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Abstract 

Modeling implied volatility (IV) is important for option pricing, hedging, and risk 
management. Previous studies of deterministic implied volatility functions (DIVFs) 
propose two parameters, moneyness and time to maturity, to estimate implied 
volatility. Recent DIVF models have included factors such as a moving average ratio 
and relative bid-ask spread but fail to enhance modeling accuracy. The current study 
offers a generalized DIVF model by including a momentum indicator for the under-
lying asset using a relative strength index (RSI) covering multiple time resolutions 
as a factor, as momentum is often used by investors and speculators in their trad-
ing decisions, and in contrast to volatility, RSI can distinguish between bull and bear 
markets. To the best of our knowledge, prior studies have not included RSI as a pre-
dictive factor in modeling IV. Instead of using a simple linear regression as in previ-
ous studies, we use a machine learning regression algorithm, namely random forest, 
to model a nonlinear IV. Previous studies apply DVIF modeling to options on traditional 
financial assets, such as stock and foreign exchange markets. Here, we study options 
on the largest cryptocurrency, Bitcoin, which poses greater modeling challenges due 
to its extreme volatility and the fact that it is not as well studied as traditional financial 
assets. Recent Bitcoin option chain data were collected from a leading cryptocurrency 
option exchange over a four-month period for model development and validation. Our 
dataset includes short-maturity options with expiry in less than six days, as well as a full 
range of moneyness, both of which are often excluded in existing studies as prices 
for options with these characteristics are often highly volatile and pose challenges 
to model building. Our in-sample and out-sample results indicate that including our 
proposed momentum indicator significantly enhances the model’s accuracy in pric-
ing options. The nonlinear machine learning random forest algorithm also performed 
better than a simple linear regression. Compared to prevailing option pricing models 
that employ stochastic variables, our DIVF model does not include stochastic factors 
but exhibits reasonably good performance. It is also easy to compute due to the availa-
bility of real-time RSIs. Our findings indicate our enhanced DIVF model offers significant 
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improvements and may be an excellent alternative to existing option pricing models 
that are primarily stochastic in nature.

Keywords: Implied volatility, Cryptocurrency options, Momentum indicator, Relative 
strength index, Machine learning, Random Forest regression, Black–Scholes-Merton 
equation

Introduction
The Black–Scholes-Merton (BSM) option pricing model (Black & Scholes 1973) esti-
mates the prices of derivatives based on observable prices of other securities while 
considering the impact of time and other risk factors. Developed in 1973, it is still con-
sidered one of the most popular approaches to pricing options contracts. The model 
assumes the underlying asset’s price follows a geometric Brownian motion with a log-
normal distribution and constant volatility. Using the historical volatility of the underly-
ing asset and other parameters such as interest rates as inputs, the BSM model calculates 
option prices. However, some criticize the model’s assumption that asset prices are log 
normally distributed because stock returns exhibit both fat-tailed marginal distributions 
and volatility clustering (Fama 1965; Mandelbort 1966).

Implied volatility (IV) is calculated as the value that fits an option model’s price to the 
market price. IV is interpreted as the expected volatility implied by the market, while 
historical volatility reflects the past trading range of an underlying asset. Retail option 
traders may be more interested in IV due to its forward-looking nature. It estimates an 
underlying asset’s future price movement according to changes in the price of a corre-
sponding option and can be used as a useful approach in comparing prices for differ-
ent underlying assets, strike prices, and maturities. Traders may quote option prices in 
terms of implied volatilities, and options exchanges usually provide implied volatilities in 
real time. A three-dimensional graph known as an implied volatility surface (IVS) shows 
the implied volatilities of an asset’s options across a range of strike prices and expira-
tion dates (Daglish et al. 2007; Cont & Fonseca 2002). Figure 1 is an example of an IVS 
(Wang et al. 2017). Instead of strike prices, moneyness, i.e., the ratio between the cur-
rent asset price (S) and the strike price (K), is often used to construct an IVS analysis. 
The IVS should, in theory, be flat, but in reality it is curved due to market variations 

Fig. 1 The implicit volatility surface for option chains over a period of time (Wang 2017)
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(Fig. 1). As every option chain is different, the shape of a volatility surface may be wavy 
across moneyness and time to expiry (Fengler, Hardle & Mammen 2005; Cont and Font-
seca, 2002). When an IVS is constructed for certain time periods, multiple IV values are 
observed for the same moneyness and time to expiry, implying that implied volatilities 
depend on market volatility at different points in time.

Two lines of research suggest expansions to the BSM model: jump-diffusion models 
featuring a Poisson-driven jump process, and stochastic volatility models. However, as 
the stochastic parameters are estimated based on the past behavior of underlying asset 
prices over a specific timeframe, their estimates may only be applicable for that time 
period or under similar market conditions. This means that if parameter estimates are 
derived from data during a relatively unstable period, option prices calculated using the 
model in a calmer market may be overestimated.

Modeling implied volatility (IV) directly from option prices observed in the market 
is another approach to option pricing. By successfully modeling IV, it can be used as 
a parameter in the BSM equation to calculate more accurate options prices than those 
obtained from BSM using realized volatilities. Early studies on deterministic IV func-
tions only included moneyness and time to expiry (Dumas et. al. 1998; henceforth 
DFW), but later attempts to include additional factors such as a moving average ratio 
and relative bid-ask spread have failed to improve model accuracy (Pena et  al. 1999; 
2001). This study proposes using an indicator of an asset’s underlying momentum, 
known as a relative strength index (RSI), with multiple time resolutions as a factor in 
modeling IV because momentum is often considered by investors and speculators in 
their trading decisions. To our knowledge, no prior studies have included RSI as a pre-
dictive factor in IV modeling. Unlike volatility, RSI can differentiate between bullish and 
bearish markets and is commonly used by traders to identify overbought or oversold 
situations.

In this study, we use a machine learning regression algorithm known as random forest 
to model the non-linear IV surface instead of the generalized linear regression approach 
used in previous studies. While past studies focus on traditional financial assets such 
as stocks, stock indices and foreign exchange indices, this study examines options on 
Bitcoin, the largest cryptocurrency, which poses significant challenges due to its high 
volatility. Unlike options on traditional financial assets, Bitcoin options have not been 
extensively studied because Deribit – the leading options exchange for cryptocurrencies 
– was only launched in 2018 which means data may be available for four only years. Sep-
arately, Bitcoin options are more heavily traded than options on other underlying assets 
as they are traded continuously over a 24-h day, which means that more data points 
can be collected compared to other securities and foreign exchange rates. A nonlinear 
regression analysis using a machine learning algorithm outperforms the traditional lin-
ear regression analysis used in past studies for model development and validation.

