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Abstract 

Commodity markets, such as crude oil and precious metals, play a strategic role 
in the economic development of nations, with crude oil prices influencing geopoliti-
cal relations and the global economy. Moreover, gold and silver are argued to hedge 
the stock and cryptocurrency markets during market downsides. Therefore, accu-
rate forecasting of crude oil and precious metals prices is critical. Nevertheless, due 
to the nonlinear nature, substantial fluctuations, and irregular cycles of crude oil 
and precious metals, predicting their prices is a challenging task. Our study contributes 
to the commodity market price forecasting literature by implementing and compar-
ing advanced deep-learning models. We address this gap by including silver along-
side gold in our analysis, offering a more comprehensive understanding of the pre-
cious metal markets. This research expands existing knowledge and provides valuable 
insights into predicting commodity prices. In this study, we implemented 16 deep- 
and machine-learning models to forecast the daily price of the West Texas Intermedi-
ate (WTI), Brent, gold, and silver markets. The employed deep-learning models are 
long short-term memory (LSTM), BiLSTM, gated recurrent unit (GRU), bidirectional 
gated recurrent units (BiGRU), T2V-BiLSTM, T2V-BiGRU, convolutional neural networks 
(CNN), CNN-BiLSTM, CNN-BiGRU, temporal convolutional network (TCN), TCN-BiLSTM, 
and TCN-BiGRU. We compared the forecasting performance of deep-learning models 
with the baseline random forest, LightGBM, support vector regression, and k-nearest 
neighborhood models using mean absolute error (MAE), mean absolute percent-
age error, and root mean squared error as evaluation criteria. By considering different 
sliding window lengths, we examine the forecasting performance of our models. Our 
results reveal that the TCN model outperforms the others for WTI, Brent, and silver, 
achieving the lowest MAE values of 1.444, 1.295, and 0.346, respectively. The BiGRU 
model performs best for gold, with an MAE of 15.188 using a 30-day input sequence. 
Furthermore, LightGBM exhibits comparable performance to TCN and is the best-
performing machine-learning model overall. These findings are critical for investors, 
policymakers, mining companies, and governmental agencies to effectively anticipate 
market trends, mitigate risk, manage uncertainty, and make timely decisions and strat-
egies regarding crude oil, gold, and silver markets.
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Introduction
Nonrenewable commodities usually mined in certain countries can strongly impact their 
economies, policies, currencies, and international or political issues. Energy and pre-
cious metals markets, among other commodities, are well-known alternatives to stock 
markets (Pullen et al. 2014; Hussain Shahzad et al. 2017; Akbar et al. 2019; Adekoya et al. 
2022; Phan et  al. 2016; Sarwar et  al. 2019). Their prices are critical indicators of eco-
nomic health and crucial determinants for financial planning and decision making. In 
this regard, understanding the dynamics of such markets and forecasting their evolu-
tions is crucial for portfolio optimization and management. Crude oil, a crucial energy 
commodity, is pivotal in global macroeconomics and influences the decisions made by 
policymakers like governments and central banks. Fluctuations in crude oil prices have 
profound implications for a country’s political and economic security; therefore, accu-
rate crude oil price forecasting is imperative. Crude oil market shocks in April 2020 and 
their impacts have increased interest in understanding oil price dynamics (Wang et al. 
2021; Murshed and Tanha 2021; Balcilar et al. 2021; Zhang et al. 2022a, b; Enwereuzoh 
et  al. 2021). Conversely, gold is important for investment portfolio diversification and 
hedging (ben Khelifa et al. 2021; Reboredo 2013; Baek 2019). Gold contributes a large 
portion of the commodity reserves of major economies. As of September 2022, the offi-
cial United States (US) gold reserve was 8133.47 tons, approximately 66.6% of total US 
reserves.1

Given these markets’ multifaceted nature, forecasting the trajectories of these com-
modities is crucial in financial markets, serving as an essential tool for investors, pol-
icymakers, and analysts. For investors, anticipating price movements in crude oil and 
precious metals provides a strategic advantage in optimizing portfolio performance 
and risk management. A comprehensive understanding of potential price fluctuations 
allows investors to make informed decisions, allocate resources optimally, and ultimately 
enhance their overall financial returns (Bhowmik and Wang 2020). In contrast, poli-
cymakers rely on accurate market forecasts to develop effective economic policies and 
mitigate the potential impact of market volatility on national economies. Fluctuations 
in crude oil prices, for instance, can have cascading effects on inflation, trade balances, 
and overall economic stability (Uzo-Peters et al. 2018; Xiuzhen et al. 2022; Periwal 2023). 
Similarly, precious metal prices often indicate broader economic sentiments and can 
influence monetary policies and international trade relationships.

In this context, the science of forecasting plays a pivotal role in providing foresight 
into future trends in crude oil and precious metal prices. Advanced analytical models 
(Kou et al. 2021, 2022; Li et al. 2022a, b; Lahmiri 2023a), statistical methods (Lahmiri 
et al. 2022; Lahmiri 2023b), machine learning (Lahmiri et al. 2023), and deep-learning 
algorithms (Amirifar et al. 2023; Amirshahi and Lahmiri 2023a, b; Lahmiri and Bekiros 
2019, 2020, 2021) enable analysts to search through vast datasets, identify patterns, and 
make predictions that are invaluable for both short-term traders and long-term inves-
tors (Abdullah Ahmed and Bin Shabri 2014; Zhao et al. 2015; Das et al. 2022; Jiang et al. 
2022; Liang et  al. 2023). Driven by this motivation, this study investigates forecasting 

1  https://​www.​gold.​org/​goldh​ub/​data/​gold-​reser​ves-​by-​count​ry.

https://www.gold.org/goldhub/data/gold-reserves-by-country
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methodologies within the domains of crude oil and precious metals markets to enhance 
the precision of price predictions.

Recent innovations in deep learning models seem promising for time-series forecast-
ing; however, the crude oil and precious metals forecasting literature struggles to use 
these models for price prediction. This study attempts to fill this gap in the forecast-
ing literature by applying several deep- and machine-learning models to predict the 
daily closing prices of crude oil, gold, and silver. First, the time-series data of daily spot 
prices of two prominent crude oils, West Texas Intermediate (WTI) and Brent, and 
two precious metal markets, gold and silver, are gathered and normalized. Then, sev-
eral input sequences are prepared using the sliding window method with four different 
window lengths. Next, the dataset is split into training, validation, and test sets using 
a time-based splitting approach. Finally, a comprehensive set of 16 forecasting mod-
els, consisting of 12 deep-learning models, 2 baseline-ensemble models, and 2 base-
line machine-learning models, is implemented to predict the next-day market price. 
The deep learning models used in the current study include long short-term memory 
(LSTM), bidirectional LSTM (BiLSTM), gated recurrent units (GRU), bidirectional GRU 
(BiGRU), Time2Vector BiLSTM (T2V-BiLSTM), Time2Vector BiGRU (T2V-BiGRU), 
convolutional neural networks (CNN), hybrid CNN-BiLSTM, hybrid CNN-BiGRU, tem-
poral convolutional networks (TCN), hybrid TCN-BiLSTM, and hybrid TCN-BiGRU 
models. Two baseline ensemble models are the random forest and LightGBM gradient-
boosting models, and two baseline machine-learning models are the support vector 
regression (SVR) and k-nearest neighborhood (KNN) models.

Each of the employed models has its strengths and limitations. LSTM models are a 
type of recurrent neural networks (RNN) that are popular for their ability to capture 
long-term dependencies, overcome the gradient vanishing problem, and handle varia-
ble-length sequences; however, LSTMs can be computationally expensive and prone to 
overfitting, requiring regularization techniques (Yu et  al. 2019). GRU models, another 
type of RNN, have a simpler architecture, resulting in faster training and inference times; 
however, they may have limitations in capturing complex patterns compared with LSTM 
models. Bidirectional models, such as BiLSTM or BiGRU, consider both forward and 
backward information, making them more robust to variations in the input sequence 
order; however, they are computationally complex and require more memory resources 
(Khan et  al. 2021). CNNs are effective at capturing local patterns and features within 
time-series data. CNNs learn filters to detect specific temporal patterns and are transla-
tion invariant, meaning they can detect patterns regardless of their position in the input 
sequence; however, CNNs have limitations, such as the requirement for fixed-length 
inputs, limited consideration of temporal ordering, and the ability to capture long-term 
dependencies. Hybrid CNN–LSTM models combine the strengths of both CNNs and 
LSTMs, capturing spatial and temporal features. They are suitable for tasks that require 
capturing complex patterns in time-series data; however, they can be less interpretable 
than standalone models (Gharghory 2021). TCNs are designed to capture long-term 
dependencies efficiently. They use dilated convolutions to capture information from sev-
eral past time steps. TCNs are adaptable to different time-series lengths without padding 
or truncation; however, they can be complex to design and tune and are sensitive to input 
scaling (Gopali et al. 2021). Ensemble machine-learning models such as random forest 
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and LightGBM are also used in time-series analysis. Random forest combines multiple 
decision trees and offers high prediction accuracy and robustness against outliers. Light-
GBM is an efficient gradient-boosting framework that effectively handles large datasets. 
Both models have their accuracy and generalization strengths but cannot explicitly cap-
ture temporal dependencies (Ke et  al. 2017). SVR is a flexible model that can capture 
linear and nonlinear relationships; it focuses on support vectors, which greatly influence 
the model’s decision boundary. SVR can handle high-dimensional datasets and complex 
relationships between variables; however, the performance of SVR depends on selecting 
appropriate hyperparameters, and it does not explicitly model temporal dependencies. 
KNN is an instance-based algorithm that makes predictions based on the similarity of 
training instances; it requires no training phase but suffers from the curse of dimension-
ality and cannot capture temporal dependencies.

Our paper compares the forecasting performance of these models by mean absolute 
error (MAE), mean absolute percentage error (MAPE), and root mean squared error 
(RMSE) error functions. This paper primarily aims to answer the following questions 
through empirical experiments. (1) What is the best deep-learning model that can 
predict crude oil, gold, and silver spot prices reliably and precisely? (2) In response to 
the first question, does a particular model outperform other models for crude oil and 
precious metals prices? (3) Which input sequence length is more informative for each 
market’s price prediction? (4) Are hybrid models effective in forecasting crude oil, gold, 
and silver spot prices? (5) What conclusions about the properties of each deep-learn-
ing model can be drawn in the context of crude oil and precious metals time-series 
forecasting?

