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Abstract 

This study introduces the dynamic Gerber model (DGC) and evaluates its perfor-
mance in the prediction of Value at Risk (VaR) and Expected Shortfall (ES) compared 
to alternative parametric, non-parametric and semi-parametric methods for estimating 
the covariance matrix of returns. Based on ES backtests, the DGC method produces, 
overall, accurate ES forecasts. Furthermore, we use the Model Confidence Set proce-
dure to identify the superior set of models (SSM). For all the portfolios and VaR/ES confi-
dence levels we consider, the DGC is found to belong to the SSM.
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Introduction
In a globalized economy, turbulence in financial markets has become more frequent. 
Recent events like the COVID-19 pandemic, the surge in inflation, and the Russian-
Ukrainian conflict have all triggered considerable losses for investors worldwide. Provid-
ing methods that accurately measure financial market risk is therefore an increasingly 
crucial task. Over the past two decades, Value at Risk (VaR)—a measure related to the 
quantile of the conditional portfolio return distribution—has become the standard 
measure of market risk. While VaR is a measure of risk easy to understand for laymen, it 
has a number of shortcomings. First, it provides no information about the magnitude of 
the losses that exceed the quantile (see for instance Christoffersen 2012, Ch. 2). Second, 
VaR is not a coherent risk measure (see Artzner et al. 1999, for the properties of coher-
ent risk measures). In particular, VaR is not subadditive, implying that the portfolio VaR 
could be larger than the sum of the VaRs of its components (see for instance Dhaene 
et al. 2006). VaR has been used in the context of credit scoring by Xu et al. (2024), who 
introduce the worst-case conditional value-at-risk metric to measure the loss incurred 
from employing a classification model in credit scoring under the deterioration of cost 
parameters. Unlike VaR, Expected Shortfall (ES)—defined as the conditional expecta-
tion of exceedances beyond the VaR—is a coherent risk measure (Acerbi and Tasche 
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2002). Several methods to estimate risk measures are available (see Nieto and Ruiz 2016, 
forasurveyofestimationmethodsconcerningVaR). A well-known non-parametric method 
is historical simulation (HS), which estimates VaR and ES using the empirical coun-
terparts under the assumption of i.i.d. portfolio returns. Parametric methods typically 
involve estimating GARCH-type models; a few examples include Brooks and Persand 
(2003), Chu et al. (2017), and Long et al. (2020). Common alternatives are models based 
on extreme value theory, recent examples of which are represented by Bekiros et  al. 
(2019) and Echaust and Just (2020). A semi-parametric approach to VaR/ES estimation 
combining a parametric model and HS is the filtered historical simulation (FHS) method 
of Barone-Adesi et al. (2002). The FHS method exploits the idea of using the empirical 
quantile of random draws obtained with replacement from the standardized residuals of 
a parametric model. VaR is then obtained by rescaling this quantile using the predicted 
volatility from the parametric model. When the focus is only on forecasting VaR, a pop-
ular approach is to directly model the conditional quantile using quantile regression, as 
in the conditional autoregressive VaR model of Engle and Manganelli (2004). Alternative 
semi-parametric methods that jointly estimate VaR and ES models include Patton et al. 
(2019) and Taylor (2019). Recent works are concerned with the VaR/ES risk measures 
in the context of financial (James et al. 2023), insurance (Fan et al. 2023), or commodity 
markets (Vancsura et al. 2023).

As in Lopez and Walter (2000) and Skintzi and Xanthopoulos-Sisinis (2007), who 
discuss the importance of covariance matrix forecasting for risk management, in this 
study we consider alternative methods to estimate the covariance matrix of returns. In 
particular, beside HS, we compare—in terms of accuracy in forecasting VaR or jointly 
VaR and ES—a number of different methods (parametric, non-parametric, and semi-
parametric) for obtaining the correlation and hence the covariance matrix. In addition 
to methods employing the standard Pearson correlation, we rely on methods based on 
a static or dynamic version of the robust correlation proposed by Gerber et al. (2022). 
The measure is an extension of Kendall’s Tau robust measure of pairwise movements of 
two series of returns. In particular, it is built based on the proportions of co-movements 
in the series of interest (i.e., on how many times the series simultaneously pierce some 
pre-specified thresholds). We contribute to the literature by introducing a dynamic ver-
sion of the Gerber correlation matrix that we call the dynamic Gerber model (DGC). 
Like dynamic conditional correlation (DCC) models, the DGC model relies in the first 
stage of the estimation on univariate GARCH models for the volatility of each asset 
return. In the second stage, based on the marginally standardized residuals, a dynamic 
Gerber matrix is established. The evolution of such a matrix depends on six parameters 
only, even when the number of assets in the portfolio, k, is large. Like DCC models, but 
contrary to BEKK models, our DGC model cannot be used to directly capture volatil-
ity spillovers between different markets (like for instance in Kondoz et al. 2019). How-
ever, our model can easily be estimated when k is large, whereas BEKK models become 
problematic as the number of parameters grows with the square of k. Yet another way of 
obtaining a time-varying correlation matrix would be one based on Markov switching 
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models1. Again, unless parsimonious specifications are considered that rarely are effec-
tive in practical situations, such an approach could suffer from a curse of dimensionality. 
An alternative study that considers dynamic dependence via threshold exceedances is 
the one of Gong and Huser (2022). To have time-varying copula models2, the authors 
estimate a family of parameters for each time point and replace the likelihood function 
by a family of weighted local likelihoods to be maximized. However, in their approach, 
the choice of the bandwidth associated with the weight functions (kernel) is crucial. 
Small bandwidths lead to parameter estimates that are very variable, while large band-
widths lead to smooth estimates with low variability over time. Our approach, instead, 
does not require specifying a bandwidth. Furthermore, the approach presented in Gong 
and Huser (2022) is bivariate, whereas our methodology is valid for a generic number of 
assets.

A study concerning robust forecasting of conditional correlations is that of Boudt et al. 
(2013), where an extension of the DCC model to reduce the biases in the volatility and 
correlation dynamics caused by large one-off events is presented. The authors apply their 
model to forecast the covariance matrix of the daily EUR/USD and Yen/USD return 
series, and they find that their model guarantees more precise out-of-sample covariance 
forecasts than the DCC model. In the same line of research, Jarjour and Chan (2020) 
introduce the concept of angular correlation for estimating the instantaneous correla-
tion matrix and then generalize the DCC model to the dynamic conditional angular 
correlation (DCAC) model. They illustrate the better performance of the DCAC model 
compared to the DCC model in portfolio construction. A further study of robust fore-
casting of conditional correlations is conducted by Fiszeder et  al. (2023), who suggest 
a new version of the DCC model based on daily opening, high, low, and closing prices. 
Using two different datasets, five exchange-traded funds and five currencies, they show 
that their model significantly outperforms the DCC model when forecasting conditional 
covariance matrices. Our paper can be placed in this context of empirical research, 
where more robust estimates of the conditional correlations than those obtained using 
the DCC model are proposed and tested.

In our empirical application, we consider three different portfolios consisting of devel-
oped equities (S &P 500 index), emerging equities (MXEF index), bonds (LBUSTRUU 
index), and gold. For different probability levels, we derive out-of-sample VaR and ES 
for the three portfolios. We use a recently proposed procedure to backtest ES and the 
Model Confidence Set (MCS) procedure to identify the superior set of models (SSM). 
For both the risk measures considered in the study, we find that models based on the 
DGC approach are part of the SSM across portfolios and confidence levels. A practical 
implication of our study is that the proposed DGC approach should be taken into con-
sideration by risk managers, investors, and regulators when evaluating the risk of asset 
portfolios. The DGC model is indeed never eliminated from the SSM and, in the case 
of joint VaR and ES forecasting, is the only model not to be rejected by the MCS proce-
dure. A model that offers a more robust estimate of conditional correlations represents 

1 Examples of application of Markov switching models are Athari et al. (2022) and Pelletier (2006).
2 Copulas with time-varying parameters have been studied also by Patton (2006), Oh and Patton (2018), and Cortese 
(2019).
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a valuable tool. Indeed, as some empirical studies show (see, e.g., Jiang et al. 2017 and 
Athari and Hung, 2022), adverse market conditions usually make assets more interde-
pendent, and a model that accurately describes these dynamics, like the DGC model, 
could ensure more reliable risk estimates. Potentially, our method can also be employed 
in the context of bankruptcy prediction (Kou et al. 2021) in the case of loan portfolios 
as an alternative to Pearson correlation-based methods (Düllmann et  al. 2007, 2010). 
Indeed, our method could be applied to the time series of Moody’s KMV asset values as 
the correlation of unobservable asset returns is a key component for the measurement 
of portfolio risk. The remainder of the paper is organized as follows. Section “Methodol-
ogy” presents the methods used in the estimations of VaR and ES, introduces the DGC 
model, and describes the MCS procedure. Section  “Empirical analysis” presents the 
data used in this study and the results of the empirical analysis. Section “Conclusions” 
concludes.

Methodology
In this section, we first present the static version of the robust measure of correlation 
introduced by Gerber et  al. (2022). Next, we discuss DCC models and introduce the 
novel DGC method. Finally, we explain how the risk measures of interest are derived and 
how to evaluate their predictions via the MCS procedure.