The research gaps identified in this study are as follows:

1. Prior studies have not succeeded in improving the accuracy of the DIVF model pro-
posed in DFW. Including the RSI momentum indicator has not been done before 
and we show it can significantly enhance the accuracy of a DIVF model in modeling 
IV. Despite being less researched over the past two decades, DIVF remains relevant 



Page 4 of 25Leung et al. Financial Innovation  (2024) 10:130

for option pricing due to its simple formulation and ease of computation compared 
to other stochastic option pricing models.

2. This study addresses near to at-the-money and close-to-expiration options, which 
have been excluded from previous research due to their large price fluctuations dur-
ing market stress that presents challenges to modeling. To achieve better IV mod-
eling, we use a nonlinear machine learning regression algorithm in place of the linear 
regression algorithms used in previous DIVF studies.

3. This study focuses on Bitcoin options data, which has received relatively less atten-
tion than more traditional financial assets such as listed securities and foreign 
exchange. The highly volatile nature of Bitcoin markets poses additional challenges 
to model-building but our model demonstrates good performance even under these 
conditions.

Literature review
Option pricing models

Option pricing models have a significant impact on the trading, investing and corpo-
rate finance. Chew and Stewart (2022) review the practical significance of option pricing 
models using case studies. Professional options traders can be seen walking the trading 
floors armed with commercial versions of various option pricing models. Option pricing 
theory also has an important impact on corporate finance practitioners. Option pricing 
methods are the most promising way of attempting to quantify the value of merger and 
acquisition possibilities as a “portfolio of options” i.e., a firm’s option to invest in second-
stage, third-stage, or even later-stage projects. The application of option pricing meth-
ods contributes to the search for a firm’s optimal capital structure.

Table 1 offers a high-level overview of option pricing models with their pros and cons. 
Rubinstein (1985, 1994), among others, provides evidence that implied volatilities tend to 
be higher for options that are deeply in- or out-of-the-money compared to at-the-money 
options. Bates (2000) shows that relative to call options, put options are underpriced by 
the BSM formula, which, in turn, suggests that the IV curve is downward-sloping in the 
strike price. For example, put options with lower moneyness tend to have higher implied 
volatilities than those with higher moneyness. The volatility surface is often observed to 
have an inverted volatility smile, where options with a short time to maturity have vola-
tilities that are multiples of volatilities for options with longer maturities, particularly 
in periods of high market stress (Bakshi et al. 1997). Kim (2009) finds that in the equity 
options market the IV of deep out-of-the-money puts is larger than that of deep out-of-
the-money calls, producing a volatility “smirk,” or a volatility smile that is skewed in one 
direction. This indicates that out-of-the-money puts have higher valuations than com-
parable out-of-the-money calls. Many studies show that observed option price behavior 
deviates from BSM estimates, especially during periods of market stress. For example, 
Voukelatos & Verousis (2019) find that in the US equity market investors tend to herd 
during market stress and the options market is characterized by a higher level of IV and 
more negative implied skewness. Forlicz (2011) notes that in Poland’s stock market, call 
option prices quoted in a bull market are underestimated relative to model prices during 
a bear market. Generally, in bull and bear markets, put options are overestimated rela-
tive to prices resulting from the BSM model.
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To capture difference between market-observed option prices and prices produced by 
the BSM equation, one early approach was to construct implied binomial trees (Rubin-
stein 1994). Jackwerth and Rubinstein (1995) constructed a binomial or trinomial 
numerical procedure to achieve a perfect fit with observed option prices. Later, DFW 
conducted empirical tests of implied binomial trees and found that their pricing and 
hedging (out-of-sample) performance was even worse than that of their proposed ad hoc 
BSM model that used variable implied volatilities, and the stability of the volatility func-
tion was seen as the key reason.

Another approach is to fit generalized stochastic processes to option prices. Many 
such option pricing models have been proposed including the pure jump model in Cox 
and Ross (1976), the jump-diffusion model in Merton (1976), the stochastic volatility 
model in Heston (1993), the Lévy process model (Carr and Wu 2004; Feng et al. 2020) 
and the Variance Gamma model (Madan & Seneta 1990; Mehrdoust & Samimi 2020). 
These models extend the BSM theory to other mathematical methodologies resulting 
in more complicated formulas. Some of these models further differentiate up and down 
moves (Madan et al. 1998; Camera & Heston 2008) to address the asymmetric nature of 
volatility. As these models are stochastic, options are often priced using a Monte Carlo 
simulation. For certain models, the Fast Fourier Transform (FFT) (Carr & Madan 1999) 
can be used to compute option prices efficiently but FFT has its limitations (Nzokem 
2021). Nevertheless, Heston (1993) derives a closed-form solution for a stochastic vola-
tility model. Heston and Nandi (2000) further develop a closed-form formula for their 
generalized autoregressive conditional heteroskedasticity (GARCH) models in which 
option value is described as a function of the option price and the observed path of his-
torical spot prices. GARCH models have been applied in modeling option prices for the 
Stock Exchange of Thailand (Arunsingkarat et  al. 2021) and S&P 500 Volatility Index 
(VIX) option pricing (Venter et al. 2020). Regime-switching stochastic volatility models 
(Elliot et al. 2007; Goutte et al. 2017; Escobar-Anel et al. 2021; Siu & Elliott 2021) further 
incorporate a Markov regime-switching model to achieve a better in-sample match with 
observed option prices in a market with volatility shifts. Nevertheless, the importance of 
out-sample testing was pointed out by studies of empirical tests of various models (Bak-
shi et al. 1997; Kim 2009; Heston & Nandi 2000), as in-sample fit does not necessarily 
lead to out-sample fit. The parameters for some models must be reestimated frequently 
to achieve an acceptable out-of-sample fit.

Modeling implied volatility—deterministic approach

Another approach to option pricing is to model the IVS. If the IV function is accurate, 
the parameter can be fed into the BSM formula to calculate the option’s estimated price. 
This should be a better estimate than what the BSM formula itself calculates, as the 
option’s price behavior in the market was taken into consideration in modeling the IV. 
The DIVF is one such approach. Using another technique, the time-varying volatility of 
the FTSE 100 index has been estimated using the ordinary least square regression on 
time to maturity and moneyness (Ncube 1996). The model depends on strikes and the 
first and second powers of the time to expiry. Similarly, DFW (1998) propose several 
volatility models based on both strike and time to expiration and fit such models to S&P 
500 index options over 5  year period. Their results outperform the implied binomial 
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trees in Rubinstein (1994) in out-of-sample validation tests of S&P 500 index options but 
the prediction errors are still relatively large. By evaluating “how well each week’s esti-
mated volatility function values the same options one week later,” DFW conclude that 
such static and deterministic volatility functions are unstable.

