exchanges (BTC) ✓ ✓ ✓
Top exchange trading volume ✓ ✓

Table 7 (continued)

Abbreviations
ARIMA  AutoRegressive integrated moving average
BNN  Bayesian neural networks
CNN–LSTM  Convolutional neural network–long short-term memory
EVS  Explained variance score
GA  Genetic algorithm
GRU   Gated recurrent unit
LDA  Linear discriminant analysis
LightGBM  Light gradient boosting machine
LSTM  Long short-term memory
LSSVR  Least squares support vector regression
LSTNet  Long and short-term time-series network
MACD  Moving average convergence divergence
MALSTM-FCN  Multi-scale attention LSTM-fully convolutional network
MCAR   Missing completely at random
MCC  Matthews correlation coefficient
MDD  Maximum drawdown
MNAR  Missing not at random
ML  Machine learning
MLP  Multilayer perceptron
MZSA  Maximum Z-score among shadow attributes
QDA  Quadratic discriminant analysis
ReLU  Rectified linear unit
RF  Random forest
RNN  Recurrent neural network
ROR  Rate of Return
SVR  Support vector regression
TCN  Temporal convolutional network
TWSVR  Twin support vector regression
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