The Gerber statistic

We denote by ri,t and rj,t the returns of asset i and asset j at time t. The Gerber statistic, 
introduced by Gerber et al. (2022), is a robust measure of pairwise movements of the 
two series of returns defined as

where

Here, T is the number of observations, Qi and Qj are thresholds, and I(A) denotes the 
indicator function for the event A. Hence, ncij denotes the number of concordant pairs 
(i.e., the number of times both returns pierce their thresholds while moving in the same 
direction). Indeed, ncij is equal to the sum of nUUij —the number of pairs for which both 
returns are larger than their threshold—and nDDij  , the number of pairs for which both 
returns are smaller than their threshold times minus one. Conversely, ndij = nUDij + nDUij  
represents the number of discordant pairs in the sample, that is, the number of times 
both returns pierce their thresholds while moving in the opposite direction.

(1)g(i, j) =
ncij − ndij

ncij + ndij
,

ncij =
T

t=1

I ri,t ≥ Qi I rj,t ≥ Qj +
T

t=1

I ri,t ≤ −Qi I rj,t ≤ −Qj = nUUij + nDDij

ndij =
T

t=1

I ri,t ≥ Qi I rj,t ≤ −Qj +
T

t=1

I ri,t ≤ −Qi I rj,t ≥ Qj = nUDij + nDUij .
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When several pairs of returns are involved, using (1) to construct a correlation matrix 
may lead to covariance matrices that are not positive semidefinite. Therefore, Gerber 
et  al. (2022) define nNNij =

∑T
t=1 I

(
|ri,t | ≤ Qi

)
I
(
|rj,t | ≤ Qj

)
 and propose replacing  (1) 

with

which instead yields positive semidefinite covariance matrices.
We now consider the case of k different assets and denote by U  and D the two T × k 

matrices with generic element ut,j = I
(
rj,t ≥ Qj

)
 and dt,j = I

(
rj,t ≤ −Qj

)
 , respectively, 

t = 1, . . . ,T  and j = 1, . . . , k . The k × k matrix G with element in position (i, j) given by 
the Gerber correlation (1) is then given by

where ⊘ means elementwise division.
With the further definition of the T × k matrix N  with generic element 

nt,j = I
(
|rj,t | ≤ Qj

)
 , t = 1, . . . ,T  and j = 1, . . . , k , we can express the k × k matrix G 

with generic element g(i, j) of equation (2) as

where C =
(
U ′U +D′D

)
/T  , D =

(
U ′D +D′U

)
/T  , N = N ′N/T  , and 1 denotes the 

k × k matrix with all entries 1.

DCC models

DCC models assume that the multivariate time series of returns rt = (r1,t , . . . , rk ,t)
′ is 

described by

where {zt}t is a sequence of independent and identically distributed random vectors 
such that E(zt) = 0 and cov(zt) = Ik , with �1/2

t  denoting the positive-definite square-
root matrix of the conditional covariance matrix of the returns, �t.

In DCC models (Engle 2002), the �t matrix, whose generic element is σij,t , is decom-
posed as

where Rt is the positive definite conditional correlation matrix. In this way, if ρij,t is the 
element of position (i, j) of the correlation matrix Rt , then the corresponding element of 
�t is found to be ρij,t

√
σii,tσjj,t .

Let ûi,t = ri,t − µi,t be the time t residual from the mean equation of asset i. We denote 
by η̂t = (η̂1,t , . . . , η̂k ,t)

′ the marginally standardized innovation vector:

(2)g(i, j) =
ncij − ndij

T − nNNij
,

(3)G =
(
U ′U +D′D −U ′D −D′U

)
⊘

(
U ′U +D′D +U ′D +D′U

)
,

(4)G = (C −D)⊘ (1−N ),

(5)rt = µt + �
1/2
t zt ,

(6)�t = diag (σ
1/2
11,t , . . . , σ

1/2
kk ,t )Rt diag (σ

1/2
11,t , . . . , σ

1/2
kk ,t ),

η̂i,t =
ûi,t√
σii,t

i = 1, . . . , k .
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In this way, Rt is the covariance matrix of ηt . Engle (2002) proposes modelling the cor-
relation matrix as

where S̄ is the unconditional covariance matrix of η̂t , and J t = diag (s
−1/2
11,t , . . . , s

−1/2
kk ,t ) , 

with sii,t denoting the element of position (i, i) of St . In the first stage of the DCC model 
estimation, k univariate GARCH models are independently estimated for each of the 
return series. In the second stage, the marginally standardized innovation vectors are 
derived and the parameters a and b in (7) are estimated.

A dynamic Gerber model

We propose a dynamic Gerber correlation (DGC) model based on a two-stage estima-
tion like DCC models. In the first stage, the volatility of each asset is independently 
modelled via a GARCH model. Hence, as in DCC models, in the first stage k univari-
ate GARCH models are independently estimated. In the second stage, based on the the 
marginally standardized innovation vectors, a dynamic is given to the Gerber correlation 
matrix (see Eq. (4)) rather than the Pearson correlation matrix. To be more precise, we 
identify the thresholds Qη

i  for each of the k time-series of marginally standardized inno-
vation η̂i ( i = 1, . . . , k) and consider the following dynamics:

The Î  matrices appearing in (8) are obtained as follows:

where the element of position i of the k × 1 vectors ût , d̂t , and n̂t is I
(
η̂i,t ≥ Q

η
i

)
 , 

I
(
η̂i,t ≤ −Q

η
i

)
 , and I

(
|η̂i,t | ≤ Q

η
i

)
 , respectively. The matrices C , D , and N  are obtained 

as the unconditional expectations of ÎC , ÎD , and ÎN , respectively. Contrary to the 
approach of Algieri et al. (2021), who make the Gerber correlation dynamic by assum-
ing two parameters for each possible pair of assets, the proposed model employs only 
six parameters in total. To estimate the parameters appearing in (8), we assume the 
multivariate skew-Student distribution used in the context of DCC models by Bauwens 
and Laurent (2005). The model again consists of equations  (5)–(6) with the difference 
that i) the innovations follow the standardized multivariate skew-Student distribu-
tion for which the density function is given in Appendix A and ii) Rt is replaced by Gt 
obtained3 from (8). With the considered density, each marginal has a specific asymmetry 

(7)
St = (1− a− b)S̄ + aη̂t−1η̂

′
t−1 + bSt−1

Rt = J tStJ t ,

(8)

Ct = (1− aC − bC)C + aC ÎC ,t−1 + bCCt−1

Dt = (1− aD − bD)D + aDÎD,t−1 + bDDt−1

N t = (1− aN − bN )N + aN ÎN ,t−1 + bNN t−1

Gt = (Ct −Dt)⊘ (1−N t).

ÎC ,t =ût û
′
t + d̂t d̂

′
t

ÎD,t =ût d̂
′
t + d̂t û

′
t

ÎN ,t =n̂t n̂
′
t ,

3 As in DCC models, we also consider the normalization given by the second equation of Eq. (7).



Page 7 of 28Leccadito et al. Financial Innovation          (2024) 10:116  

coefficient, related to the parameters in the vector ξ . Kurtosis (i.e., a measure of the thick-
ness of the tails of the return distribution), is instead captured by the parameter ν , which 
is assumed to be common to all the k assets, as in Bauwens and Laurent (2005). Under 
the assumption of a non-normal distribution for the innovations, the decomposition 
proposed by Engle (2002) is no longer possible. Nevertheless, to follow the spirit of the 
DCC model, as in Bauwens and Laurent (2005), we estimate the k univariate GARCH-
type model by quasi maximum likelihood, or QML, (to estimate the vector η ), and then 
estimate the parameters in the Gerber correlation part together with the vector ξ and ν 
related to the skew-Student density. When estimating the parameters for the dynamic 
correlation, we impose the constraints max

{
|bx|, |ax|, |ax + bx|

}
< 1 , x ∈ {C ,D,N } that 

imply the stationarity of the three processes appearing in (8) (see Douc et al. 2013).

Risk measures

In this study, we make predictions for the portfolio VaR and ES assuming different fore-
casts for the covariance matrix (and hence for portfolio volatility). Indeed, our main aim 
is to assess the impact of competing methods for estimating the covariance matrix. The 
VaR measure is defined implicitly as

where rp,T+1 is the portfolio return at time T + 1 and FT is the information available up 
to time T. Expected shortfall is instead defined as

where f(y) is the predicted density for rp,T+1 conditional on FT . Given ω , the k × 1 vec-
tor of portfolio weights, the forecasts for τ-VaR and τ-ES in the normal case are given by

where µT+1|T and �T+1|T are the predictions we make based on the information up to 
time T for the mean vector and covariance matrix at time T + 1 , respectively. In the case 
of models involving the multivariate skew-Student distribution, no analytic formula is 
available for VaR and ES. We therefore rely on Monte Carlo simulations that entail simu-
lating portfolio returns for time T + 1 as rp,j = ω′

(
µT+1|T + �

1/2
T+1|T zj

)
 , where zj is the 

j-th simulation from the standardized skew-Student distribution and j = 1, . . . , J  . Using 
this approach, the τ-VaR for time T + 1 is estimated as minus one times the τ empirical 
quantile of rp,j over the J simulations. EST+1|T(τ ) can be estimated as minus one times 
the average of simulations that are smaller than the τ empirical quantile. In our empirical 
application, we set J = 100, 000.

