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Abstract 

This study investigates the simplicity and adequacy of tail-based risk measures—value-
at-risk (VaR) and expected shortfall (ES)—when applied to tail targeting of the extreme 
value (EV) model. We implement Lévy–VaR and ES risk measures as full density-based 
alternatives to the generalized Pareto VaR and the generalized Pareto ES of the tail-tar-
geting EV model. Using data on futures contracts of S&P500, FTSE100, DAX, Hang Seng, 
and Nikkei 225 during the Global Financial Crisis of 2007–2008, we find that the sim-
plicity of tail-based risk management with a tail-targeting EV model is more attractive. 
However, the performance of EV risk estimates is not necessarily superior to that of 
full density-based relatively complex Lévy risk estimates, which may not always give 
us more robust VaR and ES results, making the model inadequate from a practical per-
spective. There is randomness in the estimation performances under both approaches 
for different data ranges and coverage levels. Such mixed results imply that banks, 
financial institutions, and policymakers should find a way to compromise or trade-off 
between “simplicity” and user-defined “adequacy”.

Keywords:  Lévy–Kintchine-formula, Value-at-risk, Expected shortfall, Generalized 
extreme value

JEL Classification:  C52, G13

It can scarcely be denied that the supreme goal of theory is to make the irreducible basic 
elements as simple and as few as possible without having to surrender the adequate rep-
resentation of a single datum of experience.

-Albert Einstein1 

Introduction
Value-at-risk (VaR) is an intuitively simple tail-based risk measure that is popular among 
practitioners and academics. Recent applications of VaR were highlighted by Perignon 
and Smith (2010a), Frésard et al. (2011), and Perignon and Smith (2010b). However, the 
VaR measure has some limitations. It fails to satisfy the requirement of sub-additivity, 
implying that it does not fulfill the requirement of coherence. Further, VaR fixes the tail 
events corresponding to a specific confidence level. Although it considers the likelihood 
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of conditional tail events, it ignores the magnitude of the catastrophe after the occur-
rence of a tail event. In a nutshell, VaR provides a snapshot of unsystematic losses while 
failing to consider the actual size of unsystematic losses that exceed the cut-off points. 
To offset such limitations and ensure that the coherence (sub-additivity) requirements 
are met, the expected shortfall (ES) measure has been introduced. ES estimates the 
unsystematic loss by weighing all the possible losses in the tail of the distribution, thus 
circumventing the limitation of VaR.

Many studies (e.g., Longin 1996; McNeil and Frey 2000; Jondeau and Rockinger 2003; 
Gençay and Selçuk 2004; Tolikas and Gettinby 2009; So and Wong 2012; Cheng et al. 
2015; Du and Escanciano 2017; Bayer and Dimitriadis 2022; Otto and Breitung 2022) 
have used simple to adequately complex methodologies and assumed different distri-
butional properties in data-generating process for estimating and backtesting VaR and 
ES models. Some recent studies have also identified VaR forecasting breakdown due to 
structural change and a break in the data-generating process of returns (Chavez-Demou-
lin et al. 2014; Quintos et al. 2001). Through joint modeling, time-varying conditional 
VaR, and ES, Taylor (2019) produced forecasts with generalized autoregressive condi-
tional heteroskedasticity (GARCH) (1,1) and Glosten–Jagannathan–Runkle GARCH 
(1,1) models using maximum likelihood based on a Student t-distribution, and the 
asymmetric Laplace likelihood was used to evaluate post-sample VaR and ES forecasts. 
Patton et al. (2019) also jointly modeled VaR and ES in a new dynamic framework, which 
is semiparametric and agnostic about the conditional distribution of returns, and con-
firmed via simulation that the proposed new ES-VaR models outperform forecasts based 
on GARCH or rolling window models. The forecasting process of VaR and ES requires 
sophisticated and complicated models. Lazar and Zhang (2019) examined whether the 
inadequacy of modeling leads to the model risk of such risk measures and found that 
ES estimates using GARCH models require more minor corrections for model risk than 
VaR.

However, there is some trade-off between simplicity and adequacy when deciding on 
models and the underlying data-generating processes. Under the Basel framework, the 
Bank for International Settlements (BIS 2019) requires banks to establish “an adequate 
system for monitoring and reporting risk exposures” to assess risk profiles. With this 
“adequacy” in mind, Hoga and Demetrescu (2022) developed a sequential procedure that 
can directly and continuously determine risk assessments based on VaR and ES forecasts 
with controlled size based on the t-GARCH model. Kourouma et  al. (2010) found an 
underestimation of the risk of loss for unconditional VaR models (historical and extreme 
values (EVs) theory VaR model) compared with conditional models. The conditional 
EVT model is more accurate for predicting risk losses during the 2008 Global Financial 
Crisis. Despite their accuracy, banks are reluctant to use conditional EVT models as the 
Basel II agreement penalizes banks for using such models.

Therefore, a relevant question arises as to why banks or financial institutions are 
reluctant to use some models that are adequate to satisfy the BIS framework. Why is 
the simplicity of tail-targeting EV models, which are much easier to implement, not 
attractive and adequate compared with models chosen by banks and financial institu-
tions, or do they define “adequacy” from a different perspective? For our study, the 
heuristic adequacy of the measure is the naive “closest to the empirical estimate.” The 
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EV models are based on the distribution of extreme returns instead of all returns (Bali 
2007). The simplicity of the tail, characterized by the EV model, leads to the analytic 
formulation of tail-focused risk measures of VaR and the tail-aggregate risk measure 
of ES.

On the other hand, the Lévy heavy-tailed generalized hyperbolic (GH) family mod-
els are based on full-density distributions and are not easy to implement. We consider 
the Lévy family models and purely extreme tail-based extreme value (EV) models from 
an adequacy perspective to quantify investors’ risks. It is the adequacy perspective that 
should guide us in the choice of models in risk measures but not the simplicity. How-
ever, if simplicity is advocated, then how should the adequacy of models be determined? 
Thus, whether the performance of EV risk estimates is superior to that of Lévy risk esti-
mates is an empirical question.

In this study, we conduct a heuristic study to determine the adequacy of VaR and ES 
estimates of investment risks in leading indices during a period when markets were fall-
ing and recovering from the global financial or subprime crisis (2007–2008). The stand-
ard VaR measures provide inaccurate estimates of losses during highly volatile periods as 
they require an explicit functional form (normal or lognormal) on the distribution. EV 
models have seen many applications in modeling extremities of weather, reserves, and 
financial extremities (Pidgeon 2012; Monier and Gao 2015; Cheng et al. 2014). However, 
unlike the spectral risk measure, VaR and ES are purely tail-based risk measures. As EV 
is also purely a tail-based method, it might cause an uncanny impulse that VaR and ES 
with the EV method might be a good alternative.

Lévy-based heavy-tailed models belong to another class of models that has also been 
investigated in modeling extreme fluctuations. Lévy models use full data to estimate the 
parameters. In contrast, an EV model uses only the partial data remaining in the extreme 
tail of a distribution concerning a certain cut-off point.

EV models use only a few extremely large returns on the tail in calibration when one 
believes that the extreme tail data follow a generalized EV distribution. This presump-
tion makes us not worry about the true distribution of returns smaller than the thresh-
old that are not in the tail. This idea may be sufficient to get reasonable numbers for the 
risk measures of VaR and ES defined on the tail. Such an approach applies fewer data 
points than models that calibrate historical data. It is accepted that the relevance of sys-
tematic fluctuations (small return values) not on the tail can be ignored when modeling. 
Nevertheless, we do not possess an axiomatic justification to assume this will necessarily 
be true.

