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Introduction
Artificial Intelligence (AI) is impacting the future of virtually every sphere of human life. 
According to McKinsey Global Institute, around 70% of companies will adopt at least 
one type of AI technology by 2030, while less than half of large companies will deploy 
the full range (Inchauspe et al. 2015). It has also been estimated that the revenues of the 
AI market worldwide will exceed $US 3060 billion by 2024, compared to its previous 
value of about $US 260 billion in 2016. While these suggest the pervasiveness of AI, it 
is unlikely to slow down any time soon. Indeed, anecdotal evidence suggests that AI-
related activities, measured either by the number of resources devoted to them or their 
outputs, have increased significantly in recent times (Furman and Seamans 2019; Vidya 
and Prabheesh 2020).

The emergence of AI is seen worldwide as a major platform for improving com-
petitiveness and maintaining national security, and applying AI to energy is one of the 
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priorities (Jha et  al. 2017). With the growing concerns about the depletion of fossil 
fuels, climate change, and the need to achieve sustainable growth, various projects 
supporting the development and use of renewable energies are related to AI technol-
ogies. Technology might reduce the cost of greenhouse gases through product inno-
vations, the higher energy efficiency of manufacturing processes, cost reductions in 
low-emission energy conversion, and improvements in fossil energy conversion (Tekic 
and Koroteev 2019). According Gupta and Shah (2021), AI has been used to increase 
the production rate, minimize the lifting cost, and enhance the modeling of reservoirs 
and maintenance prevention in the Oil and Gas industry. In the clean energy sector, 
it has been used for predictive maintenance, among others (Sadorsky 2012). AI plays 
a significant role in energy production, supply, and consumption (Ahmad et al. 2021). 
It has also successfully predicted and learned consumers’ habits, values, motivations, 
and personalities, which help bolster the balancing and effectiveness of the energy 
system and allow for creating policies more effectively (McKinsey Global Institute 
2018).

Previous literature focused on the interdependences and connectedness between tech-
nology stocks and clean energy reveal dependence, causality, and spillovers among these 
variables (Ahmad 2017; Bondia et al. 2016; Hanga and Kovalchuk 2019; Koroteev and 
Tekic 2021; Linton and Whang 2007; Maghyereh et al. 2019; Mensi et al. 2021; Nasreen 
et  al. 2020; Politis and Romano 1994; Zhang et  al. 2020). The view held in this litera-
ture is that increases in technological innovation and, hence, stock prices of technology 
companies would drive those of clean energy firms for at least two reasons. First, clean 
energy companies depend heavily on inputs from technology companies (Elsayed et al. 
2020). Second, as the success of clean energy companies depends upon the successful 
breakthrough or adoption of specific technologies, investors may perceive clean energy 
stocks as similar to stocks of technology companies (Bondia et  al. 2016). While these 
conjectures are specific to clean energy, they could be extended to other energy sources, 
such as Coal and oil and gas, as they are much quicker to adopt new technologies than to 
experiment with and change their business models (Shin et al. 2021).

Further, while the erstwhile literature does not specify the type of technology in ques-
tion, a specific case can be made for AI as it is today’s most crucial general-purpose 
technology (Koop and Korobilis 2014). Therefore, how investments in AI relate to those 
of the energy sector/market remains to be explored. Our current study aims to fill this 
gap. Specifically, we examine the potential implications of the recent surge in AI for the 
energy-focused sectors by analyzing the relationship between the stock returns of AI and 
energy-focused sectors. Our analysis considers the co-movement, lead-lag, tail depend-
ence, and connectedness between AI and energy sectors. To the best of our knowledge, 
this is the first paper to analyze such relationships. We also consider the change that 
may have occurred from the COVID-19 pandemic by performing our analysis on two 
samples: the "pre-pandemic" and "during-pandemic" periods. The energy market was 
among the most hit and affected by the current pandemic due to supply chain disrup-
tion that pushed firms and economies to search for alternative energy sources (Ali et al. 
2020; Uddin et al. 2019; Zahraee et al. 2016). This led to inefficiency in the energy mar-
ket. It thus becomes imperative that analysis focused on the energy market differentiates 
between periods, as market fundamentals, as well as the behaviors and expectations of 
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market participants, are likely to differ between both periods. Hence, our focus is on the 
two samples.

We address our research objectives using daily frequency time series data. Our empiri-
cal measure of AI relies on the NASDAQ AI price index following (Henriques and 
Sadorsky 2008) and (Tekic and Koroteev 2019), while our empirical measure of energy-
focused sectors follows (Corbet et  al. 2020) and uses eight energy-focused sectors 
defined based on their related TRBC Sector Code in the Datastream international (more 
on this in the data section). Concerning the empirical strategies, we rely on the Maxi-
mal Overlap Discrete Wavelet Transform (MODWT), for the co-movement and lead-lag 
dependence analysis. More generally, our motivation for adopting the Wavelet approach 
is because it allows the analysis of time series that contain varying power at different 
frequencies. Hence, it provides a unified framework to measure dependencies between 
two variables in a time–frequency space (see Akoum et al. 2012). We, however, focus on 
MODWT as it has been shown in previous studies to outperform the Discrete Wave-
let Transform (DWT) (see Failed 2021; Linton and Whang 2007). Regarding the tail 
dependence analysis, we use the Cross-Quantilogram (CQ) approach of Gupta and Shah 
(2021). The importance of adopting this approach over other strategies, such as the vec-
tor autoregressive framework, multifactor asset pricing model, dynamic conditional cor-
relation, and copulas that appear to be similar, cannot be over-overemphasized. While 
copulas and the CQ approach measure extreme-value dependence, the other approaches 
are only able to measure a mean-to-mean dependence. Nevertheless, the CQ approach 
is technically more informative than copulas as it permits the usage of arbitrary quan-
tiles and very large lags, allowing us to jointly detect the direction, magnitude, and 
duration of the dependence between variables. Moreover, CQ is a model-free measure 
and is not reliant on any moment condition (Tiwari et al. 2021). Finally, we rely on the 
TVP-VAR spillover method of Antonakakis et al. (2020) to analyze the return connect-
edness between AI and the energy-focused sectors. We apply the TVP-VAR spillover 
method on the frequency components realized from the MODWT technique to enable 
us to examine the market return connectedness between AI and energy-focused sectors 
across frequencies corresponding to the short, intermediate, and long-term investment 
horizons.

The remainder of the paper is organized as follows. A preview of related literature is 
presented in the second section. The third section presents the data and empirical strat-
egies, while the results are presented and discussed in section four. We conclude with 
Sect. 5.

Literature review
Our paper speaks directly to two strands of literature that have emerged indepen-
dently. The first relates to the literature examining interdependences and connectedness 
between oil price, technology, and clean energy stocks (e.g., see (Ahmad 2017; Bon-
dia et al. 2016; Huynh et al. 2020; Koroteev and Tekic 2021; Linton and Whang 2007; 
Maghyereh et al. 2019; Mensi et al. 2021; Nasreen et al. 2020; Politis and Romano 1994)). 
Studies within this literature have examined bilateral market responses and volatility 
spillovers among these variables across time, space, and market conditions. Hanga and 
Kovalchuk (2019), for instance, used the VAR model and found that changes in oil prices 
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influence the stock prices of technology stock, while technology shocks have a more 
significant impact on clean energy stock prices compared with oil price shocks. Politis 
and Romano (1994) analyzed the dynamic correlation and risk transmission between 
oil prices, clean energy stock prices, and technology companies using several multivari-
ate GARCH models and found results that are similar to those of Hanga and Kovalchuk 
(2019). More recently, Kalogirou (2007) investigated the degree to which firms’ stock 
returns in the energy and technology sectors depend on oil demand and supply shocks 
by accounting for quantile dependence in shock transmission and causal linkages. They 
show that the substitution between oil and clean commodities occurs only in the long 
run when the oil market is subject to demand-driven shocks.

Maghyereh et  al. (2019) used a Markov-switching VAR model to analyze the rela-
tionship between oil, clean energy, and technology stock prices. They found that in the 
post-structural break period, oil and technology stock prices positively impact clean 
energy stock prices, whilst their pre-structural break period results are consistent with 
(Hanga and Kovalchuk 2019). Bondia et  al. (2016) found that while technology stock 
prices and oil prices impact the stock prices of clean energy companies in the short run, 
there is no causality running towards prices of alternative energy stock prices in the 
long run. Ahmad (2017) examines the directional spillover between returns and volatili-
ties of crude oil prices and prices of clean energy and technology stocks. Among other 
things, the results showed bilateral interdependencies between clean energy and tech-
nology stocks, while crude oil exhibits limited interdependence with clean energy and 
technology.

In general, although the above studies show evidence of a significant relationship 
between technology and energy stocks, what remains under-explored in this literature is 
the technology type in question. Our paper, therefore, advances this literature by provid-
ing evidence on AI—a specific type of technology that characterizes modern technologi-
cal advancement. Besides AI being an important general-purpose technology of today 
with a wide cross-sectoral application (Koop and Korobilis 2014), the need for such 
focus draws extensively from the increasing dependence of the energy sector on AI solu-
tions (Boza and Evgeniou 2021; Gupta and  Shah 2021; Hanga and Kovalchuk 2019; Jha 
et al. 2017; Kalogirou 2007; Li et al. 2020; Zahraee et al. 2016; Zhang et al. 2020).

The second literature our paper speaks to is the more nascent literature examining the 
relationship between AI and financial stock markets to detect potential hedging and/
or diversification ability of AI for stocks (e.g., see (Demiralay et  al. 2021; Henriques 
and Sadorsky 2008; Tekic and Koroteev 2019)). For instance, Henriques and Sadorsky 
(2008) analyzed the role of AI and green bonds in portfolio diversification via copulas 
and the Generalized Forecast Error Variance Decomposition methods. Results suggest 
that portfolios consisting of these assets exhibit heavy-tail dependence and high volatil-
ity transmission in the short term. Overall, they conclude that the NASDAQ AI and gen-
eral equity indexes are not good hedging instruments for each other. On the other hand, 
Demiralay et al. (2021) examines the interdependence between AI stocks and traditional 
and alternative assets using wavelet coherence analysis in time–frequency space. Results 
suggest that co-movements between AI stocks and other assets significantly depend on 
the wavelet decomposition levels, suggesting time-scale-dependent investment ben-
efits. Wavelet coherence and correlations have substantially increased, mostly in the low 
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frequencies, during the COVID-19 pandemic. The study’s conclusion highlights a fresh 
perspective on the potential hedging and diversification benefits of AI stocks.