The arrangement of the rest of this manuscript is as follows. “Literature review” sec-
tion provides an overview of the relevant prior research and summarizes our contri-
butions to the existing literature. “Methodology” section explains the methods and 
performance evaluation criteria used in this study. “Empirical analysis and results” sec-
tion describes the datasets, demonstrates the results, and discusses our findings. Finally, 
“Conclusion” section summarizes the paper and presents some managerial implications 
and policy suggestions.

Literature review
Accurately forecasting financial markets is a critical guide for determining economic 
policies. Consequently, researchers have dedicated their efforts to developing and 
improving models that capture the intrinsic behavior and dynamics of financial market 
time series. The prediction methods used in these studies generally comprise statisti-
cal or econometrics, machine learning, and deep-learning methods. Several forecasting 
modeling approaches have recently been applied to crude oil and precious metals. For 
instance, Zhao et al. (2018) proposed a numerical vector trend forecasting method for 
predicting the daily spot price of Brent crude oil, outperforming traditional models such 
as autoregressive integrated moving average (ARIMA), SVR, and wavelet analysis mod-
els. Similarly, Szarek et al. (2020) proposed a new stochastic distribution, skewed Stu-
dent’s t-distribution, for silver, copper, and gold time-series estimation, which accounts 
for the time-dependent parameters and non-Gaussian behavior of time-series data. 
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Drachal (2022) employed the Bayesian symbolic regression method to address variable 
uncertainty in monthly crude oil price forecasting.

Due to the nonlinearity, nonstationarity, and heteroscedasticity of crude oil and pre-
cious metal markets, classical statistical forecasting models such as vector autoregressive 
(VAR), ARIMA, and autoregressive distributed lag (ARDL) struggle to perform well in 
forecasting tasks. These models make assumptions about the normality and stationarity 
of price data, which often do not hold for many time-series data for commodity markets. 
As a result, recent studies have used machine- and deep-learning models, which excel in 
handling nonlinear data and do not rely on the normality assumption for accurate price 
predictions. In the literature, three main types of deep neural networks are used for 
sequence modeling, and they can be applied for time-series forecasting (Lim and Zohren 
2021). These networks include (i) RNNs and their variants, such as LSTM (Hochreiter 
and Schmidhuber 1997) and GRUs (Cho et al. 2014), (ii) CNNs (Lecun et al. 1998) and 
their recent variant, TCN (Lea et al. 2016), and (iii) transformer (Vaswani et al. 2017) 
and its variants (Devlin et al. 2018; He et al. 2020; Liu et al. 2019).

Several studies used statistical, machine learning, and deep-learning models to 
account for the importance of gold price forecasting. Alameer et al. (2019) used a multi-
layer perceptron model with a whale optimization algorithm for gold next-month price 
forecasting. This model demonstrates a lower forecasting error than ARIMA model 
forecasts. Madziwa et al. (2022) employed an ARDL model to forecast annual gold prices 
using lagged gold prices, gold demand, and treasury bill rates as predictors. In another 
study, Zhang and Ci (2020) used the US Consumer Price Index, crude oil price, exchange 
rate, and Dow Jones Industrial Price Index in a deep belief network to predict monthly 
gold prices. Risse (2019) predicted gold excess returns to the risk-free rate of return 
using the ana SVR model. SVR finds the nonlinear relationship in the data by mapping a 
linear function into a high-dimensional feature space. Tree-based ensemble models have 
demonstrated promising performance in forecasting gold prices. Yuan (2023) leveraged 
the XGBoost (Chen and Guestrin 2016) and LightGBM (Ke et al. 2017) models for gold 
and bitcoin price forecasting. Furthermore, deep-learning methods have been increas-
ingly used for gold price prediction. For instance, using association rules and the LSTM 
mode, Boongasame et  al. (2022) predicted the price of gold. Vidal and Kristjanpoller 
(2020) developed a hybrid of convolutional neural networks and long- and short-term 
memory models (CNN–LSTM), which incorporate historical log-return series and time-
series data in an image format to predict the volatility of gold spot prices. Likewise, vari-
ous studies have used deep-learning models for crude oil price forecasting. Orojo et al. 
(2019) employed a multirecurrent network to forecast a one-month ahead WTI crude 
oil price. Lin et al. (2022) forecasted crude oil futures prices using a BiLSTM-Attention-
CNN model with wavelet transform. Swamy and Lagesh (2023) explored the effective-
ness of investor sentiments from Twitter in predicting the daily gold price by a wavelet 
analysis method and unveiled a strong correlation between Twitter sentiments and the 
gold price. Fang et  al. (2023a, b) forecasted Brent crude oil prices using an improved 
slope-based method based on empirical mode decomposition (EMD) and feedforward 
neural network (FNN) methods.

Conversely, the literature on forecasting other precious metal markets is relatively 
limited. Sroka (2022) utilizes block bootstrap methods to forecast daily silver prices, 
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while Salisu et al. (2020) tested the impact of Google Trends on forecasting the prices 
of four precious metal markets using an ARDL model. Zhang et al. (2022a, b) intro-
duced a new objective function to forecast commodity markets, including silver 
prices. To our knowledge, there is no precedent study to forecast the silver price using 
machine- and deep-learning models. We attempt to fill this void in the literature.

Given the ongoing improvements in natural language processing (NLP) tasks, 
recent studies have incorporated news text and Google Trends features into their 
forecasting models. These approaches leverage the valuable information in the textual 
data to enhance the accuracy of predictions. For example, Li et  al. (2019) extracted 
text data from online news media and created sentiment features that were grouped 
by their topics using a latent Dirichlet allocation method. Their topic-sentiment fore-
casting model shows that text features complement financial features for crude oil 
price forecasting. Similarly, Bai et  al. (2022) constructed features from news head-
lines for WTI crude oil forecasting. Fang et  al. (2023a, b) employed a FineBERT 
approach to extract sentiment information from crude oil-related news, which was 
then integrated into a hybrid attention-based BiGRU model for WTI price forecast-
ing. Kertlly de Medeiros et al. (2022) demonstrated performance enhancement using 
a mixed data sampling model incorporating mixed-frequency data and a textual senti-
ment indicator for oil price forecasting. Salisu et  al. (2020) utilized an econometric 
ARDL model to show that search engine data from Google Trends significantly posi-
tively affect precious metal returns. Similarly, Tang et  al. (2020) considered Google 
Trends a useful predictor in a multivariate empirical mode decomposition method 
for forecasting Brent crude oil spot prices. Other EMD methods have been used by 
Wang et al. (2018), Qin et al. (2019), Yang et al. (2020), G. Li et al. (2022a, b), and Guo 
et  al. (2022) in their proposed crude oil forecasting models. Liang et  al. (2023) also 
used historical crude oil prices in a deep reinforcement learning algorithm to forecast 
multistep ahead WTI, Brent, and Oman prices. A recent review paper (Mohamed 
and Messaadia 2023) highlights that artificial neural networks and support vector 
machines (SVMs) are the most popular artificial intelligence techniques used to fore-
cast crude oil prices. Collectively, these studies showcase the growing significance of 
advanced forecasting methods to enhance the accuracy and reliability of predictions 
in the crude oil and precious metal markets.

Some studies have achieved improved forecasting performances by developing ensem-
ble models. Zhao et al. (2017) combined the advantages of stacked denoising autoencod-
ers (SDAE) and bootstrap aggregation (bagging) techniques to model the nonlinear and 
complex relationships of oil price factors and to generate multiple data sets for training a 
set of base learners. Wang et al. (2020) proposed an ensemble of five linear and nonlinear 
submodes to produce the prediction intervals of crude oil spot prices while optimizing 
the weights of submodes using the gray wolf optimizer. Zhang et al. (2021) developed an 
ensemble deep-learning model for electricity price series prediction. Jiang et al. (2022) 
combined a decomposition-ensemble approach optimized by the seagull algorithm with 
sentiment analysis to forecast future crude oil prices. Su et al. (2022) proposed a hybrid 
forecasting model using SVM, extreme learning machines, XGBoost, and LSTM models 
to predict crude oil futures series. Sun et al. (2022) proposed a secondary decomposi-
tion–reconstruction–ensemble approach for crude oil price forecasting.
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The temporal convolutional networks (TCNs) (Lea et  al. 2016) are variants of CNN 
models that employ casual convolutions and dilations to predict sequential data with 
temporality and large receptive fields. A simple convolution can only look back at a fixed 
timing window, whereas a TCN uses dilated convolutions to achieve a large receptive 
field with fewer convolutional layers. TCNs capture long-term patterns using a hierarchy 
of temporal convolutional filters, and in that manner, they tend to outperform bidirec-
tional LSTM models and are a magnitude faster to train. A TCN was first developed 
for action detection in video data settings to account for spatial and temporal input fea-
tures (Lea et al. 2016). However, recently, TCNs have drawn more attention from schol-
ars and have been applied to various time-series data. For instance, Lara-Benítez et al. 
(2020) utilized a TCN model to forecast electricity demand and prices in Spain. In the 
environmental milieu, Yan et al. (2020) predicted the El Niño-Southern Oscillation, an 
index measuring the earth’s climate variability, by applying an ensemble empirical mode 
decomposition–TCN model. This model shows improved prediction performance com-
pared with the LSTM model.

Considering temporal patterns in predicting time-series data is a significant challenge 
for many models. Some recent studies have introduced learnable time representations 
to account for temporal patterns in sequential data (Xu et al. 2019, 2021; Li et al. 2017). 
Among these studies, Kazemi et al. (2019) introduced the Time2Vector method to rep-
resent sequential data as periodic and nonperiodic vectors that can capture complex 
temporal patterns in data. Yang et al. (2021) improved the performance of an attention 
neural network for nonintrusive load monitoring by applying the Time2Vector method. 
This current study applies Time2Vector embedding to input series and incorporates the 
resulting periodic and nonperiodic features into several deep-learning models to fore-
cast crude oil, gold, and silver prices. Table 1 summarizes the literature on crude oil and 
precious metal forecasting.

Gradient-boosting methods are powerful predictive models for many tasks. Borisov 
et  al. (2021) compared the performance of tree-based ensembles, such as XGBoost, 
LightGBM, and CatBoost (Prokhorenkova et al. 2018), with some deep-learning mod-
els, including but not limited to multilayer perceptron, regularization learning networks, 
neural oblivious decision ensembles, and transformers. They assert that machine learn-
ing tree-based models outperform deep-learning models in several prediction tasks with 
tabular data; however, their study does not include deep-learning models for sequential 
data and is silent about forecasting financial market prices. To address this shortfall, in 
the current study, we will use tree-based ensemble models such as random forest and 
LightGBM compared with 12 deep-learning models and two other machine-learning 
models (KNN and SVR) to forecast daily crude oil and precious metals market prices.