This prompts us to investigate the risk of investment in world markets falling and 
recovering during the Global Financial Crisis of 2007–2008. We adopt a range of models 
with moderate time-varying volatility and incorporate a stochastic diffusive perturba-
tion of the markets with time as our benchmark. We consider models of the GH family 
that include stochastic volatility through stochastic time changing without an explicit 
dynamic for volatility. We assess the comparative performance of tail modeling using 
both Lévy (both systematics and unexpected returns) and EV models (only unexpected 
returns), followed by a comparison of the performances of the respective tail-based 
measures of risk VaR and ES based on both approaches. Thus, we follow a procedure of 
fixing the tail as applied in standard EV calibration that only uses unexpected returns. 
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We then obtain Lévy-tails with calibrations that use both systematics and unexpected 
returns.

The mathematically elegant Lévy approach has a significant limitation, i.e., except 
for a few trivial cases, there is no analytic formula for the risk measure VaR, without 
even mentioning the case of ES. Therefore, the VaR calculation is relatively difficult to 
implement. Complicacies and huge time requirements in implementation have deterred 
practitioners from using Lévy models to forecast VaR and ES, as observed in a VaR back-
testing study. To the best of our knowledge, this is the first study to compare the perfor-
mance of tail-based VaR and ES estimated for the EV and Lévy models by contrasting 
the adequacy of tail-based risk measures while considering simplicity in estimating with 
this tail-targeting model.

The superior method is unclear at the outset. The presumably advantageous use of the 
returns in the EV model might not be advantageous in practice when the evaluator is 
obliged to consider small return values that influence the fits, which must determine the 
shape of the tail. Moreover, there are concerns about whether applying extreme return 
observations on the tail can be sufficient to model extreme fluctuations, even when mar-
ket movements are not extreme (such as the decade following the 2007–2008 Global 
Financial Crisis). In this study, we seek to shed empirical light by estimating the tail-
based VaR and ES following both approaches in the existing theoretical framework using 
data from major indices. The sample period is when markets suffered and recovered 
from the Global Financial Crisis.

The contribution of this study is that we assess the relative importance of the adequacy 
and simplicity of EV and Lévy models in estimating VaR and ES. We try to answer the 
following questions: “Is the simplicity of EV models adequate to guarantee that they 
would perform robustly in describing extremely unexpected return phenomena?” 
“Should the adequacy of the Lévy models be more important in the backdrop of the sim-
plicity of EV models?” We find that the simplicity of the tail-characterized EV model 
leads to the analytic formulation of the tail-focused risk measures of VaR and the tail-
aggregate risk measure of ES. However, the performance of EV risk estimates is not nec-
essarily superior to that of Lévy risk estimates. On the other hand, VaR estimates based 
on Lévy models are more stable than those based on the EV model. However, it is not 
possible to establish an indisputable rule for a particular Lévy model. The performance 
of models with only a few unexpected extreme returns (EV model) and modeling with 
both numerous smaller expected and few extreme unexpected returns (Lévy models) are 
mixed.

Our model testing with heuristic adequacy measure reinforces the theoretical funda-
mental that only extreme observations of the EV model (discarding smaller systematic 
returns) and smaller and extreme observations of Lévy models are different approaches 
with the common goal of a meaningful simplification of reality. Their relative perfor-
mance for a particular time window may fail to constitute any guarantee. There is some 
randomness of estimation performances under both approaches. The explanatory power 
of the approaches is hardly distinguishable across our data.

In this study, we determine whether a model is solely tail-targeting or has little effect 
on VaR and ES forecasts at least for the most crucial periods, comprising both sharp 
market downturns and smooth recoveries of the 2007–08 Global Financial Crisis. 
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Here, the choice of model can be based on a compromise or trade-off between simplic-
ity and user-defined adequacy. As many banks and financial institutions do not follow 
adequacy requirements in risk measures as stipulated in the Basel agreement, our find-
ings shed empirical light on such complexity. Our results imply that when the results are 
mixed, banks and financial institutions should find a way to compromise simplicity and 
adequacy.

The remaining parts of the paper are structured as follows. Sections “Characteriza-
tion in Lévy framework” and “Initial data analysis” discuss the characterization of a 
Lévy framework and initial data analysis. Sections “Estimation of risk measures” and 
“GOF: EV versus Lévy” discuss the estimation of VaR and ES under Lévy, its contender 
EV approaches, and the goodness of fits (GOFs) under contending approaches. Section 
“Comparison of Risk Measures” discusses the Comparison of Risk Measures. Section 
“VaR and ES Backtesting” compares the forecasts of VaR and ES for the approaches. Sec-
tion “Discussion” provides a discussion, and we conclude in Sect. “Conclusion”.

Characterization in Lévy framework
Lévy models have recently been applied in modeling extreme behavior analysis (German 
2002; Fajardo 2015; Fajardo and Mordecki 2006, 2014; Kim et al. 2008; Fuse and Meucci 
2008; Wong and Guan 2011, De Oliver et al. 2018; Farkas and Mathys 2022). The charac-
teristic function of a stochastically continuous process that starts at zero and possesses 
stationary independent increments has the following general form (see Sato (1999) and 
Schouten (2003)):

for s ∈ ℜ, t ≥ 0 and constants a ∈ ℜ, b ∈ ℜ+
, where ν is the so-called Lévy measure 

defined on ℜ\{0} that satisfies square inerrability of tiny (< 1) jumps:

Equation (1) is the so-called Lévy–Khinchine representation of a Lévy process,2 which 
is closely aligned with the concept of infinitely divisible distribution:

Thus, the inverse Fourier transform can be applied to obtain the numerical transition 
density from the characteristic function (1) with the Lévy measure ν of a particular Lévy 
process, which always exists. The numerical transition densities can then estimate the 
risk measure VaR under different model assumptions. However, in this study, our inter-
est is mainly on the primitive members of Lévy processes belonging to the GH class, 
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2  The theory of Lévy processes is well documented, among others, in Bertoin (1996), Sato (1999), Schoutens (2003), and 
Kyprianou (2006).
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which have been widely used in financial modeling (Barndorff-Nielson 1977, 1978, 1995; 
Eberlein and Prause 1998; Prause 1999; Eberlien and Keller 1995; Bingham and Kiesel 
2001; Eberlien and Hammerstein 2002) due to the availability of closed-form densities.

We focus on the GH subclass3 of Lévy processes (variance gamma (VG), normal-
inverse Gaussian (NIG), hyperbolic distribution (HYP), and GH) and estimate the risk 
measures—VaR and ES—to investigate the relative adequacy of a purely tail-based sim-
ple analytic EV risk model compared with full density-based Lévy risk models. Among 
others, these measures have been investigated by Cotter and Dowd (2006) in the context 
of future contracts and by Sorwar and Dowd (2010) in the context of options contracts.

Let X1 = log
(
St+1

/
St
)
 for nonnegative integer t and is characterized by Eq.  (1) (the 

Lévy-Kintchine Formula). For the models we consider, the equivalent processes are 
given more effectively by their densities (see Schouten 2003):

where KI is the modified Bessel function of the third type with index I; θ is the skewness 
parameter; and v is the percentage excess kurtosis in the distribution for the VG model.

Due to these closed-form densities, obtaining standard errors (SEs) of each parameter 
becomes easier by easily computing Fisher’s information matrix.

In our context, the competing idea to the Lévy approach assumes that only the 
extreme returns characterize the performance of the risk measure of VaR and ES. As 
in the studies by Dowd (2005), Cotter and Dowd (2006), and Mozumder et al. (2017), 
perhaps the most elegant tool to utilize in such a context is the peaks-over-threshold, 
which lies in the fact that as threshold u becomes larger, the distribution of exceedances 
converges to generalized Pareto (GP) distribution, having the following two-parametric 
characterization:
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3  VG, NIG, and HYP are versions of a GH model with some or other parameters restricted. Thus, to observe the effect 
of full flexibility and selected restrictions for this family of processes, in addition to the restricted models, we include the 
GH model.
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where

ξ and β > 0 are shape and scale parameters, respectively, contingent on each choice of 
threshold u.