P
(
rp,T+1 ≤ −VaRT+1|T(τ )|FT

)
= τ ,

EST+1|T(τ ) = −1

τ

∫ −VaRT+1|T(τ )

−∞
yf(y)dy,

(9)VaRT+1|T(τ ) =− ω′µT+1|T −
√

ω′�T+1|Tω�
−1(τ )

(10)EST+1|T(τ ) =− ω′µT+1|T +
√
ω′�T+1|Tω

φ(�−1(τ ))

τ
,
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Evaluating VaR and ES predictions

In this study, we employ the MCS procedure of Hansen et al. (2011) to classify the mod-
els based on their out-of-sample performance. The procedure is based on an optimality 
criterion such that the resulting superior set of models M∗ will contain the best model 
with a given confidence level 1− α.

It uses the idea of sequential testing, for which the generic set M0 , containing m0 com-
peting models, gets reduced in the number of elements by an elimination rule if the 
Equal Predictive Ability (EPA) null hypothesis is rejected. The procedure is iterated until 
the EPA hypothesis is not rejected for all the models left in the set, constituting the opti-
mal model confidence set M∗

1−α.
We use a loss function to compare forecasts from different models. In particular, the 

smaller is the value of the loss function for a given model, the more accurate are the 
predictions from the model. We denote by li,t the loss associated with model i at time t. 
To evaluate VaR forecasts, we use the following loss function (see for instance González-
Rivera et al. 2004):

where VaRi
t|t−1(τ ) is the predicted τ-VaR at time t based on model i, rp,t is the realized 

portfolio return, and ρτ (u) = u(τ − I(u < 0)).
ES is not elicitable4 on its own, but it is jointly elicitable together with VaR using a 

suitable scoring function. Hence, we jointly assess VaR and ES forecasts considering the 
following functional form proposed by Fissler et al. (2015):

where ESit|t−1(τ ) is the prediction model i makes for τ-ES at time t. The remaining details 
of the MCS procedure are given in Appendix B.

Empirical analysis
The dataset we use consists of weekly data for the indices described in Table 1. The 
data spans the period from January 22, 1999 to January 7, 2022 (1199 observations) 
and has been downloaded from Bloomberg. The motivation for choosing these four 
indices is that investors may build highly diversified portfolios by purchasing passive 
funds mimicking them.

(11)li,t

(
rp,t , VaR

i
t|t−1(τ )

)
= ρτ

(
rp,t + VaRi

t|t−1(τ )

)
,

(12)

li,t(rp,t , VaR
i
t|t−1(τ ), ES

i
t|t−1(τ ))

= ρτ

�
rp,t + VaRi

t|t−1(τ )

�
− τ rp,t −

ESit|t−1(τ )

1+ exp
�
−ESit|t−1(τ )

�×

�
VaRi

t|t−1(τ )− ESit|t−1(τ )− I(rp,t ≤ −VaRi
t|t−1(τ ))×

VaRi
t|t−1(τ )+ rp,t

τ

�

+ log



 2

1+ exp
�
−ESit|t−1(τ )

�



,

4 A measure is said to be elicitable if there exists at least one scoring function such that the correct forecast of the meas-
ure is the unique minimizer of the expectation of the scoring function.
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For index j, we compute returns as rj,t = Pj,t/Pj,t−1 − 1 , where Pj,t is the index price 
at the end of week t. Table 2 presents descriptive statistics for the simple returns of 
the four indices, and Fig.  1 plots their time series. In Fig.  2 we report the Pearson 
and Gerber correlation matrices calculated on the four time-series of returns. In the 
case of Gerber correlations, the thresholds are set to half the unconditional standard 
deviations.

Table 1 Data description

Description Bloomberg ticker

S &P 500 index SPX

MSCI Emerging Markets index MXEF

Bloomberg Barclays U.S. Aggregate LBUSTRUU 

Bond index

Gold XAU

Table 2 Summary statistics for the returns of the four indices

The return of index j is calculated as rj,t = Pj,t/Pj,t−1 − 1 , where Pj,t is the index price at the end of week t

Min 1st Qu. Median Mean 3rd Qu. Max Volatility

SPX −0.1820 −0.0103 0.0014 0.0014 0.0143 0.1210 0.0248

MXEF −0.2020 −0.0142 0.0016 0.0016 0.0178 0.2037 0.0296

LBUSTRUU −0.0317 −0.0018 0.0009 0.0009 0.0042 0.0265 0.0051

XAU −0.3179 −0.0276 0.0018 0.0018 0.0329 0.2359 0.0507

Fig. 1 Time-series plots for the returns of the four indices. The return of index j is calculated as 
rj,t = Pj,t/Pj,t−1 − 1 , where Pj,t is the index price at the end of week t. The horizontal blue lines represent the 
thresholds used in the calculation of Gerber correlations
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In sample analysis

In this section, we use the whole sample to estimate the DGC model. For the first stage, 
we use an ARMA(1,1)-GARCH(1,1) model for each of the return series. The thresholds 
for the Gerber statistic are assumed to be half the unconditional volatility. The esti-
mated parameters are reported in Table 3. It is interesting to notice that the persistence5, 
measured by the sum of the parameters a and b, is lower for the equation related to 
the dynamics of the N  matrix and higher for the dynamics of the C and D matrices. 
The estimated parameters for the part of the model involving the skew-Student distri-
bution point to a negative skewness ( ̂ξj < 1 for j = 1, . . . , 4 ) and excess kurtosis due 
to the relatively small estimate for the degrees of freedom parameter ( ̂ν = 6.91 ). Fig. 3 

Fig. 2 Correlation plots for the returns of the four indices. The thresholds for the Gerber statistic are 
Qj = 0.5× σj , j = 1, . . . , 4 , where σj is the standard deviation of the returns of index j 

5 The persistence is related to the speed at which the process reverts back to its long run mean. A high persistence, i.e. 
a+ b close to 1, implies that shocks that push the process away from its long run mean will persist for a long time.
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plots the Gerber correlations obtained from the estimated DGC model via the recur-
sions (8) using the estimated parameters of Table  3. Some interesting features can be 
gleaned from the figure. For instance, it is possible to observe an increase in the correla-
tion between equities and gold after 2019 (see panels c and d). Furthermore, the correla-
tion between bonds and gold became negative in the aftermath of the financial crisis of 
2008 and became again positive around 2015.

Out‑of‑sample analysis

Here, the focus is on estimating VaR and ES for the three portfolios of Table 4. The first 
one is the equally-weighted portfolio. The remaining two portfolios both invest 10% in 
gold. However, they differ in the equity and bond allocation. Indeed, portfolio 2 invests 

Table 3 Univariate GARCH Models (Panel A), skew-Student (Panel B), and DGC Model Estimates 
(Panel C)

We fit an ARMA(1,1)-GARCH(1,1) model for each of the return series. The thresholds for the Gerber statistic are assumed to 
be half the unconditional volatility. The table reports the parameters estimated via QML (standard errors in parenthesis). ‘***’, 
‘** ’ and ‘*’ denote significance at the 1%, 5% and 10% level, respectively

SPX MXEF LBUSTRUU XAU

Panel A: Univariate GARCH models

 Const. (mean eq.) 0.0025*** 0.0021** 0.0008*** 0.0002

(0.0005) (0.0009) (0.0001) (0.0010)

 ar1 −0.7533*** 0.7130*** −0.3248 0.9167***

(0.1338) (0.2387) (0.2619) (0.0360)

 ma1 0.6826*** −0.6639*** 0.2237 −0.9387***

(0.1500) (0.2553) (0.2686) (0.0327)

 const. (variance eq.) 0.0000*** 0.0001*** 0.0000*** 0.0002***

(0.0000) (0.0000) (0.0000) (0.0001)

 ARCH 0.2635*** 0.1310*** 0.1103*** 0.0981***

(0.0355) (0.0234) (0.0107) (0.0210)

 GARCH 0.6996*** 0.7907*** 0.7861*** 0.8251***

(0.0341) (0.0350) (0.0168) (0.0416)

Panel B: Skew-Student

 ξ 0.8086*** 0.8518*** 0.8214*** 0.9089***

(0.0328) (0.0348) (0.0324) (0.0363)

 ν 6.9184***

(0.5453)

Panel C: DGC Model

aC 0.0235***

(0.0006)

bC 0.9775***

(0.0067)

aD 0.0546***

(0.0097)

bD 0.9234***

(0.0346)

aN 0.0120***

(0.0185)

bN 0.7835***

(0.0080)
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approximately 60% of the allocation (excluding gold) in equities. On the contrary, port-
folio 3 invests approximately 60% of the allocation (excluding gold) in bonds. The ration-
ale for choosing the last two sets of weights is that many investors hold a 60/40 or 40/60 
portfolio with the addition of a relatively small share of gold6.