DFW develop an ad-hoc BSM model in which the volatility function is reestimated 
every week and the implied volatility obtained is used to calculate option prices. This 
ad-hoc BSM outperforms the originally proposed deterministic volatility functions and 
has since been used as a benchmark against other option pricing models as it has been 
proven to be difficult to beat in out-of-sample tests (Goncalves & Guidolin 2006). Rosen-
berg (2000) proposes a refined model that employs maturity-adjusted-proportional-
moneyness (moneyness divided by the square root of time to expiry) and at-the-money 
IV. Alentorn (2004) tests models in DFW (1998) by replacing the function of the strike 
price with maturity-adjusted-proportional-moneyness. Pena et  al. (1999) find that the 
relative momentum of the market (defined as the ratio of the current level against the 
three- month moving average) is weakly related to the degree of curvature of the volatil-
ity smile. Pena et al. (2001) estimate the volatility function using relative bid-ask spread, 
time to expiry, and exercise price, but the model performed even worse than the original 
BSM model.

Modeling implied volatility—dynamic approach

To address the time varying nature of IV, a dynamic approach has been proposed in 
which stochastic state variables driving changes in individual implied volatilities are 
identified and modeled. This dynamic approach has dominated most studies on IV func-
tion over the past two decades. Initially, some of these studies focused either on the term 
structure of only at-the-money implied volatilities (Rosenberg 2000) or separately ana-
lyzed IVS for different maturities (Cont & Fonseca 2002). Some of these earlier studies 
focus on the cross-section of an IV model but ignore the time dimension, while others 
model the time-series property of an arbitrarily chosen point on an IVS computed as the 
volatility implicit in contracts with a given moneyness and/or time-to-expiration (Har-
vey & Whaley 1992; Guo 2000; Brooks & Oozeer 2002). Later studies cover longer-term 
maturities and a wider range of moneyness. These studies usually reduce dimensionality 
via a principal component analysis by projecting the IVS onto some “latent” factors that 
explain the evolution of implied distributions through time (Christoffersen et al. 2009). 
Dynamic modeling is then conducted using the time series of the extracted principal 
components (Panigirtzoglous & Skiadopoulos 2004) or higher‐order moments (Neu-
mann and Skiadopoulos 2012). Christoffersen et al. (2008) propose component volatil-
ity models and decompose stochastic volatility into long- and short-term components. 
Guo et al. (2018) also find that short-maturity implied volatilities are more related to a 
short-term variance factor, while long-maturity implied volatilities are more related to 
long-term variance. More recent studies further investigate volatilities for different time 
horizons (short-, medium-, and long-term), exploring the explanatory variables driv-
ing the “latent” factors obtained from the principal component analysis. Bloch & Book 
(2021) suggest the explanatory variables are the spot price of the stock, time to maturity, 
trading volume, estimated volatility, and financial indicators such as the VIX. Chen et al. 
(2022) find that firm fundamentals have explanatory power regarding the shape of the IV 
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curve for options on that firm’s stock. Guo & Han (2014) propose three components: a 
long‐term component driven by macroeconomic variables, a medium‐term component 
driven by default risk, and a short‐term component driven by financial market condi-
tions. Models using the dynamic approach usually predict an IVS over a short period, 
from one day (Gonclaves & Guidon 2006; Guo & Han 2014; Wang et al. 2017) to one 
week. Guo et al. (2018) show that an IVS for at-the-money options is only useful for an 
out-of-sample forecast of implied volatility up to one week ahead for call options, and up 
to 20 days ahead for puts.

Cryptocurrencies

Cryptocurrencies have attracted increasing attention ever since Satoshi Nakamoto 
introduced Bitcoin, a peer-to-peer electronic transaction system (Nakamoto 2008). Bit-
coin can be viewed as a decentralized digital currency that eliminates the need for cen-
tral authorities such as banks or governments. As it can be traded on cryptocurrency 
exchanges, its use as an alternative financial asset is also studied extensively. Barson et al. 
(2022) note that the relationship between gold and some cryptocurrencies was more sig-
nificant over longer periods during the COVID-19 pandemic than in the medium-term, 
and find a high persistence in the hedging properties of gold with Bitcoin. Asafo-Adjei 
et al. (2021) find there was a significant negative information flow from global equities to 
cryptocurrencies during the COVID-19 pandemic; hence, cryptocurrencies may be seen 
as a safe haven for global equities during uncertainty. However, Jalal et al. (2021) point 
out that, despite Bitcoin’s weak correlation with traditional asset classes, Bitcoin’s ability 
to function as a safe-haven currency and portfolio diversifier is debatable due to its lack 
of a regulatory framework and poor security. Harb et al. (2022) show that the crypto-
currency market is uncorrelated to the US stock market but not the US bond market. 
Bitcoin has been characterized by dramatic upward and downward price movements 
associated with high transaction volumes. There are numerous studies on modeling 
the volatility of cryptocurrencies (Chi & Hao 2020). Agyei et al. (2022) find that inter-
dependencies between cryptocurrencies and a cryptocurrency implied volatility index 
(VCRIX) are high and mostly positive across investment horizons. Bouri et  al. (2018) 
show evidence of long memory in Bitcoin price volatility, implying a Bitcoin market 
inefficiency that market participants and analysts may be able to exploit. Balcilar et al. 
(2017) reveal that Bitcoin trading volume could predict returns only when the market 
is not volatile and trading volume cannot predict Bitcoin volatility. Other cryptocurren-
cies’ implied volatilities and volatility modeling are less studied. Agyei et al. (2022) con-
duct a multi-scale and time–frequency analysis of the degree of integration and lead-lag 
relationship among six cryptocurrencies (i.e., Bitcoin, Bitcoincash, Ethereum, Litecoin, 
Ripple, and Tether) and the VCRIX using wavelet techniques.