Initial data analysis
We employ future contracts return data; our empirical analysis is based on the returns 
of the S&P500, FTSE100, DAX, Hang Seng, and Nikkei 225 indices. We choose futures 
contracts because there is a lack of studies on EV and Levy that employ futures con-
tracts data. The data are about futures contracts from January 1, 2007 to December 31, 
2017, which expire in the following trading months. The rollover from one expiring con-
tract to the next occurs at the start of each trading month. Datastream considers pad-
ding the dataset and considers bank holidays’ end-of-day price as the previous trading 
day’s end-of-day price—a technique accepted by practitioners and ensures we have the 
same daily returns for all indices (2762). Our sample period comprises the period of the 
2008 Global Financial Crisis and beyond. This helps us to check the robustness of the 
adequacy versus simplicity of the competing approaches (and methods) in terms of the 
tail risk measures—VaR and ES.

Table  1 presents the summary statistics of the returns of all index futures. For our 
analysis, we identify the cut-off point in each extreme tail according to the EV theory 
discussed in a recent study on the VaR backtest (Mozumder et al. 2017). We note that 
the extents of extremity in return series corresponding to various indices are not similar.

Table 2 presents a good fit to the data for both long and short positions obtained with 
GP distribution (GPD); the tail indices are positive except for the Nikkei225; and the 
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Table 1  Summary statistics of the futures returns

We report the summary statistics of returns on futures for the world indexes S&P500, FTSE100, DAX, Hang Seng, and Nikkei 
225. From January 1, 2007, to December 31, 2017, Futures contracts expire in the following trading months; rollover from 
one expiring contract to the next occurs at the start of each trading month

SPX FTSE100 DAX Hang Seng Nikkei225

Mean 0.022 0.065 − 0.055 − 0.0138 − 0.0564

Median 0. 065 0.0496 − 0.083 − 0.0343 − 0.0653

Maximum 13.202 9.5803 6.858 7.6758 7.8446

Minimum − 10.400 − 9.6992 − 5.816 − 5.6327 − 7.4204

Std. dev 01.265 1.2098 1.252 1.1762 1.4419

Skewness − 0.1521 − 0.212 0.249 0.336 0.321

Kurtosis 17.254 10.838 5.639 5.909 7.065

Jarque–Bera 23,908.05 7193.87 686.07 766.20 836.40
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estimated scale parameters fluctuate around 1. Table  2 also provides assumed thresh-
olds u, the number of exceedances (Nu) contingent on the choice of thresholds u, and 
the observed exceedance probabilities (Prob) contingent on the choice of thresholds u. 
Table  2 also presents the asymmetry of long and short positions of tail definition (u) 
choices in an EV model. The same cut-off point results in a different number of left-
alone observations on the tails for long and short positions. Parameter estimates are 
expected to differ with respect to different positions under EV models. In the case of 
full-density-based Levy models, it results in only a sign alteration of the skewness char-
acterizing parameter4 corresponding to long and short positions.5

To visualize the differences in the models’ fit in the tails, for all indices under consider-
ation, we separately present the GP EV tail alongside the tails for each of our considered 
Lévy models. Our strategy is to obtain the EV quantiles above thresholds and the cor-
responding quantiles from the Lévy models. Thus, instead of fixing tail mass, we set the 
thresholds. Figure 1 depicts the QQ-plot of EV with each of the Lévy models for all indi-
ces. There is clear evidence of deviation between EV and Lévy quantiles at the extreme, 
although the EV models reveal smaller deviations in most cases. Such differences may be 
attributed to how different Lévy models feed information from observations outside the 
tails in fitting the tails.

Table  3 presents the maximum likelihood estimate of the parameters for all five 
indices and all four Lévy models. The threshold value selection is an important factor 
as it has the strongest effect on the results. While larger thresholds produce few EVs 
and lead to large variances, smaller thresholds generate a sample that approximates 
the models poorly. We select the smallest threshold value among those that produce 
EVs, following the limit exceedance model. We use the mean residual plot to deter-
mine thresholds u and the probabilities of exceedances. Both the EV and the Lévy 

Table 2  Parameter estimates for Generalized Pareto Distribution (GDP)

Maximum likelihood estimates of the GPD parameters for long and short positions are based on daily % returns of futures 
contracts from January 1, 2007, to December 31, 2017. u is the threshold (selected using the threshold selection procedure 
with mean residual plot), Nu is the number of exceedances in excess of u, Prob is the probability of observation in excess 
of u, ξ is the tale, and β is the scale parameter, respectively. In parenthesis, estimated standard errors of the parameters are 
reported

Index Position Threshold (u) Prob Nu Scale (β) Tail (ξ)

S&P500 Long 2 0.041 131 0.602 (0.070) 0.173 (0.102)

Short 2 0.033 117 0.743 (0.121) 0.107 (0.096)

FTSE100 Long 1.5 0.069 249 0.622 (0.063) 0.084 (0.091)

Short 1.5 0.083 278 0.741 (0.071) 0.033 (0.072)

DAX Long 2 0.076 234 1.214 (0.102) 0.016 (0.061)

Short 2 0.074 231 1.020 (0.118) 0.051 (0.083)

Hang Seng Long 2 0.102 349 1.169 (0.110) 0.114 (0.058)

Short 2 0.108 365 1.139 (0.092) 0.145 (0.064)

Nikkei 225 Long 2 0.084 271 0.846 (0.082) -0.018 (0.053)

Short 2 0.079 272 1.059 (0.080) -0.059 (0.057)

4  Every member of the GH family has sign-of-skewness explicitly characterized by the sign of a single parameter of the 
model. That is why we consider GH family in our context.
5  The difference in tail masses for GH members, with respect to long and short positions under the same cut-off point, 
is simply due to the sign change of the skewness parameter.
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models provide a similar data description. However, as expected of long and short 
positions, the tail-based EV parameters are significantly different—a sharp contrast to 
Lévy parameters, which use the entire data set. As Lévy models on the complete data 
of short and long positions flip the densities along the y-axis, long and short positions 
alter the sign of the parameter that characterizes the skewness in the model. Thus, it 
is sufficient to report the estimates corresponding to long positions alone for which 
the risk measures VaR and ES under tail targeting and full density-based models will 
be investigated.

Fig. 1  Q-Q plot in excess of threshold: long position in S&P500, FTSE, DAX, HangSeng, Nikkei225
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Estimation of risk measures
Except for a few specific cases, VaR is obtained by solving the following quantile-inte-
gral equation:

where α is the coverage level. The VaR for different Lévy models can be obtained by solv-
ing Eq. (10) with corresponding Lévy density.

The major problem with VaR is that it indicates the magnitude of loss to a certain 
level but ignores the magnitude of losses that exceed the pre-fixed confidence level. 
Thus, VaR identifies the tail to a given level but has no answer regarding how concert-
ing that tail is with respect to the pre-fixed confidence level. In addition to identify-
ing the tail to a given pre-fixed level, ES as a measure provides the average of losses 
belonging to the identified tail contingent on the pre-fixed level.

(10)
∫ VaR

xmin

f (u)du− α = 0

Table 3  Maximum likelihood estimates for Generalized Hyperbolic Lévy models

Based on daily % returns for long futures positions on daily % returns of futures contracts, from January 1, 2007, to 
December 31, 2017. We report the estimates of the VG, NIG, HYP, and GH parameters. Prob is the probability of observation 
in excess of u (the same thresholds selected for the EV model in Table 2). In parenthesis, estimated standard errors of the 
parameters are reported.