We assess how well the proposed DGC model predicts VaR and ES relative to a 
number of alternative methods. We consider non-parametric, parametric, and 
semi-parametric methods. The first benchmark is a non-parametric method, his-
torical simulation (HS). The method considers the last T portfolio returns and esti-
mates τ-VaR as the negative of their τ-quantile. Instead, τ-ES is estimated under HS 
as minus one times the mean of portfolio returns that are less than the τ-quantile. 
The next two methods we consider, labelled PearsonHist and GerberHist, are for the 
‘static’ models relying on the Pearson and Gerber correlation matrices, respectively. 

Fig. 3 Time-Series Plots of the Gerber correlations based on the estimated DGC model

6 For example, a recent article about the 60/40 portfolio and the ‘10% Golden rule’ can be found at https:// www. forbes. 
com/ sites/ great specu latio ns/ 2023/ 01/ 10/ is- the- 6040- portf olio-a- thing- of- the- past- not- so- fast/

https://www.forbes.com/sites/greatspeculations/2023/01/10/is-the-6040-portfolio-a-thing-of-the-past-not-so-fast/
https://www.forbes.com/sites/greatspeculations/2023/01/10/is-the-6040-portfolio-a-thing-of-the-past-not-so-fast/
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In particular, they use the last T observations of the returns on the k assets to esti-
mate the (Pearson or Gerber) correlation matrix, �T+1|T  , and estimate the covari-
ance matrix as �T+1|T = �T+1|T�T+1|T�T+1|T  , where �T+1|T  is the matrix with the 
sample volatilities in the main diagonal and zero elsewhere. In the case of the Ger-
berHist method, Eq. (2) is used and the parameters of the multivariate skew-Student 
are estimated. With this method, VaR and ES are derived using Monte Carlo sim-
ulations as described at the end of section  “Risk measures”. However, for the Pear-
sonHist method, VaR and ES are estimated using (9)–(10), with µT+1|T  equal to the 
vector of sample means for the returns on the k assets. The next alternative method 
we consider is the DCC model (see Sect.  2.2). In this case, we use ARMA(1,1)-
GARCH(1,1) for the univariate specifications. VaR and ES are based on the mean 
prediction from each univariate ARMA(1,1) model and on the predicted covariance 
matrix �T+1|T = �T+1|TRT+1|T�T+1|T  , where �T+1|T  is the diagonal matrix con-
sisting of the predicted volatilities from each univariate GARCH(1,1) model. For the 
proposed DGC model, the covariance matrix we use in the estimation of VaR and 
ES is instead �T+1|T = �T+1|TGT+1|T�T+1|T  . Note that in the DCC and DGC mod-
els, we use the same univariate specification—namely, the ARMA(1,1)-GARCH(1,1) 
model—for each of the return series. Furthermore, to have a meaningful comparison 
of the DGC and DCC models, for the latter we assume that the innovations follow the 
multivariate skew-Student distribution as well. Hence, similarly for DCC models, the 
risk measures of interest are derived using Monte Carlo simulations. Finally, we con-
sider the semi-parametric method filtered historical simulation (FHS) together with 
the DCC or DGC model. We implement the method as follows. We first estimate an 
ARMA(1,1)-GARCH(1,1) model on the last T portfolio returns. Denote by {zt}t=1,...,T 
the standardized portfolio returns, that is, zt = yt/σt , where yt is the portfolio return 
at time t, and σt the time t volatility from the estimated GARCH(1,1) model. VaR 
and ES are then estimated by modifying (9)–(10) in the following way: i) �−1(τ ) is 
replaced by the sample τ-quantile of the z series, qz(τ ) , and ii) φ(�

−1(τ ))
τ

 is replaced by 
minus one times the mean of the zt that are smaller than qz(τ ).

Before presenting the results of the out-of-sample analysis, we first report the results 
of a Monte Carlo experiment we ran to evaluate the considered methods. To generate 
scenarios for the assets of interest, we use the moment-matching method of Høyland 
et al. (2003). We chose an agnostic approach to identify the data-generating process for 
the simulations to have a fair comparison of the alternative methods for deriving the 
covariance matrix. For each simulation, we generate 501 observations for the returns of 
the four assets and use the first 500 observations7 to estimate all the models and predict 

Table 4 Weights of the three portfolios

Asset SPX MXEF LBUSTRUU XAU

Portfolio 1 0.25 0.25 0.25 0.25

Portfolio 2 0.475 0.075 0.35 0.1

Portfolio 3 0.3 0.05 0.55 0.1

7 The window coincides with the one we move in the out-of-sample analysis based on the real-world returns.
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VaR and ES for the three portfolios described in Table 4. We consider three different val-
ues of τ—1%, 5%, and 10%—when predicting VaR and ES. The last observation is used to 
derive the simulated portfolio return and hence to compute the losses (11)–(12) together 
with the predicted risk measures. The number of simulations in our experiment is 1,000. 
The results of the Monte Carlo experiment are given in Table 5. From the table, we can 
see that in the considered experiments the proposed DGC and DGC FHS methods are 
often the ones for which the two losses are minimized.

In the out-of-sample analysis based on real-world (rather than simulated) returns, we 
move a window of length T = 500 to estimate the parameters (for parametric models) or 
to derive the empirical VaR or ES under the HS method. Consequently, the first predic-
tion we make is for August 22, 2008. As in the Monte Carlo experiments, τ is equal to 
1%, 5%, or 10%.

Table 5 Average of the loss functions (11)–(12) over the 1000 Monte Carlo simulations. The 
minimum loss is in bold

1% VaR 5% VaR 10% VaR 1% VaR ‑ 1% ES 5% VaR ‑ 5% ES 10% VaR ‑ 10% ES

Panel A: Portfolio 1

 HS 0.7699 2.5558 3.9685 39.1269 28.0308 23.7402

 PearsonHist 0.8293 2.5635 4.0199 27.3049 25.3705 21.6851

 GerberHist 0.7704 2.5604 3.9598 37.2304 25.6947 22.1826

 DGC 0.8002 2.5653 3.9464 24.9296 24.0601 20.8163
 DGC FHS 0.7260 2.5548 3.9621 38.5319 27.7227 23.5431

 DCC 0.7676 2.5615 3.9884 37.1663 23.4299 23.0511

 DCC FHS 0.7541 2.5667 3.9759 39.0725 28.2222 24.0479

Panel B: Portfolio 2

 HS 0.6161 1.8858 3.0129 32.4051 21.7228 17.8902

 PearsonHist 0.6113 1.9277 3.0384 26.5444 17.4298 16.1318

 GerberHist 0.5805 1.9273 3.0050 28.6044 19.5020 16.7387

  DGC 0.5828 1.9290 3.0011 24.9169 18.7227 16.0257
 DGC FHS 0.5183 1.8857 3.0069 31.8438 21.5732 17.8413

 DCC 0.5778 1.9212 3.0241 28.3112 19.9969 17.3912

 DCC FHS 0.6090 1.8842 3.0072 31.9622 21.9165 18.2532

Panel C: Portfolio 3

 HS 0.4303 1.3579 2.1738 22.0491 15.2718 12.7932

 PearsonHist 0.4318 1.3761 2.1937 20.0108 12.6227 11.6485

 GerberHist 0.4141 1.3745 2.1730 20.3838 14.0323 12.0815

 DGC 0.4092 1.3736 2.1754 19.6704 12.3838 11.5167
 DGC FHS 0.4340 1.3525 2.1736 19.6430 15.1511 12.7428

 DCC 0.4157 1.3768 2.1868 20.2607 14.4648 12.6236

 DCC FHS 0.4353 1.3560 2.1742 21.9015 15.5490 13.1683
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Results

In this section, we first present the results of the ES-backtesting procedure8 based on 
the results of Khalaf et al. (2021) (see Appendix C). We opt for this recently proposed 
procedure because it allows backtesting ES only based on a sequence of violations for an 
appropriately chosen sequence of VaRs. Therefore, contrary to the Du and Escanciano 
(2017) tests, it does not require knowing the entire conditional cumulative density func-
tion, which is difficult to derive, for instance, in the case of FHS methods. We consider 
conditional tests based on lags corresponding to one week, one month, and two months, 
that is, m = 1 , m = 5 , and m = 10 . The results of the tests are reported for all the alter-
native models we consider in Table  6. Overall, models based on the dynamic Gerber 
correlation seem to have the best performance. Indeed, they perform well for portfolio 
3 (Panel C) for all the three values of τ . For the first two portfolios (Panels A and B), 
instead, the null of “accurate” ES predictions (see Eq. (24)) is rejected for some values of 
m when τ = 1% but not for the two remaining values of τ . Despite the fact that it is based 
on a distribution that captures skewness and excess kurtosis in the returns—like all the 
alternative models—in this particular case, the DGC model fails to accurately capture 
the tail expectation for small values of τ if portfolios consist mainly of highly volatile 
assets such as equities (such as portfolio 1 and even more so portfolio 2).

As a robustness check, we run the backtests for two sub-samples: the first one covers 
a relatively tranquil period (January 2017–November 2019), while the second one cov-
ers a more turbulent period (February 2020–January 2022). Regarding the results for the 
two sub-samples, reported in Tables  7 and  8, two observations are in order. First, the 
proposed methods are not rejected taken as a whole; second, the results for the full sam-
ple, not surprisingly, seem to be driven by the more turbulent period that includes the 
COVID-19 pandemic and the beginning of the Russian-Ukrainian conflict.