Tekic and Koroteev (2019) investigate the dependence structure and dynam-
ics between AI stocks and carbon prices in the era of the 4th industrial revolution by 
employing time-varying Markov switching copula models from December 2017 to July 
2020. Findings show a negative and asymmetric dependence structure for the return 
series between AI stock prices and carbon prices, highlighting a stronger lower tails 
dependence. That said, the finding is similar to Demiralay et  al. (2021), affirming that 
AI is a haven for carbon prices. This conclusion is maintained even with the introduc-
tion of the effect of economic policy uncertainty, equity market volatility, and the recent 
COVID-19 pandemic. Although these studies provide insights into the hedging and/
or diversifying ability of AI for traditional assets, such a role in the context of energy-
focused sectors and their assets still needs to be explored. Given the high application 
of AI solutions across different energy sectors, the need for an analysis that considers 
the interdependences and connectedness between AI and energy-focused sectors can-
not be overstated. Our study fills this gap by empirically analyzing the tail dependence, 
co-movement, and directional predictability among AI and different energy-focused 
sectors’ stock prices. Table 1 presents a summary of the above-reviewed related studies.

Data and empirical methods
Data

Two variables are important for our analysis: indicators of AI and energy-focused sec-
tors. Inspired by Henriques and Sadorsky (2008) and Tekic and Koroteev (2019), we 
measure AI using the NASDAQ AI price index. The NASDAQ AI index was established 
to track the performance of firms that actively apply artificial intelligence and robotics 
across technology, industrial, medical, and other economic sectors. Hence, the index 
captures the innovation level of the market as well as the performance of the artificial 
intelligence and robotics industry. For the energy-focused sectors, we follow (Corbet 
et al. 2020) that uses eight energy-focused sectors defined based on their related TRBC 
Sector Code in the Datastream international. The eight sectors considered include (i) 
Oil & Gas Exploration and Production (EXP); (ii) Oil & Gas Refining and Marketing 
(REF); (iii) Integrated Oil & Gas (INT); (iv) Oil-related Services and Equipment (SEQ); 
(v) Oil & Gas Transportation Services (TRA); (vi) Oil & Gas Drilling (DRI); (vii) Coal 
(COAL); and (iii) Renewable Energy (REN). As noted in Corbet et al. (2020), the scale 
and dependence, as well as directional predictability, will offer substantial information 
about broad energy market dynamics during periods of economic downturn, but also 
potential channels through which diversification opportunities exist. The final dataset 
used for the analysis comprises daily frequency time series data that covers the period 
from December 18, 2017, to June 14, 2021.

Figure  1, panel i–ix, shows the trend of the daily returns of the energy-focused 
sectors and AI for the entire sample period. The daily returns is computed as 
rt = 100 × (lnpt − lnpt−1). The plots show that across all energy sectors and AI, the 
levels of return increased significantly following the large drop in prices during the 
COVID-19 pandemic. Inspired by this, we analyze dependence for the pre-COVID and 
the post-COVID pandemic periods by dividing our dataset into two sub-samples. The 
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pre-COVID sample covers the period from December 18, 2017, to November 30, 2019, 
while the post-COVID-19 sample covers the period from December 1, 2019, to June 14, 
2021. This enables us to explore and compare the degrees of dependence across these 
two sample periods. Table 2 Panel A–B, we show summary statistics for all the series 
under the two sample periods. Table 2 indicates that the mean return for AI and REN 
was higher in the post-COVID sub-sample. Also, while the remaining variables possess 

Table 1 Related studies

Studies Country Period Model Variables

Henriques and Sadorsky 
(2008)

Global 2017—2020 Copulas NASDAQ AI; Oil; Bitcoin; 
Green bond; MSCI World; 
MSCI USA; Gold; VIX

Demiralay et al. (2021) USA 2017—2021 Wavelet Nasdaq CTA AI &
Robotics Index; S&P U.S. Gov-
ernment Bond Index; S&P 
U.S. Corporate Bond Index; 
S&P Commodity Index; CRIX; 
S&P 500 Index

Tekic and Koroteev (2019) USA 2017–2020 Copula AI Index; Carbon Price Index

Henriques and Sadorsky 
(2008)

Global 2017–2020 Copulas NASDAQ AI index; oil; gold; 
VIX; MSCI equity indices

Linton and Whang (2007) Global 2001–2018 Wavelet;
DCCG ARC H

WTI; WilderHill Clean Energy 
Index; FTSE ET50 Index

Huynh et al. (2020) Global 2001–2014 multi-factor asset pricing 
model

WilderHill New Energy Global 
Innovation Index; WTI; MSCI 
World index

Mensi et al. (2021) Global 2000–2017 Wavelet Oil price;clean energy and 
technology companies price 
indices

Ahmad (2017) USA 2005–2015 Diebold
and Yilmaz
(2012)’s method;
DCCG ARC H

WilderHill Clean Energy 
Index;NYSE Arca Technol-
ogy Index;futures contracts 
of WTI

Bondia et al. (2016) Global 2003–2015 Threshold cointegration 
approach

WilderHill New Energy Global 
Innovation Index;New York 
Stock Exchange Arca Tech 
100 Index; WTI;10-
Year Treasury Constant
Maturity Rate

Hanga and Kovalchuk 
(2019)

USA 2001–2007 VAR WilderHill Clear Energy Index; 
Arca Technology
100 index; S & P500;Oil

Maghyereh et al. (2019) USA 2001–2010 MSVAR WilderHill Clean Energy 
index;Arca Tech 100 index; 
WTI;US Treasury
bill interest rate

Politis and Romano (1994) USA 2001–2010 Multivariate
GARCH

WilderHill Clean Energy 
Index; NYSE Arca Technology 
Index; WTI futures contract

Nasreen et al. (2020) USA 2006–2018 EEMD;TDIC WTI futures; WilderHill Clean 
Energy Index;NYSE Arca 
Technology Index

Koroteev and Tekic (2021) Global 2005–2008 VAR The Wilder Hill New Energy 
Global Innovation Index;S & 
P Global Clean Energy
Index;WTI;carbon price; yield 
on a 3-month US Treasury 
bill;Arca Tech**100 index; S 
& P500
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negative mean returns in the pre-COVID sample, the mean returns for EXP, TRA, and 
COAL become positive for the post-COVID subsample. However, across all the mar-
kets, risks became higher in the post-COVID sample, as shown by significant increases 
in their standard deviation.

Figure  2 Panel a–b presents the unconditional correlations among the variables for 
both samples using separate heatmaps. The heatmaps show that for all asset pairs, the 
level of correlation among the markets increased in the post-COVID sub-sample, except 

Fig. 1 Plots of prices and returns series for energy-focused firms and AI. Note: (i)AI (Artificial Intelligence); (ii) 
Oil & Gas Exploration and Production (EXP); (iii) Oil & Gas Refining and Marketing (REF); (iv) Integrated Oil & 
Gas (INT); (v) Oil-related Services and Equipment (SEQ); (vi) Oil & Gas Transportation Services (TRA); (vii) Oil & 
Gas Drilling (DRI); (viii) Coal (COAL); and (ix) Renewable Energy (REN)
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for the correlation between EXP and DRI, which remains approximately the same (0.88). 
Also, Table 2 indicates that across the two sub-samples, all the series depart from the 
normality condition as shown by the significant Jarque–Bera test for normality in the 
return distributions. Moreover, all the variables in both sub-samples are negatively 
skewed, as shown by the skewness coefficients, while they exhibit excess kurtosis, sug-
gesting fatter tails than those of normal distribution. For both samples, we examine the 
presence of unit roots using the Augmented Dickey-Fully (ADF) test statistic. The ADF 
coefficients indicate that all the return series are stationary after the first difference. This 
feature is particularly crucial given the econometric techniques adopted in this study. 
Expressly, the cross-quantilogram and TVP-VAR models assume strict stationarity in 
the return series. Moreover, before implementing the cross-quantilogram approach, 
testing if all the variables exhibit nonlinear characteristics is necessary. Following this, 
Table 3 shows the BDS test proposed by Brock et al. (1996). The BDS test results on the 
VAR model’s filtered residuals for all the time series in different dimensions (m = 2, 3, 
…, 6). For all variables, the null hypothesis of linearity is rejected, suggesting that the 
residual series of the selected energy sectors and artificial intelligence are nonlinear. 
Hence, the nonlinear models, such as the cross-quantilogram and frequency-based con-
nectedness methods applied in this study, are appropriate for examining the interactions 
between AI and energy-focused sectors

Fig. 1 continued
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Empirical methods

In this paper, we are concerned with the dependence, directional predictability, and 
frequency-based connectedness among the returns of AI and energy-focused sectors. 
We employ recent novel econometric techniques, including the wavelet coherence, 
cross-quantilogram, and TVP-VAR connectedness approaches. This section describes 
these empirical strategies.

Wavelet coherence analysis

In line with our research objectives, we first provide evidence of dependence and co-
movement between AI and each sector of energy-focused corporations across dif-
ferent time scales. We use the wavelet technique to retrieve the frequency domains 
using the Maximal Overlap Discreet Wavelet Transform (MODWT) to do this. It is 
well discussed in previous studies that the MODWT has some crucial advantages 
over the Discrete Wavelet Transform (DWT). For instance, Linton and Whang (2007) 
argues that the MODWT is more appropriate for handling a series of any sample 
size, including a non-dyadic length sample size. Failed (2021) has also shown that 
the MODWT does not institute phase shifts, which has the likelihood of altering the 
location of events in time, and it is translation-invariant given that a shift in signal 
does not substantially disrupt the pattern of wavelet transform coefficients.