This study makes significant contributions to the literature on forecasting commodity 
market prices.

•	 Considering that there is limited literature on using deep-learning models to forecast 
the price of commodity markets, this study implements and compares various types 
of state-of-the-art deep-learning models for crude oil and precious metal spot price 
forecasting. Hence, our study encompasses several forecasting results that provide 
comprehensive insights for crude oil, gold, and silver market players and investors.
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Table 1  Literature review of crude oil and precious metal forecasting

Method type Author(s) Method(s) Features Data

Financial 
market

Google 
trend or 
sentiment

WTI Brent Gold Silver

Statistical and 
Econometric 
methods

Zhao et al. 
(2018)

VTFM ✓ ✓

Szarek et al. 
(2020)

SGT ✓ ✓ ✓

Drachal 
(2022)

BSR ✓ ✓ ✓

Kertlly de 
Medeiros 
et al. (2022)

MIDAS ✓ ✓ ✓

Salisu et al. 
(2020)

ARDL ✓ ✓ ✓ ✓

Tang et al. 
(2020)

MEMD ✓ ✓ ✓

Madziwa et al. 
(2022)

ARDL ✓ ✓

Swamy and 
Lagesh (2023)

wavelet 
analysis 
method

✓ ✓ ✓

Sroka (2022) block 
bootstrap-
ARIMA

✓ ✓

Machine 
Learning 
methods

Zhao et al. 
(2017)

Ensemble 
(SDAE-bag-
ging)

✓ ✓

Bai et al. 
(2022)

AdaBoost.RT ✓ ✓ ✓

Risse (2019) SVR ✓ ✓
Yuan (2023) XGBoost & 

LightGBM
✓ ✓

Wang et al. 
(2020)

EPPA ✓ ✓

Su et al. 
(2022)

ensemble ✓ OPEC crude 
oil

Sun et al. 
(2022)

ensemble ✓ ✓ ✓

Deep Learn-
ing methods

Li et al. (2019) CNN ✓ ✓ ✓

Fang et al. 
(2023a, b)

FineBERT-
VMD-Att-
BiGRU​

✓ ✓ ✓

Fang et al. 
(2023a, b)

ISBN-EMD-
FNN

✓ ✓

Liang et al. 
(2023)

Deeprein-
forcement 
learning

✓ ✓ ✓

Alameer et al. 
(2019)

MLP ✓ ✓

Zhang and Ci 
(2020)

Deep belief 
network

✓ ✓

Boongasame 
et al. (2022)

LSTM ✓ ✓
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•	 Most studies on precious metals focus only on gold price predictions; however, this 
study forecasts the price of both gold and silver to maintain a more general understand-
ing of the precious metal markets.

•	 To the best of our knowledge, this study is the first in forecasting literature that applies 
the TCN model, Time2Vector embedding module, and hybrid TCN-BiLSTM and 
TCN-BiGRU models to forecast the spot price of WTI, Brent, Gold, and Silver time 
series.

•	 The forecasting period in the test dataset of this study, from 2020-01-03 to 2022-03-25, 
covers two critical global events that significantly affected financial markets. First, the 
financial crisis during the COVID-19 pandemic significantly impacted all financial mar-
kets; in particular, crude oil prices plunged in April 2020. Second, the Russia–Ukraine 
conflict in February 2022 was associated with a sharp rise in crude oil, gold, and silver 
prices. Therefore, the results of this study and the proposed models can be used during 
financial crises and extreme global situations. Figure 5 shows the line chart of the WTI, 
Brent, gold, and silver prices for reference.

Methodology
LSTM and BiLSTM

LSTM and BiLSTM are structural variants of RNN models that can remember impor-
tant information from time-series sequences (Lin et  al. 2022). In particular, BiLSTM 
concatenates two LSTM layers in opposite directions. The interior structure of a com-
mon LSTM cell is shown in Fig. 1a. An LSTM unit consists of an input gate, a forget 
gate, and an output gate. These gates facilitate information flow and help the cell forget 
unnecessary information. First, the forgetting gate decides what information from the 
inputs and previous hidden states to discard. Second, the input gate decides what infor-
mation from the inputs and previous cell states to keep and updates the cell state. Finally, 
the output gate obtains the output ht by multiplying the ot of the input information pro-
cessed by the sigmoid activation function and the cell state vector transformed by the 
tanh activation function. The equations of a forward pass in an LSTM unit are as follows:

(1)ft = σ Wf xt +Uf ht−1 + bf

Table 1  (continued)

Method type Author(s) Method(s) Features Data

Financial 
market

Google 
trend or 
sentiment

WTI Brent Gold Silver

Vidal and 
Kristjanpoller 
(2020)

CNN-LSTM ✓ ✓

Orojo et al. 
(2019)

MRN ✓ ✓

Lin et al. 
(2022)

BiLSTM-
Attention-
CNN

✓ ✓ ✓
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where xt ∈ R
d is the input vector, and ht ∈ R

h is the hidden state vector. Furthermore, ft 
is the forget gate vector, it is the input gate vector, ot is the output gate vector, ct ′ is the tem-
porary cell state vector, ct ∈ R

h cell state vector, and W ∈ R
h×d ,U ∈ R

h×h, and b ∈ R
h 

represent the parameter matrices and vectors.
In a BiLSTM model, from opposite directions, ht is concatenated to construct the bidi-

rectional hidden state. The formulas of bidirectional ht are as follows:

(2)it = σ(Wixt + Uiht−1 + bi)

(3)c′t = tanh (Wcxt +Ucht−1 + bc)

(4)ct = ft ⊙ ct−1 + it ⊙ ct ′

(5)ot = σ(Woxt +Uoht−1 + bo)

(6)ht = ot ⊙ tanh (ct),

(7)�ht = LSTM
(

xt , �ht−1

)

Fig. 1  a LSTM internal cell structure, b GRU internal cell structure, c A single layer BiLSTM or BiGRU model
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GRU and BiGRU​

Like the LSTM, the GRU is a variant of RNN cells that can forget insignificant informa-
tion and help the model use longer data sequences. GRU has fewer parameters than LSTM 
because it eliminates the output gate.

where xt ∈ R
d is the input vector, and ht ∈ R

h hidden state vector. Additionally, zt 
is the forget gate vector, rt is the reset gate vector, ĥt is the candidate activation vector, 
W ∈ R

h×d ,U ∈ R
h×h, and b ∈ R

h represent the parameter matrices and vectors, and σ is 
the sigmoid activation function. For certain sequential datasets, GRUs outperform LSTM 
models (Chung et al. 2014; Gruber and Jockisch 2020). The internal structure of the GRU 
cell is depicted in Fig. 1b.

For a bidirectional GRU model, hidden state vectors from two opposite directions are 
concatenated as follows:

Figure  1c shows the architecture of a single-layer bidirectional LSTM (BiLSTM) or 
bidirectional GRU (BiGRU) model.

CNN

A CNN is a FNN model proposed by Lecun et al. (1998). CNNs are very popular in com-
puter vision applications, such as facial recognition systems, object localization, object 
detection, and semantic segmentation. CNNS are effective at capturing local patterns 
and features within a time series. The convolutional layers learn filters to detect specific 

(8)
←

h
t
= LSTM

(

xt ,
←

h
t+1

)

(9)ht =

[

�ht ,
←

h
t

]

(10)zt = σ(Wzxt + Uzht−1 + bz)

(11)rt = σ(Wrxt + Urht−1 + br)

(12)ĥt = tanh (Whxt + Uh(rt ⊙ ht−1)+ bh)

(13)ht = zt ⊙ ĥt + (1− zt)⊙ ht−1

(14)�ht = GRU
(

xt , �ht−1

)

(15)
←

h
t
= GRU

(

xt ,
←

h
t+1

)

(16)ht =

[

�ht ,
←

h
t

]
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temporal patterns, making CNNs well suited for capturing local dependencies and short-
term patterns in time-series data. CNNs are inherently translation invariant, meaning 
they can detect patterns regardless of their position in the input sequence. This prop-
erty is helpful for time-series analysis because the same patterns may occur at different 
time steps. The local perception and weight sharing of CNN can significantly reduce the 
number of parameters, thus improving the efficiency of model learning (Lu et al. 2020); 
however, they suffer from limitations such as the requirement for fixed-length inputs, 
lack of consideration of temporal ordering, and limited ability to detect long-term tem-
poral dependencies.

The architecture of this model is generally constructed from two layers: the convolu-
tion layer and the pooling layer. The convolution layer extracts useful features from the 
input series by applying several convolution kernels to the inputs, as indicated in Eq. 17, 
which downsamples the input for final forecasting. Then, a pooling layer is applied to the 
output of the convolution layer to reduce the dimensionality of the model.

where lt is the output of the convolution layer, σ is the activation function, xt ∈ R
d is the 

input vector, kt ∈ R
d  is the parameter vector of the convolution kernel, and bt is the bias 

term.

TCN

The intrinsic weaknesses of CNN, including fixed-size inputs and mismatched input 
and output dimensions, restrict its application in time-series forecasting. The TCN 
(Lea et al. 2016) is a variant of the CNN that employs casual and dilated convolutions 
appropriate for sequential data with temporality and large receptive fields. Causal 
means no information leakage from the future to the past, and the receptive field 
means the set of sample elements of the original input that affect a specific element 
of the output. A TCN model can show full coverage of the input history by setting a 
proper dilated factor and kernel size. Furthermore, the TCN has a simple network 
structure and outperforms standard recurrent networks, such as the RNN and LSTM 
networks, regarding the effectiveness and efficiency of time-series predictions (Yan 
et al. 2020). Figure 2 shows a general representation of our TCN model with dilated 
causal convolutions. This model’s architecture consists of the following.

Dilated convolution layer: The dilated convolution architecture modifies Kro-
necker-factored convolutional filters, enabling a larger receptive field with fewer 
parameters and layers (Zhou et  al. 2015). For a sequence of xt ∈ R

d and a filter 
f :

{

0, . . . , k − 1
}

→ R , the dilated convolution operation ∗D on entries s of the 
sequence is defined as follows:

where D is the dilation factor, k is the filter size, and s − D.i assures that only past data 
are convoluted. A tanh function transforms the output of the dilated causal convolution 
layer.