Before presenting the results of the MCS procedure, we run a number of Diebold-
Mariano (DM) tests (Diebold and Mariano 2002) to assess the accuracy of the pro-
posed models in predicting VaR alone and VaR and ES jointly. We focus on the three 
portfolios of Table 4 and test the null hypothesis H0 : E(dij) = 0 , where dij is the loss 
differential between model i and model j. We assume that model i is one of the pro-
posed models (i.e., DGC or DGC FHS) and model j is one of the competing models 
(i.e., HS, PearsonHist, GerberHist, DCC, or DCC FHS). The results of the DM tests 
for the forecasting of VaR are given in Table  9, whereas the results for the case of 
joint VaR/ES forecasting can be found in Table 10. It is evident from both tables that 
often (and especially in the case of joint forecasting of the two risk measures) the 
null hypothesis is rejected and the test statistic is negative. When this is the case, the 
proposed methods (DGC or DGC FHS) are more accurate in predicting the two risk 
measures than the competing methods. In the few cases in which the test statistic is 
positive, we instead observe a lack of stars in the table, meaning that the null is not 
rejected and hence the proposed methods are as accurate as the alternative methods.

8 We do not report the results of VaR backtesting procedures (see for instance Christoffersen 1998) since the statistical 
test we consider is based on cumulative violations associated with a sequence of quantiles in the left tail. Indeed some of 
the tests of Khalaf et al. (2021) are obtained as combinations of the p values from VaR backtesting procedures. However, 
the results of VaR backtesting procedures are available on request from the authors.



Page 16 of 28Leccadito et al. Financial Innovation          (2024) 10:116 

Next, we perform the MCS procedure using α = 5% and 5,000 bootstrap replica-
tions to derive the p values associated with the test statistics involved. We report the 
SSMs for the three portfolios we consider in Tables 11, 12, and 13 for the case of VaR 
predictions and in Tables 14, 15, and 16 for the case of joint VaR/ES predictions. Each 
table reports, for each model i belonging to the identified SSM, the statistics maxj Tij 
and Ti· , the p values associated with the test statistics TR and Tmax , the ranking of the 
models in the SSM based on TR and Tmax , and the average of the loss function  (11) 
when we forecast VaR or the average of (12) when we jointly forecast VaR and ES.

In the tables involving VaR predictions alone, there are just a few cases where 
the SSM does not include all the considered models. When that happens, just one 
model is excluded. For portfolio 1, we have that all the models belong to the SSM 
when the VaR confidence level, τ , is equal to 1% or 5%, and that only model Pear-
sonHist gets excluded when τ = 10% . For portfolio 2, all the models belong to the 
SSM when τ = 1% , only the HS model gets excluded when τ = 5% , and only the Pear-
sonHist model gets excluded when τ = 10% . Finally, for portfolio 3, all the models 
belong to the SSM for all three levels of τ we consider. Hence, the results regarding 
VaR predictions do not evidence much difference between static and dynamic mod-
els in terms of inclusion in the SSM, although the few excluded ones are static. It is 

Table 6 p values ( ×100 ) for the backtesting procedure of Khalaf et al. (2021), whole sample

For each portfolio, for m ∈ {1, 5, 10} , and for τ ∈ {1, 5, 10}/100 , the table reports the p values (multiplied by 100) for the 
test statistic Cm(τ ) , Eq. (26). K is set to 100 and the p values are obtained with the Monte Carlo method based on 50,000 
simulations

τ = 1% τ = 5% τ = 10%

m = 1 m = 5 m = 10 m = 1 m = 5 m = 10 m = 1 m = 5 m = 10

Panel A: Portfolio 1

 HS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

 PearsonHist 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

 GerberHist 0.0020 0.0000 0.0000 0.0000 0.0040 0.0000 0.0001 0.0000 0.0100

 DGC 6.0025 0.0001 0.0106 7.1795 14.0262 21.9860 2.6068 26.2252 58.9214

 DGC FHS 7.4067 4.7297 3.1148 8.0244 7.7298 7.1632 1.3875 20.3608 46.1753

 DCC 0.0028 0.0000 0.0020 0.1015 1.7016 12.9372 0.6747 12.6533 34.7828

 DCC FHS 0.0000 0.0000 0.0000 0.0374 0.3705 4.3314 0.3061 6.4895 22.7918

Panel B: Portfolio 2

 HS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

 PearsonHist 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

 GerberHist 2.2204 1.2204 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

 DGC 1.5374 0.9000 6.0233 15.4523 12.1693 13.3083 9.4346 6.2292 16.0223

 DGC FHS 8.3597 0.0000 0.0000 0.0019 8.0403 0.7399 2.6583 5.7975 18.3711

 DCC 0.0000 0.0000 0.0000 0.0590 0.7849 6.4119 1.7306 4.7454 15.5384

 DCC FHS 0.0000 0.0000 0.0000 0.0162 0.0803 1.1697 0.3522 1.7616 8.0228

Panel C: Portfolio 3

 HS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000

 PearsonHist 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0019 0.0000 0.0000

 GerberHist 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0079 0.0027 0.0100

 DGC 7.5072 10.0000 9.0013 13.8995 11.3663 41.5989 19.0026 36.6683 70.7112

 DGC FHS 8.0002 3.1419 11.3863 2.8305 1.7527 8.7166 23.1811 32.4184 76.6040

 DCC 5.0045 1.2786 3.4637 4.7322 3.5413 14.6516 42.6397 45.8370 85.8272

 DCC FHS 1.0040 1.7231 6.7201 1.1881 0.5072 3.4448 30.1073 37.3137 78.0058
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worth highlighting that the newly proposed models, DGC and DGC FHS, can pro-
duce VaR predictions that allow them to belong to the SSM. From the second and 
fifth columns in each panel of Tables 11–13, we see that dynamic models usually rank 
high among the considered models. Based on the statistic maxj Tij , the models DCC, 
DCC FHS, DGC, and DGC FHS are always in the first four positions. Based instead 
on the statistics Ti· , there are more cases where some of the static models are ranked 
in the first four positions, but, in any case, dynamic models are always in the first two 
positions. However, at least one of the newly proposed models, DGC and DGC FHS, 
usually ranks high with the statistic Ti· . To justify these results, we observe that the 
out-of-sample analysis uses a period—August 22, 2008 to January 7, 2022—character-
ized by episodes of turmoil in the markets. Indeed, the period includes the final part 
of the global financial crisis of 2007–2008, the European sovereign debt crisis of 2009 
through the mid-to-late 2010s, 2011 Black Monday, and the stock market crash of 
2020 caused by the COVID-19 pandemic. Dynamic models rank high in Tables 11–
13 because they describe financial time series in the presence of turmoil better than 
static models do. However, the rolling-window approach applied to make VaR predic-
tions allows static models to stay in the SSM.

Table 7 p values ( ×100 ) for the backtesting procedure of Khalaf et al. (2021), January 2017–
November 2019

For each portfolio, for m ∈ {1, 5, 10} , and for τ ∈ {1, 5, 10}/100 , the table reports the p values (multiplied by 100) for the 
test statistic Cm(τ ) , Eq. (26). K is set to 100 and the p values are obtained with the Monte Carlo method based on 50,000 
simulations