Table 2 Descriptive statistics for the pre-and post-COVID sample

JB denotes the Jarque–Bera test statistics for normality; ADF is the Augmented Dickey-Fuller test for stationarity while *** 
denotes significance at 1% level

Note: (i)AI (Artificial Intelligence); (ii) Oil & Gas Exploration and Production (EXP); (iii) Oil & Gas Refining and Marketing (REF); 
(iv) Integrated Oil & Gas (INT); (v) Oil-related Services and Equipment (SEQ); (vi) Oil & Gas Transportation Services (TRA); (vii) 
Oil & Gas Drilling (DRI); (viii) Coal (COAL); and (ix) Renewable Energy (REN)

Variable Mean Min Med Max Std. Dev Skew Ex. Kurt JB ADF

Panel A: pre-COVID

 AI 0.032 0.107 − 3.939 2.653 1.041 − 0.568 1.119 52.152*** − 18.958***

 EXP − 0.078 − 0.007 − 4.334 7.785 1.534 − 0.104 1.435 43.131*** − 20.598***

 REF − 0.027 0.026 − 3.902 3.375 0.962 − 0.446 1.216 46.661*** − 19.634***

 INT − 0.008 0.034 − 3.594 2.852 1.052 − 0.396 0.644 21.388*** − 20.467***

 SEQ − 0.135 − 0.079 − 5.577 4.963 1.606 − 0.068 0.390 34.901*** − 19.688***

 TRA − 0.008 0.000 − 4.014 2.722 0.975 − 0.372 1.043 38.151*** − 20.662***

 COAL − 0.128 − 0.096 − 4.982 5.020 1.444 − 0.054 0.391 23.157*** − 20.052***

 DRI − 0.163 − 0.075 − 7.355 8.942 2.067 − 0.078 0.913 17.587*** − 19.577***

 REN 0.017 0.021 − 3.924 4.041 1.256 − 0.056 0.319 23.437*** − 20.032***

Panel B: post-COVID

 AI 0.126 0.261 − 10.480 9.101 1.731 − 1.054 8.830 1352.8*** − 11.201***

 EXP 0.021 − 0.005 − 35.144 13.639 3.432 − 2.761 29.222 14,519.6*** − 9.6683***

 REF − 0.014 − 0.025 − 14.512 12.857 2.404 − 0.837 9.780 1616.2*** − 12.525***

 INT − 0.045 0.001 − 18.103 14.882 2.603 − 1.141 13.706 3169.2*** − 12.017***

 SEQ − 0.017 − 0.081 − 30.650 14.242 3.511 − 1.697 16.486 4650.9*** − 12.383***

 TRA 0.009 0.216 − 19.976 13.033 2.569 − 2.288 21.471 7912.1*** − 10.097***

 COAL 0.086 0.154 − 13.202 8.737 2.153 − 0.936 5.759 602.03*** − 12.481***

 DRI − 0.050 − 0.088 − 35.429 14.498 3.844 − 1.968 19.022 6194.7*** − 11.392***

 REN 0.242 0.440 − 12.129 11.412 2.720 − 0.405 3.099 168.37*** − 11.619***



Page 10 of 31Urom et al. Financial Innovation          (2024) 10:128 

Indeed, as described in Managi and Okimoto (2013), the MODWT wavelet and scaling 
coefficient w̃j,t and ṽj,t for a return series rt may be written as:and

where L denotes the filter length. Relying on the least asymmetric decomposition tech-
nique of Daubechies (1998) and Antonini et  al. (1992), we generate the multi-scale 
decomposed return series corresponding to a filter length, L = 8. Hence, the decom-
posed signals of the multi-resolution analysis in the MODWT may be expressed as:

w̃j,t =
1

2j/2

L−1

l=0

h̃j,lrt−j

(1)ṽj,t =
1

2j/2

L−1
∑

l=0

g̃j,lrt−j

rt = Sj(t)+

J
∑

j=1

dj(t)

Fig. 2 Correlation heatmaps for the pre-COVID and post-COVID pandemic sub-sample periods. Note: (i)AI 
(Artificial Intelligence); (ii) Oil & Gas Exploration and Production (EXP); (iii) Oil & Gas Refining and Marketing 
(REF); (iv) Integrated Oil & Gas (INT); (v) Oil-related Services and Equipment (SEQ); (vi) Oil & Gas Transportation 
Services (TRA); (vii) Oil & Gas Drilling (DRI); (viii) Coal (COAL); and (ix) Renewable Energy (REN)
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where the smoothed representation of the series rt at scale J, SJ(t) and the wavelet scales, 
dJ(t), which represents local fluctuation throughout returns associated with each scale j 
{j = 1, ···, J} may be written as:

and

As in previous studies, including Linton and Whang (2007) and Managi and Oki-
moto (2013), we decompose all the nine-return series for this study into 5 wavelet 
scales (d1, …, d5), which conform to the following: d1 represents 2–4 days; d2 captures 
4–8 days; d3 denotes 8–16 days, d4 denotes 16–32 days while d5 relates to 32–64 days. 
Following, we construct and examine dependence across three investment horizons 
such that the short-term, intermediate-term, and long-term horizons are as follows: 
d1 represents the short-term; the sum of the series corresponding to d2, d3, and d4 
denotes the intermediate-term, while the d5 denotes the long-term horizon.

Furthermore, the cross-wavelet transform and complementary wavelet coherency 
of two series x(t) and y(t) may be written as:

(2)SJ (t)+

+∞
∑

l=−∞

h(l)SJ−1

(

t + 2j−1 × l
)

(3)dJ (t)+

+∞
∑

l=−∞

g(l)SJ−1

(

t + 2j−1 × l
)

Table 3 BDS test for non-linearity from the vector autoregression (VAR) model filtered residuals

(i) AI (Artificial Intelligence); (ii) Oil & Gas Exploration and Production (EXP); (iii) Oil & Gas Refining and Marketing (REF); (iv) 
Integrated Oil & Gas (INT); (v) Oil-related Services and Equipment (SEQ); (vi) Oil & Gas Transportation Services (TRA); (vii) Oil 
& Gas Drilling (DRI); (viii) Coal (COAL); and (ix) Renewable Energy (REN)

Variable Dimension

m = 2 m = 3 m = 4 m = 5 m = 6

AI 0.0215*** 0.0456*** 0.0640*** 0.0761*** 0.0813***

(7.0618) (9.4545) (11.124) (12.686) (14.055)

EXP 0.0166*** 0.0327*** 0.0422*** 0.0476*** 0.0493***

(5.3121) (6.5900) (7.1253) (7.7059) (8.2683)

REF 0.0325*** 0.0630*** 0.0843*** 0.0948*** 0.0978***

(9.9651) (12.159) (13.662) (14.737) (15.765)

DRI 0.0199*** 0.0353*** 0.0432*** 0.0467*** 0.0478***

(6.5544) (7.2882) (7.4906) (7.7617) (8.2188)

TRA 0.0331*** 0.0642*** 0.0853*** 0.0992*** 0.1044***

(9.88411) (12.014) (13.404) (14.961) (16.331)

INT 0.0266*** 0.0490*** 0.0618*** 0.0676*** 0.0678***

(8.3151) (9.6178) (10.172) (10.676) (11.101)

SEQ 0.0204*** 0.0379*** 0.0484*** 0.0540*** 0.0566***

(6.4572) (7.5753) (8.1301) (8.7014) (9.4631)

COAL 0.0161*** 0.0277*** 0.0338*** 0.0362*** 0.0339***

(5.9319) (6.4252) (6.5992) (6.7948) (6.6321)

REN 0.0197*** 0.0444*** 0.0625*** 0.0731*** 0.0784***

(6.4927) (9.2054) (10.876) (12.215) (13.587)
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and

where the wavelet transforms of x and y are denoted by Wx(·) and Wy(·), respectively, 
while S(·) is the smoothing operator in both scale and time. As expected, we move fur-
ther to explore the dependence across time and frequency using the phase difference 
defined as follows:

where ℑ(·) and ℜ(·) represent the real and imaginary parts of the cross-wavelet spectrum.

The cross‑quantilogram (CQ) model

In line with the second research objective, we proceed to describe the CQ technique with 
which we examine dependence and directional predictability between AI and returns of 
energy-focused sectors. The CQ approach of Gupta and Shah (2021) extends the single 
time-series quantilogram of Li et  al. (2020). Suppose that the conditional distribution 
function of the series θ1t given θ2t with density function fθi|xi(.|xit), and the associated 
conditional quantile function is stated as qi,t(αi) ≡ infν: Fθi|xi(|xit ≥ αi) for αi ∈ (0, 1) , for 
i = 1, 2. We set θ1t as AI and θ2t as each energy corporation, respectively. If α represents 
the range of quantiles, the CQ measures the serial dependence between two events such 
as {θ1t ≤ q1(α1)} and {θ2t ≤ q2(α2)} for arbitrary quantiles. The quantile-hit or quantile-
exceedance process for i = 1,2 as in the literature may be written as: {1[θit ≤ qi(·)]}.

The CQ is specified as the cross-correlation of the quantile-hit process of α-quantile 
with k lags given as:

For k = 0, ± 1, ± 2, …, where Ψα(ν) ≡ 1[ν < 0] − α, 1[·] is the indicator function, and 1[θi,t 
 = qi(α i)] represents the quantile-hit or quantile-exceedance process. Assume α = (α1, α

2) = (α1N, α0N), ρα(1) denotes the cross-correlation between AI returns that are below or 
above quantile q0N(α0N) on the day t and the return on eight energy corporations on the 
day t being below or above quantile q1N(αIN). If ρα(1) = 0, returns on AI being below or 
above quantile q0N(α0N) in day t does not always permit the prediction of whether the 
subsequent returns on energy corporations will be above or below quantile q1N(αIN) in 
the next day. In contrast, ρα(1)   = 0 captures one-day directional predictability from the 
returns on AI to the returns on energy sectors at α = (α1N, α 0N).

As documented in Zhang and Du (2017), formulating a sampled analog of the CQ 
given the series {θ1, θ2}Tt=1 , requires solving the given sets of minimization problems to 
compute the unconditional quantile functions:

(4)Wxy(τ , s) = Wx(τ , s)W̃y(τ , s)

(5)Rxy(τ , s)

∣

∣s
(

Wxy(τ , s)
)∣

∣

√

s(|Wxx(τ , s)|)s
(
∣

∣Wyy(τ , s)
∣

∣

)

(6)ψxy(τ , s) = tan−1

{

ℑ
(

Wxy(τ , s)
)

ℜ
(

Wxy(τ , s)
)

}

(7)ρα(k) =
E
[

�α1

(

θ1,t − q1,t(α1)
)

�α2

(

θ2,t−k − q2(α2)
)]

√

E
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(
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)]

√

[
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(
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where, πα(µ) ≡ µ(α − 1[µ < 0]). The CQ of the sample counterpart is computed as given 
below:

where k = 0,±1,±2, …, ρα(k̂) = 0 represents no directional predictability from returns 
on AI to energy corporations. Furthermore, as documented in Gupta and Shah (2021), a 
quantile-based version of the Ljung-Box-Pierce statistics based on the hypothesis of H0: 
ρα(k) = 0 for all k ∈ 1, …, p against the alternative H1 : ρα(k)6 = 0 for some k ∈ 1, ..., p 
may be written as:

where Q̂(p)
α  conforms to the portmanteau test which may be applied in testing directional 

predictability of returns at a pair of quantiles {θ1, θ2} from one series to another up to p 
Lastly since the asymptotic distribution of the CQ is not free of noise parameters under 
the assumption of no directional predictability, Gupta and Shah (2021) rely on the sta-
tionary bootstrap of Niu (2021) and to compute the distribution of the Portmanteau test 
statistics.

Frequency‑based connectedness analysis

We analyze the degree of connectedness among AI and energy-focused sectors across 
different investment horizons using the frequency domains realized from the wavelets 
technique. Here, we rely on the TVP-VAR connectedness approach proposed by Anto-
nakakis et  al. (2020) on the frequency components generated from the wavelets tech-
nique. The TVP-VAR technique relates the distribution of a particular series to depend 
on its lags and those of other relevant covariates, which incorporates variations in the 
variances using the stochastic volatility Kalman Filter estimation of Khalfaoui et  al. 
(2015).