Index u Prob σ θ υ

Panel A: Variance Gamma (VG)

S&P500 2 0.021 1.109 (0.030) − 0.027 (0.039) 0.734 (0.025)

FTSE100 1.5 0.074 1.064 (0.049) − 0.052 (0.040) 0.674 (0.008)

DAX 2 0.056 1.305 (0.046) − 0.012 (0.006) 0.536 (0.013)

Hang Seng 2 0.093 1.705 (0.024) − 0.066 (0.054) 0.768 (0.023)

Nikkei 225 2 0.078 1.329 (0.014) 0.016 (0.067) 0.428 (0.088)

u Prob α β δ

Panel B: Normal Inverse Gaussian (NIG)

S&P500 2 0.025 0.821 (0.044) − 0.010 (0.056) 0.901 (0.071)

FTSE100 1.5 0.076 0.971 (0.062) − 0.036 (0.025) 1.147 (0.064)

DAX 2 0.061 0.437 (0.051) − 0.054 (0.061) 1.154 (0.053)

Hang Seng 2 0.079 0.538 (0.071) − 0.022 (0.019) 1.708 (0.091)

Nikkei 225 2 0.069 0.837 (0.024) 0.062 (0.042) 1.937 (0.232)

Panel C: Hyperbolic (HYP)

S&P500 2 0.029 1.028 (0.065) − 0.022 (0.032) 0.704 (0.009)

FTSE100 1.5 0.081 0.978 (0.043) − 0.039 (0.021) 0.731 (0.157)

DAX 2 0.059 1.095 (0.039) − 0.027 (0.075) 0.602 (0.107)

Hang Seng 2 0.098 0.507 (0.098) − 0.051 (0.014) 0.989 (0.018)

Nikkei 225 2 0.063 1.047 (0.025) 0.039 (0.056) 1.036 (0.062)

Panel A: Generalized Hyperbolic (GH)

u Prob α β δ μ

S&P500 2 0.028 0.896 (0.082) − 0.041 (0.031) 0.821 (0.147) 0.013 (0.087)

FTSE100 1.5 0.069 0.768 (0.127) − 0.038 (0.057) 1.504 (0.516) − 0.096 (0.128)

DAX 2 0.093 0.907 (0.091) − 0.058 (0.072) 1.196 (0.236) − 0.017 (0.018)

Hang Seng 2 0.095 0.428 (0.105) − 0.047 (0.013) 1.464 (0.539) − 0.053 (0.602)

Nikkei 225 2 0.074 1.101 (0.263) 0.009 (0.049) 1.926 (0.618) 0.076 (0.721)
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As in Eq. (9), the high αth quantile (i.e., VaR at a very high confidence level α) is given 
as follows:

and the ES of the same confidence level of α is as follows:

where β and ξ are scale and shape parameters contingent on threshold u, respectively.
In Eq. (11), n is the total number of observations, and Nu is the number of observations 

that exceed threshold u. The ES yields from the fundamental equation are as follows:

For a VG model, ES is then obtained with VG density:

The approach is similar to obtaining the ES for other Lévy models but incorporates 
different densities in Eq. (14). We apply the parametric bootstrap to get the SEs and con-
fidence intervals (CIs) of risk measures, following Cotter and Dowd (2006). However, as 
Lévy models have no closed-form expressions for risk measures, it is a computational 
challenge that we overcome using a machine with a powerful configuration.

GOF: EV versus Lévy
Among various GOF tests, one that is particularly suitable for tail-based risk manage-
ment studies6 is the Anderson–Darling (AD) test. It is about a weighing rule introduced 
by Anderson and Darling (1952, 1954) in the Kolmogorov–Smirnov test that emphasizes 
the observations in the tail. Anna et al. (2005) provided a formula for an AD test sta-
tistic when the distribution of the complete sample is unknown and observations are 
only available at the extreme tail, referred to as left-truncated data adapted AD test. This 
adaptation fits the test of the EV model. For the AD test version applied with complete 
distributions such as our Lévy models having closed-form densities, the p-values are 
analytically available. However, for the AD test adapted to left truncated data, p-values 
need to be calculated through bootstrapping or Monte Carlo simulation. In this study, 
we consider 1,000 resampling and calculate the p-value for the EV model using boot-
strap. We use VaR for our Lévy models and VaR for the EV model as critical values for 
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6  Other popular GOF tests such as a Chi-square test are not comparable for Lévy models on complete data and left 
truncated version for EV model with incomplete data.



Page 12 of 26Mozumder et al. Financial Innovation          (2024) 10:100 

the tests (the left truncated version of the test of VaR for the EV model remains consist-
ent as it is computed from a left-truncated density):

where u is the truncation level; xj is the jth observed value of the order statistic 
X1 ≤ X2 ≤ .... ≤ Xn ; and n represents observations in the tail (total number).

Table  4 presents the statistics for applying both the GOF tests (AD and its left 
truncated version ADev). By the very nature of the tests, AD and ADev are differently 
informative about the tail fits. Based on Table 4, EV and full density Lévy models per-
form statistically almost similarly on the tail. However, as AD and ADev values exhibit 

(16)AD2 = −N −
N∑

i=1

(2i − 1)

N
[log (F(xi))+ log (1− F(xN+1−i))]

(17)

AD2
ev = −n+ 2n log (1− F(u))−

1

n

n∑

i=1

(1+ 2(n− i)) log
(
1− F

(
xj
))

+ ...

+
1

n

n∑

i=1

(1− 2i) log
(
F
(
xj
)
− F(u)

)

Table 4  Anderson Darling (Lévy) and left truncated Anderson Darling (EV) Goodness-of-fit

In the case of a left-truncated Anderson Darling test, 1000 resampling is considered to obtain the p-values by bootstrapping. 
(*) denotes that models survive the test to the given significance level. AD-stat for the EV model is obtained with ADev of 
Eq. (17). There is no clear preference between the approaches (EV vs. Lévy)

Index Model AD-stat 1%CV 5%CV 10%CV p-value

S&P500 EV 0.241 3.343* 2.008* 1.501* 0.826

VG 1.715 3.877* 1.818* 1.637 0.050

NIG 1.521 3.141* 1.777* 1.311 0.071

HYP 1.458 3.449* 1.638* 1.124 0.072

GH 1.419 2.898* 1.710* 1.102 0.066

FTSE100 EV 0.691 3.416* 2.912* 1.421* 0.727

VG 0.651 3.211* 1.906* 1.202* 0.202

NIG 0.410 4.153* 1.920* 1.410* 0.481

HYP 0.408 3.003* 1.883* 1.400* 0.336

GH 0.313 3.233* 1.847* 1.382* 0.400

DAC EV 1.124 3.997* 3.043* 1.677* 0.710

VG 1.503 4.211* 2.732* 1.651* 0.142

NIG 1.310 3.639* 2.421* 1.597* 0.163

HYP 1.151 3.909* 2.466* 1.715* 0.172

GH 1.147 3.333* 2.411* 1.774* 0.255

Hang Seng EV 1.417 5.462* 3.265* 2.118* 0.718

VG 1.008 4.938* 3.119* 2.061* 0.300

NIG 0.522 4.697* 2.528* 2.199* 0.381

HYP 0.625 5.110* 3.121* 2.152* 0.449

GH 0.505 5.033* 3.077* 2.136* 0.371

Nikkei225 EV 0.819 4.000* 3.011* 1.772* 0.793

VG 0.825 4.189* 2.637* 1.835* 0.473

NIG 0.723 4.167* 2.501* 1.810* 0.341

HYP 0.633 3.993* 2.477* 1.730* 0.303

GH 0.729 4.033* 2.710* 1.689* 0.443
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observations outside the tails, they influence the test results even when the weights 
attached to such observations are much less than those attached to the tail.