Artificial intelligence techniques

Advances in artificial intelligence technology offer new methods for option pricing and 
hedging. Carvalho et al. (2019) review machine learning methods applied to predictive 
maintenance. The main methods they review include K-means, random forest (RF), sup-
port vendor machines (SVM), and artificial neural networks (ANNs). ANNs are one of 
the most commonly applied machine learning algorithms but they require huge datasets 
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to learn correctly and avoid overfitting. Ruf and Wang (2020) provide a comprehensive 
review of studies on the application of neural networks to option pricing. Long Short-
Term Memory (LTSM) has been applied to modeling and predicting the entire implied 
volatility surface of S&P 500 options (Cheng & Zhang 2019; Bloch & Book 2021). The 
feedback structure of LSTM allows it to characterize long-memory effects in a finan-
cial time series, especially for the volatility of financial assets. The K-means method is 
a popular clustering algorithm that uses an unsupervised strategy to determine a set 
of clusters. SVM is a widely known method of performing classification and regression 
tasks and has high precision in separating different classes of data (Susto el al. 2013). 
As a supervised learning algorithm, the RF method has been one of the most popular 
research methods for data mining and is widely used in classification and regressions 
(Liu, Wang and Zhang, 2012). With RF, the input data pass through multiple decision 
trees. The algorithm constructs a different number of decision trees at training time 
and outputs the classification scheme or mean prediction for a regression analysis of 
the individual data points. RF offers high classification accuracy with tolerable outliers 
and noise. While deep decision trees may suffer from overfitting, RF avoids overfitting 
in most cases because it works with random subsets of features and builds smaller trees 
from those subsets (Biau & Scornet 2016). Hybrid techniques have been employed to 
build predictive models that combine one or more of the abovementioned techniques. 
Salamai (2023) proposes a hybrid deep learning approach for efficient predictive mode-
ling of daily and weekly crude oil prices, AdaBoost Random Forest is used for predictive 
modeling of high-frequency series, and multi-path spatial–temporal deep learning has 
been used in predictive models of low-frequency series.

Methodology in this study
Dynamic approaches to modeling an IVS cannot fully address the time variation 
observed in actual IVS. If the coefficients must be regularly reestimated (e.g., every year, 
week, or day), the model will only perform well if the estimated coefficients remain the 
same in the next time period, but empirically this is often not the case. Instead of pursu-
ing the dynamic IVS approach, this study is based on the deterministic DIVF approach. 
DFW suggest that the deterministic volatility framework could be generalized. For 
example, the volatility surface may be related to past changes in an asset’s price. Such 
a generalized volatility surface is probably the last candidate model that can be consid-
ered before resorting to fully stochastic volatility processes, which are difficult to esti-
mate and do not permit option valuation based on a “no arbitrage” condition. Referring 
to DFW’s suggestion that the IVS may be related to past changes in the index level, we 
propose to include a momentum indicator, which reflects past changes in the underlying 
asset’s price, as well as investor sentiment that is not considered in the BSM model but 
has a significant impact on option prices. Amin et al. (2004) find that investors’ supply 
of and demand for options may be affected by their return expectations based on market 
momentum. A momentum indicator, a popular type of trend indicator, is often included 
in investor sentiment models (Kim & Ryu 2021; Ryu et al. 2017; Chen, Chong & Duan 
2010). From a behavioral finance perspective, Barberis et al. (1998) distinguish between 
two “states” or “regimes” in their model of investor sentiment. In the first state, investors 
believe that asset returns are mean-reverting, whereas in the second state the returns 
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trend may be likely to rise further after an increase. Investors’ points of view alternate 
between regimes depending on market conditions.

RSI is a popular momentum indicator to measure the speed and magnitude of an 
asset’s recent price changes, and is often used in technical analysis to determine whether 
an asset is overbought or oversold. It measures the ratio of up-moves to down-moves 
and normalizes the result so that the value is in a range of 0 to 100. Traditionally, an RSI 
reading of ≥ 70 indicates an overbought situation. A reading of ≤ 30 indicates an over-
sold condition. RSI is defined as:

where RS is the relative strength given by:

When implementing the RSI, Welles (1978) recommends using a 14-day calculation 
period, while Petitjean (2004) suggests determining the optimal period via a regression 
based on the trading style of the investor. In practice, relative strength is often calculated 
using 14 trading days of price data (RSI-14d), but an RSI can be calculated using various 
resolutions (time frames). For example, RSI-14d is calculated using 14 trading days of 
price data, and RSI-14 h is calculated using 14 trading hours of data. For options trading, 
a longer time frame, measured in days or weeks, may be more relevant for options with 
longer expiries while a shorter time frame, measured in hours, may be more appropriate 
for options that are close to expiring. This corresponds well with past studies involving 
short- and long-term components of option price variance, as discussed in the literature 
review (Christoffersen et al. 2008; Guo et al. 2014).

To the best of our knowledge, RSI as a momentum indicator has not been included as 
a predictive factor in modeling IV in prior studies. Though spot prices, spot price vola-
tility and volatility indexes have been suggested as explanatory factors in the dynamic 
approach, such measures of volatility do not distinguish bullish trends from bearish 
trends, whereas RSI provides information about the market direction. As RSI is usually 
available in real time, data can be collected for models, and real-time predictions can be 
made using these models. RSI can be calculated using different time resolutions as short, 
medium, and long-term indicators.

To be clear, we are not attempting to forecast option prices or implied volatility over 
a specific time horizon. Numerous studies have been conducted to predict option price 
(Venter et al. 2020) and volatility/implied volatility using a time-series model (Fengler 
2009; Guo & Han 2018; Hoang & Baur 2020; Chi & Hao 2020). Instead, we provide a 
generalized deterministic IV function as an alternative to existing option pricing mod-
els. The main application of our model is risk management. One of the most widely 
used methods of portfolio risk management is the Value-at-Risk (VaR), which summa-
rizes the expected maximum loss for a given portfolio over a target horizon at a given 
confidence level. Within the Basel III regulatory framework for international banks, a 
VaR risk model may be used to measure the risk of the bank’s assets. Junior et al. (2022) 
employ Generalized Autoregressive Score and Generalized Autoregressive Conditional 

(1)RSI = 100−
100

1+ RS

(2)RS =
Average gain over the designated period

Average loss over the designated period
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Heteroskedasticity (GARCH) models to compute VaR for precious metals. Similarly, our 
model can facilitate risk management by providing better estimates of option prices in 
worst-case future scenarios, specifically focused on more accurate VaR calculations for 
cryptocurrency portfolios. Such estimations are important for margin calculations and 
preparing collateral for options trading. The RSI indicator used in our model allows risk 
managers to understand the degree of market stress under various scenarios. For exam-
ple, the model can answer questions such as, “how will the price of a put option with one 
month to expiry and a strike price 30% below the current asset value change if the mar-
ket suddenly drops (e.g., RSI-14d and RSI-14 h are both around 30) and two weeks later 
the underlying has lost 20% of its value?” The change in the put option’s price will be 
different if the underlying’s price does not drop suddenly but gradually declines by 20% 
over two weeks. With better estimates under such scenarios, risk managers and traders 
can better model a portfolio’s VaR over the option’s full life cycle.