Traditionally, the TVP-VAR model unfolds with a time-varying parameter  VAR(p) 
model defined as:

where ut ∼ (N(0, Σt), with Σt representing an M ×M covariance matrix. If K × 1 vector 
βt = vec

(

[

ϕ0t ′, δ1t ′, . . . , δpt ′
]′
)

, where K = M(1 + Mp) while the M × K vector 

z = 1⊗
[

1,Yt−1,′ . . . ,Yt−p′
]

 . Also, due to constraints of limited information about 
parameter changes, βt vector follows a random walk, which enables the evolution of 

q̂1(α1) = argminv1∈R

T
∑

t=1

πα1(θ1 − v1)

q̂2(α2) = argminv2∈R

T
∑

t=1

πα2(θ2 − v2)

(8)ρ̂α(k) =

∑T
t=k+1�α1(θ1,t − q̂1,t(α1)�α2

(

θ2,t−k − q̂2,t−k(α2)
)

√

∑T
t=k+1�

2
α1(θ1,t − q̂1,t(α1)

√

∑T
t=k+1�

2
α2(θ2,t−k − q̂2,t−k(α2)

(9)Q̂(p)
α ≡

T (T + 2)
∑p

t=1 ρ̂
2
α(k)

T − k

(10)Yt = φ0t + δ1tYt−1 + · · · + δptYt−p + ut
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richer patterns relative to a stationary autoregressive process. Hence, the TVP-VAR 
model may be re-stated as:

where βt is an N × Np time-varying coefficients matrix while ut represents an N × 1 
matrix of error terms; σt is an N × N time-varying variance–covariance matrix. Thus, βt 
depends on their past values βt−1 and an N × N matrix of error terms vt, with N2 × N2 
dimensional matrix of variance-covariances Πt.

To realize the Generalized Impulse Response Functions (GIRFs) and the Generalized 
Forecast Error Variance Decomposition (GFEVD), the TVP-VAR model is re-written as 
a TVP-VMA (TVP-Vector Moving Average) using the Wold theorem defined as:

where βt =
[

β1,t ,β2,t · · · ,βp,t
]

′ and At =
[

A1,t ,A2,t · · · ,Ap,t

]

′ are N × N matrices of 
parameters. Based on the GFEVD, the GIRFs: ωij,t(h) accounts for the responses of all 
variables j to a shock on variable i. Using this, the h-step-ahead forecast in which vari-
able i is shocked and another for which variable i is not shocked may be estimated. Thus, 
this variance relates to the shock in variable i, written as:

where dj is an n × 1 selection vector with 1 in the jth position and zero otherwise. The 
GFEV D(γ̃ij,t (h)) is calculated and normalized, explaining the share of variance that a 
variable exerts on the system. Thus, each roll sums up to 100, indicating that all the vari-
ables in the system mutually account for 100% of the variable’s variance in forecast error. 
This is defined as:

where 
∑n

j=1 γ̃
n
ij,t(h) = 1 while 

∑n
j=1 γ̃

n
ij,t(h) = n . Essentially, the numerator term captures 

the total effect of a shock in variable i, while the denominator term accounts for the 

(11)Yt = βt zt−1 + ut ut ∼ N (0,�t)

(12)βt = βt−1 + vt vt ∼ N (0,�t)

(13)Yt = βt zt−1 + ut = Atut

(14)A0,t = I

(15)Aj,t = β1,tAj−1,t + · · · + βp,tAj−p,t

(16)GIRFt
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cumulative effect of all the shocks in the system. Hence, the Total Connectedness Index 
(TCI) is estimated as:

Following, total directional connectedness "TO" others captures how a shock in one of 
the variables i transmits to all other variables j, written as:

Likewise, total directional connectedness "FROM" others relates to the shock variable 
i receives from other variables j, written as:

We retrieve the Net Directional Connectedness (NDC) by subtracting the total direc-
tional connectedness "TO" others from the total directional connectedness "FROM" 
others, expressed as:

To shed more light on bidirectional risk spillovers between asset pairs, in the last step, 
we retrieve and plot the net directional pairwise connectedness, defined as:

where NPDCij(h) < 0 , signals that variable i is dominated by variable j while 
NPDCij(h) > 0  implies that variable i dominates variable j.

Results and discussion
In this section, we present and discuss the results from our empirical analysis for both 
the pre-COVID-19 and COVID-19 period samples. First, we present the results of time–
frequency dependence using wavelet coherence techniques. Second, we present the 
results of directional predictability using the cross-quantilogram while in the third sec-
tion, we present the results of return connectedness using the TVP-VAR.

Dependence between AI and energy‑focused sectors: wavelet coherence results

In this subsection, we are primarily concerned with analyzing the causal association 
between the returns of AI and those of the energy-focused sectors across time and fre-
quency domains using wavelet coherence and phase difference as defined in Eqs. (5) and 
(6). This enables us to investigate the changing dependence and lead-lag co-movement 
between the returns of AI and those of energy-focused sectors across different frequen-
cies and over time. As may be seen in Fig. 3 panel a–h, frequencies are reported on the 
vertical axis while time scales are shown on the horizontal axis. In all cases, thickly 

(20)Tt(h) =

∑n
ij=1,i �=j γ̃ij,t(h)

∑n
i,j=1 γij,t(h)

× 100 =

∑n
ij=1,i �=j γ̃ij,t(h)

n
× 100

(21)Ti→j,t(h) =

∑n
ij=1,i �=j γ̃ij,t(h)

∑n
i,j=1 γij,t(h)

× 100

(22)Ti←j,t(h) =

∑n
j=1,i �=j γ̃ij,t(h)
∑n

i=1 γij,t(h)
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(23)TCIi,t = Ti→j,t(h)− Ti←j,t(h)

(24)NPDCij(h) =
(

γ̃jit(h)− γ̃ijt(h)
)
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Fig. 3 Wavelet coherence between the performance of AI and energy sectors. Note: (i)AI (Artificial 
Intelligence); (ii) Oil & Gas Exploration and Production (EXP); (iii) Oil & Gas Refining and Marketing (REF); (iv) 
Integrated Oil & Gas (INT); (v) Oil-related Services and Equipment (SEQ); (vi) Oil & Gas Transportation Services 
(TRA); (vii) Oil & Gas Drilling (DRI); (viii) Coal (COAL); and (ix) Renewable Energy (REN)
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shaded contours denote regions with significance at the 5% level. Also, colder colors 
(blue) represent regions where AI and each energy-focused sector are significantly less 
dependent, while regions of high significant dependence are indicated by warmer colors 
(red). The phase arrows also offer crucial indications of lead-lag phase relations between 
AI and the associated energy-focused sector. Right arrows ( →) denote in phase, indicat-
ing the co-movement of two markets in a particular scale. Left arrows ( ←), on the other 
hand, denote anti-phase and suggest the opposite. The right-down ( ց ) and left-up ( տ ) 
arrows suggest that the associated energy sector leads AI, while the right-up ( ր ) or left-
down ( ւ ) arrows indicate that the concerned energy-focused sector is lagging and that 
AI leads.

The dominant message from the results in Fig.  3 panel a–h indicates that depend-
ence between AI and energy-focused sectors becomes stronger towards the end of 2019 
until the end of 2020 as shown by the warmer color (red), especially with Oil and Gas 
Exploration and Production, Oil and Gas Refining and Marketing, Oil and Gas Drilling. 
Results also generally suggest that dependence was stronger in the long-term, as shown 
by the thick color (red) mainly concentrated between the 64–256 days time scales. It also 
shows weaker short-term significant dependence, as indicated by the colder colors (blue) 
around the 2–32 days time scales across all the pairs. The dependence between AI and 
renewable energy (REN) also appears stronger across the intermediate- and long-term. 
It existed before the outbreak of the COVID-19 pandemic and continues towards the 
end of the sample period. This result is in line with the expectation of stronger depend-
ence between AI’s performance and the renewable energy sector, given the crucial appli-
cation of technology in the development of renewable energy resources.

Even more, this supports the position expressed in past studies, arguing that the 
integration of novel AI approaches will improve the performance of renewable energy 
sources for the world’s prosperity (see e.g. (Boza and Evgeniou 2021; Jha et  al. 2017; 
Şerban and Lytras 2020)). Empirically, this is also consistent with the findings of past 
studies such as (Henriques and Sadorsky 2008), which document strong dependence 
between AI stocks and green bonds. Green bonds are a financial instrument used to 
mobilize financial resources for green energy companies, including renewable energy 
firms. The increasing demand for renewable energy should lead to an increase in the 
performance of technological sector stocks. On the other hand, increased deployment 
of technological innovation, including AI, is also expected to impact positively the per-
formance of renewable energy stocks. Our findings also situate well within the second 
strand of papers discussed in the literature section. Particularly, our results relate well 
with the findings in Maghyereh et al. (2019) and Bondia et al. (2016), which document a 
stronger dependence between technology stocks and clean energy stocks than those of 
fossil fuel corporations.

Furthermore, some crucial information may be derived from the lead-lag phase rela-
tions. Between late 2018 to early 2019, there is a notable period of significant strong 
intermediate-term dependence between AI and energy sectors, except Coal and renew-
able energy sectors. During this period, arrows generally face left downwards, suggesting 
that these six energy sectors are lagging and AI leads. However, arrows are facing left-
upwards for the Coal and renewable energy sectors, suggesting that Coal and renewable 
energy sectors lead AI. Regarding the period of significant strong dependence between 
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AI and the energy-focused sectors, which occurred around late 2019 till the end of 2020, 
the arrows are mainly facing right-upwards. This suggests that during the period of the 
COVID-19 pandemic, dependence between the stock returns of AI and those of energy-
focused sectors became stronger in the long term, with the stocks of AI leading.

However, there are notable periods of right downwards facing arrows, as may be seen 
in the long-term dependence on the renewable energy sector and, to an extent, with Oil 
and Gas Transportation Services. This implies that during this period, the performance 
of these energy-focused sectors’ stocks leads to the performance of AI stocks, especially 
renewable energy stocks. This is also exhibited by the phase relation between AI and Oil 
and Gas Drilling, although most of the arrows are out of the cone of influence, which 
indicates the zone affected by edge effects. Lastly, it is worth noting that towards the end 
of the sample period, the phase relation between AI and the renewable energy sector is 
dominated by right downwards facing arrows both in the intermediate and long-terms, 
indicating that renewable energy stocks lead AI stocks during this time scale. During 
the intermediate-term timescale, right downward arrows are also briefly exhibited by 
the phase relations between AI and Integrated Oil and Gas Services and Coal towards 
the end of the sample period. Taken together, these results indicate that although the 
dependence between AI and the chosen energy sectors became stronger in the interme-
diate- and long-term during the COVID-19 pandemic, with AI stocks leading the energy 
sectors, renewable energy stocks lead AI stocks in the long-term and the intermediate-
term from early 2021 till the end of the sample period.