(17)lt = σ(xt ∗ kt + bt)

(18)F(s) =
(

xt ∗D f
)

(s) =

k−1
∑

i=1

f (i) · xs−D.i
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Dropout layer: A dropout layer with a probability of 0.2 is applied after each dilated 
convolution layer to regularize the model and eliminate the overfitting problem.

Residual block: We used a stack of two dilated causal convolution layers together, 
and the results from the final convolution were added back to the inputs to obtain the 
outputs of the block. The residual connection avoids the vanishing and/or exploding 
gradient problem in deep-learning models.

Fully connected layer: The output of the residual block is then inputted into a fully 
connected layer to predict the next-day price.

In Fig. 2, the TCN model has a stack of two layers, a residual connection, and a fully 
connected layer. Each layer in the stack has a dilated causal convolution, a tanh acti-
vation function, and a dropout for regularization. The dilation factors for the dilated 
convolution layer are D = 1, 2, 4 and a filter size of k = 2 . When D = 1 , the dilated con-
volution becomes a basic convolution.

In recurrent-type neural networks, operations apply sequentially. In contrast, in a 
TCN model, all sequences are convolved simultaneously in each dilated convolutional 
layer; hence, the training of TCN is much faster than in STM or GRU models (Lea et al. 
2016).

Time2Vector (T2V‑BiLSTM and T2V‑BiGRU)

Time-series input can be considered a sequence in which a dependency across 
time exists among the sample data rather than being identically and independently 

Fig. 2  (left) The architecture of a TCN model with a stack of two dilated causal convolutional layers and a 
residual connection. (right) a dilated causal convolution layer with dilated factos D = {1, 2, 4} and kernel size 
k = 2
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distributed (i.i.d); therefore, it is essential to account for time features while developing 
a time-series forecasting model. Vector embedding has been successfully used in many 
NLP tasks (Pennington et al. 2014; Mikolov et al. 2013; Almeida and Xexéo 2019). Simi-
larly, Time2Vector (Kazemi et al. 2019) is a learnable vector embedding for time that can 
be easily combined with many deep-learning models. Time2Vector is a decomposition 
technique that encodes a temporal signal into periodic and nonperiodic patterns, allow-
ing the model to understand and learn from the time-dependent patterns. It eliminates 
the need for explicit feature engineering when dealing with time-related features. By 
incorporating temporal information meaningfully, Time2Vector can improve the perfor-
mance of time-series models.

For a given scalar notion of time τ , Time2Vec of τ is a vector of size k + 1 defined as 
follows:

where T2V (τ )[i] is the ith element of T2V (τ ) . F  is a periodic activation function, and 
w and b are learnable weight and bias parameters, respectively. Following the indicated 
activation function in the original T2V paper (Kazemi et al. 2019), we use a sine function 
as F  . Time2Vector (T2V) assures that the time scale will not affect the learned periodic 
and nonperiodic time features (Yang et al. 2021).

To construct the T2V-BiLSTM and T2V-BiGRU models, first, the input sequences are 
transformed by Time2Vector embeddings, then the embedded input vectors are entered 
into a single-layer BiLSTM or BiGRU model, and finally, the output is predicted through 
a fully connected layer. Figure  3 presents a schematic of the T2V-BiLSTM or T2V-
BiGRU model. Figure  4 summarizes the complete data preprocessing, model training, 
and prediction process for this study’s test set.

Hybrid models

To verify the applicability of hybrid models in forecasting daily crude oil, gold, and silver 
prices, we used CNN-BiLSTM, CNN-BiGRU, TCN-BiLSTM, and TCN-BiGRU mod-
els. CNNs in the initial layers of the hybrid model can learn low-level spatial features, 
such as local patterns, while the BiLSTM layers can learn high-level temporal depend-
encies. This hierarchical representation learning allows the model to capture local and 
global dependencies in the time-series data. CNNs and TCNs are well suited for feature 

(19)T2V (τ )[i] =

{

wiτ + bi, ifi = 0.
F(wiτ + bi), if 1 ≤ i ≤ k .

Fig. 3  T2V-BiLSTM or T2V-BiGRU models. s is the input sequence length, k is the T2V output size, h is the 
recurrent hidden size
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extraction from raw data, including time-series data. They can automatically learn rel-
evant features and reduce the dimensionality of the input, which can be beneficial for 
downstream BiLSTM or BiGRU layers to learn more meaningful representations. The 
explanation of each model structure is as follows.

CNN-BiLSTM and CNN-BiGRU models: First, a one-dimensional convolution layer is 
applied to input sequences in the CNN module. Then, a max pooling layer is applied to 
the output of the convolution layer to extract the essential features. Next, the output of 
the pooling layer is entered into a single-layer BiLSTM or BiGRU module, and the final 
output is predicted through a fully connected layer.

TCN-BiLSTM and TCN-BiGRU models: First, a TCN module receives the input 
sequences. Next, the output of the TCN is introduced into a single-layer BiLSTM or 
BiGRU module, and the final output is predicted through a fully connected layer.

Fig. 4  The price time-series forecasting flow chart
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Ensemble and machine‑learning models

This study uses random forest and LightGBM, a gradient-boosting technique among 
the ensemble machine-learning models. Random forest generally provides high predic-
tion accuracy because of the aggregation of multiple decision trees. It is less prone to 
overfitting than individual decision trees. By combining multiple trees and using tech-
niques such as bagging and random feature selection, random forest reduces variance 
and improves the model’s generalization ability. It is also robust to outliers and miss-
ing values; however, it lacks autocorrelation modeling because random forest treats each 
data point independently and does not explicitly consider the temporal dependencies 
between consecutive observations in the time series. Random forest is not well suited for 
extrapolation, especially for long-term forecasts; thus, it may be difficult to capture and 
project future trends extending beyond the observed data range. While random forest 
is generally robust to overfitting, it can still be sensitive to noisy data; it may overfit the 
noise if the dataset contains a substantial amount of noise or irrelevant features, leading 
to degraded performance.

LightGBM is a powerful and efficient gradient-boosting framework that performs 
excellently in various machine-learning tasks. LightGBM is highly efficient and can han-
dle large datasets with millions of instances and features. It uses a histogram-based algo-
rithm to achieve faster training and prediction times than traditional gradient-boosting 
implementations. The main advantage of LightGBM is low memory usage due to the 
use of a compact data structure for representing the dataset during training. Like other 
gradient-boosting algorithms, LightGBM can be prone to overfitting if not properly reg-
ularized or tuned. LightGBM may struggle to capture complex feature interactions com-
pared with deep-learning models.

SVR is a machine-learning model that captures linear and nonlinear relationships 
between variables. It can handle high-dimensional datasets and capture complex rela-
tionships between variables. The algorithm focuses on the support vectors, the data 
points that influence the model’s decision boundary most. Outliers have less impact on 
this model because of the use of a margin. SVR allows using different kernel functions, 
such as linear, polynomial, radial basis function, and sigmoid. This flexibility enables 
the modeling of various relationships between the input and target variables; however, 
SVR performance highly depends on selecting appropriate hyperparameters, such as 
kernel type, regularization parameter, and kernel-specific parameters. Training an SVR 
model can be computationally expensive, especially when dealing with large datasets or 
complex kernel functions. SVR does not account for the temporal dependencies among 
observations for time-series datasets.

KNN is an instance-based, nonparametric algorithm that uses different distance met-
rics, such as Euclidean distance, Manhattan distance, or cosine similarity, to make pre-
dictions. The KNN does not explicitly learn a model from the training data. Instead, it 
stores the entire training dataset and uses it during prediction, eliminating the need for a 
time-consuming training phase. As the number of training instances increases, the algo-
rithm’s prediction time can be significant because it requires calculating distances to all 
training samples. Some limitations of KNN models are the curse of dimensionality, sen-
sitivity to the scale of features, intensive memory requirement, time-consuming predic-
tions with large datasets, and lack of capturing temporal dependencies.
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Evaluation criteria

This study adopts the following three metrics to calculate the forecasting error and 
evaluate the prediction performance: MAE, MAPE, and RMSE. MAE measures the 
difference between two continuous variables and calculates the mean value of all abso-
lute errors. MAPE is a scaleless error value that measures the relative forecasting error. 
RMSE represents the standard deviation of the residual error between the predicted and 
observed values. The models’ prediction performance increases with decreasing error 
measures. The formula for the above evaluation criteria is as follows:

where n is the sample size, and yi and ŷi are the true and predicted values for sample i , 
respectively.

Empirical analysis and results
Data description and preprocessing

The daily closing prices of WTI and Brent crude oil, gold, and silver were collected from 
2000-01-04 to 2022-03-25 (Fig. 5). The original spot price data for WTI and Brent crude 
oil are derived from the US Energy Information Administration (https://​www.​eia.​gov), 
while the spot prices of gold and silver are from KITCO (https://​www.​kitco.​com). We 
used data from the same trading days across all four markets to obtain an identical sam-
ple size for all time series.

To find the best hyperparameters and evaluate the models’ real-world performances, 
evaluating them on a separate validation set and a test set representing future unseen 
data is essential. Splitting the time-series datasets is challenging because of temporal 
dependencies, seasonality, and trends. If we split the data randomly, it breaks the tem-
poral order, and the model may be trained on future data, leading to data leakage and 
overfitting. Moreover, if the training set does not capture the full range of seasonality or 
fails to include representative trend patterns, the model’s ability to generalize to unseen 
data may be compromised. Ensuring the training set contains consecutive past observa-
tions to predict future observations, includes multiple seasonal cycles, and adequately 
captures the underlying trends is crucial. Time-based splitting and rolling window 
approaches can address these challenges in time-series analysis. In time-based splitting, 
we split the data based on a specific date or time, ensuring that the training set only con-
tains past observations and the test set contains future observations. In the rolling win-
dow approach, a sliding window is used to create samples in the training, validation, and 
test sets, where each sample includes past observations and the corresponding future 

(20)MAE =
1

n

n
∑

i=1

|ŷi − yi|

(21)MAPE =
100

n

n
∑

i=1

∣

∣

∣

∣

ŷi − yi

yi

∣

∣

∣

∣

(22)RMSE =

√

√

√

√

1

n

n
∑

i=1

(

ŷi − yi
)2

https://www.eia.gov
https://www.kitco.com
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target observation. Thus, for each market, the entire dataset is split into three parts: 65% 
training data (from 2000-01-04 to 2014-06-15), 25% validation data (from 2014-06-16 to 
2020-01-02), and 10% test data (from 2020-01-03 to 2022-03-25). The test data period 
includes the financial crisis due to the COVID-19 pandemic and the sharp decline in 
crude oil prices in April 2020. Therefore, test data include highly volatile price data, 
making forecasting even more challenging.