A stochastic volatility model using GARCH is comparable to our approach as it esti-
mates option values based on the current spot price and observed path of historical spot 
prices (Heston and Nandi, 2000) and offers a closed-form solution. However, the advan-
tage of our model is RSI’s ability to distinguish between bear and bull markets and its 
availability in multiple resolutions. Compared to a GARCH model’s coefficients, RSI can 
be easily understood and applied by risk managers in devising stress tests for different 
types of assets.

Model specification
Our model is mainly based on the DFW’s original and subsequently refined DIVF model. 
Figure 2 is a high-level overview of our theoretical framework. RSI is one of the factors 
included in our model, where it is used as a bearish indicator (RSI ≤ 35) and a bullish 
indicator (RSI ≥ 65). We also compare linear regression methods against the RF machine 
learning algorithm.

Four models and their results are listed below to illustrate the contribution of RSI and 
the use of the machine learning regression algorithm.

Model 1: DVIF model without RSI, using linear regression
Model 2: DVIF model without RSI, using machine learning RF regression
Model 3: DVIF model with RSI added, using linear regression
Model 4: DVIF model with RSI added, using machine learning RF regression

In discussing the models, the following abbreviations are used:
K: Strike Price, S: Current Price (of the underlying), M: Moneyness (= K/S)*, T: Time 

to Maturity, N: Proportional Moneyness (= Log(M)/√T), RSI-H: RSI-14 on hourly basis, 
RSI-H-BEAR: min(0, 0.35 – RSI-H), RSI-H-BULL: min(0, RSI-H – 0.65), RSI-D: RSI-14 
on daily basis, RSI-D-BEAR: min(0, 0.35 – RSI-D), RSI-H-BULL: min(0, RSI-D – 0.65).

*Moneyness as defined in Daglish et al. (2007) and Cont & Fonseca (2002).
Model 1 Alentorn model without RSI, using a linear regression (Alentorn 2004):

(3)IV(N,T) = β0 + β1N+ β2N2 + β3T+ β4T2 + β5NT
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This model is derived from DFW’s model by replacing strike price with maturity-adjusted 
proportional moneyness, as adopted in Rosenberg (2000).

As explained in Alentorn (2004), the volatility smile across moneyness is captured by a 
second-order function that represents the parabolic shape of the smile. The β1 coefficient 
controls for the displacement of the origin of the parabola with respect to the at-the-money 
options, while the β2 coefficient controls for the width of the smile. The coefficients β3 and 
β4 control for the effect of time to expiration, i.e., the volatility term structure.

Model 2 same as Model 1, using RF regression.
Model 3 Includes RSI, using linear regression.
The parameter RSI is included as one of the factors and is separated into two components, 

bearish and bullish. Generalized linear regression is used to obtain the coefficients of each 
variable. Compared to Model 1, only the second-order terms of proportional moneyness 
and time to maturity are retained, to reduce collinearity.

Model 4 same as Model 3, using RF regression.
Therefore in Model 4, all of the factors in Model 3 (N,T, RSI-h-bear, RSI-h-bull, RSI-d-

bear, RSI-h-bull) are included and RF is used as a non-linear regression.
The statistical analysis was conducted using the SAS software package. Invoking the RF 

algorithm and plotting the implied volatility 3-D surface were coded in Python.

Data collection
In this study, we model IV for Bitcoin. Cryptocurrencies often exhibit high volatilities 
and therefore provide richly diverse data and significant challenges for model develop-
ment and testing. In this study, we use options data from the largest cryptocurrency 
options exchange Deribit® (www. derib it. com). We downloaded Deribit option chain 
data for the period from June 3, 2022 to July 31, 2022 as the in-sample (training) dataset, 
and data for the period from August 1, 2022 to September 30, 2022 as the out-sample 
(validation) dataset. The data were obtained at 0:00 h and 12:00 h UST every day. The 
option chain data contains the implied volatility calculated for each option contract 
(assuming a 0% interest rate). Real-time data is freely available from the Deribit web-
site and therefore we began to collect daily data immediately after this research study 
was conceptualized. We chose two months of data collection for training and another 
two months for validation as we believe these are the minimal time periods necessary to 
obtain meaningful results from this exploratory study. Historical option chain data over 
longer time horizons are available by subscription but the authors do not have access to 
such data; hence development/validation of the model over longer time horizons awaits 
future study.

Similarly, for RSI we access data from the website www. taapi. io to obtain RSI values 
at 0:00  h and 12:00  h UST every day. This real-time data is also freely available. The 
standard number of periods used to calculate the initial RSI value is 14. We obtained 
RSI values daily for RSI-14d (momentum over 14 days, to reflect medium-term market 

(4)

IV(N,T, RSI− h− bear, RSI− h− bull , RSI− d− bear, RSI− d− bull) = β0+ β1N2 + β2T2 + β3NT

+B4RSI− d− bear + β5RSI− d− bull+ β6RSI− d− bear ∗N+ β7RSI− d− bull ∗N

+β8RSI− h− bear + β9RSI− h− bull+ β10RSI− h− bear ∗N+ β11RSI− h− bull ∗N

http://www.deribit.com
http://www.taapi.io
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momentum) and hourly for RSI-14 h (momentum over 14 h, to reflect the short term 
market momentum). For comparison, past studies on securities and currencies were 
often constrained by data availability due to illiquidity. For example, the IVS of options 
on securities and currencies could only be constructed from a small number of maturi-
ties, such as 1, 2, 3, 6, 9, 12, 18, and 24 months to expiry from the date of issue. In com-
parison, there are maturities of 2 days, 1 week, and 1, 2, 3, 6, 9, and 12 months for Bitcoin 
option.

We collected data only for options for which both bid and ask prices were available. IV 
was obtained using the mid-point of the bid-ask quote. Some prior studies only include 
options that fall within a certain range of moneyness. For example, Heston and Nandi 
(2000) only consider options where the absolute difference between the strike price and 
the underlying price is ≤ 10%, while Cont and Fonseca (2002) use a cut-off of ≤ 50%, as 
the numerical uncertainty of IV outside this range could be considered too high. Most 
studies remove in-the-money-options and use only out-of-the-money options (Wang 
et al. 2017) as out-of-money options are more sensitive to volatility and are more actively 
traded. In the current study, we also exclude in-the-money options but include all out-
of-the-money options regardless of moneyness. We consider it too restrictive to exclude 
far out-of-money options for cryptocurrencies.