Dependence between AI and energy‑focused sectors: cross‑quantilogram results

In this section, we discuss the estimation results from the cross-quantilogram analysis as 
defined in Eqs. (12), (13), and (14). Table 4 presents the pre-COVID-19 sample results, 
while Table 5 shows the result for the post-COVID-19 period. Each table reports esti-
mates of cross-quantilogram (as well as the Portmanteau test statistic) for each of the 
eight energy-focused sectors. We particularly consider the cross-quantilogram and Port-
manteau test under nine quantiles covering both the bear and bull market states and the 
shoulders of the return distribution. We define the low quantiles, including 0.05, 0.1, and 
0.2 quantiles, as the bear market state, whereas the high quantiles, including 0.8, 0.9, and 
0.95, are considered bullish. On the other hand, the 0.3, 0.5, and 0.7 quantiles are defined 
as the shoulders of distribution. Each value in the tables represents the strength of an 
event of a decline in the performance of AI below a certain percentile, preceding the 
next day’s decline in the performance of each of the eight energy-focused sectors below 
the corresponding percentile. This enables us to identify and differentiate the hedging 
and safe-haven role of AI for each of the eight energy-focused sectors considered. For 
instance, the values in the first row of each table show the strength of directional pre-
dictability from AI to returns of corporations in the Oil and Gas Exploration and Pro-
duction under the nine quantiles considered.

Pre‑COVID sample results using cross‑quantilogram

Table 4 shows estimates of the pre-COVID-19 sample results using the CQ method, 
as described in Sect. 3.2.2. We find that the returns on AI stocks hardly predict those 
of energy-focused sectors across all quantiles under the frequencies corresponding 
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to the short and intermediate-term investment horizons. This implies that the stock 
returns of energy-focused sectors hardly depend on those of AI during these invest-
ment horizons. This conclusion agrees with the last rows of the respective panels, 
showing the percentage of significant predictability under different quantiles that 
constitute the market conditions. Particularly, the panel for the short-term invest-
ment horizon shows that the percentage of considerable sample counterparts is only 
between 12.5 and 37.5% during bearish and normal market conditions and between 
25 and 50% during bullish market conditions. Regarding the intermediate term, it is 

Table 4 Pre-COVID sample dependence and directional predictability

Values in the table represent the mean strength of prediction under nine quantiles from AI to the eight sectors of energy-
focused corporations. The closer the values to ± 1, the stronger the predictive ability under a particular quantile. Bold 
values are estimated significant coefficients, where † and ‡ denote significance at 5% and 1% respectively. (i)AI (Artificial 
Intelligence); (ii) Oil & Gas Exploration and Production (EXP); (iii) Oil & Gas Refining and Marketing (REF); (iv) Integrated Oil 
& Gas (INT); (v) Oil-related Services and Equipment (SEQ); (vi) Oil & Gas Transportation Services (TRA); (vii) Oil & Gas Drilling 
(DRI); (viii) Coal (COAL); and (ix) Renewable Energy (REN)

Quantiles 
→

0.05 0.1 0.2 0.3 0.5 0.7 0.8 0.9 0.95

Short-term

 EXP − 0.002 0.002 0.002 0.004 − 0.003 − 0.005† − 0.002 0.002 0.004†

 REF − 0.002 0.003† 0.004† 0.000 0.004 0.000 − 0.005‡ 0.002 − 0.001

 DRI − 0.002 0.002 − 0.001 0.004 − 0.001 0.000 − 0.002 − 0.001 − 0.002

 TRA − 0.007† − 0.010‡ − 0.008‡ − 0.004 0.001 0.005 0.004 0.009† 0.006†

 INT 0.001 − 0.003 − 0.007 − 0.004 0.000 0.000 0.006† 0.007† − 0.0001

 SEQ 0.000 0.003 0.008‡ 0.005 − 0.004 − 0.007 − 0.003 − 0.004 − 0.003

 COAL 0.000 0.002 − 0.002 − 0.006‡ − 0.005† 0.001 0.008† 0.007 0.005†

 REN − 0.002 0.002 0.003 0.002 0.003 0.001 − 0.002 − 0.012 − 0.005†

% of sign. 
Predictability

12.50% 25.0% 37.50% 12.50% 12.50% 12.50% 37.50% 25.0% 50.0%

Intermediate term

 EXP 0.011 0.007 0.008† 0.001† 0.001 − 0.002† 0.001 − 0.008 − 0.011

 REF − 0.005 0.005 0.000 0.001† − 0.005 0.001† − 0.004† − 0.002† 0.000

 DRI 0.005† 0.006† − 0.002† − 0.007† − 0.007 0.008 0.007 0.004 − 0.001

 TRA 0.029‡ 0.023‡ − 0.007† − 0.011 − 0.034 − 0.053‡ − 0.043 − 0.046‡ − 0.072‡

 INT 0.004 − 0.004 − 0.010 0.004 − 0.002 − 0.004 0.009 0.016 0.010

 SEQ 0.006 0.000 0.009 0.006 − 0.002 − 0.001† − 0.001† 0.004† − 0.009†

 COAL − 0.016 − 0.009 − 0.004 − 0.001 0.006† 0.003 0.000 − 0.002 − 0.007

 REN 0.002 0.002 − 0.003 0.004 − 0.001 − 0.008† − 0.011‡ − 0.002 0.004

% of sign. 
Predictability

25.0% 25.0% 37.50% 37.50% 12.50% 62.5% 37.50% 37.50% 25.0%

Long-term

 EXP − 0.005† 0.006† 0.003† − 0.031‡ − 0.028‡ − 0.011 − 0.007† − 0.027‡ − 0.048‡

 REF 0.013 0.011 − 0.021‡ − 0.036‡ − 0.028‡ − 0.034‡ − 0.050‡ − 0.044‡ − 0.055‡

 DRI 0.033‡ 0.014‡ − 0.027† − 0.021‡ − 0.049‡ − 0.030‡ − 0.016‡ − 0.024‡ − 0.033‡

 TRA 0.034‡ 0.040‡ 0.031† − 0.005† − 0.037‡ − 0.064‡ − 0.067‡ − 0.068‡ − 0.077‡

 INT 0.021 − 0.007 − 0.046 − 0.049‡ − 0.038‡ − 0.011† 0.013‡ 0.023‡ 0.001

 SEQ 0.029‡ 0.023‡ − 0.007† − 0.011† − 0.034‡ − 0.053‡ − 0.043‡ − 0.046‡ − 0.072‡

 COAL − 0.029 − 0.056 − 0.047† − 0.050‡ − 0.015 0.020† 0.042‡ 0.029‡ 0.041

 REN 0.060‡ 0.051‡ − 0.013† − 0.043‡ − 0.018‡ − 0.031‡ − 0.034‡ − 0.074‡ − 0.042

% of sign. 
Predictability

62.5% 62.5% 87.50% 100% 100% 100% 100% 100% 62.5%
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between 25 and 37.5% during the bearish market condition, 12.5% to 62.5% during 
the normal market condition, and 25–37.5% during the bullish market condition.

In contrast to the estimates of the short and intermediate-term investment horizons, 
the panel for the long-term investment horizon shows evidence of strong dependence 
between AI and the energy-focused sectors across all quantiles. Indeed, compared to 
the relatively weak percentage of significant predictability obtained across quantiles 
during the short and intermediate-term investment horizons, the lowest percentage of 
significant predictability obtained across all quantiles during the long-term investment 
horizon is 62.5%, which was the maximum estimate during other investment horizons. 
We find that during normal and bullish market conditions in the long term, AI stock 

Table 5 COVID sample dependence and directional predictability

Values in the table represent the mean strength of prediction under nine quantiles from AI to the eight sectors of energy-
focused corporations. The closer the values to ± 1, the stronger the predictive ability under a particular quantile. Bold values 
are estimated significant coefficients, where † and ‡ denote significance at 5% and 1% respectively. (i) Oil & Gas Exploration 
and Production (EXP); (ii) Oil & Gas Refining and Marketing (REF); (iii) Integrated Oil & Gas (INT); (iv) Oil-related Services 
and Equipment (SEQ); (v) Oil & Gas Transportation Services (TRA); (vi) Oil & Gas Drilling (DRI); (vii) Coal (COAL); and (viii) 
Renewable Energy (REN)