Since deep-learning models are sensitive to the scale of data, we normalized each data-
set into [0,1] intervals to limit the effect of noise, speed up the updating of neural net-
work parameters, and enhance the training performance of the model. The formula to 
standardize the data is as follows:

where xt and xt ′ denote the data before and after standardization, respectively. Table 2 
summarizes the sample’s descriptive statistics and statistical tests for WTI and Brent 
crude oil, gold, and silver. The total sample size for all markets is 5426. All four mar-
ket spot prices show significant characteristics of skewness, while WTI, Brent, and gold 
also represent significant leptokurtic properties at a 5% significance level. Furthermore, 
the significant Jarque–Bera test statistics at a 1% significance level show that the WTI, 
Brent, gold, and silver price time series do not comply with the normal distribution; 
hence, these markets can be treated as nonstationary signals.

For these forecasting tasks, xt = {x1, x2, . . . , xs} is the input vector, where xi is the price 
data at day i and s is the sequence length (sliding window length), and yt = {xs+1} is the 
target. We created inputs for different sequences before sending a series into the model. 
In this study, we train 16 deep- and machine-learning models with four different sliding 
window lengths of 5, 30, 60, and 90 days to predict the next-day WTI, Brent, gold, and 
silver prices. We have considered 5 as a relatively short sliding window length and 30, 60, 
and 90 as relatively long to capture any seasonality or trend in the data. We will compare 
deep- and machine-learning models to determine how they forecast commodity price 
time series with longer input sequences.

(23)x′t =
xt −min (xt)

max (xt)−min (xt)

Fig. 5  WTI, and Brent crude oil, Gold and Silver price movements from 2000-01-04 to 2022-03-25
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Empirical results

Crude oil and precious metals are essential commodities in financial markets. This study 
aims to forecast the daily price of WTI and Brent crude oil, gold, and silver through 
deep-learning models and compare the prediction performance of deep-learning models 
with random forest, LightGBM, SVR, and KNN models as baseline machine-learning 
models, hence, our results indicate the best deep-learning model for forecasting crude 
oil, gold, and silver daily prices. We will experiment with the performance of all models 
across four sliding window lengths of 5, 30, 60, and 90 days to indicate the suitable input 
length for superior performance with each model. The deep-learning models used in this 
study are LSTM, BiLSTM, GRU, BiGRU, T2V-BiLSTM, T2V-BiGRU, CNN, CNN-BiL-
STM, CNN-BiGRU, TCN, TCN-BiLSTM, and TCN-BiGRU models.

We used grid search on the validation dataset to tune and select the optimal hyperpa-
rameters of each model. The common hyperparameters among all models are the num-
ber of epochs, batch size, dropout rate, and learning rate, equal to 50, 32, 0.2, and 0.001, 
respectively. Table  3 presents the selected hyperparameters of four best-performing 
models in this study. Due to the large scale of the study and space limitations, we only 
presented the selected hyperparameters of BiGRU, T2-BiGRU, TCN, and TCN-BiGRU 
models for each market. The hyperparameters of the other models are available upon 
request from the corresponding author.

After each training step, the weights of the models are updated by the Adam optimizer 
with a scheduled learning rate (lr) as follows:

The initial learning rate ( lr0 ) is 0.001, applied from epoch one through epoch five, and 
then exponentially decreases for each epoch after epoch five. In this study, the models 
were trained to minimize the MSE loss function. The objective function of the training 
process is as follows:

(24)lr =

{

lr0 if epochs < 5

lr ∗ e(−0.1) otherwise
.

Table 2  Descriptive statistics

a 1Null hypothesis is that the series are not skewed
b Null hypothesis is that the series show normal kurtosis
c Null hypothesis is that the series are not normally distributed

*, ** denote the rejection of the null hypothesis at the 1% and 5% significance level, respectively

Index WTI Brent Gold Silver

Count 5426 5426 5426 5426

Mean 61.47 64.27 1020.98 15.73

Standard deviation 25.79 29.33 510.85 8.51

Min − 36.98 9.12 255.95 4.07

Max 145.31 143.95 2067.15 48.7

Skewnessa 0.39* 0.41* − 0.07** 0.61*

Kurtosisb − 0.598* − 0.817* − 1.249* 0.084

Jarque-Berac 218.903* 301.375* 357.452* 342.924*
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where ŷi is the predicted price, and yi is the true target price for sample i.
Overfitting in financial market price forecasting experiments can lead to misleading 

and unreliable results. Overfitting occurs when a model is too complex and can capture 
the noise in the data rather than the underlying patterns. The consequences of overfit-
ting in financial market price forecasting can be severe. Traders reliant on the overfilled 
model may make poor investment decisions, leading to significant losses. Furthermore, 
the overfilled model may be susceptible to market changes, making it difficult to use in 
real-world situations. Techniques such as cross-validation, dropout, early stopping, and 
pruning (for random forest and LightGBM) are employed to mitigate the risk of overfit-
ting in crude oil and precious metals market price forecasting. Cross-validation involves 
partitioning the data into training and validation sets and evaluating the model on the 
validation set to assess its generalization performance. Model regularization in this 
study is achieved through a dropout layer in the models’ architectures and early stopping 
after 10 epochs during training. Early stopping will end the training process if the valida-
tion error does not improve. To further assure the robustness of the forecasting results, 
all reported errors and predicted values are the average outputs from 10 runs of each 
model.

All deep-learning models are implemented using Tensorflow Keras, and machine-
learning models are created using Sklearn. The experiments were conducted using 
Python 3.8 and run on a computing system with a 70 W Tesla T4 NVIDIA-SMI GPU, 
CUDA version 11.2, and 16 GB RAM.

WTI price forecasting

To show the computational performance of our deep-learning models for WTI next-day 
spot price forecasting, we draw the forecasting performance of LSTM, BiLSTM, GRU, 
BiGRU, T2V-BiLSTM, T2V-BiGRU, CNN, CNN-BiLSTM, CNN-BiGRU, TCN, TCN-
BiLSTM, and TCN-BiGRU models, which we compare with the baseline models, i.e., 
random forest, LightGBM, KNN, and SVR models. Each model was executed 10 times 
to reduce randomness and improve the robustness of the results. Table 4 presents the 
MAE, MAPE, and RMSE values for the forecasted next-day WTI prices in the test data-
set across all models. Among the evaluated models and considering two out of three per-
formance criteria, the TCN model consistently achieves the lowest MAE and MAPE for 
WTI price forecasting across all input sliding window sizes. However, when considering 
the RMSE metric, the BiGRU model outperforms the other models for input sequences 
of lengths 5 and 30. Conversely, for input sequences of lengths 60 and 90, the TCN-
BiGRU and T2V-BiGRU models demonstrate superior performance, respectively. In 
addition to the superior prediction performance, the forecasting error of the TCN model 
is not significantly affected by the input sequence length, as we obtain MAE values of 
1.510, 1.455, 1.444, and 1.472 with sequence lengths of 5, 30, 60, and 90, respectively. 
Comparing this with other models, we can see that most models’ performance is more 
sensitive to the input sequence length. Using bidirectional models has proved effective 

(25)Objective function = Minimize MSE = Minimize
1

n

n
∑

i=1

(

ŷi − yi
)2
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in NLP tasks (Arbane et  al. 2023; Huang et  al. 2023; G. Liu and Guo 2019; Raza and 
Schwartz 2023); however, little attention has been paid to using these models for price 
time-series forecasting. In this study, all three performance criteria from Table 4 show 
that bidirectional recurrent models, such as BiLSTM and BiGRU, perform better than 
unidirectional models, such as LSTM and GRU, for all sequence lengths. Bidirectional 
RNNs exploit the network memory to process information from backward and forward 
directions. Therefore, interdependency among data samples is learned better compared 
to unidirectional models that only use forward-direction information processing. Our 
findings comply with Yang and Wang (2022) and Siami-Namini et al. (2019), who found 
that the BiLSTM model outperformed the LSTM model for time-series prediction. Fur-
thermore, it is evident from Table 4 that GRU-type models such as GRU, BiGRU, T2V-
BiGRU, CNN-BiGRU, and TCN-BiGRU perform better than LSTM-type models such 
as LSTM, Bi LSTM, T2V-Bi LSTM, CNN-Bi LSTM, and TCN-Bi LSTM in WTI price 
forecasting.

To evaluate the effectiveness of Time2Vector embedding in WTI price forecasting, we 
compare the MAE, MAPE, and RMSE of the BiLSTM and BiGRU models with those of 
the T2V-BiLSTM and T2V-BiGRU models, respectively. Using the T2V input embed-
ding, the MAE of the BiLSTM and BiGRU models with input sequence 5 increases from 
1.821 and 1.570 to 1.985 and 1.889, respectively. In contrast, the MAE of the BiLSTM 
and BiGRU models with input sequence 90 decreases from 1.904 and 1.699 to 1.670 
and 1.523, respectively. Arguably, Time2Vector embedding does not improve forecast-
ing with smaller input sequences, 5 and 30, while it improves the WTI price forecasting 
performance for longer sequences of 60 and 90. To study the impact of hybrid models, 
such as CNN-BiLSTM and CNN-BiGRU, we compared their performance with single 
BiLSTM and BiGRU models. Combining the CNN model with recurrent-type models 
has a detrimental effect on the forecasting performance of WTI prices, as evidenced by 
an increase in MAE across all sequence lengths. This outcome occurs because the CNN 
module downsamples the input sequence, and some information that might be useful for 
BiLSTM or BiGRU models will be lost, resulting in higher forecasting errors. Similarly, a 
single TCN model outperforms the hybrid TCN-BiLSTM and TCN-BiGRU models. The 
TCN model can see the entire sequence in its receptive field and use the best temporal 
features to forecast the WTI price; therefore, combining it with a recurrent-type model 
will only increase the complexity of the model and cause an overfitting problem without 
significant improvements in forecasting performance.