In terms of time to expiry, prior studies exclude options with expiries of less than a 
few days (6 days in Heston & Nandi (2000) and DFW (1998); seven days in Wang et al. 
(2017)) as those very short options are less liquid and a minor bias in their prices could 
lead to a substantial distortion in IV (Wang et al 2017). However, considering that short 
maturity options for cryptocurrencies are sometimes heavily traded, options with less 
than seven days to expiry were included in our study; only those with less than one day 

Fig. 2 High level overview of theoretical framework in this study
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to expiry were excluded. Long maturity options, i.e., those expiring in more than 90 days, 
were excluded as their low liquidity might distort prices. Other studies also exclude long 
maturities (e.g., Heston & Nandi (2000), DFW (1998) exclude options with a time to 
expiry greater than 100 days).

To transform this data, the time to expiry in days was divided by the maximum time to 
expiry (in our case, 90 days). Values of RSI, which were originally scaled from 1 to 100, were 
further divided by 100. Regarding parameter setting for the RF algorithm, we set the maxi-
mum depth of a tree equal to eight and the number of estimators to 15 to avoid overfitting.

Results
Descriptive statistics

We collected data for four months, resulting in a reasonable number of data points due 
to the higher liquidity of cryptocurrency options and their 24-h trading cycle. Table 2 
provides descriptive statistics of the data collected for Bitcoin put and call options for 
the in-sample (training) and out-sample (validation) datasets, from which we observe 
the lowest strike of the bid put options is merely 20% of its current price and the high-
est strike price of the bid call options is 585% of its current price. This implies that some 
traders are betting that Bitcoin will fall dramatically while others are betting that Bitcoin 
will rise dramatically within the next 90  days. This illustrates the extreme volatility of 
Bitcoin expected by traders. Compared to call options, put options have a wider range 
of IV, likely because Bitcoin was in a bear market during the period studied and traders 
emphasized the possibility of a significant price drop in these options more heavily over 
this period. For example, the standard deviation of IV for put options in the training 
dataset is 32%, compared to 15% for call options.

Figure 3 plots the IVS. We note that IV covers a wider range for near-expiry options 
(time of expiry less than six days) and depends on the moneyness of the option. When 
options are close to expiry, their prices may be much higher during a volatile market 
(hence higher IV) versus a quiet market. In a volatile market, the price of Bitcoin may 
suddenly jump up or down, moving closer to the option’s strike price; a risk premium is 
therefore reflected in the option price quote.

Compared to previous studies of IV for securities and currencies, IVs for cryptocur-
rencies are generally much higher. For example, Guo et al. (2014) report that the mean 
of 30‐day volatility of S&P 500 index call options from January 2005 to October 2010 
was 19.64% while Bitcoin call options in our study period had a mean 30-day vola-
tility of 81%. Therefore, one should exercise caution in comparing regression model 
results and errors across different asset types as larger errors are expected for assets 
with higher volatilities, even though the models may have the same explanatory power.

Regression results

Here we re-list our four models, and their regression results are then discussed.

Model 1: DVIF model without RSI, using linear regression
Model 2: DVIF model without RSI, using machine learning RF regression
Model 3: DVIF model with RSI added, using linear regression
Model 4: DVIF model with RSI added, using machine learning RF regression
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To investigate the contribution of RSI, we compare performance between comparable 
models with and without the RSI indicator (Model 1 versus Model 3; Model 2 versus 
Model 4). On the other hand, to investigate the contribution of the nonlinear machine 
learning algorithm RF, we compare the results of the comparable models that use linear 
regression versus RF (Model 1 versus Model 2; Model 3 versus Model 4). The adjusted  R2 
and root mean square error (RMSE) are shown where appropriate (see Table 3). Table 4 
shows Model 3’s regression coefficients and Fig.  4 plots the predicted IV against the 
actual IV.

In general, models that include RSI perform better than models without RSI (i.e., 
Model 3 performs better than Model 1, and Model 4 performs better than Model 2), 
especially for put options. For put options, the results of Model 3, which uses a linear 
regression, produce an adjusted  R2 of 0.79 for the in-sample dataset, compared to an  R2 
of 0.60 for Model 1. This indicates that RSI can help to explain the IV variance in bullish 
versus bearish markets. With respect to the RF algorithm, by comparing results between 
model 4 and model 3 we see that RF performs much better than linear regression for the 
in-sample dataset, reducing RMSE by 50%. For example, using the in-sample dataset of 
put options, RMSE for Model 3 is 0.1481 but is only 0. 0601 in Model 4. However, the 
RF algorithm does not consistently outperform linear regression with the out-of-sample 
dataset. This may be due to common overfitting problems in machine learning algo-
rithms; such problems may be overcome by using a more extended period of data for 
training and validation. Overall, our models, which incorporate RSI and use the machine 
learning RF algorithm, significantly outperform the DIVF model derived from DFW, 
reducing the RMSE by approximately 20%–40%.

Table 2 Descriptive statistics showing data distribution in the training and validation for Bitcoin put 
and call option for data period Jun 2022–Sep 2022

N number of data, SD standard deviation, Min minimum, Max maximum

Variable Bitcoin put

Training (N = 7609) Validation (N = 6651)

Mean SD Min Max Mean SD Min Max

Impliedvolatility(%) 101 32 46 466 83 17 39 161

Moneyness 0.80 0.14 0.20 0.99 0.80 0.16 0.21 0.99

Timetoexpiry(day) 24.84 23.94 1 90 28.74 26.05 1 90

RSI-d 0.40 0.11 0.19 0.63 0.46 0.09 0.29 0.62

RSI-h 0.49 0.12 0.19 0.84 0.48 0.12 0.11 0.67

Variable Bitcoin Call

Training(N = 10,032) Validation(N = 8061)

Mean SD Min Max Mean SD Min Max

Impliedvolatility(%) 81 15 45 275 71 9 36 129

Moneyness 1.46 0.56 1 5.85 1.33 0.34 1 3.94

Timetoexpiry(day) 32.39 26.02 1 90 33.3 26.2 1 90

RSI-d 0.39 0.11 0.19 0.63 0.45 0.09 0.29 0.62

RSI-h 0.48 0.12 0.19 0.84 0.47 0.12 0.11 0.78
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Robustness test