τ = 1% τ = 5% τ = 10%

m = 1 m = 5 m = 10 m = 1 m = 5 m = 10 m = 1 m = 5 m = 10

Panel A: Portfolio 1

 HS 0.0000 0.0000 0.0000 0.1455 2.8975 5.6362 0.0082 0.1756 0.0253

 PearsonHist 0.0000 0.0000 0.0000 20.2966 89.2576 29.1040 0.0610 2.3095 0.1113

 GerberHist 0.0000 0.0000 0.0000 1.7266 33.5739 9.7694 0.1265 3.5479 0.4600

 GDC 7.2121 17.7198 10.2747 13.5794 11.1435 7.9907 12.5412 21.4258 18.0071

 GDC FHS 24.8057 31.4193 13.8628 14.6578 13.5873 11.6964 10.2616 12.7191 8.2929

 DCC 0.0045 0.0000 0.0000 0.2443 8.7058 8.9560 0.8453 13.3445 10.3673

 DCC FHS 0.0040 0.0000 0.0000 0.5764 15.6800 12.8061 0.8507 12.2145 7.5399

Panel B: Portfolio 2

 HS 0.0000 0.0000 0.0000 1.1194 23.3195 6.2130 11.8774 23.8972 9.7138

 PearsonHist 0.0001 0.0000 0.0000 1.7168 22.5589 9.0363 7.6930 36.6896 16.9050

 GerberHist 0.0000 0.0000 0.0000 2.3827 24.2020 8.6890 15.8267 38.6520 14.5047

 GDC 5.3416 28.3986 10.4706 24.4839 23.0942 14.3320 16.5033 26.2443 28.0296

 GDC FHS 9.7831 36.0637 0.3027 12.3551 32.0767 32.3979 33.2941 28.6718 22.5274

 DCC 3.6401 3.3933 5.4757 13.6402 35.3717 40.3591 35.3736 27.4298 22.4661

 DCC FHS 1.8576 0.0829 0.4928 12.7322 30.3934 39.9827 29.2314 28.6863 25.1951

Panel C: Portfolio 3

 HS 0.0000 0.0000 0.0000 9.7026 37.3556 13.5201 58.5694 5.6765 2.4581

 PearsonHist 0.0000 0.0000 0.0000 16.3205 42.0567 13.0008 55.0385 8.6600 2.9224

 GerberHist 0.0000 0.0000 0.0000 18.7918 32.5652 8.0423 62.3442 6.3332 3.0806

 GDC 24.7931 10.8623 7.1023 16.8481 13.3563 6.2865 14.2379 8.0766 10.4443

 GDC FHS 48.8139 47.5196 5.2555 26.1578 20.0726 8.7811 6.8517 17.2849 15.8078

 DCC 6.6921 0.2232 0.0270 22.1855 24.7335 14.1008 17.3643 28.5591 32.2569

 DCC FHS 4.9044 1.2805 2.1786 28.9667 27.3396 13.2530 24.2171 31.3911 35.8729
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As far as the joint prediction of VaR and ES is concerned, from Tables 14–16 we see 
that all the SSM consist only of the newly proposed DGC model. The results are consist-
ent across portfolios and confidence levels of the two risk measures we forecast. This 
means that, for the three portfolios consisting of the four assets considered in our study 
and for the period of investigation, the DGC model produces joint VaR/ES predictions 
that are more accurate than the competing models.

Conclusions
Methods that produce accurate forecasts of risk measures like VaR and ES are essen-
tial in an environment where market turmoil and substantial losses for investors are 
becoming increasingly frequent. This study introduces a new method, DGC, to pre-
dict the two risk measures based on the dynamic version of the robust correlation 
proposed by Gerber et al. (2022) that extends Kendall’s Tau. As in DCC models, the 

Table 8 p values ( ×100 ) for the backtesting procedure of Khalaf et al. (2021), February 2020–January 
2022

For each portfolio, for m ∈ {1, 5, 10} , and for τ ∈ {1, 5, 10}/100 , the table reports the p values (multiplied by 100) for the 
test statistic Cm(τ ) , Eq. (26). K is set to 100 and the p values are obtained with the Monte Carlo method based on 50,000 
simulations

τ = 1% τ = 5% τ = 10%

m = 1 m = 5 m = 10 m = 1 m = 5 m = 10 m = 1 m = 5 m = 10

Panel A: Portfolio 1

 HS 0.0000 0.0000 0.0000 1.1977 0.0754 1.8350 28.6672 50.4950 82.5708

 PearsonHist 0.0000 0.0000 0.0000 0.7232 0.0457 1.2576 15.8907 24.5196 61.1537

 GerberHist 0.0000 0.0000 0.0000 2.6894 0.8391 9.6165 34.1538 67.2814 89.8548

 GDC 0.1721 1.7720 1.2747 59.4891 43.8343 73.9660 49.7254 84.1690 92.3429

 GDC FHS 12.4806 31.4193 13.8628 62.1201 14.0269 49.6200 45.2885 66.8318 87.4482

 DCC 0.0045 0.0000 0.0000 61.3328 18.2047 49.2745 40.6929 63.1000 84.5219

 DCC FHS 0.0040 0.0000 0.0000 62.3677 7.2243 35.9006 40.0455 59.5790 85.1275

Panel B: Portfolio 2

 HS 0.0000 0.0000 0.0000 26.2429 50.0545 85.2947 66.6324 90.1387 97.5782

 PearsonHist 0.0001 0.0000 0.0000 28.4325 55.6232 86.9214 71.9227 95.4357 97.7074

 GerberHist 0.0000 0.0000 0.0000 26.3508 54.3791 87.8084 68.2522 92.8547 97.5494

 GDC 15.3416 2.8399 2.4706 98.4346 79.7314 90.2162 68.1556 88.8441 97.3513

 GDC FHS 15.9783 36.0637 30.2659 78.0868 81.1346 91.1787 89.2281 96.6572 98.2757

 DCC 3.6401 3.3933 5.4757 57.9466 87.7371 94.3259 81.6790 98.3507 97.7324

 DCC FHS 1.8576 0.0829 0.4928 58.1527 77.9000 89.1498 77.8662 98.2108 97.5602

Panel C: Portfolio 3

 HS 0.0000 0.0000 0.0000 39.5732 47.3020 80.8825 24.6207 35.4951 62.5620

 PearsonHist 0.0000 0.0000 0.0000 55.8345 74.1486 91.8199 74.4330 89.4889 96.9218

 GerberHist 0.0000 0.0000 0.0000 44.6282 57.8897 85.8300 42.8926 61.0831 86.4168

 GDC 10.6723 32.4039 17.1023 44.6146 43.1850 70.9851 23.1106 22.5168 37.9144

 GDC FHS 14.8934 10.4756 12.3221 49.3767 56.6540 82.0182 30.1941 48.2064 74.2310

 DCC 6.6921 0.2232 0.0270 75.6561 73.2815 87.7229 63.0551 73.7918 90.7133

 DCC FHS 4.9044 1.2805 2.1786 84.6642 72.5471 88.1409 66.1312 76.0137 90.3140
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Table 9 Test statistics for the Diebold-Mariano testing procedures, τ-VaR forecasting

The null hypothesis is H0 : E(dij) = 0 , where dij is the loss differential between model i (DGC in Panel A and DGC FHS 
in Panel B) and model j (one of the alternative model). ‘***’, ‘** ’ and ‘*’ denote significance at the 1%, 5% and 10% level, 
respectively

Model j Portfolio 1 Portfolio 2 Portfolio 3

τ = 1% τ = 5% τ = 10% τ = 1% τ = 5% τ = 10% τ = 1% τ = 5% τ = 10%

Panel A: Model i DGC Model

 HS − 0.9658 − 1.6677* − 1.1785 − 1.2933 − 2.0165** − 1.7740* − 1.0237 − 1.7315* − 1.2048

 Pear-
son-
Hist

− 1.1679 − 1.3498 − 2.0140** − 1.3826 − 1.7239* − 2.4308** − 1.0963 − 1.6086 − 1.8235*

 Ger-
ber-
Hist

− 1.1743 − 1.2581 − 1.3949 − 1.3419 − 1.6773* − 1.9701** − 1.0437 − 1.4613 − 1.2531

 DCC 1.7133 0.5443 0.2518 1.5017 1.5500 0.6556 1.5830 0.9800 0.6346

 DCC 
FHS

0.8929 0.1543 − 0.1117 0.5383 1.0075 0.1149 0.8264 0.4573 0.2659

Panel B: Model i DGC FHS Model

 HS − 1.1586 − 1.7355* − 1.2173 − 1.3569 − 2.1184** − 1.6040 − 1.1540 − 1.7161* − 1.1023

 Pear-
son-
Hist

− 1.1640 − 1.4443 − 2.1491** − 1.3823 − 1.8315* − 2.3495** − 1.1640 − 1.6150 − 1.7716*

 Ger-
ber-
Hist

− 1.2163 − 1.3174 − 1.4395 − 1.3716 − 1.7661* − 1.8111* − 1.1393 − 1.4499 − 1.1627

 DCC 1.2040 0.7576 0.0181 0.9357 1.9561* 1.3835 1.3413 1.4659 1.1195

 DCC 
FHS

1.4538 − 0.1292 − 0.6799 0.7873 1.0003 0.4812 1.1271 0.5378 0.5872

Table 10 Test statistics for the Diebold-Mariano testing procedures, joint τ-VaR and τ-ES forecasting

The null hypothesis is H0 : E(dij) = 0 , where dij is the loss differential between model i (DGC in Panel A and DGC FHS 
in Panel B) and model j (one of the alternative model). ‘***’, ‘** ’ and ‘*’ denote significance at the 1%, 5% and 10% level, 
respectively

Model j Portfolio 1 Portfolio 2 Portfolio 3

τ = 1% τ = 5% τ = 10% τ = 1% τ = 5% τ = 10% τ = 1% τ = 5% τ = 10%

Panel A: Model i DGC Model

 HS − 10.3140*** − 5.7359*** − 5.0365*** − 6.1134*** − 4.0855*** − 3.4918*** − 7.4212*** − 4.4894*** − 3.6717***

 Pear-
son-
Hist

− 0.0931 − 2.2036** − 3.3620*** 0.3686 − 1.2839 − 2.1531** 0.1628 − 1.5048 − 2.3574**

 Ger-
ber-
Hist

− 4.5518*** − 3.0447*** − 3.1253*** − 2.3297** − 2.1089** − 2.2157** − 2.6893*** − 2.1460** − 2.1539**

 DCC − 14.1124*** − 15.6085*** − 16.6673*** − 19.1266***− 37.1434***− 32.3286***− 17.5401*** − 23.5166*** − 24.7270***

 DCC 
FHS

− 11.3959*** − 12.9127*** − 13.9270*** − 13.6566***− 18.2288***− 21.6271***− 13.7780*** − 14.6926*** − 18.2965***