Upon examining the forecasting errors of ensemble tree-based models, i.e., random 
forest and LightGBM, it becomes clear that random forest performs poorly in predicting 
WTI prices, whereas LightGBM demonstrates exceptional forecasting capabilities. The 
MAPE and RMSE values of LightGBM across sequence lengths of 5, 30, and 90 days are 
consistently the lowest among all 16 forecasting models. Consequently, LightGBM can 
be considered an approximate match to the TCN model as the top-performing method 
for WTI price forecasting. Moreover, the performance of LightGBM exhibits a slight 
decline as the input sequence lengths increase; however, this decrease in performance 
is not significant, indicating that LightGBM is relatively insensitive to variations in the 
input sequence length. Conversely, using the SVR and KNN models, it becomes clear 
that the performance of conventional machine-learning models tends to deteriorate as 
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the input sequences grow. In contrast, deep-learning models are less affected by larger 
input sequences, demonstrating their robustness. All deep-learning models outperform 
the SVR and KNN models for larger input sequences; however, for smaller sequences, 
such as those with a length of 5, the KNN model performs better than the deep-learn-
ing models, except for the BiGRU and TCN models. This discrepancy can be attributed 
to the data within each sequence serving as input features for the KNN model. As the 
sequence length increases, the KNN model faces greater challenges in identifying the 
nearest neighbors required for accurately predicting the target price.

Figure  6 presents the RMSE for the WTI next-day spot price forecasting models to 
find the best sliding window length for each forecasting model. Our experiments with 
WTI price forecasting show that using only recurrent-type models such as LSTM, 
GRU, BiLSTM, BiGRU, T2V-BiLSTM, and T2V-BiGRU, we obtain better prediction 
performance compared with using only CNN or a hybrid of CNN with Recurrent-type 
models such as CNN-BiLSTM and CNN-BiGRU. Recurrent-type models are not very 
sensitive to the input sequence length, and they even perform slightly better with rela-
tively longer input sequences because longer sequences enable the model to learn more 
upward, downward, and complex patterns and generalize better in predicting unseen 
data. Nonetheless, since the CNN models cannot memorize important information 
from past data points, the forecasting error of CNN-type models, such as a single CNN, 
CNN-BiLSTM, and CNN-BiGRU, increases with the input sequence length. The RMSE 
of TCN-BiLSTM and TCN-BiGRU is generally smaller than the RMSE of CNN-BiLSTM 
and CNN-BiGRU models; therefore, we can conclude that among the hybrid models, the 
TCN module performs better than the CNN module in extracting the essential temporal 
features. Figure 6 shows that the input sequence of 60 days of lagged data points is gen-
erally better than other sliding window lengths such as 5, 30, or 90 days for WTI daily 
price forecasting; however, the CNN, CNN-BiLSTM, and CNN-BiGRU models perform 
better with an input sequence of 5 days than the other sequence lengths for WTI price 
prediction. Among the machine-learning models, Ensemble tree-based models emerge 
as the leading models for forecasting WTI prices. Notably, the random forest model 
exhibits subpar performance with shorter input sequences. LightGBM consistently per-
forms well across all input sequences, demonstrating its robust forecasting capabilities. 
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In contrast, the forecasting performance of the SVR and KNN models deteriorates as the 
input sequence length increases, suggesting that these models struggle to capture com-
plex patterns and relationships effectively within longer data sequences.

Our observations regarding WTI forecasting align with Qin et  al. (2023), where the 
GRU model demonstrated superior performance compared with random forest, SVR, 
and LSTM models, achieving a lower MAPE value. Similarly, our results corroborate 
with J. Yuan et al. (2023), highlighting that LightGBM exhibited significantly better per-
formance than the LSTM and SVR models.

Figure 7 compares the line chart of predicted WTI prices in the test dataset with the 
actual WTI price value from 2020-01-03 to 2022-03-25. The predicted values at the end 
of April 2020 indicate that the TCN model surpasses the LightGBM model in accurately 
capturing sharp changes in the WTI price. The TCN model demonstrates superior per-
formance in detecting and predicting abrupt fluctuations in price, showcasing its abil-
ity to capture and respond to sudden market dynamics with greater precision than the 
LightGBM model.

Brent price forecasting

Table 5 shows the errors, MAE, MAPE, and RMSE, of our forecasting models for Brent 
next-day spot price forecasting. We compared the forecasting performance of the LSTM, 
BiLSTM, GRU, BiGRU, T2V-BiLSTM, T2V-BiGRU, CNN, CNN-BiLSTM, CNN-BiGRU, 
TCN, TCN-BiLSTM, and TCN-BiGRU models with the baseline models, random for-
est, LightGBM, KNN, and SVR models. According to the lowest values of the MAE and 
RMSE measures for all input sequence lengths, 5, 30, 60, and 90, the TCN is the best-
performing model in predicting the Brent crude oil price in the test dataset. Consider-
ing the MAPE for input sequences with 5 lagged data points, the TCN model has the 
best Brent price prediction performance; for input sequences of lengths 30, 60, and 90, 
the T2V-BiGRU model outperforms other models. Furthermore, the TCN model is not 
particularly sensitive to the input sequence length. The TCN achieves a robust and sta-
ble forecasting performance for all input sequence lengths as the MAE with 5, 30, 60, 
and 90 sequences are 1.295, 1.353, 1.315, and 1.301, respectively. The performance of 
most other models exhibits higher sensitivity to changes in the input sequence length 

Fig. 7  Comparison of WTI crude oil price forecasting models on the test dataset
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for Brent crude oil. For instance, the MAEs of the CNN model grow with increasing 
sequence length as it obtains MAEs of 1.542, 1.879, 2.818, and 5.194 with sequence 
lengths of 5, 30, 60, and 90, respectively. Similar to our findings for WTI crude oil price 
forecasting, we found that BiLSTM and BiGRU models generally outperform unidirec-
tional LSTM and GRU models in forecasting Brent crude oil prices. By juxtaposing the 
MAE, MAPE, and RMSE of the GRU-type models (such as GRU, BiGRU, T2V-BiGRU, 
CNN-BiGRU, and TCN-BiGRU) with those of the LSTM-type models (such as LSTM, 
BiLSTM, T2V-BiLSTM, CNN-BiLSTM, and TCN-BiLSTM) we found that a GRU unit is 
a more appropriate recurrent unit for Brent crude oil price forecasting.

The impact of Time2Vector embedding in Brent crude oil price forecasting is assessed 
by comparing the MAE, MAPE, and RMSE of the T2V-BiLSTM and T2V-BiGRU mod-
els with the BiLSTM and BiGRU models, respectively. Table 5 shows that T2V embed-
ding improves the forecasting performance of the BiLSTM model for input sequences of 
60 and 90 while it stimulates the performance of the BiGRU model for input sequences 
of 30, 60, and 90. The results of Brent crude oil price forecasting confirm that T2V 
embedding favorably influences forecasting with longer input sequences. For the hybrid 
models, our results indicate that combining the CNN model with recurrent-type models 
adversely affects the performance of the BiLSTM and BiGRU models for Brent crude 
oil price forecasting. The same pattern appears when comparing the forecasting perfor-
mance of a single TCN model with the TCN-BiLSTM and TCN-BiGRU hybrid models 
in predicting Brent daily prices. The TCN model outperforms the hybrid models.

Comparing the forecasting errors of the random forest, LightGBN, SVR, and KNN 
models with our deep-learning models indicates that the forecasting performance 
of deep-learning models is superior to that of machine-learning models. However, 
the ensemble LightGBM model stands as an exception, demonstrating remarkable 

Table 5  Brent price forecasting performance

To assure the robustness of models’ performances, the average of errors in ten runs of the models are reported here. Bold 
indicates the lowest value

Models MAE MAPE RMSE

5 30 60 90 5 30 60 90 5 30 60 90

LSTM 1.856 1.806 1.789 1.821 3.689 3.563 3.509 3.630 2.860 2.826 2.800 2.830

GRU​ 1.760 1.721 1.436 1.412 3.343 3.277 2.752 2.715 2.760 2.670 2.289 2.257

BiLSTM 1.703 1.492 1.556 1.562 3.328 2.895 2.974 3.013 2.643 2.364 2.446 2.449

BiGRU​ 1.421 1.428 1.439 1.425 2.888 2.861 2.895 2.833 2.222 2.217 2.237 2.228

T2V-BiLSTM 1.893 1.503 1.417 1.403 3.738 2.922 2.788 2.683 2.922 2.371 2.211 2.200

T2V-BiGRU​ 1.721 1.386 1.372 1.403 3.345 2.669 2.641 2.671 2.671 2.189 2.171 2.204

CNN 1.542 1.879 2.818 5.194 2.653 3.679 5.773 5.150 2.459 2.934 4.335 4.032

CNN-BiLSTM 1.857 2.456 2.680 2.641 3.618 4.887 5.241 5.121 2.844 3.807 4.126 4.096

CNN-BiGRU​ 1.769 2.414 2.265 2.279 2.136 5.026 4.684 4.233 2.747 3.694 3.478 3.248

TCN 1.295 1.353 1.315 1.301 2.637 2.905 2.658 2.697 2.035 2.059 2.052 2.045
TCN-BiLSTM 2.063 2.320 1.653 1.879 4.062 4.620 3.215 3.592 3.171 3.658 2.467 2.923

TCN-BiGRU​ 1.768 2.035 1.363 2.061 3.440 4.061 2.639 4.121 2.746 3.236 2.129 3.217

Random Forest 1.989 2.681 2.717 2.667 3.811 5.425 5.475 5.275 2.909 3.585 3.565 3.501

LightGBM 1.375 1.426 1.4525 1.478 2.719 2.910 2.963 3.063 2.130 2.174 2.190 2.210

SVR 2.130 2.787 4.480 4.530 4.685 5.192 9.343 8.417 3.284 4.102 6.284 6.448

KNN 1.594 3.224 5.440 6.421 3.197 6.737 10.72 12.94 2.483 4.984 8.379 10.14



Page 27 of 40Foroutan and Lahmiri ﻿Financial Innovation          (2024) 10:111 	

performance as the second-best model among all 16 models for forecasting Brent crude 
oil prices across all input sequence lengths. This exceptional performance sets Light-
GBM apart from the other models, emphasizing its robustness and effectiveness in 
accurately predicting Brent crude oil prices, regardless of the input sequence length; 
however, for the short sequence length of 5, the KNN performs better than the deep-
learning models, except for the BiGRU, CNN, and TCN models.