We conducted a robustness check for Model 3, the linear regression model that includes 
RSI. First, we use a variance inflation factor (VIF) analysis to check for collinearity. As 
a rule of thumb, a variable whose VIF values are greater than 10 may require further 
investigation. As shown in Table 3, all of the estimators have a VIF < 10; thus, colline-
arity is not a concern. For heteroscedasticity, we examine the plot of the residuals to 
determine whether they have a constant variance (Fig. 5). When examining the residuals 
versus predicted values and Q-Q (quantile-to-quantile) residuals plot, we observe het-
eroscedasticity as the variance is asymmetrical with more positive outliners. That is, the 
model underestimates IV in some cases. The reason may be that in periods of market 
stress, option prices (and hence the IV) may suddenly jump higher. This hypothesis is 
supported by plotting the residuals on a graph whose axes are time-to-expiry and pro-
portional moneyness. The residuals show more positive outliers for “near the money” 
options (options with moneyness approaching 1) and when the time to expiry is < 0.1 
(that is 90 × 0.1 = 9 days, as our maximum time to expiry is 90 days). This may be why 
most previous studies exclude option contracts that expire in less than six days; if such 
short maturity options are excluded, the residual plot would be close to normal. This 
highlights the importance of exploring the use of nonlinear machine learning algorithm 
(in Model 4) as such nonlinearity may be better addressed using a nonlinear model.

Fig. 3 Implied volatility surfaces (IVS) for Bitcoin put and call options
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One challenge, as mentioned earlier, is that the study’s results may only be applicable 
to the specific four-month period studied. Although there was a significant price fluctua-
tion during this period (with Bitcoin prices dropping from USD 29,000 to around USD 
18,000, then rebounding to USD 24,000), additional evidence may be required to validate 
our model for a longer duration. Although accessing historical data typically requires a 
subscription, the data provider allowed us to download 24-h of Bitcoin option data for 
the first day of each month since April 2019. We extracted the first and last observations 
for the first day of the month from April 2019 to March 2022 and reexamine our model 
based on this data. Volatility over this extended period was higher than in our original 
period and showed a larger range of RSI reflecting bear and bull market runs (Table 5). 
For example, for this extended data period the maximum RSI is 92 while the maximum 
RSI in our original dataset is 68. Despite this, using linear regression analyses based on 
two models (with and without RSI), we show that Model 3, which includes RSI (Table 6) 
maintains an advantage over Model 1, which does not include RSI. For put options, the 
 R2 for Model 1 is 0.70 while for Model 3 the  R2 is 0.76. For call options, the  R2 for Model 
1 is 0.50 while for Model 3 it is 0.56. These results suggest that a momentum indicator 
is a significant factor in accounting for option price variance over a longer time period.

Discussions and conclusion
The DIVF developed in this study presents an easy-to-compute estimation of IV for any 
strike price or time to expiry, provided the underlying momentum is known. Based on 
our results, this study makes the following contributions:

Table 3 Model 3 Estimated Parameters and VIF (Model 3 – Training dataset) for data period Jun 
2022– Sep 2022

BTC: Bitcoin; K: Strike price; S: Current price; M: Moneyness (= K/S); T: Time to maturity; N: log(M)/
√
T

Parameter estimates

Label DF Parameter 
estimate

Standard error t value Pr >|t| Tolerance Variation 
inflation

BTC call

Intercept 1 0.68549 0.00132 521.07  < .0001 0

N (Proportional 
moneyness)*N

1 0.26168 0.00243 107.56  < .0001 0.36692 2.72537

N*t 1  − 0.15179 0.00433  − 35.05  < .0001 0.49607 2.01585

RSI-14d bearish 1 2.22801 0.03503 63.61  < .0001 0.29392 3.40225

RSI-14d bearish*N 1  − 1.41921 0.04751  − 29.87  < .0001 0.24072 4.15417

RSI-14 h bullish 1  − 0.09112 0.3660  − 2.49 0.0128 0.98347 1.01680

BTC put

Intercept 1 0.81471 0.00272 299.81  < .0001 0

t*t 1  − 0.22098 0.00890  − 24.83  < .0001 0.59347 1.68501

N (Proportional 
moneyness)*N

1 0.18088 0.00289 62.65  < .0001 0.39196 2.55127

N*t 1  − 0.35026 0.01385  − 25.28  < .0001 0.55776 1.79288

RSI-14d bearish 1 2.51965 0.06667 37.79  < .0001 0.37254 2.68428

RSI-14d bearish*N 1  − 2.25133 0.08903  − 25.29  < .0001 0.25499 3.92168

RSI-14 h bullish 1  − 0.69910 0.11488  − 5.82  < .0001 0.34816 2.87249

RSI-14 h bearish 1 0.25272 0.05304 4.76  < .0001 0.87781 1.13920

RSI-14 h bullish*N 1  − 0.94245 0.16274  − 5.79  < .0001 0.34305 2.91506
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1. Including the RSI momentum indicator as a factor enhances the accuracy of the 
deterministic function for modeling IV. Our model captures both short-term and 
medium-term momentum through RSI momentum indicators calculated over two 
different timeframes. It shows that the deterministic implied function approach, if 
enhanced by certain factors, may still be relevant for option pricing due to its rela-
tively simple formulation and ease of computation compared to prevailing stochas-
tic option pricing models. As noted in DFW, a stable DIVF option valuation model 
offers an important way to compute hedge ratios and value exotic options.

Table 4 Tabulation of statistical variation due to regression for different model. Model 4 has the 
least value of RMSE both in the put and call options among the four models, indicating that the 
Model 4 is the most optimal method to model the IV with underlying RSI and with RF as the non-
linear regression method

Model 1: linear regression without RSI, Model 2: RF regression without RSI, Model 3: linear regression with RSI, Model 4: RF 
regression with RSI

RMSE: Root mean square error; IV: implied volatility; RF: Random Forest machine learning regression method

Bitcoin

Put option

Adjusted  R2 RMSE Average IV RMSE Average IV

Model (in-sample) (in-sample) (in-sample) (out-sample) (out-sample)

1 0.6071 0.2060 101% 0.1510 84%

2 N.A 0.1640 101% 0.1509 84%

3 0.8117 0.1426 101% 0.0963 84%

4 N.A 0.0601 101% 0.0930 84%

Bitcoin

Calloption

Model AdjustedR2 RMSE AverageIV RMSE AverageIV

1 (in-sample) (in-sample) (in-sample) (out-sample) (out-sample)

2 0.5409 0.1025 82% 0.0913 71%

3 N.A 0.0853 82% 0.0948 71%

4 0.6933 0.0843 82% 0.0722 71%

N.A 0.0416 82% 0.0667 71%

Fig. 4 Plot of predicted IV vs actual IV (Model 3 – Training dataset). BTC: Bitcoin, IV: implied volatility
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2. As a real-time momentum indicator, the RSI is readily available from trading web-
sites and software, so our DIVF model can be easily deployed for real-time calcula-
tions.