Comparison of risk measures
This section analyzes the Lévy and EV estimates of VaR and ES. The estimates of VaR 
are based on GPD and the four Lévy models. We report the parameters of each model 
calibrated under both approaches in Tables 5, 6, 7, 8 and 9. As VaR and ES are based 
on higher coverage levels, they account for trading losses at a very high level due to 
extreme (unexpected) events. Surprisingly, VaR estimates across the empirical values are 
approximately of the same order of magnitude for all indices, but that is not true for ES 
estimates. For the ES model, the estimates depend on the entire tail shape of the model 
but not only on a specific quantile of the tail. However, between the approaches, it is 
difficult to claim with certainty that, based on the estimates of VaR and ES, any particu-
lar approach is better than another. The EV model occasionally provides VaR and/or ES 
estimates that deviate less from their empirical counterparts. However, Lévy–VaR and/
or Lévy-ES estimates have less deviation from their empirical counterparts on different 
occasions.

Looking into the precision of VaR estimations may help us ascertain some preference 
between the approaches. Overall, the SEs of the Lévy model VaR estimates are much 

Table 5  Estimates of VaR and ES risk measures for S&P500 futures position: EV versus Lévy

The estimates are based on the parameter values in Tables 2 and 3 using daily % return. Here, α is the coverage level 
of VaR and ES when estimated under the EV and Lévy approaches, corresponding to a holding period of 1 day. Next to 
each estimate, SEs are reported, and the 90% confidence intervals are immediately below (normalized by bootstrapped 
estimates). The adequate ES estimates are depicted in bold, and the adequate VaR are shown in bold and Italics. Again there 
is no clear pattern of preference between the approaches (EV vs. Lévy)

Model Risk Measure α = 0.99 α = 0.995 α = 0.999

Empirical VaR 2.953 3.435 5.647

ES 4.415 4.529 6.824

GP VaR 2.918 (0.127)
[0.935–1.075]

3.489 (0.204)
[0.908–1.089]

5.125 (0.659)
[0.797–1.189]

ES 4.012 (0.173)
[0.981–1.124]

4.411 (0.252)
[0.931–1.104]

6.610 (0.911)
[0.825–1.161]

VG VaR 2.889 (0.121)
[0.935–1.072]

3.384 (0.165)
[0.926–1.094]

4.528 (0.374)
[0.870–1.145]

ES 3.736 (0.137)
[0.951–1.129]

4.153 (0.171)
[0.951–1.183]

5.527 (0.304)
[0.915–1.310]

NIG VaR 3.001 (0.146)
[0.925–1.085]

3.617 (0.203)
[0.883–1.086]

5.139 (0.547)
[0.840–1.180]

ES 4.003 (0.162)
[0.951–1.133]

4.533 (0.220)
[0.941–1.177]

6.099 (0.414)
[0.910–1.091]

HYP VaR 2.902 (0.123)
[0.934–1.073]

3.409 (0.164)
[0.898–1.073]

4.587 (0.371)
[0.889–1.172]

ES 3.922 (0.133)
[0.991–1.120]

4.225 (0.160)
[0.961–1.166]

6.111 (0.401)
[0.924–1.107]

GH VaR 2.989 (0.139)
[0.928–1.081]

3.569 (0.189)
[0.888–1.081]

4.967 (0.454)
[0.869–1.179]

ES 3.903 (0.140)
[0.951–1.006]

4.344 (0.201)
[0.942–1.112]

5.490 (0.402)
[0.972–1.210]
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lower than those of the EV model VaR estimates. The rise in coverage levels reinforces 
this observation. The coefficient of variations (estimated risk measure value divided by 
corresponding SE) helps us to double-check this observation. Thus, the VaR estimates 
based on the Lévy models are more stable than those based on the EV model. However, 
this may be partly due to a few observations under the EV model.

Tables 5, 6, 7, 8 and 9 report a 90% CI for VaR estimates obtained with bootstrapped 
estimates. We find that at low coverage levels, the estimated CIs for both EV and Lévy 
models are symmetric. However, at higher coverage levels, confidence levels are asym-
metric, with the upper bound moving further away from the mean of the estimates 
(bootstrapped). In contrast to the GP, it is difficult to establish clear-cut results for the 
four Lévy models through a comparison of the SEs of VaR estimates. Unlike GP, often 
at ultra-high coverage (0.999), the CIs exhibit ultra-spread, which indicates unstable 
forecasts at ultra-high coverage, presumably because the estimations are based on a few 
extreme observations above the threshold7 alone.

Overall, the ES CIs are narrower than those of VaR, indicating that ES measures 
are more precisely estimated than VaRs. VaR and ES bootstrapped statistics (SE and 
CI) are informative regarding some differences and similarities between Lévy and EV 
approaches. VaR and ES bootstrapped statistics are narrower for Lévy models than for 
EV models, which indicates that the estimation with a Lévy approach is more stable than 

Table 6  Estimates of VaR and ES risk measures for FTSE100 futures position: EV versus Lévy

The estimates are based on the parameter values in Tables 2 and 3 using daily % return. Here, α is the coverage level 
of VaR and ES when estimated under the EV and Lévy approaches, corresponding to a holding period of 1 day. Next to 
each estimate, SEs are reported, and the 90% confidence intervals are immediately below (normalized by bootstrapped 
estimates). The most adequate ES estimate is depicted in bold, and the most adequate VaR is shown in bold and italics. 
Again there is no clear pattern of preference between the approaches (EV vs. Lévy)

Model Risk measure α = 0.99 α = 0.995 α = 0.999

Empirical VaR 3.306 3.739 5.118

ES 4.141 4.614 5.812

GP VaR 3.058 (0.147)
[0.924–1.086]

3.674 (0.243)
[0.908–1.119]

5.273 (0.556)
[0.837–1.190]

ES 3.883 (0.174)
[0.951–1.191]

4.704 (0.241)
[0.941–1.200]

5.923 (0.681)
[0.901–1.200]

VG VaR 2.969 (0.111)
[0.942–1.064]

3.424 (0.145)
[0.938–1.078]

4.453 (0.324)
[0.882–1.129]

ES 3.702 (0.120)
[0.936–1.080]

4.400 (0.155)
[0.951–1.079]

5.101 (0.331)
[0.901–1.077]

NIG VaR 3.026 (0.124)
[0.937–1.071]

3.542 (0.168)
[0.931–1.088]

4.772 (0.452)
[0.866–1.191]

ES 3.822 (0.138)
[0.953–1.200]

4.412 (0.160)
[0.920–1.099]

5.492 (0.422)
[0.914–1.121]

HYP VaR 2.993 (0.116)
[0.939–1.067]

3.470 (0.153)
[0.935–1.082]

4.569 (0.300)
[0.887–1.123]

ES 3.690 (0.120)
[0.943–1.105]

4.225 (0.140)
[0.945–1.128]

5.311 (0.336)
[0.914–1.134]

GH VaR 3.027 (0.131)
[0.933–1.075]

3.579 (0.184)
[0.926–1.096]

4.980 (0.412)
[0.863–1.156]

ES 3.809 (0.155)
[0.951–1.110]

4.520 (0.200)
[0.913–1.181]

5.928 (0.545)
[0.891–1.206]

7  We also conducted VaR and ES estimation for sample periods with or without the 2008 Global Financial Crisis period. 
The results do not change significantly. For brevity, we do not report the results here.
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Table 7  Estimates of VaR and ES risk measures for DAX futures position: EV versus Lévy

