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Introduction
Over the past decade, cryptocurrencies have witnessed startling growth in market value, 
general acceptance, institutional client bases, and public attention. The evolution of Bit-
coin as a highly impeccable payment facility and novel investment avenue has piqued the 
interest of many market participants, such as investors, regulators, e-commerce manag-
ers, and policymakers. When traditional financial markets are in turmoil due to sudden 
exogenous shocks (e.g., the outbreak of pandemic diseases, cross-border financial turbu-
lence, and geo-economic and geo-political tensions), an increasing number of investors 
are inclined to embrace Bitcoin as a unique diversifier and/or safe haven alternative. For 
example, Kumar and Padakandla (2022) establish the safe-haven characteristics of Bit-
coin for NASDAQ and EURO STOXX in the short- and long-term horizons during the 
COVID-19 pandemic. Ustaoglu (2022) finds that Bitcoin and Ethereum are effective safe 
haven assets against most emerging market stock returns during the global health crisis. 
Given its crucial implications for the global financial system, the cryptocurrency sphere 
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has been examined by a great deal of studies to better understand its key attributes. 
Specifically, several aspects of cryptocurrency market microstructure have come under 
rigorous investigations in the literature, including, for instance, price discovery (e.g., 
Brauneis and Mestel 2018; Dimpfl and Peter 2021), market efficiency (Kristoufek and 
Vosvrda 2019; Manahov and Urquhart 2021; Noda 2021), information asymmetry (e.g., 
Chen 2019; Feng et al. 2018), trading patterns (e.g., Hasso et al. 2019; Petukhina et al. 
2021), transaction costs (e.g., Dyhrberg et  al. 2018; Easley et  al. 2019; Kim 2017), and 
intraday trading activity (e.g., Eross et al. 2019; Pelster et al. 2019). Based on a sample 
of the largest cryptocurrencies, Gkillas et al. (2018) conclude that extreme correlation 
can be linked to cryptocurrency market trajectories rather than prevailing price swings. 
Extreme correlation tends to increase in market downturns for most cryptocurrency 
pairs, as opposed to during bull markets.

An immensely relevant property of the cryptocurrency market microstructure is 
liquidity, which Manahov (2021) defines as the ease and speed with which a given cryp-
tocurrency can be converted into other peers or fiat money. Liquidity is a vital precon-
dition for cryptocurrencies to effectively take up their role, whether as an unorthodox 
means of payment, an investment asset, or a safe haven commodity. Typically, a lack of 
liquidity in the conventional and cryptocurrency markets elevates traders’ transaction 
costs, gives rise to informational inefficiency, and makes it possible to manipulate prices. 
Bitcoin is notorious for its erratic price behavior, with traders attempting to determine 
the reasons underlying these gyrations, which can eventually impact its liquidity. Indeed, 
a thorough examination of how price and liquidity levels change over time is necessary 
to understand the variables influencing the rapidly growing cryptocurrency markets and 
their growing integration into the global financial system. Unlike the trading mecha-
nisms of standard securities, cryptocurrency peers are mostly order-driven, implying 
that a trade counterparty may not be available immediately. Hence, the cryptocurrency 
market’s liquidity supply is endogenous, meaning that traders mostly provide it through 
order placement. Under harsh financial conditions, investors are not obliged to secure 
the liquidity necessary for the smooth functioning of the cryptocurrency market (Cheng 
et al. 2021). As Zhang and Li (2021) highlight, adequate knowledge of cryptocurrency 
pricing mechanisms requires investigating how liquidity is reflected in prices. Dimpfl 
and Mäckle (2020) point out that the proper functioning of Bitcoin entails that exchange 
platforms offer diverse trading opportunities to the extent that orders are swiftly ful-
filled without a significant price impact. Smales (2019) indicates that when assessing 
the viability of Bitcoin as a safe haven alternative, it is of great importance to inspect 
not only its correlation with other assets but also its own liquidity and price discovery 
aspects. Brauneis et  al. (2021a) maintain that the speed and smoothness with which 
people and businesses can exchange their Bitcoin holdings for fiat money are critical for 
widespread adoption. Consequently, liquidity has a prominent influence on the appeal of 
cryptocurrency.