Figure 8 represents the RMSE of the forecasting models implemented in this study to 
predict the next-day Brent crude oil price in the test dataset. Our results denote that 
the recurrent-type models such as LSTM, GRU, BiLSTM, BiGRU, T2V-BiLSTM, and 
T2V-BiGRU outperform the CNN and hybrid models such as CNN-BiLSTM, CNN-
BiGRU, TCN-BiLSTM, and TCN-BiGRU in terms of Brent price forecasting. Figure 8 
shows that, in general, the efficacity of recurrent-type models in predicting the Brent 
price is enhanced with relatively longer input sequences; however, the CNN and hybrid 
models do not perform well with longer input sequences. The RMSE of TCN-BiLSTM 
and TCN-BiGRU are mainly lower than the RMSE of CNN-BiLSTM and CNN-BiGRU 
models; therefore, we can infer that the TCN module performs better than the CNN 
module in extracting the critical temporal features of Brent crude oil price. Examin-
ing the ensemble and conventional machine-learning models, namely random forest, 
LightGBM, SVR, and KNN, indicates that the optimal forecasting input sequence for 
Brent price prediction is five days. The LightGBM model achieves superior forecasting 
across all input sequences and, thus, is not significantly affected by changes in the input 
sequence length. As a general observation, the forecasting performance of these base-
line models declines as the input sequence length increases, which indicates that shorter 
input sequences provide more accurate and reliable predictions than longer sequences 
when using these models for forecasting Brent prices. Regardless of the machine learn-
ing–type models, CNN, CNN-BiLSTM, and CNN-BiGRU models that perform better 
with shorter input sequences, our experiments indicates that the best input sequence 
length for Brent crude oil forecasting is 60 days of past data. Hence, the lowest RMSE 
values across most of the deep-learning models in this study are achieved for an input 
sequence length of 60 for Brent crude oil price forecasting.
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Our results validate the conclusions drawn by Zhao et al. (2017), indicating that deep-
learning models outperform machine-learning models, such as SVR, in forecasting 
crude oil prices. Figure 9 compares the line chart of predicted Brent crude oil prices in 
the test dataset with the actual Brent price values from 2020-01-03 to 2022-03-25. Ana-
lyzing the predicted value during the abrupt Brent price change periods shows that the 
TCN model outperforms the LightGBM model in accurately capturing sharp changes 
in Brent price. Thus, TCN is a more reliable model for predicting the sudden changes in 
Brent price.

Gold price forecasting

Table  6 presents the forecasting errors of gold price prediction with 16 deep- and 
machine-learning models. Considering the models’ resulting MAE, MAPE, and RMSE, 
the TCN model has the best gold price prediction performance for input sequences of 
5 and 90 days. Moreover, for gold price predictions with input sequences of 30 and 60, 
the BiGRU and GRU models show superior performance. Our results show that in most 
cases, the deep-learning models performed remarkably better than the baseline random 
forest, LightGBM, SVR, and KNN models in predicting the price of gold. Compared 
with CNN-BiLSTM, TCN-BiLSTM, and TCN-BiGRU, the SVR model achieved lower 
MAE, MAPE, and RMSE values. The prediction with gold price data shows that bidi-
rectional LSTM models perform better than unidirectional LSTM models for all input 
sequences. Meanwhile, the BiGRU model outperformed the GRU model exclusively for 
input sequences of 5 and 60  days. Comparing the gold price forecasting errors of the 
GRU-type models, such as GRU, BiGRU, T2V-BiGRU, CNN-BiGRU, and TCN-BiGRU, 
with those of the LSTM-type models, such as LSTM, Bi LSTM, T2V-Bi LSTM, CNN-Bi 
LSTM, and TCN-Bi LSTM, we found that the GRU-type models are more appropriate 
than the LSTM-type models for gold price forecasting.

Figure 5 shows that the dynamics of gold price movement from 2000-01-04 to 2022-
03-25 differs from the WTI and Brent crude oil markets, and an upward trend is visible 
in Gold price movements throughout the time. Nevertheless, our deep-learning models 
could predict the gold price for the test data relatively well. In contrast to its perfor-
mance in WTI and Brent price forecasting, the LightGBM model surprisingly did not 

Fig. 9  Comparison of Brent crude oil price forecasting models on the test dataset
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exhibit strong generalization capabilities when predicting the gold price during the test 
data period. Despite its success in other forecasting tasks, the LightGBM model failed 
to provide accurate and reliable predictions for gold prices, indicating that the under-
lying dynamics and patterns of gold price data might differ significantly from those of 
WTI and Brent. Table 8 shows the coefficient of variation for the resulting MAEs of all 
forecasting models. The coefficient of variation is a scaleless value calculated by dividing 
the SD of the model MAEs through various input sequence lengths by the mean of those 
MAEs. The forecasting results of the gold market with the results of the WTI and Brent 
crude oil markets from Table  8 show that the models are more sensitive to the input 
sequence lengths of the gold market as the MAE forecasting error of each model varies 
markedly across the sequence lengths.

Figure  10 depicts the RMSE of our forecasting models to predict the next-day gold 
price in the test dataset. The recurrent-type models, such as LSTM, GRU, BiLSTM, 
BiGRU, T2V-BiLSTM, and T2V-BiGRU, generally have lower RMSE values compared to 
the CNN and hybrid models, such as CNN-BiLSTM, CNN-BiGRU, TCN-BiLSTM, and 
TCN-BiGRU. This result aligns with the research conducted by He et al. (2019) on gold 
price prediction, which demonstrated that a hybrid CNN–LSTM model did not exhibit 
superior performance compared with individual CNN or LSTM models.

A shorter input sequence of 5-day price data is more useful in gold price predic-
tions with deep- and machine-learning models. The gold price forecasting perfor-
mance generally deteriorates by increasing the input sequence length. The best 
prediction performance across all models and sequences was achieved through the 
BiGRU model using 30 days of gold price data. Based on the findings presented in 
Table  8, it is evident that LightGBM exhibits a higher coefficient of variation for 
MAE in Gold price forecasting than WTI and Brent crude oil. This outcome indi-
cates that LightGBM is considerably sensitive to changes in the input sequence 
length when predicting the gold price. The higher coefficient of variation indicates 
that the performance of LightGBM may vary significantly when the input sequence 
length changes, underscoring the need for careful consideration and optimization 
of the input sequence length specifically for gold price forecasting with LightGBM. 
Figure 11 compares the line chart of predicted gold prices in the test dataset with the 
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Fig. 10  RMSE of Gold next-day price forecasting models
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actual gold price values from 2020-01-03 to 2022-03-25. These results indicate that 
the random forest and LightGBM models do not generalize well in gold price fore-
casting. Comparing the performance of LightGBM and KNN models in predicting 
gold prices, our results demonstrate the superiority of LightGBM, which supports 
the study by Yuan (2023).

Silver price forecasting

As a precious metal, the daily spot price of silver is forecasted through the deep-learning 
models in this study and compared with the random forest, LightGBM, SVR, and KNN 
forecasts. Table  7 shows the MAE, MAPE, and RMSE of silver price predictions. The 
TCN model is the best-performing model across all input sequence lengths to forecast 
the daily silver price, as it scores the lowest MAE, MAPE, and RMSE among all mod-
els. Besides the TCN’s superior ability to forecast the silver price, this model is the least 
susceptible to the input sequence length, as shown by the MAE coefficient of variation 
in Table 8. The coefficient of MAE variation across all sequence lengths is 0.015 for the 
TCN model, the lowest among all models. The results of this study indicate that, except 
for the TCN-BiLSTM and TCN-BiGRU models with an input sequence of five days, our 
deep-learning models are superior to the SVR and KNN models in predicting the price 
of silver. For silver price forecasting, providing bidirectional information seems promis-
ing with the BiLSTM model as it reached lower MAE, MAPE, and RMSE values than the 
unidirectional LSTM; however, bidirectional information did not improve the forecast-
ing performance of the GRU model for silver price prediction. Furthermore, the results 
from Table 7 indicate that GRU-type models have a relatively better forecasting perfor-
mance than LSTM-type models for silver price prediction.

Using the ensemble (random forest and LightGBM) or conventional (SVR and KNN) 
machine-learning models, only LightGBM outperformed some of the deep-learning 
models, namely CNN, CNN-BiLSTM, CNN-BiGRU, TCN-BiLSTM, and TCN-BiGRU, 
in silver price forecasting. LightGBM was the best machine-learning model for silver 
price forecasting across all sequence lengths.

Comparing the MAE coefficient of variations between the silver and gold markets in 
Table 8 shows that the performance of our forecasting models is relatively less affected 

Fig. 11  Comparison of Gold price forecasting models on the test dataset
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by changes in the input sequence length when predicting the silver market. This finding 
indicates that the forecasting models exhibit greater stability and consistency in their 
predictions for the silver market, regardless of variations in the input sequence length. 

Table 7  Silver price forecasting performance

To assure the robustness of models’ performances, the average of errors in ten runs of the models are reported here. Bold 
indicates the lowest value

Models MAE MAPE RMSE

5 30 60 90 5 30 60 90 5 30 60 90

LSTM 0.490 0.463 0.497 0.491 2.186 2.086 2.239 2.221 0.721 0.694 0.741 0.710

GRU​ 0.440 0.394 0.381 0.385 1.967 1.753 1.667 1.684 0.658 0.590 0.549 0.556

BiLSTM 0.471 0.387 0.499 0.476 2.095 1.716 2.237 2.137 0.702 0.575 0.733 0.710

BiGRU​ 0.425 0.442 0.388 0.364 1.897 1.973 1.721 1.609 0.639 0.649 0.571 0.543

T2V-BiLSTM 0.478 0.589 0.491 0.434 2.138 2.666 2.206 1.933 0.717 0.850 0.730 0.653

T2V-BiGRU​ 0.472 0.548 0.462 0.370 2.125 2.483 2.065 1.641 0.703 0.794 0.679 0.553

CNN 0.551 0.730 0.752 0.768 2.454 3.273 3.400 3.468 0.786 1.030 1.090 1.140

CNN-BiLSTM 0.571 0.747 0.670 0.775 2.538 3.307 3.022 3.478 0.800 1.103 0.980 1.108

CNN-BiGRU​ 0.528 0.611 0.656 0.635 2.358 2.737 2.952 2.843 0.779 0.926 0.953 0.893

TCN 0.355 0.349 0.346 0.357 1.573 1.547 1.525 1.575 0.529 0.520 0.513 0.525
TCN-BiLSTM 0.647 0.942 0.746 0.603 2.881 4.269 3.345 2.668 0.960 1.327 1.013 0.867

TCN-BiGRU​ 0.714 0.928 0.553 0.467 3.186 4.155 2.476 2.086 1.058 1.307 0.780 0.651

Random Forest 1.831 0.831 0.848 2.476 8.076 3.562 3.646 11.30 2.149 1.059 1.075 2.764