Quantiles → 0.05 0.1 0.2 0.3 0.5 0.7 0.8 0.9 0.95

Short term

 EXP 0.007† 0.008‡ 0.012‡ 0.012 0.004 − 0.011 − 0.019 − 0.005 − 0.015‡

 REF 0.005† 0.008‡ 0.009‡ 0.010 0.006 − 0.011 − 0.017 − 0.005 − 0.011†

 DRI 0.001† 0.004† 0.018 0.016 − 0.007 − 0.017 − 0.023 0.002 − 0.008‡

 TRA − 0.003‡ 0.003‡ 0.001‡ 0.005‡ 0.009 − 0.007 − 0.009 − 0.001 − 0.007‡

 INT − 0.004‡ 0.003 0.007 0.006 0.002 − 0.008 − 0.009 0.000 − 0.002‡

 SEQ − 0.001‡ 0.007‡ 0.011‡ 0.011 0.004 − 0.012 − 0.016 − 0.005‡ − 0.010‡

 COAL 0.011‡ 0.011 0.014 0.010 − 0.005 − 0.009 − 0.012 − 0.001 − 0.018‡

 REN − 0.011 − 0.002 0.005‡ 0.011‡ 0.003† − 0.008 − 0.007 0.007 0.005

% of Sign. 
Predictability

87.50% 62.50% 62.50% 25.00% 12.50% 0% 0% 12.50% 87.50%

Intermediate-term

 EXP 0.023‡ 0.032‡ 0.030‡ 0.020‡ − 0.002† − 0.011‡ − 0.034‡ − 0.042‡ − 0.040‡

 REF 0.035‡ 0.041‡ 0.037‡ 0.025‡ − 0.002† − 0.016‡ − 0.042‡ − 0.051‡ − 0.051‡

 DRI 0.010‡ 0.016‡ 0.020‡ 0.010† − 0.006 − 0.002 − 0.015 − 0.021‡ − 0.016

 TRA 0.042‡ 0.047‡ 0.042‡ 0.030‡ 0.0001† − 0.018‡ − 0.043‡ − 0.055‡ − 0.057‡

 INT 0.040‡ 0.042‡ 0.038‡ 0.027‡ − 0.004† − 0.021‡ − 0.043‡ − 0.056‡ − 0.055‡

 SEQ 0.020‡ 0.032‡ 0.031‡ 0.024‡ 0.002† − 0.006 − 0.027 − 0.038‡ − 0.034‡

 COAL 0.033‡ 0.031‡ 0.026‡ 0.013† − 0.010 − 0.020‡ − 0.037‡ − 0.040‡ − 0.045‡

 REN 0.028‡ 0.034‡ 0.023‡ 0.017‡ − 0.004† − 0.016‡ − 0.029‡ − 0.032‡ − 0.038‡

% of Sign. 
Predictability

100% 100% 100% 87.50% 75% 75% 75% 100% 87.50%

Long-term

 EXP 0.030‡ 0.019† 0.013‡ 0.002‡ 0.018‡ 0.040‡ 0.017† − 0.032‡ − 0.105

 REF 0.030‡ 0.009† 0.016† − 0.003† − 0.004† 0.045‡ 0.024‡ − 0.033‡ − 0.106‡

 DRI 0.028‡ 0.021‡ 0.013† 0.0001† 0.007† 0.044‡ 0.028‡ − 0.029‡ − 0.100‡

 TRA 0.031‡ 0.008† 0.008† − 0.011† − 0.010† 0.041‡ 0.019† − 0.042‡ − 0.118‡

 INT 0.029‡ 0.005† 0.047‡ 0.039‡ 0.028‡ 0.059‡ 0.032‡ − 0.023‡ − 0.093‡

 SEQ 0.026‡ 0.024‡ 0.015† 0.004† 0.010† 0.045‡ 0.030‡ − 0.029‡ − 0.095‡

 COAL 0.013‡ 0.029‡ 0.043‡ 0.044‡ 0.037‡ 0.048‡ 0.023‡ − 0.029‡ − 0.080‡

 REN 0.026‡ 0.021‡ 0.044‡ 0.031‡ 0.001† 0.006† − 0.043‡ − 0.064‡ − 0.080‡

% of Sign. 
Predictability

100% 100% 100% 100% 100% 100% 100% 100% 87.50%
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returns are a perfect directional predictor of those of energy-focused sectors, with the 
percentage of significant predictability in most cases being 100%. Except for Integrated 
Oil & Gas (INT) and Coal, evidence in the table also shows consistent patterns of nega-
tive dependence on and directional predictability from AI during the normal and bull-
ish market conditions for six sectors including Oil & Gas Exploration and Production 
(EXP), Oil & Gas Refining and Marketing (REF), Oil & Gas Drilling (DRI), Oil & Gas 
Transportation Services (TRA), Oil-related Services and Equipment (SEQ), and Renew-
able Energy (REN). For these six energy-focused sectors, the result implies that when 
the returns on AI fall below the corresponding quantiles, the returns of these energy-
focused sectors have a high likelihood of experiencing a substantial return in the fol-
lowing days. On the other hand, if these energy-focused sectors experience a significant 
loss, AI will likely experience a substantial gain in the next few days. In this case, invest-
ments in AI could serve a hedging role for investments in these energy-focused sectors 
during this market condition in the long term.

Per the exceptions, estimates for Integrated Oil & Gas (INT) show negative depend-
ence during normal market conditions and positive dependence during a bullish state. 
The implication of the negative dependence aligns with those of the six energy-focused 
sectors given earlier. Positive dependence, however, implies that when the returns on 
AI rise, there is an increased likelihood of considerable gains in the Integrated Oil & 
Gas (INT). Results and implications of the bullish market condition for Coal are similar 
to those of Integrated Oil & Gas (INT). As for its estimates under normal market con-
ditions, we find evidence of negative dependence except for the 0.7 quantiles. Further, 
results for the bearish market condition show consistent negative dependence of Coal on 
AI, although only the estimate at the 0.2 quantiles is statistically significant at the con-
ventional significance level. Estimates of Oil & Gas Refining and Marketing (REF), Oil & 
Gas Drilling (DRI), Oil-related Services and Equipment (SEQ), and Renewable Energy 
(REN) are positive at the 0.05 and 0.1 quantiles but turn negative at the 0.2 quantiles, 
suggesting that for these energy-focused sectors, when the market becomes less bearish 
negative dependence takes precedence and lingers across the normal and bullish mar-
ket conditions. Estimates of Oil & Gas Exploration and Production (EXP) show positive 
dependence at the 0.1 and 0.2 quantiles but negative dependence at the 0.05 quantiles. 
This suggests that once the market becomes highly bearish, the market reverses back 
to negative dependence. As for Oil & Gas Transportation Services (TRA), only positive 
dependence exists during the bearish market condition.

Post‑COVID sample results using Cross‑quantilogram

Table 5 shows the COVID-19 sample results for the CQ analysis. Overall, the results 
show that across both quantiles and frequencies, the returns of energy-focused sec-
tors depend more strongly on those of AI. However, dependence and directional 
predictability are stronger in the long term and weaker in the short-term invest-
ment horizon, respectively. This result and conclusion are largely consistent with 
those obtained from the Wavelet coherence analysis, indicating that the dependence 
between AI and the energy-focused sectors becomes stronger from 2019 until the end 
of 2020, coinciding with the COVID-19 pandemic peak period. Moreover, consistent 
with the results obtained here, the wavelet coherence methods also suggested that the 



Page 22 of 31Urom et al. Financial Innovation          (2024) 10:128 

dependence was stronger in the longer term and weaker in the short term. Hence, the 
CQ provides a robustness check to our previous finding using the wavelet coherence 
method. That said, there are also some notable differences across the time scales and 
market conditions when we compare it to those of the pre-COVID-19 sample results 
that are worth mentioning.

Beginning with the short-term investment horizon, we find that the power of 
dependence and directional predictability are hardly significant at the conventional 
significance level, especially across quantiles corresponding to the normal market 
condition. Whereas this conclusion is consistent with that of the short-term pre-
COVID-19 sample results, the intermediate-term results show stronger dependence 
on and directional predictability from AI across quantiles corresponding to the bear, 
normal, and bullish market conditions. These latter results differ from the interme-
diate-term results obtained for the pre-COVID-19 sample results. Indeed, compared 
to the intermediate-term pre-COVID-19 sample results, where the percentage of sig-
nificant predictability across the quantiles was 12.50–62.5%, that of the COVID-19 
sample is between 75 and 100%. It also suffices to note that in contrast to the inter-
mediate-term pre-COVID-19 sample results, the intermediate-term COVID-19 sam-
ple results also show consistent patterns of directional predictability across different 
market conditions. A closer look at the intermediate-term results shows evidence 
of negative dependence among AI and the eight energy-focused sectors across all 
quantiles corresponding to the bullish market condition. On the other hand, positive 
dependence dominates across all quantiles corresponding to the bearish market con-
dition. Under normal market conditions, however, there is evidence of both positive 
and negative dependence, depending on the quantiles. In particular, at the 0.3 quan-
tiles, positive dependence dominates for all the energy-focused sectors in our sample. 
At the 0.5 and 0.7 quantiles, negative dependence dominates.

Moving on to the long-term investment horizon, we find that the returns on AI 
stocks are a perfect directional predictor of those of the eight energy-focused sec-
tors. In fact, except for the estimates at the 0.95 quantiles, the percentage of signifi-
cant predictability across all other quantiles during this period is 100%. Compared 
to the intermediate-term results, we find that positive dependence among AI and 
the energy-focused sectors continues to dominate all quantiles corresponding to the 
bearish market condition. However, notable differences occur across quantiles cor-
responding to normal and bullish market conditions. Beginning with the bullish mar-
ket condition, except for Renewable energy (REN), which continues to show negative 
dependence across all quantiles corresponding to this market condition, the remain-
ing seven energy-focused sectors show positive dependence at the 0.8 quantiles while 
their respective estimates at the 0.9 and 0.95 quantiles remain negative. This implies 
that negative dependence for these sectors on AI only takes precedence when the 
market is extremely bullish. Concerning the normal market condition, estimates for 
Oil & Gas Exploration and Production (EXP), Oil & Gas Drilling (DRI), Integrated Oil 
& Gas (INT), Oil-related Services and Equipment (SEQ), Coal and Renewable Energy 
(REN) all show a dominance of positive dependence across quantiles corresponding 
to this market condition, a result that is different from both the intermediate-term 
COVID-sample results as well as the long term pre-COVID 19 sample results. For Oil 
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& Gas Refining and Marketing (REF) and Oil & Gas Transportation Services (TRA), 
negative dependence dominates the 03 and 0.5 quantiles while positive dependence 
dominates the 0.7 quantiles.

Return connectedness between AI and energy-focused sectors across frequencies.
This section presents the results for the degree of connectedness among AI and 

energy-focused sectors for the pre-COVID and the COVID sample period, respectively. 
We report results across frequencies grouped into short, intermediate, and long-term 
investment horizons for each sample analysis. As discussed in Sect. 3.3, we attain this 
feat by applying the TVP-VAR spillover method of Antonakakis et al. (2020) on the fre-
quency components realized from the MODWT technique.

Pre‑COVID‑19 sample return connectedness across frequencies

Table 6 presents the results of the pre-COVID sample degree of the return connected-
ness between AI and the chosen energy-focused sectors. Beginning with the total con-
nectedness index (TCI) that measures how much, on average, a shock in one market is 
transmissible across the markets under study, evidence in the table indicates that TCIs 
are high across the investment horizons and strengthen as we move from the short to 
the long-term investment horizon. As can be seen in the table, however, own shock 
for AI is very high in the short term (86.31%) and intermediate-term (75.53%). Akin to 
this, the amount of shock either received from or contributed to the system by AI var-
ies across both investment horizons. In the long-term, however, own shock for AI drops 
significantly to 15.41%, while the amount of shock AI either receives from or contributes 
to the system increases to 84.59% and 97.86%, respectively. Put together; these results 
suggest that the observed strong short-term and intermediate-term TCIs are largely 
driven by the strong return connectedness among the energy-focused sectors rather 
than the return connectedness between these energy-focused sectors and AI. How-
ever, the strong long-term TCI obtained is driven jointly by the strong return connect-
edness among the energy-focused sectors and the connectedness among AI and these 
energy-focused sectors. This result and conclusion are consistent with the pre-COVID 
sample results obtained using the cross-quantilogram methods. As a result in that sec-
tion shows, the dependence structure between the stock returns of AI and those of the 
respective energy-focused sectors is stronger across all market conditions in the long 
term than either in the short or intermediate-term investment horizon.