The estimates are based on the parameter values in Tables 2 and 3 using daily % return. Here, α is the coverage level 
of VaR and ES when estimated under the EV and Lévy approaches, corresponding to a holding period of 1 day. Next to 
each estimate, SEs are reported, and the 90% confidence intervals are immediately below (normalized by bootstrapped 
estimates). The most adequate ES estimate is depicted in bold, and the most adequate VaR is shown in bold and italics. 
Again there is no clear pattern of preference between the approaches (EV vs. Lévy)

Model Risk measure α = 0.99 α = 0.995 α = 0.999

Empirical VaR 4.397 4.940 6.594

ES 6.091 6.511 9.910

GP VaR 4.330 (0.195)
[0.926–1.074]

5.178 (0.326)
[0.914–1.115]

4.330 (0.195)
[0.860–1.151]

ES 5.822 (0.184)
[0.950–1.110]

6.300 (0.253)
[0.931–1.139]

9.032 (0.651)
[0.890–1.206]

VG VaR 3.971 (0.165)
[0.919–1.063]

4.634 (0.257)
[0.925–1.102]

6.157 (0.556)
[0.872–1.165]

ES 5.043 (0.177)
[0.951–1.166]

5.911 (0.192)
[0.940–1.009]

8.128 (0.420)
[0.922–1.113]

NIG VaR 4.119 (0.206)
[0.931–1.079]

4.932 (0.282)
[0.909–1.085]

6.928 (0.709)
[0.828–1.149]

ES 5.512 (0.232)
[0.952–1.104]

6.410 (0.248)
[0.921–1.124]

8.401 (0.553)
[0.918–1.203]

HYP VaR 4.003 (0.171)
[0.917–1.065]

4.690 (0.240)
[0.915–1.085]

6.284 (0.548)
[0.851–1.126]

ES 5.029 (0.220)
[0.952–1.137]

5.922 (0.240)
[0.920–1.120]

7.729 (0.428)
[0.925–1.202]

GH VaR 4.115 (0.203)
[0.932–1.078]

4.916 (0.277)
[0.910–1.084]

6.865 (0.689)
[0.831–1.146]

ES 5.442 (0.228)
[0.954–1.123]

6.200 (0.248)
[0.914–1.150]

8.200 (0.472)
[0.913–1.202]

Table 8  Estimates of VaR and ES risk measures for Hang Seng futures position: EV versus Lévy

The estimates are based on the parameter values in Table 2 and 3 using daily % return. Here, α is the coverage level of 
VaR and ES when estimated under the EV and Lévy approaches, corresponding to a holding period of 1 day. Next to 
each estimate, SEs are reported, and the 90% confidence intervals are immediately below (normalized by bootstrapped 
estimates). The most adequate ES estimate is depicted in bold, and the most adequate VaR is shown in bold and italics. 
Again there is no clear pattern of preference between the approaches (EV vs. Lévy)

Model Risk measure α = 0.99 α = 0.995 α = 0.999

Empirical VaR 5.269 6.273 9.169

ES 7.324 7.939 11.548

GP VaR 5.240 (0.269)
[0.912–1.099]

6.385 (0.367)
[0.907–1.092]

9.494 (1.083)
[0.817–1.198]

ES 7.188 (0.303)
[0.953–1.094]

7.389 (0.463)
[0.929–1.201]

11.622 (1.131)
[0.908–1.127]

VG VaR 5.057 (0.209)
[0.936–1.071]

5.917 (0.278)
[0.878–1.129]

7.901 (0.642)
[0.878–1.129]

ES 7.003 (0.211)
[0.946–1.103]

7.204 (0.312)
[0.922–1.135]

10.250 (0.707)
[0.902–1.105]

NIG VaR 5.288 (0.258)
[0.925–1.084]

6.372 (0.356)
[0.883–1.085]

9.052 (0.901)
[0.853–1.159]

ES 7.100 (0.235)
[0.961–1.126]

8.135 (0.371)
[0.916–1.139]

11.005 (0.812)
[0.861–1.091]

HYP VaR 5.084 (0.215)
[0.935–1.073]

5.968 (0.286)
[0.899–1.073]

8.019 (0.666)
[0.876–1.132]

ES 6.626 (0.236)
[0.955–1.071]

7.444 (0.301)
[0.934–1.114]

9.396 (0.670)
[0.914–1.202]

GH VaR 5.285 (0.266)
[0.923–1.087]

6.413 (0.374)
[0.878–1.089]

9.281 (0.980)
[0.845–1.169]

ES 7.093 (0.320)
[0.942–1.150]

8.306 (0.440)
[0.911–1.118]

11.401 (1.078)
[0.852–1.168]
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that with an EV approach. Moreover, the estimation performance deteriorates under 
both approaches with increased coverage. For NIG and GH models, estimation instabil-
ity seems to propagate much faster, especially at higher coverage levels.

VaR and ES backtesting
We conduct dynamic calibration on a rolling window for backtesting. As daily VaR(α) 
is estimated on daily return, the loss for the one-day holding of an asset can only be 
violated for 100% α of the time, allowing all possible extremities. We use an indicator 
variable describing the hit sequence that identifies the day of VaR violation in the fol-
lowing T trading days. The hit sequence is Bernoulli distributed with a probability α of 
assuming 1. We implement three VaR tests—unconditional, independence, and condi-
tional coverage. We use two tests without distributional assumption for ES backtests—
unconditional-normal and unconditional t-test.

VaR backtesting

Unconditional test

The unconditional hypothesis of backtesting does not hold any assumption regarding 
today’s violation status when it provides statistical evidence as to whether the observed 
proportion of violation (PV) of a VaR model tomorrow is significantly different from its 

Table 9  Estimates of VaR and ES risk measures for Nikkei225 futures position: EV versus Lévy

Note: The estimates are based on the parameter values in Tables 2 and 3 using daily % return. Here, α is the coverage level 
of VaR and ES when estimated under the EV and Lévy approaches, corresponding to a holding period of 1 day. Next to 
each estimate, SEs are reported, and the 90% confidence intervals are immediately below (normalized by bootstrapped 
estimates). The most adequate ES estimate is depicted in bold, and the most adequate VaR is shown in bold and italics. 
Again there is no clear pattern of preference between the approaches (EV vs. Lévy)

Model Risk measure α = 0.99 α = 0.995 α = 0.999

Empirical VaR 3.758 4.770 5.891

ES 5.102 5.610 6.735

GP VaR 3.846 (0.143)
[0.945–1.061]

4.447 (0.223)
[0.927–1.090]

5.821 (0.472)
[0.882–1.134]

ES 4.815 (0.171)
[0.911–1.115]

5.310 (0.224)
[0.944–1.104]

6.328 (0.501)
[0.913–1.145]

VG VaR 3.946 (0.158)
[0.942–1.063]

4.526 (0.189)
[0.937–1.069]

5.833 (0.382)
[0.887–1.108]

ES 4.814 (0.151)
[0.971–1.105]

5.615 (0.205)
[0.941–1.079]

6.496 (0.310)
[0.904–1.108]

NIG VaR 3.996 (0.163)
[0.928–1.064]

4.636 (0.206)
[0.936–1.083]

6.142 (0.541)
[0.879–1.159]

ES 4.699 (0.169)
[0.962–1.183]

5.444 (0.225)
[0.942– 1.094]

7.138 (0.478)
[0.890–1.107]

HYP VaR 3.980 (0.148)
[0.931–1.057]

4.592 (0.180)
[0.934–1.059]

5.995 (0.434)
[0.877–1.135]

ES 4.920 (0.153)
[0.944–1.113]

5.590 (0.201)
[0.953–1.110]

6.703 (0.510)
[0.879–1.109]

GH VaR 3.993 (0.160)
[0.928–1.063]

4.622 (0.201)
[0.937–1.081]

6.083 (0.520)
[0.882–1.155]

ES 4.811 (0.202)
[0.943–1.104]

5.611 (0.220)
[0.934–1.121]

6.809 (0.520)
[0.909–1.092]
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promised fraction α. However, the evidence is provided through an asymptotical test 
statistic following χ2 with one degree of freedom:

Here, T = T1 + T0 is assumed to be significantly large, and T0 and T1 are the number of 
days with no violation and days with a violation, respectively. We use the Monte Carlo 
simulation to calculate the p-value. We compute the Monte Carlo p-value to simu-
late 999 test values, {LR(i)}999i=1 , each of which is based on a Bernoulli (α) sample of hit 
sequences having the same size as the original sample:

The simulated p-value is the proportion of simulated test values given that a simulated 
test value is more significant than the test value to roughly the number of simulations.