Panel B: Model i DGC FHS Model

 HS − 4.2635*** − 1.6281 − 1.2469 − 3.2288*** − 1.4229 − 1.0029 − 3.4493*** − 1.4325 − 0.9623

 Pear-
son-
Hist

− 4.2472*** 1.4752 0.1399 − 3.1267*** 1.0866 0.1207 − 3.8656*** 1.0681 0.1103

 Ger-
ber-
Hist

− 0.7340 − 0.7031 − 0.3586 0.5153 0.3409 0.1125 1.2544 0.4958 0.3006

 DCC − 0.6037 − 0.7510 − 0.5277 − 1.0536 − 0.9846 − 0.6778 − 1.0607 − 0.6848 − 2.1082

 DCC 
FHS

− 3.5248*** − 8.7083*** − 9.9503*** − 5.7700*** − 22.3854***− 23.2669***− 5.7832*** − 14.8289*** − 19.8898***
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proposed model is based—in a first stage of the estimation process—on univariate 
GARCH models. In an efficient way, the parameters in the recursions for the dynamic 
robust correlation matrix are estimated in the second stage. The distribution we use 
for estimating the DGC model captures asymmetries and fat tails in the returns, hence 
making a realistic assumption—especially in the presence of market turbulence. In an 
out-of-sample exercise, we tested the performance of the proposed DGC method in 
accurately forecasting only VaR or VaR and ES jointly for portfolios consisting of four 
assets. For three different diversified portfolios realistically selected by many inves-
tors, we first backtested ES for the alternative models under scrutiny. With the excep-
tion of the portfolios consisting mainly of equities for the case of the probability level 
1% , we did not reject the null of accurate ES predictions from models based on the 
DGC method. Finally, for VaR and ES corresponding to different probability levels, 
we derived the superior set of models using the Model Confidence Set procedure. 

Table 11 Superior Set of Models, τ-VaR forecasting, Portfolio 1

For each model i in the SSM, the table reports the statistics maxj Tij and Ti· , the p values associated with the test statistics TR 
and Tmax , the ranking of the models in the SSM based on TR and Tmax , and the average of the loss function (11) multiplied 
by 103

Model i RankTR maxj Tij p‑valueTR RankTmax
Ti· p‑valueTmax Loss×103

Panel A: τ = 1%

HS 7 1.5925 0.2172 7 1.8422 0.2372 1.1390

PearsonHist 5 1.2833 0.3644 4 1.5532 0.4540 1.1923

GerberHist 6 1.4991 0.2648 5 1.7188 0.3320 1.1804

DGC 4 − 0.7569 1.0000 6 1.7227 0.3284 1.0454

DGC FHS 3 − 1.0995 1.0000 3 1.4253 1.0000 1.0123

DCC 1 − 2.0116 1.0000 1 − 0.0246 1.0000 0.9771

DCC FHS 2 − 1.2487 1.0000 2 0.0246 1.0000 0.9781

Eliminated -

Panel B: τ = 5%

HS 7 2.0214 0.0614 7 3.2729 0.0072 2.9443

PearsonHist 6 1.4878 0.2362 6 1.6091 0.4874 2.8978

GerberHist 5 1.2910 0.3384 5 1.4917 0.5702 2.8845

DGC 4 − 1.2983 1.0000 2 0.5544 0.9920 2.7260

DGC FHS 2 − 1.6567 1.0000 3 0.8290 0.9920 2.7135

DCC 1 − 1.7133 1.0000 1 − 0.5544 1.0000 2.7004

DCC FHS 3 − 1.3419 1.0000 4 1.1286 0.9920 2.7170

Eliminated –

Panel C: τ = 10%

HS 5 1.1508 0.3942 4 1.2622 0.6414 4.2724

GerberHist 6 1.4914 0.2232 5 2.1128 0.1670 4.3014

DGC 3 − 0.9106 1.0000 3 0.4063 0.9982 4.1307

DGC FHS 1 − 1.4091 1.0000 2 0.0191 1.0000 4.1152

DCC 2 − 1.3844 1.0000 1 − 0.0191 1.0000 4.1146

DCC FHS 4 − 0.7969 1.0000 6 2.1687 0.1500 4.1385

Eliminated PearsonHist
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We showed that for all the portfolios and VaR/ES confidence levels we consider, the 
DGC model is part of the superior set of models. Because the DGC method is based 
on realistic assumptions about financial returns and, compared to existing methods, 
makes accurate predictions of market risk, it represents a valid tool for investors and 
financial regulators, both of whom would be concerned about the impact of losses in 
a turbulent market environment. Additionally, the results of our empirical application 
provide insight useful for investors who wish to diversify their portfolios across differ-
ent asset classes. A possible limitation of the proposed methodology is that it implies 
the same thickness of tails for each marginal density. Another limitation is that the 
skewness parameters are assumed to be static. Future research may delve into these 
issues. Indeed, it would be interesting to extend the model by including the skewness 
parameters evolving according to a Generalized Autoregressive Score model. Another 
interesting development of the paper could be the use of the proposed method for 
portfolio selection, which we also leave for future research.

Table 12 Superior Set of Models, τ-VaR forecasting, Portfolio 2

For each model i in the SSM, the table reports the statistics maxj Tij and Ti· , the p values associated with the test statistics TR 
and Tmax , the ranking of the models in the SSM based on TR and Tmax , and the average of the loss function (11) multiplied 
by 103

Model i RankTR maxj Tij p‑valueTR RankTmax
Ti· p‑valueTmax Loss×103

Panel A: τ = 1%

HS 5 1.4314 0.2310 4 1.5447 0.4220 0.8991

PearsonHist 7 1.5113 0.1926 7 1.5856 0.3930 0.9449

GerberHist 6 1.5041 0.1958 6 1.5768 0.4008 0.9223

DGC 4 − 1.2871 1.0000 5 1.5472 0.4208 0.7287

DGC FHS 2 − 1.4614 1.0000 3 0.9934 1.0000 0.7127

DCC 1 − 1.6586 1.0000 1 − 0.2573 1.0000 0.6913

DCC FHS 3 − 1.3490 1.0000 2 0.2573 1.0000 0.6988

Eliminated -

Panel B: τ = 5%

PearsonHist 6 2.0783 0.0510 6 2.2083 0.1058 2.2252

GerberHist 5 1.9637 0.0670 5 2.1243 0.1280 2.2225

DGC 4 − 1.0085 1.0000 3 1.6544 0.3562 2.0358

DGC FHS 2 − 1.8756 1.0000 4 2.0737 0.1424 2.0113

DCC 1 − 2.3524 1.0000 1 − 0.5351 1.0000 1.9620

DCC FHS 3 − 1.7342 1.0000 2 0.5351 0.9800 1.9716

Eliminated HS

Panel C: τ = 10%

HS 5 1.8186 0.1174 4 1.9949 0.2072 3.2746

GerberHist 6 2.1443 0.0534 5 2.2231 0.1212 3.2936

DGC 4 − 1.4551 1.0000 2 0.7378 0.9458 3.0855

DGC FHS 3 − 1.5227 1.0000 3 1.3510 0.9458 3.0951

DCC 1 − 2.1778 1.0000 1 − 0.7378 1.0000 3.0521

DCC FHS 2 − 1.6679 1.0000 6 2.7889 0.0212 3.0792

Eliminated PearsonHist
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Table 13 Superior Set of Models, τ-VaR forecasting, Portfolio 3

For each model i in the SSM, the table reports the statistics maxj Tij and Ti· , the p values associated with the test statistics TR 
and Tmax , the ranking of the models in the SSM based on TR and Tmax , and the average of the loss function (11) multiplied 
by 103

Model i RankTR maxj Tij p‑valueTR RankTmax
Ti· p‑valueTmax Loss×103

Panel A: τ = 1%

HS 7 1.3003 0.2850 6 1.4065 0.5264 0.6545

PearsonHist 6 1.2969 0.2864 5 1.3851 0.5432 0.6843

GerberHist 5 1.2574 0.3008 4 1.3644 0.5564 0.6726

DGC 4 − 0.8948 1.0000 7 1.6621 0.3462 0.5705

DGC FHS 3 − 1.2403 1.0000 3 1.3557 1.0000 0.5581

DCC 1 − 1.4987 1.0000 1 − 0.0075 1.0000 0.5393

DCC FHS 2 − 1.2563 1.0000 2 0.0075 1.0000 0.5394

Eliminated –

Panel B: τ = 5%

HS 7 2.0066 0.0648 7 3.7049 0.0024 1.6212

PearsonHist 6 1.8402 0.0972 5 1.9213 0.2602 1.6054

GerberHist 5 1.5346 0.1826 4 1.7486 0.3608 1.5959

DGC 3 − 1.5101 1.0000 2 1.1025 0.7938 1.4858

DGC FHS 2 − 1.7199 1.0000 3 1.6392 0.7938 1.4805

DCC 1 − 1.9628 1.0000 1 − 1.1025 1.0000 1.4505

DCC FHS 4 − 1.4624 1.0000 6 1.9387 0.2602 1.4662

Eliminated –

Panel C: τ = 10%

HS 5 1.3767 0.3162 4 1.5547 0.4724 2.3411

GerberHist 6 1.4919 0.2626 5 1.6432 0.4142 2.3446

DGC 3 − 0.8517 1.0000 2 0.7753 0.9374 2.2585

DGC FHS 4 − 0.7836 1.0000 3 1.2702 0.9374 2.2652

DCC 1 − 1.7186 1.0000 1 − 0.7753 1.0000 2.2333

DCC FHS 2 − 1.2547 1.0000 6 2.5088 0.0558 2.2471

Eliminated PearsonHist

Table 14 Superior Set of Models, joint τ-VaR and τ-ES forecasting, Portfolio 1

For each model i in the SSM, the table reports the statistics maxj Tij and Ti· , the p values associated with the test statistics TR 
and Tmax , the ranking of the models in the SSM based on TR and Tmax , and the average of the loss function (12) multiplied 
by 103