An equally important, yet sparsely addressed, issue in the literature is the factors that 
explain cryptocurrency liquidity. Because of its practical implications for financial sta-
bility authorities and the supply and demand sides of the market, the question of what 
drives the liquidity of equities, bonds, and fiat currencies has been examined a great deal 
(e.g., Chordia et  al. 2001; Cumming et  al. 2011; Karnaukh et  al. 2015; Manganelli and 
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Wolswijk 2009; Todorov 2020). By contrast, comparatively less effort has been devoted to 
identifying the potential forces of cryptocurrency liquidity. Zhang and Gregoriou (2020) 
assert that owing to the apparent peculiarities of the cryptocurrency market, determin-
ing the dynamics that affect its liquidity has become an urgent topic. Yue et al. (2021) 
indicate that although much of the Bitcoin literature focuses on price efficiency and its 
determinants, the liquidity component and its drivers have received little attention.

A crucial issue related to the identification of the determinants of a given phenom-
enon (e.g., Bitcoin liquidity) is model uncertainty, which arises when a researcher does 
not possess background knowledge of the true variables that must be included in the 
regression specification (e.g., Chatfield 1995; Avramo 2002). A given covariate could 
prove statistically significant within a specific group of conditioning variables but might 
not do so in the context of a set of competing models. In other words, one may find 
that x1 is statistically related to y in the presence of x2 and x3 , but may not be so in case 
the right-hand side of the regression model is augmented with x4 . Hence, in the absence 
of an explicit theoretical foundation, researchers may be tempted to experiment with 
multiple combinations of parameters, each generating different conclusions. Durham 
(2000) and Cremers (2002) point out that there are instances in which scholarly works 
present a wide range of factors explaining a particular phenomenon, but there is very 
little agreement across these works on what the most relevant factors are. In these cir-
cumstances, a researcher may perform a data-fitting exercise to publish only the best-
fitting finding that matches his/her prior beliefs while not reporting other findings that 
do not. To do so, they may resort to cherry-picking covariates and sample periods that 
yield statistically significant findings, thus raising concerns regarding model uncertainty. 
Chatfield (1995) and Hafner-Burton (2005) argue that these practices of model shop-
ping and p-hacking can be found in sub-model selection studies that involve discrete 
data analysis, time-series analysis, generalized linear modeling, and ANOVA. Managing 
model uncertainty is an important aspect of statistical modeling and predictive analyt-
ics. This requires careful consideration of the sources of uncertainty and the develop-
ment of appropriate techniques to quantify and mitigate the impact of uncertainty on 
model predictions.

Against this backdrop, we undertake an empirical inquiry into the sturdy determinants 
of Bitcoin liquidity while considering the issue of model uncertainty. We evaluate the 
robustness of a broad collection of candidate factors widely recognized in the literature 
as key explanatory variables of liquidity. The main questions addressed in this study are 
as follows:

• In the presence of various competing models, which factors contribute robustly to 
Bitcoin liquidity?