Evidence in Table 6 also suggests that Oil & Gas Drilling (DRI) and Oil & Gas Explo-
ration and Production (EXP) are net shock transmitters across all frequencies, while 
COAL and Oil & Gas Transportation Services (TRA) are net shock receivers. Portfolio 
and risk managers are more interested in assets that are driving the market than those 
that are being driven by the market, as the latter are exposed to more risk sources com-
pared to the former. Hence, this makes investment in Oil & Gas Drilling (DRI) and Oil 
& Gas Exploration and Production (EXP) more attractive across frequencies of the pre-
COVID-19 sample. Their roles and attractiveness vary across frequencies for AI and 
the remaining energy-focused sectors. In particular, AI and Renewable Energy (REN) 
are both net shock receivers in the short and intermediate-term but become net shock 
transmitters in the long term. Oil & Gas Refining and Marketing (REF) and SEQ are net 
shock transmitters in the short and intermediate-term but become net shock receivers 
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in the long term. Finally, Integrated Oil & Gas (INT) is a net shock transmitter in the 
short and long term, but a net shock receiver in the intermediate term. As per the pair-
wise directional connectedness, the results indicate that except in the long term, stock 
returns of AI are, on average, weakly connected to those of the energy-focused sectors 
in terms of the shocks it either receives from or transmits to them. In fact, in the short 

Table 6 Pre-COVID sample network connectedness across frequencies

TCI and NDC denote the total connectedness index and Net directional connectedness, respectively. (i) AI (Artificial 
Intelligence); (ii) Oil & Gas Exploration and Production (EXP); (iii) Oil & Gas Refining and Marketing (REF); (iv) Integrated Oil 
& Gas (INT); (v) Oil-related Services and Equipment (SEQ); (vi) Oil & Gas Transportation Services (TRA); (vii) Oil & Gas Drilling 
(DRI); (viii) Coal (COAL); and (ix) Renewable Energy (REN)

AI COAL DRI EXP INT REF REN SEQ TRA FROM others

Short-term

 AI 86.31 1.85 1.60 1.67 1.48 1.84 1.31 1.81 2.13 13.69

 COAL 0.24 35.46 9.12 9.04 14.16 9.13 6.69 9.77 6.38 64.54

 DRI 0.27 6.09 22.87 17.27 10.52 13.34 3.87 17.05 8.73 77.13

 EXP 0.27 6.06 16.51 21.77 9.60 14.98 3.66 15.79 11.36 78.23

 INT 0.26 11.55 11.31 10.69 27.32 12.37 5.32 12.40 8.79 72.68

 REF 0.31 5.98 13.52 15.56 11.39 22.64 4.07 14.55 11.99 77.36

 REN 0.53 8.25 7.54 8.63 8.30 9.31 39.32 9.02 9.11 60.68

 SEQ 0.31 6.56 16.01 16.06 11.31 14.32 4.12 21.35 9.96 78.65

 TRA 0.43 6.30 10.18 14.13 9.16 14.08 5.77 11.92 28.02 71.98

 TO others 2.61 52.63 85.80 93.04 75.92 89.38 34.81 92.30 68.45 594.94

 Inc. own 88.92 88.10 108.66 114.81 103.24 112.02 74.13 113.66 96.46

 NDC − 11.08 − 11.90 8.66 14.81 3.24 12.02 − 25.87 13.66 − 3.54 TCI = 66.10

Intermediate-term

 AI 75.53 2.39 3.50 4.09 2.04 3.12 1.98 3.30 4.05 24.47

 COAL 0.44 34.09 11.04 9.34 12.68 10.18 4.82 9.97 7.44 65.91

 DRI 0.59 5.94 23.88 15.95 10.75 13.53 3.09 17.89 8.39 76.12

 EXP 0.65 4.54 16.52 21.93 9.15 16.00 3.67 15.64 11.89 78.07

 INT 0.38 7.48 13.78 12.32 23.81 15.54 4.73 13.84 8.11 76.19

 REF 0.46 5.35 14.69 15.69 12.05 21.31 4.29 14.74 11.41 78.69

 REN 3.13 6.84 6.55 6.83 8.00 8.38 44.37 7.48 8.42 55.63

 SEQ 0.47 5.62 18.73 15.30 10.32 14.94 3.81 22.25 8.54 77.75

 TRA 1.29 4.31 12.50 15.76 7.41 15.74 4.95 11.51 26.52 73.48

 TO others 7.41 42.48 97.31 95.29 72.41 97.43 31.34 94.39 68.25 606.32

 Inc. own 82.94 76.57 121.19 117.22 96.23 118.74 75.71 116.64 94.76

 NDC − 17.06 − 23.43 21.19 17.22 − 3.77 18.74 − 24.29 16.64 − 5.24 TCI = 67.37

Long-term

 AI 15.41 5.22 9.42 14.85 12.39 7.60 13.92 9.49 11.70 84.59

 COAL 10.41 27.66 12.72 11.27 7.92 6.89 9.29 6.43 7.40 72.34

 DRI 11.27 8.40 27.61 14.06 7.78 7.92 8.80 7.21 6.95 72.39

 EXP 15.28 7.49 15.93 16.98 10.94 5.10 11.62 6.74 9.92 83.02

 INT 13.48 4.13 6.93 13.86 14.02 10.50 11.48 12.34 13.27 85.98

 REF 10.55 3.30 10.00 11.39 13.17 14.88 9.11 14.24 13.35 85.12

 REN 11.97 4.55 12.96 14.83 11.82 7.67 16.25 9.38 10.58 83.75

 SEQ 12.07 2.44 6.44 12.42 14.00 11.89 12.66 14.32 13.77 85.68

 TRA 12.84 3.45 6.34 13.77 14.36 11.61 10.07 13.22 14.34 85.66

 TO others 97.86 38.98 80.74 106.45 92.37 69.18 86.96 79.04 86.95 738.53

 Inc. own 113.27 66.64 108.35 123.44 106.39 84.06 103.21 93.36 101.29

 NDC 13.27 − 33.36 8.35 23.44 6.39 − 15.94 3.21 − 6.64 1.29 TCI = 82.06
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term, AI’s highest shock receipt from the energy-focused sectors is 2.13% from Oil & 
Gas Transportation Services (TRA), while its highest transmitted shock is 0.53% to 
Renewable Energy (REN). In the intermediate term, its highest shock receipt is 4.09% 
from Oil & Gas Exploration and Production (EXP), while its highest transmitted shock is 
3.13% to Renewable Energy (REN). However, in the long term, its highest shock receipt 
is 14.85% from the Oil & Gas Exploration and Production (EXP), while the highest trans-
mitted shock is 15.28% to Oil & Gas Exploration and Production (EXP) which although 
low are both considerably higher than those of the short and intermediate-term.

Figure  4 plots the net pairwise directional return connectedness among the AI and 
energy-focused sectors for the pre-COVID-19 sample. Blue nodes in the figures illus-
trate net transmitters of risks, whilst yellow nodes illustrate net receivers. The sizes 
of the nodes represent weighted average net total directional connectedness. Hence, 
depending on whether a market is a net transmitter or net receiver of risks, the sizes 
of the nodes rank the net directional connectedness, with larger nodes being markets 
with stronger net directional connectedness. Vertices are weighted by averaged net pair-
wise directional connectedness measures. Evidence in the figures reiterates our prior 
discussions concerning the roles of each market when it comes to shock transmissions 
or receipts. However, it further shows that Renewable Energy (REN) is the major net 
shock receiver in the short and intermediate term, with respective values of − 25.87% 
and − 24.29%. However, Coal (− 33.36%) is the major net shock receiver in the long 
term. On the other hand, Oil & Gas Exploration and Production (EXP) is the major net 
shock transmitter in the short (+ 14.82%) and long term (+ 23.44%). In the intermediate 
term, DRI with the NDC value of + 21.19% is the major net shock transmitter. As per 
the net pairwise directional connectedness, the figures re-emphasize the varying struc-
tural characteristics among the AI and the energy-focused sectors across the different 
investment horizons. In particular, we observe that return connectedness among AI and 
the energy-focused sectors is weak in the short and intermediate term, with the former 
receiving more shocks than the latter. However, the reverse becomes the case in the long 
term, albeit not in the same order of magnitude.

Fig. 4 Pre-COVID sample net pairwise directional connectedness plots across frequencies. Note: Blue 
(yellow) nodes illustrate the net transmitter (receiver) of shocks. Vertices are weighted by averaged net 
pairwise directional connectedness (NPDC) measures. The size of nodes represents weighted averaged net 
total directional connectedness. (i)AI (Artificial Intelligence); (ii) Oil & Gas Exploration and Production (EXP); (iii) 
Oil & Gas Refining and Marketing (REF); (iv) Integrated Oil & Gas (INT); (v) Oil-related Services and Equipment 
(SEQ); (vi) Oil & Gas Transportation Services (TRA); (vii) Oil & Gas Drilling (DRI); (viii) Coal (COAL); and (ix) 
Renewable Energy (REN)
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COVID‑19 sample return connectedness across frequencies

Table  7 shows the results of the COVID-19 sample degree of return connectedness 
between AI and the chosen energy-focused sectors across frequencies grouped into 
short, intermediate, and long-term investment horizons. Similar to those of the pre-
COVID-19 sample results, the TCIs are significantly high across the frequencies. It also 

Table 7 COVID-sample network connectedness across frequencies

TCI and NDC denote the total connectedness index and Net directional connectedness, respectively. (i) AI (Artificial 
Intelligence); (ii) Oil & Gas Exploration and Production (EXP); (iii) Oil & Gas Refining and Marketing (REF); (iv) Integrated Oil 
& Gas (INT); (v) Oil-related Services and Equipment (SEQ); (vi) Oil & Gas Transportation Services (TRA); (vii) Oil & Gas Drilling 
(DRI); (viii) Coal (COAL); and (ix) Renewable Energy (REN)