Model i RankTR maxj Tij p‑valueTR RankTmax
Ti· p‑valueTmax Loss×103

Panel A: τ = 1%

DGC 1 − 0.1343 1.0000 1 − 0.1343 1.0000 21.1566

Eliminated HS, PearsonHist, GerberHist,

DGC FHS, DCC, DCC FHS

Panel B: τ = 5%

DGC 1 -5.4361 1 1 -5.4361 1.0000 19.2650

Eliminated HS, PearsonHist, GerberHist,

DGC FHS, DCC, DCC FHS

Panel C: τ = 10%

DGC 1 -5.5584 1 1 -5.5584 1.0000 18.0268

Eliminated HS, PearsonHist, GerberHist,

DGC FHS, DCC, DCC FHS
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Appendices

Appendix A: The standardized skew‑student distribution
The standardized skew-Student density (Bauwens and Laurent 2005) is given by

where the i-th component of the vector z∗ is z∗i = (sizi +mi)ξ
Ii
i  , with

(13)f (z|ξ , ν ) =
(

2√
π(ν − 2)

)k
(

k∏

i=1

ξisi

1+ ξ2i

)
Ŵ((ν + k)/2)

Ŵ(ν/2)

(
1+ z∗

′
z∗

ν − 2

)
,

Table 15 Superior Set of Models, joint τ-VaR and τ-ES forecasting, Portfolio 2

For each model i in the SSM, the table reports the statistics maxj Tij and Ti· , the p values associated with the test statistics TR 
and Tmax , the ranking of the models in the SSM based on TR and Tmax , and the average of the loss function (12) multiplied 
by 103

Panel A: τ = 1%

Model i RankTR maxj Tij p‑valueTR RankTmax
Ti· p‑valueTmax Loss×103

DGC 1 − 10.9627 1.0000 1 − 10.9627 1.0000 15.3850

Eliminated HS, PearsonHist, GerberHist,

DGC FHS, DCC, DCC FHS

Panel B: τ = 5%

DGC 1 − 10.9627 1.0000 1 − 10.9627 1.0000 12.3850

Eliminated HS, PearsonHist, GerberHist,

DGC FHS, DCC, DCC FHS

Panel C: τ = 10%

DGC 1 − 5.0087 1.0000 1 − 2.3449 1.0000 14.6779

Eliminated HS, PearsonHist, GerberHist,

DGC FHS, DCC, DCC FHS

Table 16 Superior Set of Models, joint τ-VaR and τ-ES forecasting, Portfolio 3

For each model i in the SSM, the table reports the statistics maxj Tij and Ti· , the p values associated with the test statistics TR 
and Tmax , the ranking of the models in the SSM based on TR and Tmax , and the average of the loss function (12) multiplied 
by 103

Model i RankTR maxj Tij p‑valueTR RankTmax
Ti· p‑valueTmax Loss×103

Panel A: τ = 1%

DGC 1 − 15.2774 1 1 − 15.2774 1 12.3018

Eliminated HS, PearsonHist, GerberHist,

DGC FHS, DCC, DCC FHS

Panel B: τ = 5%

DGC 1 − 3.5558 1.0000 1 − 3.5558 1.0000 10.8580

Eliminated HS, PearsonHist, GerberHist,

DGC FHS, DCC, DCC FHS

Panel C: τ = 10%

DGC 1 − 8.2694 1.0000 1 − 3.3863 1.0000 10.5988

Eliminated HS, PearsonHist, GerberHist,

DGC FHS, DCC, DCC FHS
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and Ii = 2× I(zi < −mi/si)− 1.

Appendix B: The MCS procedure
The relative performance between models i and j is obtained via the differential

and the simple average loss of model i relative to the other models j ∈ M at time t as

For the elimination of inferior elements within the set M0 , two alternative sets of hypoth-
eses are available to test the EPA:

or

Two statistics are then constructed to test the above hypotheses:

where d̄ij constitutes the relative average loss between models i and j and d̄i· represents 
the average loss of model i relative to the average loss across the models belonging to the 
set M:

The standard errors in the denominators of (18) are constructed by block bootstrap.
The two hypotheses from (16) and (17) are mapped into two test statistics:

Because their distributions under the null are not known, they are also simulated by the 
bootstrap method. When the null hypothesis is rejected, the following elimination rules 
establish which of the models can be discarded:

mi =
√

ν − 2

π

Ŵ((ν − 1)/2)

Ŵ(ν/2)

(
ξi − ξ−1

i

)

si =
(
ξ2i + ξ−2

i − 1
)
−m2

i ,

(14)dij,t = li,t − lj,t ∀i, j ∈ M0 t = 1, . . . , n,

(15)di·,t = (m− 1)−1
∑

j∈M\i
dij,t .

(16)
{
H0 : E(dij) = 0 ∀i, j = 1, . . . ,m, against
H1 : E(dij) �= 0

(17)
{
H0 : E(di·) = 0 ∀i = 1, . . . ,m, against
H1 : E(di·) �= 0

(18)Tij =
d̄ij√

v̂ar(d̄ij)
; Ti· =

d̄i·√
v̂ar(d̄i·)

,

(19)d̄ij = n−1
n∑

t=1

dij,t; d̄i· = (m− 1)−1
∑

j∈M\i
d̄ij .

(20)TR = max
i,j∈M

Tij; Tmax = max
i∈M

Ti·.
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 Bernardi and Catania (2016) summarized the algorithm for the procedure as follows: 

1. Set M = M0.
2. Compute the test statistics under the null EPA hypothesis. If it is not rejected, set 

M∗
1−α = M and terminate the algorithm. If it is rejected, use the elimination rule to 

determine the worst model.
3. Discard the model and repeat step 2.

The elimination rule defines a sequence of sets M = M0 ⊃ M1 · · · ⊃ Mm , where 
Mi = (eMi , . . . , eMm) , each of which has a p value associated with an EPA test. Let PH0,Mi 
be the p value associated with the null hypothesis H0,Mi . The MCS p value for model 
eMj ⊃ M is defined as p̂eMj

= maxi≤j PH0,Mi.

Appendix C: Backtesting ES
In this appendix we provide the details of the procedure we implement to backtest ES.

Du and Escanciano (2017) proposed a procedure to backtest τ-ES based on the so-
called cumulative violations (CV) process. The time-t value of this process is given by

where ut = G( rp,t
∣∣Ft−1) is the Probability Integral (PIT) transform (Rosenblatt 1952) 

and G( ·|Ft−1) is the conditional cumulative distribution function of the portfolio return 
rp,t.

To avoid estimating the portfolio distribution function, Khalaf et al. (2021) consider K 
equally spaced VaR levels with the larger one coinciding with τ , i.e. τj = (K − j + 1) τK  for 
j = 1, . . . ,K  . Their ES backtesting procedures are based on the sum of VaR violations

since they show that, when returns are absolutely continuous, N
K
t (τ )

K

D−→ Ht(τ ) . Khalaf 
et al. (2021) hence consider the null

where ⊥⊥ denotes independence, and

(21)eR = arg max
i

{
sup
j∈M

Tij

}
; emax = arg max

i

{Ti·}.

(22)Ht(τ ) =
1

τ
[τ − ut ]I(ut ≤ τ ),

(23)NK
t (τ ) =

K∑

j=1

I
(
rp,t ≤ −VaRt|t−1

(
j
τ

K

))
,

(24)H0 :
{
NK
t (τ ) = j with probability θj for j = 0, . . . ,K ,

NK
t (τ ) ⊥⊥ NK

t−h(τ ),∀h �= 0,

(25)θ0 = 1− τ , θj =
τ

K
, j = 1, . . . ,K .
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Note that E
[
NK
t (τ )

]
= K+1

2 τ under (24)–(25). As a consequence, in this paper we use a 
conditional backtest based on the idea that under the null, 

{
NK
t (τ )− K+1

2 τ

}

t
 is a mar-

tingale difference sequence.
To this end, we use, for a sample of length n for NK

t (τ ) , the Box-Pierce test statistic

where

and ρi(τ ) = γi(τ )
γ0(τ )

 . The p values associated with the test statistic (26) can be obtained 
using the Monte Carlo test technique (Dufour 2006) since, under the null (24)–(25), it is 
easy to simulate (23) and hence the test statistic (26), see Khalaf et al. (2021) for further 
details.
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