We add to the existing body of research in three ways. First, our primary contribu-
tion to the literature is identifying robust drivers of Bitcoin liquidity while addressing 
the issue of model uncertainty. Although some research efforts (e.g., Brauneis et  al. 
2021b; Choi 2021; Corbet et al. 2022; Dimpfl and Mäckle 2020; Eross et al. 2019; Fink 
and Johann 2014; Marshall et al. 2019; Yao et al. 2021; Yue et al. 2021) have been devoted 
to pinning down the factors that contribute to the liquidity of cryptocurrencies, they 
fail to consider the issue of variable selection. This study is more directly related to this 
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burgeoning strand of research but distinguishes itself by handling model  uncertainty 
about the problem of variable selection in regression models. For this purpose, we per-
form an extreme bounds analysis (EBA), which was first proposed by Leamer (1983, 
1985) and Levine and Renelt (1992) and subsequently enhanced by Sala-i-Martin (1997). 
The chief advantage of the EBA is its ability to address model uncertainty by establish-
ing the robustness or fragility of the parameter in question for any possible alteration in 
the conditioning set of information. Thus, the real advantage of this approach is that it 
allows us to conduct a systematic sensitivity analysis to determine whether a candidate 
covariate is correlated with the dependent variable, regardless of the subset of condition-
ing variables incorporated in the regression model. Numerous studies have been con-
ducted in the fields of politics, economics, and finance (e.g., Ahmed 2022a; Gassebner 
et al. 2013; Hartwig and Sturm 2014; Kim et al. 2019; Moosa and Cardak 2006; Sturm 
and Williams 2010) that implement EBA to account for possible uncertainty related to 
the model structure. However, to our best knowledge, no study has adopted a global sen-
sitivity approach to uncover robust drivers of Bitcoin liquidity. The analysis presented in 
this study attempts to bridge this gap in the literature. It is worth mentioning that our 
work is similar in spirit to Ahmed’s (2022b), with some methodological and sampling 
differences. In terms of methodology, Ahmed (2022b) deploys LASSO-based algorithms 
to uncover the factors that contribute to the liquidity of Bitcoin, whereas our study relies 
on EBA. Both techniques can be used for variable selection but differ in their underly-
ing assumptions and methods. The LASSO method estimates a sparse linear regression 
model by adding a penalty term to the regression coefficients. On the contrary, the EBA 
approach tests the robustness of regression results to changes in the set of predictors 
included in the model. In addition, the lasso method assumes that the true regression 
coefficients are sparse in the sense that only a few predictors are truly important for the 
outcome variable (Tibshirani 1996). On the contrary, the EBA does not depend on any 
assumptions about the sparsity of the true regression coefficients. Nevertheless, it neces-
sitates that the set of predictors is not too large; otherwise, the computational burden 
becomes unwieldy. Regarding sampling, our results are based on a larger sample period 
than that used in Ahmed (2022b).

Second, we evaluate the explanatory power of 18 candidate factors corresponding to 
significant actors in global economic and financial scene. The selected factors are cryp-
tocurrency-specific attributes (Bitcoin’s signed returns and volatility, trading volume, 
transaction fees, hash rate, number of bitcoins mined, number of transactions, and total 
market capitalization), public attention (Google search volume), macroeconomic and 
financial factors (benchmark stock indices of the US and Europe, spot exchange rates of 
EUR/USD, term spread, and gold markets), and global uncertainty and stress (US eco-
nomic policy uncertainty, fear, and stress indicators).

Finally, our evidence contributes to a common understanding and identification of 
the factors affecting Bitcoin liquidity. Since such factors could be a source of liquidity-
related concerns, the results may benefit central banks and international bodies respon-
sible for maintaining financial stability.

The remainder of this paper is organized as follows: Sect.  "Literature review and 
hypotheses development" provides a concise review of prior research and presents 
key hypotheses. Sect.  "Methodology" outlines the EBA methodology. Sect.  "Data 
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description" outlines the data and liquidity proxies, and Sect. "Empirical evidence" dis-
cusses the results. Sect.  "Additional analyses" presents robustness checks. Finally, con-
cluding remarks are offered in Sect. "Conclusion".

Literature review and hypotheses development
Related research

Due to the multidimensional nature of market liquidity, an all-encompassing defini-
tion and measurement of this concept continues to be challenging. Many authors (e.g., 
Bernstein 1987; Le and Gregoriou 2020; Hasbrouck and Schwartz 1988; Naik and Reddy 
2021) maintain that a theoretically coherent and unequivocally accepted  definition of 
liquidity remains an open question. As Vayanos and Wang (2011) elaborate, the lack of 
liquidity can be traced back to the existence of market imperfections, such as search fric-
tions, asymmetric information, funding constraints, imperfect competition, participa-
tion costs, and transaction costs. Sarr and Lybek (2002) highlight the main aspects of 
market liquidity, including depth (i.e., trade orders are large in number), breadth (i.e., 
large-volume orders have a negligible pricing impact), tightness (i.e., low transaction fees 
and spreads), resiliency (i.e., the promptness with which order imbalances are resolved), 
and immediacy (i.e., the speed of order execution). Nonetheless, the relative importance 
of these characteristics tends to differ depending on overall market circumstances. For 
example, in times of economic stability, liquidity might be more suggestive of reasonable 
transaction costs. In contrast, in periods of economic downturn, liquidity might be more 
indicative of immediacy and resiliency.