AI COAL DRI EXP INT REF REN SEQ TRA FROM others

Short-term

 AI 26.99 16.76 13.07 4.69 5.05 7.49 2.56 5.32 18.09 73.01

 COAL 1.03 32.24 16.07 6.46 7.24 10.66 3.81 6.81 15.68 67.76

 DRI 1.14 15.42 23.28 10.52 7.06 12.96 3.31 10.09 16.20 76.72

 EXP 1.31 9.42 13.55 17.23 10.29 15.20 4.97 14.72 13.31 82.77

 INT 1.61 8.86 10.14 12.33 21.57 15.64 6.36 15.12 8.37 78.43

 REF 1.48 14.56 15.21 11.35 9.73 16.44 3.82 11.50 15.91 83.56

 REN 3.16 10.28 8.54 8.38 8.76 10.07 32.27 10.42 8.11 67.73

 SEQ 1.37 7.55 12.30 15.44 12.83 15.86 5.81 18.47 10.36 81.53

 TRA 1.49 18.40 16.60 8.61 6.70 12.83 3.35 8.00 24.02 75.98

 TO others 12.60 101.25 105.48 77.80 67.65 100.71 33.99 81.99 106.03 687.49

 Inc. own 39.59 133.49 128.76 95.03 89.22 117.14 66.26 100.46 130.05

 NDC − 60.41 33.49 28.76 − 4.97 − 10.78 17.14 − 33.74 0.46 30.05 TCI = 76.39

Intermediate-term

 AI 24.07 8.70 7.92 8.53 9.23 10.88 9.70 10.38 10.59 75.93

 COAL 0.48 20.85 10.65 9.49 12.84 15.02 5.85 12.64 12.19 79.15

 DRI 0.27 8.06 19.09 15.85 13.26 13.49 2.77 16.79 10.42 80.91

 EXP 0.32 6.30 14.92 18.81 14.31 13.86 3.18 16.09 12.21 81.19

 INT 0.48 8.02 12.19 14.00 19.18 13.87 6.23 13.52 12.51 80.82

 REF 0.45 9.76 11.86 13.54 13.79 17.52 5.48 14.34 13.27 82.48

 REN 3.71 7.88 8.01 7.94 11.40 9.04 34.19 8.36 9.47 65.81

 SEQ 0.37 8.36 14.76 15.69 12.86 14.31 3.63 18.23 11.79 81.77

 TRA 0.25 7.71 10.56 14.78 13.04 15.24 5.24 14.13 19.05 80.95

 TO others 6.34 64.78 90.87 99.82 100.72 105.69 42.09 106.25 92.46 709.01

 Inc. own 30.41 85.63 109.96 118.63 119.90 123.21 76.28 124.47 111.50

 NDC − 69.59 − 14.37 9.96 18.63 19.90 23.21 − 23.72 24.47 11.50 TCI = 78.78

Long-term

 AI 12.01 11.39 12.15 9.35 10.37 11.90 9.84 12.56 10.42 87.99

 COAL 8.79 12.45 12.54 11.91 11.78 8.71 10.46 10.94 12.42 87.55

 DRI 10.30 12.14 12.68 10.19 11.33 10.43 9.91 11.50 11.51 87.32

 EXP 12.29 7.42 7.93 18.96 7.84 12.75 6.43 18.05 8.34 81.04

 INT 6.97 13.00 13.45 11.00 14.27 6.96 11.66 8.75 13.96 85.73

 REF 11.17 11.51 12.17 9.87 10.61 11.32 10.15 12.31 10.89 88.68

 REN 7.34 11.99 13.01 11.00 12.88 7.30 13.73 8.94 13.80 86.27

 SEQ 12.53 10.84 11.32 10.59 9.44 12.75 8.99 13.91 9.63 86.09

 TRA 9.24 11.00 11.68 13.22 11.09 9.46 9.73 12.50 12.09 87.91

 TO others 78.62 89.29 94.26 87.12 85.34 80.26 77.18 95.55 90.96 778.58

 Inc. own 90.63 101.74 106.94 106.08 99.61 91.58 90.91 109.46 103.05

 NDC − 9.37 1.74 6.94 6.08 − 0.39 − 8.42 − 9.09 9.46 3.05 TCI = 86.51
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strengthens as we move from the short to the long term. However, the TCIs of the respec-
tive frequencies are higher than those of corresponding frequencies for the pre-COVID 
sample results. Evidence in the table also shows that shock received from or contributed 
to the system by either AI or any of the energy-focused sectors is higher across all the 
investment horizons when we compare them to their corresponding frequencies in the 
pre-COVID sample period. Indeed, the figures in the diagonal cells, which represent the 
magnitude of own shock spillovers, are much less than the value of the corresponding 
estimates obtained in the pre-COVID-19 sample. This includes AI which showed strong 
own shock dynamics in the preCOVID-19 sample estimates. Cumulatively, these imply 
that the share of own shock spillover decreases and system-wide shock increases, con-
firming the fact that external shock influences the return connectedness among AI and 
the energy-focused sectors’ stocks. It suffices to note that across all frequencies, we also 
find that pairwise directional return connectedness between AI and those of the respec-
tive energy-focused sectors is also higher than their pre-COVID-19 sample estimates.

Put together, therefore, the above results suggest that COVID-19 has strengthened the 
level of return connectedness between AI and the energy markets, as well as the intra-
connectedness among the energy markets. Again, these results correspond to those of 
cross-quantilogram and were compared to the pre-COVID-19 sample estimates. We 
found a strong dependence on and significant directional predictability from AI in the 
COVID-19 sample estimates across all market conditions and investment horizons. 
One of the plausible explanations for this result is that the COVID-19 pandemic was 
an unexpected accelerator of a structural shift toward adopting fourth-industrial revolu-
tion technologies such as AI. For instance, as people were forced to sit at home due to 
the COVID-19 outbreak, some firms readjusted production processes to become more 
automated. Such a watershed moment has far-reaching repercussions on the return con-
nectedness between those AI and energy markets, as the latter’s dependence on AI has 
only increased afterward.

Figure  5 plots the net pairwise directional connectedness among the AI and energy 
stocks understudy for the COVID-19 sample period. The description of the figures 

Fig. 5 COVID sample net pairwise directional connectedness plot sectors across frequencies. Note: Blue 
(yellow) nodes illustrate the net transmitter (receiver) of shocks. Vertices are weighted by averaged net 
pairwise directional connectedness (NPDC) measures. The size of nodes represents weighted averaged net 
total directional connectedness. (i)AI (Artificial Intelligence); (ii) Oil & Gas Exploration and Production (EXP); (iii) 
Oil & Gas Refining and Marketing (REF); (iv) Integrated Oil & Gas (INT); (v) Oil-related Services and Equipment 
(SEQ); (vi) Oil & Gas Transportation Services (TRA); (vii) Oil & Gas Drilling (DRI); (viii) Coal (COAL); and (ix) 
Renewable Energy (REN)
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follows that of Fig. 4a–c. The figures show that AI is a major shock receiver from the 
energy market across all frequencies during COVID-19. Energy markets such as Oil & 
Gas Refining and Marketing (REF) and Renewable Energy (REN) also come up promi-
nently as net shock receivers in the long term. On the other hand, Coal is the major 
shock transmitter in the short term, while SEQ takes this role in the intermediate and 
long term. Besides this, the arrows highlight varying structural characteristics among 
the energy markets and between AI and energy stocks across the investment horizons.

Conclusion
Artificial intelligence (AI) is one of the most essential technologies of modern times, with 
diverse applications across different industries and spheres of human life. In this paper, 
we examine the potential implications the emergence of AI holds for the energy-focused 
sectors by analyzing the co-movement and lead-lag dependence and the dependence 
and directional predictability between the stocks of AI and those of eight energy-focused 
sectors. Along this line, the paper particularly examined the portfolio diversification role 
of AI stocks by considering average returns, possible risk, and correlations of the stocks 
of AI companies with those of energy-focused sectors. We addressed our research objec-
tives by using a sample covering the period from December 18, 2017, to June 14, 2021, 
and by applying the Maximal Overlap Discrete Wavelet Transform (MODWT) for the 
co-movement and lead-lag analysis, the Cross-Quantilogram technique for the depend-
ence and directional predictability analysis and the TVP-VAR technique for the network 
connectedness analysis.

Our results show that the stock returns of energy-focused sectors depend strongly on 
and are predictable from those of AI. However, the strength of this dependence and the 
direction of the prediction varies across the sectors, market conditions, and investment 
horizons. Beginning with our wavelet analysis, we find that the dependence between 
AI and energy-focused sectors was weaker in the short term and stronger in the inter-
mediate- and long-term. The latter was significantly stronger for the renewable energy 
sector. Moreover, in the intermediate term, during which the degree of dependence is 
strong, the Coal and renewable energy sectors lead AI, while AI leads the remaining six 
energy-focused sectors. This suggests that returns on Coal and renewable energy invest-
ments hold some predictive power for AI investments. This is intuitive, especially for 
renewable energy, given the rising application of AI technology in their development 
and deployment. Similarly, in the long-term, when dependence is significantly strong, 
the renewable energy sector and, to an extent, the Oil and Gas Transportation Services 
sector lead AI. We also find that the co-movement and dependence between AI and 
energy-focused sectors strengthened during the COVID-19 peak period. This is in line 
with those of many past studies that document stronger co-movement and dependence 
among financial assets during the COVID-19 pandemic, as financial market risks rose 
to unprecedented levels following the restriction of movements and breakdown of eco-
nomic activities.

Results from the CQ analysis correspond with those of the wavelet coherence analysis 
in suggesting a weaker (stronger) dependence between AI and the energy-focused sec-
tor in the short term (intermediate and long term) as well as the dependence between AI 
and energy-focused being stronger during the COVID-19 period. Besides this, the CQ 
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analysis reveals notable differences in the directional predictability of the returns of the 
energy-focused sectors by that of AI across quantiles and frequencies that characterize 
the pre-COVID and COVID samples. For instance, whilst we find that negative direc-
tional predictability dominates the long-term pre-COVID sample period, positive direc-
tional predictability dominates the COVID sample period. TVP-VAR analysis shows 
strong return connectedness among AI and energy-focused sectors as we move from 
the short-term to long-term investment horizons in both the pre-COVID and COVID 
sample periods. Similar to the wavelet coherence and CQ results, however, the total con-
nectedness between AI and the energy-focused sectors as a whole, and the net pairwise 
directional connectedness are both stronger during the COVID period. Moreover, we 
find that AI has been a net shock receiver from the energy markets since the COVID 
period.

Our findings offer three important implications for portfolio diversification man-
agers, investors, and institutional investors who are more concerned with long-term 
investment horizons. First, under different investment horizons, investors are invited 
to make time-varying hedging strategies depending on whether the market is bearish, 
normal, or bullish. Second, traders and speculators that are more concerned with short- 
and intermediate-term investment horizons should consider that innovation in the AI 
market is more driven by innovations in the energy market since the COVID pandemic. 
Investment in AI yields diversification and hedging benefits to investment in the energy-
focused sectors. Third, policymakers and financial regulators interested in market risk 
monitoring should pay attention to cross-market risk transmission between AI-based 
assets and those of energy-focused sectors, especially in the intermediate and long-term 
investment horizons.

Our study offers a premise for future directions. First, our findings may be sensitive to 
the chosen windows for the short-, intermediate- and long-term investment horizons. 
Therefore, we suggest that future studies may focus on further insights on these rela-
tionships by considering other window sizes for the various investment horizons. Future 
research could also extend our analysis to explore how the relationship understudy var-
ies across different regions. Such analysis would create region-specific evidence and 
help ascertain if there are international diversification opportunities among the studied 
investment indices. Last but not the least, another interesting area would be to examine 
the dependence structure between the energy-focused sectors and other types of tech-
nologies such as blockchain and Internet of Things (IoT).

Abbreviation
AI  Artificial intelligence
ADF  Augmented Dickey-Fully
CQ  Cross quantiligram
DRI  Oil & gas drilling
DWT  Discreet wavelet transform
EXP  Oil & gas exploration and production
GARCH  Generalized AutoRegressive Conditional Heteroskedasticity
GFEVD  Generalized forecast error variance decomposition
GIRFs  Generalized impulse response functions
INT  Integrated oil & gas
JB test  Jarque–Bera test
MODWT  Maximal discreet wavelet transform
NASDAQ  National Association of Securities Dealers Automated Quotations
NDC  Net directional connectedness
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NPDC  Net directional pairwise connected
VAR  Vector autoregssion
RE  Renewable energy
REF  Oil & gas refining and marketing
SEQ  Oil-related services and equipment
TRBC  The Refinitiv Business Classifications
TCI  Total Connectedness Index
TRA   Oil & gas transportation services
TVP-VAR  Time-varying parameter vector autoregression
TVP-VMA  Time-varying parameter vector moving average
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