3. The model exhibits stable in-sample and out-sample performance. The parameters, 
estimated during model development, remain the same in estimating option prices 
over the next two months. We expect that our model will not require frequent cal-
culation iterations to obtain convergence for the coefficients, while stochastic option 
pricing models and dynamic IVS models require frequent reestimation of parame-
ters. In addition, inputting option characteristics or initial conditions, such as at-the-
money known IV or IVS as in the dynamic approach, is not required.

4. By using a nonlinear machine learning regression algorithm to replace the linear 
regression algorithm used in prior DIVF studies we achieve better IVS modeling 
and IV predictions. Nonlinear modeling may be particularly relevant for “near-the- 

Fig. 5 Residual Plots. BTC: Bitcoin, Q-Q: quantile to quantile
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Fig. 5 continued
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money” options or options with short maturities, as sudden price jumps for these 
options during market stress cannot be captured by a linear model.

5. The study uses data on Bitcoin options, which is fairly uncommon. The highly vola-
tile nature of the Bitcoin market is challenging to model-building, and our results 
indicate that our model performs well even using such volatile market data.

6. Unlike prior studies, very short-term maturities and a full range of moneyness are 
included in our option chain data and therefore, our model can be relevant to trading 
options that are close to expiration.

7. Although our study does not intend to predict the evolution or model the time 
dynamics of an IVS, the price path of an underlying asset can be forecasted using 
different models through Monte Carlo or other means, and, by calculating RSI, the 
entire IVS can be estimated by our model.

However, there are limitations to our study, and there is room for further optimization.

1. Future studies can compare the performance of our model and other option pricing 
models, such as DFW’s ad-hoc BSM model of Heston & Nandi (2000).

2. This study was conducted using Bitcoin, a cryptocurrency with a different IVS com-
pared to traditional assets such as listed securities or currencies. Empirical tests of 
our model using options on traditional assets would be interesting.

3. Although the in-sample performance of the nonlinear machine learning RF algo-
rithm is excellent, its out-sample performance is only marginally better than the 
results from using a linear regression. This may be due to the overfitting issues usu-
ally encountered with machine learning algorithms which may be overcome by using 
a more extended data collection period, which future studies could explore.

4. During our in-sample data period, cryptocurrencies were mainly in a bear market 
and the RSI on daily basis did not exceed 70. Yet the RSI on an hourly basis includes 
both bullish and bearish values, and such data diversity should satisfy the require-
ments for model development and testing. In our extended data period covering 
three years, which included bear and bull markets, the RSI computed on daily basis 
exceeded 90 and the momentum indicators remained significant. Therefore, our 
methodology should be sufficiently applicable to markets under both bull and bear 

Table 5 Descriptive statistics showing data distribution for Bitcoin put and call option for the 
extended data period Apr 2019 – Mar 2022

N number of data, SD standard deviation, Min minimum, Max maximum

Bitcoin put Bitcoin call

N = 2168 N = 2565

Variable Mean SD Min Max Mean SD Min Max

Implied voltality (%) 79 15 40 158 78 15 34 293

Moneyness 0.84 0.22 0.17 1.67 1.29 0.49 0.36 4.78

Time to expiry (day) 29.11 22.24 1 88 28.25 21.79 1 88

RSI-d 0.55 0.18 0.18 0.92 0.55 0.18 0.18 0.92

RSI-h 0.54 0.14 0.26 0.86 0.54 0.14 0.26 0.86
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conditions. A longer data collection period with model development and validation 
using a moving window may further verify the contribution of momentum indicators 
in our model.

Abbreviations
ANN  Artificial neural networks
BSM  Black–Scholes-Merton
BTC  Bitcoin
DFW  Dumas B., Fleming J., Whaley R.
DIVFs  Deterministic implied volatility functions
GARCH  Generalized autoregressive conditional heteroscedasticity
IV  Implied volatility
IVS  Implied volatility surface
K  Strike price
Q-Q  Quantile-to-quantile
RF  Random forest
RS  Relative strength
RSI  Relative strength index
RSI  Relative strength index
S  Asset price
SVM  Support vendor machines
VaR  Value-at-Risk
VIF  Variance inflation factor
VIX  Volatility Index

Table 6 Model 3 Estimated Parameters for extended data period Apr 2019 – Mar 2022

BTC: Bitcoin; K: Strike price; S: Current price; M: Moneyness (= K/S); T: Time to maturity; N: log(M)/
√
T

Parameter estimates

Label DF Parameter 
estimate

Standard error t value Pr >|t| Tolerance Variation inflation

BTC call

Intercept 1 0.67202 0.00314 214.3  < 0.001 0

t*t 1 0.08013 0.01233 6.50  < 0.001 0.65096 1.53619

N*N 1 22.14118 0.65794 33.65  < 0.001 0.36235 2.75980

N(Proportional 
moneyness)*t

1  − 0.00329 0.00167  − 1.96 0.0499 0.27432 3.64533

RSI-14 h bullish 1 0.39090 0.05545 7.05  < 0.001 0.58488 1.70975

RSI-14 h bearish 1 2.25287 0.16208 13.90  < 0.001 0.61360 1.62972

RSI-14d bearish 1 0.62513 0.07742 8.07  < 0.001 0.62814 1.59199

RSI-14 h 
bearish*N

1  − 8.65585 2.45402  − 3.53 0.0004 0.59897 1.66952

RSI-14 h bullish*N 1  − 1.66548 0.86697  − 1.92 0.0548 0.15422 1.94392

RSI-14d bearish*N 1  − 6.14497 1.18733  − 5.18  < 0.001 0.59778 1.67286

BTC put

Intercept 1 0.66313 0.00257 257.89  < .0001 0

t*t 1 0.09649 0.00960 10.05  < .0001 0.67545 1.48049

N*N 1 26.17348 0.52531 49.82  < .0001 0.36112 2.76915

N (Proportional 
moneyness)*t

1 0.0054 0.00134 4.15  < .0001 0.28723 3.48149

RSI-14 h bullish 1 0.31272 0.03430 9.12  < .0001 0.91424 1.09381

RSI-14 h bearish 1 1.93549 0.12765 15.16  < .0001 0.63095 1.58491

RSI-14d bearish 1 0.76817 0.05111 15.03  < .0001 0.91585 1.09189

RSI-14 h 
bearish*N

1 12.32127 2.01088 6.13  < .0001 0.60621 1.64960

RSI-14d bearish*N 1  − 0.76296 0.34078  − 2.24 0.0253 0.86036 1.16231
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