Unlike traditional financial markets, fast-developing cryptocurrency counterparts 
have experienced frequent price climbs, dramatic collapses, and bubbles and bursts in 
recent years. In such circumstances, efficient conversion between virtual currencies 
and  their fiat peers has become a  priority. Motivated by the practical implications of 
cryptocurrency liquidity, numerous studies have explored liquidity dynamics in different 
market states and across trading venues. For instance, by comparing the average liquid-
ity levels of Bitcoin, Ethereum, Litecoin, and Ripple, Brauneis et  al. (2021b) establish 
that Bitcoin (Ripple) is the most (least) liquid cryptocurrency. Loi (2018) and Marshall 
et al. (2019) demonstrate that liquidity varies across trading venues and currency pairs. 
Manahov (2021) finds that traders amplify the demand for cryptocurrency liquidity 
during extreme price movements. Takaishi and Adachi (2020) demonstrate that as the 
liquidity of the Bitcoin market rises over time, so does its efficiency. Smales (2019) finds 
that compared to traditional assets, Bitcoin is less liquid, excessively volatile, and more 
expensive  in transaction fees. Sensoy (2019) and Al-Yahyaee et  al. (2020) demonstrate 
that higher levels of liquidity (volatility) tend to boost (decrease) cryptocurrency market 
efficiency. Zaremba et al. (2021) find that large (small and medium) cryptocurrency mar-
kets exhibit substantial short-term return momentum (reversal) effects driven by high 
(low) levels of liquidity. In a similar spirit, Begušić and Kostanjčar (2019) provide evi-
dence of mean reversion (momentum effects) in illiquid (highly liquid) cryptocurrencies. 
In an event study, Yue et al. (2021) establish that cryptocurrency liquidity tends to rise 
(decline) following announcements of good (bad) global news. Additionally, the effect of 
good news on liquidity lasts longer than does that of bad news. Zhang and Li (2021) find 
that cryptocurrencies with higher (lower) liquidity show smaller (larger) future returns. 
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Shi (2017) shows that the launch of bitcoin futures trading reduces (increases) the intra-
day volatility (liquidity) of the spot market. Zhang and Gregoriou (2020) establish that, 
in the aftermath of China’s official announcement to ban  initial coin offerings (ICOs) 
on September 4, 2017, major crypto markets temporarily suffered negative abnormal 
returns and lower levels of liquidity. Dong et al. (2022) demonstrate that funding liquid-
ity, measured by the federal funds rate, is positively correlated with the illiquidity of 
cryptocurrencies, suggesting that a contractionary monetary policy can reduce crypto-
currency liquidity. Moreover, the results reveal several non-fundamental stock-market 
anomalies (e.g., turnover ratio, trading volume, idiosyncratic volatility, and dollar vol-
ume volatility) in the cryptocurrency market. Trimborn et al. (2020) develop a liquid-
ity-bounded risk–return optimization (LIBRO) approach that seeks to optimize the 
risk-return balance of a portfolio consisting of financial assets (i.e., stocks, bonds, and 
commodities) and cryptocurrencies subject to liquidity constraints. Based on the LIBRO 
method, the results show that adding cryptocurrencies other than Bitcoin to a portfolio 
with traditional investment assets remarkably enhances the risk-return trade-off.