Independence test

The independence test checks whether VaR violations are truly random and not clus-
tered over time. As assets with volatility clustering yield VaR exhibiting clustering, we 
can predict that if there is a violation today, then we will most likely find a violation 
tomorrow, which is more than 100% α likely. VaR adjusts to the predictions of high vola-
tility as useful information, ensuring the risk model is correctly specified, and the viola-
tion of VaR remains unpredictable. The test statistic of the independence test is given as 
follows (Christoffersen 2003):

where the matrix of transitional probabilities of conditional violations is given as follows:

Thus, we can write

where p characterizes the matrix of transitional probabilities of violation, ensuring no 
dependence between 0 and 1 in the hit sequence:

(18)LRuc = −2log




(1− α)T0αT1

�
1− T1

T

�T0
�
T1
T

�T1



 ∼ χ2(1)

(19)Pmc =
1

1000

{
1+

999∑

i=1

I[
LR̂(i)

]
>LRuc

}

(20)LRind = −2log

[
L(p)

L�̂1

]
∼ χ2

(21)�̂1 =

[
T00

T00+T01

T01
T00+T01

T10
T10+T11

T11
T10+T11

]

(22)L
(
�̂1

)
=

(
T00

T00 + T01

)T00
(

T01

T00 + T01

)T01
(

T10

T10 + T11

)T10
(

T11

T10 + T11

)T11

(23)�̂ =
[
1− p p
1− p p

]
=

[
T0

T0+T1

T1
T0+T1

T0
T0+T1

T1
T0+T1

]
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L(p) is similar to the unconditional hypothesis. LRind provides the statistical sig-
nificance of the likelihood of independence in the hit sequence over the likelihood of 
dependence.

Conditional coverage test

The conditional coverage test checks whether the average number of violations changes 
with the level of a risk model. The conditional coverage test statistic has a similar expres-
sion as the independence test statistic with p = T1

T  of the independence statistic replaced 
by the coverage level α of the risk model (Christoffersen 2003; Dowd 2005):

ES backtesting

The unconditional coverage test statistic proposed by Acerbi et al. (2014) for ES back-
testing is as follows:

where Xt represents profit and loss distribution along a real but unknowable distribution 
and is forecasted by a model predictive distribution conditional to previous information 
used to compute ES, and It is an indicator function, which is equal to 1 when the fore-
casted VaR is violated, that is, Xt < −VaRα,t and 0 otherwise.

We use two tests without distributional assumption—unconditional-normal test and 
unconditional-t test (see Acerbi et al. 2014; Acerbi et al. 2017). The unconditional-nor-
mal test assumes that Xt follows a standard normal distribution, whereas the uncondi-
tional-t test assumes that Xt follows a t-distribution. The unconditional test statistic is 
sensitive to the severity of the VaR failures relative to the ES estimate and the frequency 
of VaR failures. As a result, a rare but colossal VaR failure(s) relative to the ES may result 
in the rejection of a model over a particular timeframe.

However, when the ES estimate is large on a violation day, it may not impact the 
test results as much as a large loss would have if a smaller ES were encountered. Simi-
larly, a model can be rejected due to many VaR failures even if all VaR violations are 
just slightly higher than the VaR as such failure contributes to making the test statistics 
negative. Thus, glimpses of asymmetry in several VaR violations among different mod-
els and asymmetry in expected and observed severity (severity ratio) are critical for ES 
backtesting.

Backtesting results

We now examine the sensitivity of the risk measure VaR to new observations for dynamic 
calibration on a rolling window of four business years with a two-year look-back window 
and continue to increase the window length. To avoid the problem with EV dynamic 
calibration that considers only extreme observations, we increase the proportion of 

(24)LRcc = −2log



 LR(α)

LR
�
��1

�



 = LRuc + LRind ∼ χ2

(25)Zunconditional =
1

N (1− α)

N∑

t=1

XtIt

ESα,t
+ 1
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extreme observations by adjusting the threshold and expanding the length of the look-
back window. We consider the extreme 30% observations in calibration dynamically for 
EV and the coverage levels of 95% and 99%.

First, we calibrate all the models on the time series of returns for 2007–2010 on 
December 31, 2010 and use the calibrated parameters to predict the VaR and ES for Jan-
uary 1, 2011. This gives us an additional new observation of returns on January 1, 1995. 
We remove the oldest observation to accommodate this new observation in our fixed 
length look-back window and then calibrate the models in a new window to predict 
the VaR and ES on January 2, 2011. The process continues until the end of 2003. Thus, 
the dynamic calibration starts on January 1, 2011 and ends on December 31, 2017. The 
unconditional, independence, and conditional coverage hypotheses are tested with 95% 
VaRs. The backtesting checks whether unconditional and conditional distributions influ-
ence conditional and unconditional coverage hypotheses tests. The backtesting results 
for long positions in all indices and the PVs are presented in Table 10.8

Table 10 reveals that the EV–VaR is not distinguishable from that of the full density-
based Lévy–VaR given the observed PV performance of backtesting. The PVs corre-
sponding to an EV model are closer to the promised fraction of violations for all indices, 
except for Nikkei225. The PVs corresponding to EV models for Nikkei225 deviate more 
from the promised fraction of violations than those for Lévy models. Thus, the tail-based 
risk measure of VaR obtained for the tail-based model of EV and full density-based Lévy 
models are almost similar.

For the remaining indices, the results from the hypotheses testing are mixed. As the 
VaR violations are clustered at 95%, the independence test fails in most cases. However, 
the test passes the 99% coverage. On the other hand, the conditional coverage hypothesis 
is supported in most cases, although both unconditional and independence hypotheses 
are not supported. A significant deviation of the observed PV from the promised PV for 
unconditional coverage may have contributed to the rejection of the conditional cover-
age hypothesis. We also report the Chi-square and the Monte Carlo simulated p-values, 
which test the effectiveness of the test statistics. We find that both the Chi-square and 
p-values are close to each other, implying that our tests are relevant.

The last two columns in each table report the results of the ES backtesting. We report 
two ES backtesting results without distributional assumption—the unconditional-nor-
mal test (unconditional-N) and the unconditional-t test (unconditional-t). The p-values 
of the tests, which represent the success rate when multiplied by 100, are reported in 
parentheses. We identify each test as a “pass” (P) or a “fail” (F) based on the p-values in 
the table. All tests are conducted at a 95% confidence level. None of the unconditional-N 
tests passed. However, the unconditional-t tests passed in only a few instances. Thus, our 
results do not suggest any preference for the EV or Lévy models through ES backtesting.