LightGBM 0.509 0.475 0.486 0.475 2.154 2.047 2.070 2.061 0.710 0.665 0.684 0.646

SVR 0.602 1.164 1.077 1.130 2.656 5.006 4.609 5.034 0.775 1.321 1.359 1.513

KNN 0.667 1.170 1.847 2.686 2.805 5.078 8.022 11.47 0.913 1.501 2.295 3.300

Table 8  coefficient of variation (CoV) for the MAE of forecasting models

H0: the mean CoV of Gold and Silver markets are equal (p-value = 0.0074)

H0: the mean CoV of WTI and Brent markets are equal (p-value = 0.7142)

The coefficient of variation is calculated by standard deviation(MAEi )
mean(MAEi )

 , i = s5, s30, s60, s90 . Models with values in bold are least 
sensitive to the input sequence lengths for each market’s price predictions. Bold indicates the lowest value

WTI Brent Gold Silver

LSTM 0.020 0.016 0.124 0.031

GRU​ 0.061 0.116 0.164 0.068

BiLSTM 0.067 0.056 0.216 0.107

BiGRU​ 0.041 0.005 0.250 0.087

T2V-BiLSTM 0.137 0.148 0.153 0.131

T2V-BiGRU​ 0.108 0.114 0.248 0.158

CNN 0.274 0.577 0.423 0.144

CNN-BiLSTM 0.260 0.158 0.321 0.132

CNN-BiGRU​ 0.182 0.130 0.257 0.092

TCN 0.020 0.020 0.271 0.015
TCN-BiLSTM 0.162 0.143 0.388 0.205

TCN-BiGRU​ 0.081 0.179 0.248 0.305

Random Forest 0.258 0.121 0.341 0.465

LightGBM 0.019 0.027 0.201 0.028

SVR 0.301 0.301 0.251 0.229

KNN 0.429 0.452 0.339 0.476
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Unlike the gold market, where the models show higher sensitivity to changes in the input 
sequence length, the silver market demonstrates a more robust and reliable forecasting 
performance across different input sequence lengths.

Figure 12 presents the RMSE of our deep-learning models to forecast the silver next-
day price in the test dataset. Similar to the results of the WTI, Brent, and gold mar-
kets, the silver price forecasting error of the recurrent-type models such as LSTM, GRU, 
BiLSTM, BiGRU, T2V-BiLSTM, and T2V-BiGRU are generally lower than the forecast-
ing error of the CNN and hybrid models such as CNN-BiLSTM, CNN-BiGRU, TCN-
BiLSTM, and TCN-BiGRU. The best-performing model for predicting the silver price 
is the TCN model, which demonstrates robust forecasting performance across all input 
sequence lengths. Our results show that the recurrent-type models generally perform 
better with a longer input sequence of 90 days to predict the next-day silver price. The 
best prediction performance across all models and sequences is achieved through the 
TCN model using 60 days of past silver price data. Moreover, in hybrid models such as 
CNN-BiLSTM, CNN-BiGRU, TCN-BiLSTM, and TCN-BiGRU, the TCN module per-
forms better than the CNN module in extracting the temporal features of the silver mar-
ket price.

Figure 13 illustrates the line chart of the best-predicted silver prices in the test data-
set with the actual silver price values from 2020-01-03 to 2022-03-25, showing that the 
TCN and random forest models are the best and least generalizing models in silver price 
forecasting.

Using MAPE as the metric, our silver price prediction results surpass those of a Gono 
et  al. (2023), which employed random forest and XGBoost methods. Our best MAPE 
for silver price prediction, 1.52%, significantly outperforms the best MAPE of 5.98% 
achieved by Gono et al. (2023).

Our significant empirical findings can be summarized as follows.

1.	 TCN is the best model for generalizing and forecasting commodity market prices.
2.	 LightGBM is the best machine-learning model for forecasting commodity market 

prices; however, compared with the TCN model, it performs poorly in capturing and 
responding to sharp market dynamics.
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Fig. 12  RMSE of Silver next-day price forecasting models
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3.	 GRU-type models are the best recurrent-type deep-learning models in commodity 
price forecasting.

4.	 CNN-type models perform poorly in forecasting commodity market prices.
5.	 The TCN and LightGBM models are the most robust to input sequence lengths in 

predicting commodity market prices.
6.	 Using bidirectional models improves commodity price forecasting compared to 

only information from the forward price direction. This finding is also supported 
by Siami-Namini et al. (2019), indicating that BiLSTM-based modeling yields better 
predictions than regular LSTM-based models.

7.	 To achieve superior forecasting performance, it is essential to consider the proper 
input sequence length for each deep- or machine-learning model.

8.	 Among WTI, Brent, gold, and silver, gold is the most sensible market for the input 
sequence length in price forecasting.

9.	 Time2Vector embedding improves forecasting performance only when using longer 
input sequences.

Our findings provide valuable insights for analysts seeking to improve the accuracy of 
commodity market price forecasts. By examining the performance of various forecasting 
models and considering the impact of input sequence length on their predictive capabili-
ties, our study offers guidance for selecting the most suitable models and input param-
eters for forecasting commodity market prices. With this knowledge, governments, 
energy sector managers, crude oil and precious metals investors can make sensible deci-
sions. In a governmental context, crude oil and precious metal price forecasting helps 
governments in fiscal planning, economic policy decisions, resource allocation, revenue 
management, international trade negotiations, socioeconomic development, environ-
mental policies, and geopolitical considerations. Accurate forecasts enable governments 
to make informed decisions that impact the national economy, public finances, and 
sustainable development. Accurate crude oil price forecasting gives managers valuable 
insights to optimize operations, manage risks, allocate budgets and resources efficiently, 
and make strategic decisions in the dynamic energy market. They can use forecasted 
prices to hedge against potential price fluctuations, secure favorable contracts, and 

Fig. 13  Comparison of Silver price forecasting models on the test dataset
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manage exposure to market volatility. Accurate crude oil price forecasting can provide 
a competitive advantage by enabling managers to make timely and informed decisions. 
They can anticipate market trends, respond quickly to price fluctuations, and stay ahead 
of competitors regarding pricing, supply chain management, and customer satisfaction.

Conclusion
Crude oil, particularly WTI and Brent, is crucial in global financial markets and eco-
nomics. In recent years, crude oil prices have become more vulnerable to geopolitical 
and macroeconomic factors. Thus, understanding the dynamics of crude oil markets is 
inevitable. Furthermore, precious metals such as gold and silver are key commodities 
mined in particular countries, which makes the economies of these countries highly reli-
ant on precious metal markets. Moreover, gold is a substitute asset for stock markets 
and is indispensable in financial investment portfolios. Therefore, developing an accu-
rate forecasting model for crude oil, gold, and silver price movements is vital for policy-
makers, business owners, investors, and other stakeholders to mobilize timely political 
movements, foresee market trends, and properly design investment strategies to mit-
igate investment risks. In this study, we implement 12 deep-learning models, namely, 
LSTM, BiLSTM, GRU, BiGRU, T2V-BiLSTM, T2V-BiGRU, CNN, CNN-BiLSTM, CNN-
BiGRU, TCN, TCN-BiLSTM, and TCN-BiGRU, to forecast the WTI, Brent, gold, and 
silver market prices and compare their forecasting performance with four baseline mod-
els, namely, random forest, LightGBM, SVR, and KNN models. We use each market’s 
historical price information for this and apply four different sliding window lengths of 5, 
30, 60, and 90 days. MAE, MAPE, and RMSE evaluation metrics are employed to assess 
the forecasting power of each model. We compared the forecasting performance of these 
models across various input sequence lengths and found that the TCN model is the best-
performing model for forecasting the prices of WTI, Brent, gold, and silver. LightGBM 
exhibits comparable forecasting performance to the TCN model in accurately predicting 
WTI and Brent crude oil prices. Our results also indicate that the BiGRU and GRU mod-
els are the best for predicting gold spot prices with input sequences of 30 and 60, respec-
tively. The best forecasting performance for each market is WTI through a TCN model 
with input sequence 60, MAPE 3.53%, Brent through a TCN model with input sequence 
5, MAPE 2.64%, gold through a BiGRU model with input sequence 30, MAPE 0.85%, 
and silver through a TCN model with input sequence 60, MAPE 1.53%. Eventually, our 
study indicates using the TCN model for superior financial time-series price predictions. 
From the empirical results, we determine that the bidirectional LSTM and GRU models 
outperform the unidirectional LSTM and GRU models, respectively. Moreover, GRU-
type models such as GRU, BiGRU, T2V-BiGRU, CNN-BiGRU, and TCN-BiGRU outper-
formed their LSTM-type peers in predicting WTI, Brent, gold, and silver prices.

Our study has several implications for policymakers and investors. First, the results 
of this study can assist investors and decision makers in promptly anticipating crude 
oil, gold, and silver market prices and adjusting their investment portfolios. Addition-
ally, stakeholders can execute risk-hedging methods and lower their losses with timely 
predictions. In particular, gold is considered a suitable safe-haven asset for the stock 
and cryptocurrency markets (Junttila et  al. 2018). Therefore, timely prediction of the 
gold market price will help stock market investors hedge their portfolios. Regarding 
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organizational-level and country-level relationships, organizations such as the Organiza-
tion of the Petroleum Exporting Countries, World Petroleum Council, and International 
Energy Agency and government agencies can further apply the indicated method, for 
example, the TCN model, to devise profitable policies related to global crude oil prices. 
Finally, our study would be particularly valuable for forecasting crude oil, gold, and silver 
prices in case of extreme events such as the COVID-19 pandemic and the recent conflict 
between Russia and Ukraine, which were covered in the period considered in this study.

Several limitations must be acknowledged in our research on forecasting crude oil and 
precious metal prices. First, these markets’ volatile and nonlinear nature poses difficul-
ties in capturing all the intricate patterns and sudden price changes. Additionally, exter-
nal factors such as natural disasters, geopolitical events, and supply–demand dynamics 
can significantly influence commodity prices and accurately incorporating these factors 
into forecasting models remains a complex task. Finally, it is essential to acknowledge 
the inherent uncertainty in forecasting and implement appropriate risk management 
strategies. Addressing these limitations will enhance the robustness and reliability of our 
research findings.

Some possible directions for improving crude oil and precious metals price forecasting 
exist. First, rather than using only historical price data, other features such as techni-
cal indicators, macroeconomic features, supply and demand data, production rate, and 
interconnections with other financial markets can be used to predict crude oil and pre-
cious metal prices. Second, incorporating the stakeholders’ sentiments, which can be 
derived from news articles and social media platforms, might improve the forecasting 
performance of our proposed method. Finally, an alternative to using sequential data, 
other data structures, and learning methods, such as temporal graph neural networks, 
can be implemented to forecast price time-series data.
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