Although a particularly pertinent topic, the factors that explain the liquidity of cryp-
tocurrencies remain much less investigated than those of mainstream financial assets. 
Only a few studies have endeavored to identify the sources of variation in the liquidity 
of Bitcoin and other virtual currencies. Fink and Johann (2014) indicate that investor 
activity is a primary factor in determining Bitcoin liquidity, as opposed to Google search 
queries, trading volumes, and average mining costs. Using various LASSO-based meth-
ods, Ahmed (2022b) finds that cryptocurrency hacking incidents, trading volume, real-
ized volatility of Bitcoin prices, Google search volume, and Ethereum liquidity are the 
most important determinants of Bitcoin liquidity. Dimpfl and Mäckle (2020) investigate 
the liquidity factors in Kraken, a globally prominent trading venue. They document that 
trading platform-specific features (i.e., trading activity, microstructure noise, and volatil-
ity) and blockchain attributes (i.e., overall transaction volumes, hash rates, and miners’ 
compensation) matter in explaining crypto-platform liquidity. Corbet et al. (2022) dem-
onstrate a tremendous increase in cryptocurrency market liquidity following the official 
WHO’s declaration of a worldwide pandemic in 2020. The results indicate a substantial 
interaction between return volatility and cryptocurrency liquidity during the COVID-
19 pandemic. Scharnowski (2021) establishes that Bitcoin liquidity has improved 
immensely over time. Moreover, liquidity is highly associated with Bitcoin-specific fac-
tors but is marginally affected by US economic and financial influences. Based on intra-
day trade and quote data from three US cryptocurrency exchanges (i.e., Gdax, Gemini, 
and Kraken), Dyhrberg et al. (2018) find that average quoted spreads (i.e., the price of 
liquidity provision) and average effective spreads (i.e., the execution cost when trad-
ers demand liquidity) are inversely related to the mean volatility and number of trades. 
The results of Choi (2021) indicate that active investor attention, as measured by the 
number of Bitcoin tweets, triggers a real-time increase in liquidity for approximately 
60 min. Ghabri et al. (2021) document weak time-varying correlations between Bitcoin 
liquidity innovations and their counterparts in mainstream financial markets, suggest-
ing that investors may alleviate liquidity risks by including Bitcoin in their conventional 
asset portfolios. Leirvik (2022) demonstrates a positive association between the idiosyn-
cratic volatility of cryptocurrency liquidity and expected returns, implying that investors 
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demand a risk premium to hold cryptocurrencies whose liquidity levels fluctuate sub-
stantially over time.

Hypotheses development

A perusal of the literature discussed above reveals that much less attention has been 
devoted to uncovering the factors that contribute to the liquidity of cryptocurrencies. 
Interestingly, the sporadic research on this topic seems to overlook the issue of model 
uncertainty despite its practical implications for portfolio construction, risk manage-
ment, and decision-making processes. The dynamics of cryptocurrency markets are 
distinct from traditional financial markets, implying that cryptocurrency liquidity for-
mation may differ from that of other asset markets. Several factors may impact the 
liquidity of cryptocurrencies, and their identification is vital for making informed deci-
sions and fostering the long-term sustainability of this fast-growing market. Investors 
and market participants must consider these factors when trading Bitcoin. Extending 
this incipient stream of research, we examine the robustness of a broad collection of 
crypto-industry-specific and external variables in determining the liquidity of Bitcoin. 
The analysis relies on the EBA methodology, which can address the issue of model speci-
fication uncertainty. As elaborated in SubSect. "Candidate determinants", the proposed 
explanatory factors comprise 18 variables representing the Bitcoin industry’s primary 
features and global economic and financial systems. Our candidate determinants reflect 
four broad dimensions: cryptomarket characteristics, public attention, macroeconomic 
and financial development, and global uncertainty and stress. Accordingly, considering 
the above discussion of related literature and our research questions, we test the follow-
ing hypotheses:

H1 Bitcoin liquidity is robustly affected by crypto market characteristics.

H2 Bitcoin liquidity is robustly affected by public attention.

H3 Bitcoin liquidity is robustly affected by macroeconomic and financial developments.