Discussion
We have investigated four full-density Lévy models and estimated the tail-focused risk 
measure VaR and its coherent version ES, in addition to estimating VaR and ES for an 
EV model (a tail targeting approach). The parameters calibrated for all five models under 

8  The unconditional, independence, and conditional coverage hypotheses are also tested with 99% VaRs. The results are 
similar to the 95% VaR.
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both approaches are presented in Table 2 and 3. VaR and ES are based on high coverage 
levels, accounting for extreme events governing high trading losses. We analyze the per-
formance of VaR and ES risk measures, utilizing full-density Lévy models of VG, NIG, 
HYP, and GH, and compare them with the VaR and ES estimates obtained with the tail 
density-based EV model. The results reveal that it is very difficult to ascertain any com-
prehensive superiority of one approach over the other.

Table  11 presents the frequency distribution of significant estimates reported in 
Table 5, 6, 7, 8 and 9. We have 15 estimates of VaR and 15 estimates of ES risk under the 
risk model EV and its contender Lévy estimated across all five indices and three cover-
age levels. Generally (11 out of 15 estimates), we find that the Lévy–VaR forecasts are 
closer to respective empirical estimates than their EV counterparts. Nevertheless, such 
observation does not allow us to declare inadequacy to disfavor the EV approach. How-
ever, in the Lévy category, the NIG (4 out of 11) and the GH (6 out of 11) models provide 
much more appreciable forecasts (in the sense of having minimum absolute deviation 
with empirical estimates) of VaR compared with the VG and the HYP Lévy models. 
Among the remaining Lévy models, VaR forecasts favor the HYP model, supporting the 
derivative pricing concept (Schouten 2003). This implies that a fully flexible GH model 
forecasts the quantiles more befittingly than its restricted versions.

Regarding the restricted versions, NIG characterization seems to have minimal effect 
on forecasts due to restriction. Regarding 15 ES forecasts, the EV model counts for the 
8 most favorable forecasts, which is not sufficient to be deemed adequate. Looking into 
odds for Lévy-ES forecasts, we find 3 out of 7 for NIG, 2 out of 7 for GH, 1 out of 7 for 
the VG, and 1 out of 7 for the HYP model. Thus, the presumed myth that a tail-target-
ing model is more likely to provide superior, consistent forecasts for tail-focused risk 
measures VaR and ES is empirically confronted. The simplicity of EV–VaR and EV-ES is 
attractive, but a comparison with empirical values often disputes their adequacy.

We find some randomness in classifying the superiority of an approach over another 
given a specific timeframe. The frequency distribution of adequacy between the simple 
tail targeting EV analytic risk model and the relatively complex full density driven Lévy 
risk models is presented in Table 11. While it is difficult to claim that a particular full-
density Lévy model is superior irrespective of data ranges, it is impossible to claim that 
the tail-targeting EV model has any sense of adequacy irrespective of all data ranges.

Table 11  Frequency distribution of tail risk estimates of analytic EV and root search-based Lévy 
models

The numbers are of the adequate estimates found in Tables 5, 6, 7, 8 and 9 corresponding to EV and Lévy models. The total 
number of estimates is reported in parentheses. The approaches have no discernible preference pattern (EV vs. Lévy)

Extreme value model Total Lévy models Total

VaR ES VaR ES

GP 4 (15) 8 (15) 12(30) – – –

VG – – – 0 (15) 1 (15) 1 (30)

NIG – – – 4 (15) 2 (15) 6 (30)

HYP – – – 1 (15) 1 (15) 2 (30)

GH – – – 6 (15) 3 (15) 9 (30)

Total 4 8 – 11 7 18
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Given such similarity of forecast performances in both approaches, the choice is likely 
to be determined by a compromise between user-define-simplicity and user-perceived-
adequacy. This suggests that the performances of risk measure VaR and its coherent ver-
sion ES are different and fail to adequately identify the risk profiles of assets. When the 
VaR and ES models identify the risk profiles of assets similarly, both VaR and ES would 
be adequate for tail targeting either the EV model or some full-density Lévy model. 
However, the performance of VaR and ES are mixed across EV and Lévy models. This 
should not be interpreted that the test statistics results of model fitting performances are 
contradictory.

It is well known that the AD test is tail-emphasized. Therefore, quantile mismatch out-
side the tail is barely detected by the ADev test, which is applied to the tail-targeting EV 
model. Based on the AD test statistics in Table  3, the EV model has some preference 
over the Lévy models. However, this is only based on the tail quantile match of EV. This 
means that it hardly bears information on quantile matches far outside the tail. This is 
why an AD test value of a solely tail-based EV model might turn deceptive when com-
pared with the AD test value of an entire distribution-based Lévy model. This decep-
tion can hardly be adequately detected by applying the GOF test emphasized on the tail. 
Thus, it is not surprising that the seemingly preferable EV model turns elusive and does 
not yield the most adequate forecasts of risk measures, i.e., VaR and ES. Our backtest-
ing results about VaR and ES also confirm such findings. The EV–VaR or EV-ES results 
are not significantly different from VaR and ES based on Lévy models. In most cases, the 
results are mixed.

Conclusion
We investigate and compare the simplicity and adequacy of tail-focused VaR and ES 
risk measures for tail-targeting EV models with the full density-focused Lévy–VaR and 
Lévy-ES using data on futures contracts of S&P500, FTSE100, DAX, Hang Seng, and 
Nikkei 225 indices from January 1, 2007 to December 31, 2017, covering the 2007–2008 
Global Financial Crisis that led to the subprime mortgage debacle in the US. We find 
that returns discarded by the EV model (as they do not characterize the extreme unex-
pected market losses) and incorporated by the Lévy models do have some effect on the 
performance of tail-focused risk measures VaR and its coherent version ES. Thus, with-
out an immutable law justifying any preference between “tail-alone” and “full-density-
based” models for tail-focused risk management, this study provides a heuristic analysis 
illustrating the potential effects of the observations discarded by an EV model on risk 
estimates when considered under Lévy models.

The tail-based EV models are simpler for the analytic formulation of the tail-focused 
risk measures of VaR and tail-aggregate risk measure of ES compared with the Lévy-
based measure. Moreover, the EV models are simpler to implement in risk measure 
calculations. However, we find that the EV models are inadequate as the performance 
of EV risk estimates is not necessarily superior to that of Lévy risk estimates. On the 
other hand, we cannot assure that a full density-based model based on Lévy distribution 
adequately assesses risk measures. Thus, the adequacy of a simpler model with a more 
straightforward implementation becomes a relative consideration. Our model testing 
reinforces the theoretical fundamental that the extreme observations in the tails of the 
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EV model (discarding smaller systematic returns) and all observations, including smaller 
and extreme ones in Lévy models, are different approaches with the common goal of 
meaningful simplification of reality. Their relative performance for a particular time win-
dow may fail to offer any guarantee. Given such randomness of estimation performances 
under both approaches (for different ranges of data and coverage levels), the choice 
should be determined by a compromise or trade-off between simplicity and user-defined 
adequacy. Our study period covers the 2007–2008 Global Financial Crisis. The analysis 
can be extended to other financial crisis periods, e.g., the Russian financial crisis, the 
default crisis related to the Long-Term Capital Management of 1998,9 and more recent 
the coronavirus-related turmoil in the financial market during 2020–2021.

Our analysis is based on only a selection of EV and Levy models. The study can be 
extended using other types of models. Practitioners should not rely on one set of desired 
models and ignore others when implementing VaR and ES estimation. The simplicity of 
a model does not guarantee its adequacy. However, the adequacy of a model based on 
“full-density,” e.g., the Lévy-based model, may not always be the best when a simpler tail-
based model will provide more robust VaR and ES results. As many banks and financial 
institutions do not follow adequacy requirements in risk measures following the Basel 
agreement, our findings shed empirical light on such complexity. Therefore, when the 
results are mixed, banks and financial institutions as well as policymakers should find a 
way to compromise simplicity and adequacy.
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