H4 Bitcoin liquidity is robustly affected by global uncertainty and stress.

Methodology
As indicated in the Introduction, Leamer (1983, 1985) and Levine and Renelt (1992) set 
forth the first version of the EBA, which has been criticized for being extremely restric-
tive concerning the binary criterion of robustness/fragility. Subsequently, Sala-i-Martin 
(1997) proposed a less stringent method. Succinct descriptions of both variants are pro-
vided in this section.

Leamer’s variant of EBA

The objective of the EBA is to verify whether the relationship between a particular 
response variable Y  , and a covariate of interest X , is robust to any changes made to the 
conditioning information set. The basic idea of EBA is to systematically vary the group of 
potential explanatory variables to determine whether the linkage between the response 
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variable and a given factor remains robust. The robustness requirement is satisfied only 
if (i) the estimated coefficient of X maintains its statistical significance and (ii) the asso-
ciated sign remains unaltered in the presence of diverse subsets of other regressors 
included in the analysis. Leamer (1985) and Levine and Renelt (1992) point out that EBA 
considers a real-world scenario in which one is interested in determining the robustness 
of a particular variable, Q , in the presence of a myriad of U putative variables that have 
been identified in the literature as possible determinants of a phenomenon. There are 
four steps to carry out the EBA. First, we estimate the following form of a baseline linear 
regression model:

where i indexes the universe of regression specifications to be estimated, BL represents 
Bitcoin liquidity, α is a constant term, Q is the focus variable in question, where Q ∈ U ,X 
denotes a vector of relevant regressors (i.e., free variables) that are incorporated in each 
regression run due to strong theoretical and/or empirical pertinence, Z is a vector of 
doubtful factors that may influence BL and are included in each regression but in differ-
ent combinations, where Z ∈ U , and υ is the disturbance term. With a subset size of N  
doubtful variables drawn from the remaining U − 1 variables, the total count of regres-
sion models estimated for a specific focus variable is given by

In the second step, we re-estimate Eq. (1) P times, where each estimation run includes 
a different linear combination of doubtful variables. Both the estimated coefficient, βi , 
pertaining to Q and its corresponding standard deviation, σ̂i , are extracted from each 
regression. Third, based on the second step, we pinpoint the maximum and minimum 
values of β̂  and employ them to determine its upper and lower bounds, respectively. The 
upper bound is the largest value of β̂  plus τ σ̂ . On the contrary, the lower bound is com-
puted as the lowest value of β̂  minus τ σ̂ , where τ is the z-values related to a confidence 
level (e.g., 1.96 and 2.58 for the 0.95 and 0.99 confidence levels, respectively). In the final 
step, we determine the robustness, or lack thereof, of the factor in question, Q , con-
cerning the dependent variable. According to Leamer (1985), Q is fragile if its extreme 
bounds are not of the same sign or if it shows no statistical significance even once. Oth-
erwise, Q is deemed robust because it withstands all possible changes in the model spec-
ifications. Leamer’s EBA variant has been criticized by several authors (e.g., McAleer 
et al. 1985; McAleer and Veall 1989; Granger and Uhlig 1990; Hendry and Krolzig 2004) 
for being predicated on an extremely difficult inferential requirement seldom encoun-
tered in practice.

Sala‑i‑Martin’s variant of EBA

As an alternative to the stringent binary robustness criterion of Leamer’s approach, Sala-
i-Martin (1997) suggests considering the entire distribution of β̂  (i.e., 

{
β̂i

}P

i=1
 ), as 

opposed to only its maximum and minimum bounds. He points out that one can rely on 

(1)BLi = αi + βiQ +
m∑

j=1

ηi,jXj +
n∑

k=1

ϑi,kZk + υi

(2)P =
(U − 1)!

N !(U − 1− N )!
for U − 1 > N > 1
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a cumulative distribution function (CDF) to assess the robustness of the relationship 
between a response variable and a set of potential explanatory variables. The author pro-

poses computing the cumulative distribution function of 
{
β̂i

}P

i=1
 at zero, (i.e., [CDF(0)] ), 

employing the mean and variance of the distribution. Sala-i-Martin (1997) emphasizes 

that a researcher can infer that the variable in question is robust if most of 
{
β̂i

}P

i=1
 are on 

the left or right side of zero. For this purpose, Eq. (1) is estimated P times, and the coef-
ficient under consideration, β̂i , standard deviation, σ̂i , and the integrated likelihood, Li, 
are derived from each regression run. The next stage is to apply a likelihood-weighting 
scheme, in which regression models with a better fit are assigned greater weights. 
Accordingly, the weight We , for the eth model is calculated as

Sala-i-Martin (1997) provides two mutually exclusive scenarios in which the CDF(0) 
can be determined. The first scenario is that all β̂i do not follow a particular distribution, 
while the second one is that all β̂i are assumed to follow a normal distribution. In the 
more generic case, the CDF(0) is computed for each of the P model specifications, and 
the aggregate CDF(0) of β̂  is derived as an average of the respective values of theCDFs(0) , 
weighted by the integrated likelihoods. In other words, if �Qi

(
0|β̂Qi, σ̂ 2

Qi

)
 denotes the 

ithCDF(0) , then we can compute the aggregate CDF(0) for non-normal β̂  as follows:

Under the normal distribution assumption, on the other hand, the mean estimates of 
β̂i and σ̂i are defined as follows:

Based on the respective values of β̂Q and σ̂ 2
Q , the CDF(0) can be computed using the 

Gaussian distribution, such that β ∼ N (β̂Q, σ̂
2
Q) . According to Sala-i-Martin (1997), a 

focus variable can be accurately described as robust if at least 95 percent of its density 
function is on the same side of zero. This implies that the associated coefficient estimates 
display the same sign and are statistically significant in no less than 95 percent of the 
regression models, supplemented with all possible subset combinations of Z variables.

Histograms can be used to demonstrate individual CDFs as graphical EBA outputs. 
These graphical representations can be useful in exploring the distribution of variables 
in a dataset, which can inform the selection of variables for inclusion in the EBA. The 
bar graphs show the calculated coefficient amplitudes and dispersions over the full range 

(3)WQe = LQe/

P∑

i=1

LQi, where

P∑

i=1

WQi = 1

(4)�Q(0) =
P∑

i=1

WQi�Qi

(
0|β̂Qi, σ̂ 2

Qi

)

(5)β̂Q =
P∑

i=1

WQiβ̂Qi

(6)σ̂ 2
Q =

P∑

i=1

WQiσ̂
2
Qi
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of the regression runs. Additionally, by inspecting the CDF of t-statistics, which displays 
the percentage of statistically significant coefficients at conventional levels, it is possible 
to confirm the statistical significance of β̂ .

It is worth mentioning that while the EBA is a valuable technique for appraising the 
robustness of empirical evidence, it is not without limitations (e.g., Granger and Uhlig 
1990; Hendry and Mizon 1990; McAleer et  al. 1985; McAleer and Veall 1989). First, 
Leamer’s (1985) variant of the EBA is excessively conservative in identifying the most 
robust factors. By considering only extreme combinations of variables, the EBA may fail 
to determine important variables that are not present in these extreme combinations 
but are still important in explaining the phenomenon under study. Second, the EBA 
assumes that all variables contribute equally to explaining the outcome variable, which 
is not always true. Some variables may have a larger effect than others, and the EBA 
does not take this into account. Moreover, EBA assumes that the regression coefficients 
are invariant to changes in the model’s specifications. Nevertheless, this assumption may 
not hold in practice, and the coefficients may vary depending on the variables included 
in the model. Third, extreme bound levels may result from complex models with “unrea-
sonable” parameter estimates.

To overcome some of these drawbacks, Granger and Uhlig (1990) propose a modi-
fied version of the EBA called “Reasonable Extreme-Bounds Analysis” (REBA). REBA 
involves testing a wider range of variable combinations deemed “reasonable” based on 
prior knowledge and theory, in addition to the extreme combinations used in traditional 
EBA. This broader range of variable mixtures can help identify important regressors that 
may be missed by the EBA. Granger and Uhlig (1990) suggest adopting R2 statistic as a 
criterion for assessing the REBA results. They indicate that within the REBA framework, 
extreme bounds emerge from regressions with R2 values close to the maximum attain-
able value of R2 over the entire space of the regression models. This means that models 
exhibiting low goodness-of-fit will be discarded. The authors argue that this relevant cri-
terion can avoid overfitting, which occurs when a model is too complex and includes too 
many variables, leading to a high degree of noise and variance in estimates. By selecting 
the variable mixtures that produce the highest R2 , we could identify the most robust and 
parsimonious models.

Nonetheless, Granger and Uhlig (1990) acknowledge that when evaluating the good-
ness-of-fit of a linear regression model, R2 can be misleading. For example, this statistic 
may be biased by including irrelevant variables, and a high R2 value does not necessarily 
indicate that the model is a good fit for the data. Additionally, it offers no information 
regarding the functional form of the association between the outcome and predictor 
variables. Therefore, they recommend using R2 in conjunction with other criteria, such 
as economic intuition and statistical significance, to evaluate the robustness of empirical 
findings.

Data description
The empirical investigation spans a sample period from January 12, 2015, to December 02, 
2022, thus avoiding the first phase of cryptocurrency adoption, which is associated with 
numerous inactive trading hours. To further minimize the possibility of no trading periods, 
our analysis revolves around Bitcoin, which has the largest user base compared to other 



Page 11 of 32Ahmed  Financial Innovation           (2024) 10:69  

cryptocurrencies. The historical prices are obtained from https:// www. Bitco incha rts. com 
and the trading venue of interest is Bitstamp, one of the world’s most popular liquid plat-
forms. The time-series observations are daily for almost all variables. Nevertheless, to con-
struct liquidity metrics and realized volatility, we compile 60-min high-frequency data on 
the low, high, opening, and closing exchange rates of Bitcoin against the US dollar. Rather 
than adopting smaller intraday time frames (e.g., 1-min or 5-min sampling frequency), we 
opt for 60-min intervals for two reasons. First, high-frequency data, such as 5-min inter-
vals, tend to contain more noise and microstructure effects owing to increased observations 
within a trading day in cryptocurrency markets. This makes it more challenging to identify 
the underlying trends and patterns in the data. A higher frequency of 5-min data might lead 
to an excess of information, making it more difficult to distinguish significant signals from 
random fluctuations (Poon and Granger 2003). When using a 60-min frequency, noise and 
short-term fluctuations inherent in higher-frequency data and associated with confounding 
market microstructure effects will likely be smoothed out, allowing for a clearer picture of 
the respective market liquidity and volatility behaviors. Hence, hourly frequency data may 
provide a sufficient level of granularity while avoiding excessive noise that could distract the 
primary analysis. Goyenko et al. (2009) compare liquidity benchmarks derived from high-
frequency data with various widely used low-frequency liquidity proxies. They find that 
monthly and annual low-frequency proxies effectively capture high-frequency measures 
of transaction costs. Second, many studies on cryptocurrency liquidity and volatility base 
their empirical examination on 60-min sampling frequency (e.g., Bouri et al. 2021; Brauneis 
et al. 2021a, b; Corbet et al. 2020a, b; Dyhrberg et al. 2018; Gradojevic et al. 2023; Hansen 
et al. 2022; Jalan et al. 2021), and we follow suit.

Similar to Gkillas et al. (2021), Corbet et al. (2020b), and Bouri et al. (2021), we carry out a 
data curation process as a prelude to the empirical analysis. Bitcoin prices within periods of 
either zero trading activity or a low frequency of transactions (less than 3000 transactions per 
hour) are replaced with the last price traded. Note that the thresholds for thin and infrequent 
trading can differ across cryptocurrency, equity, and bond markets because of variations in 
market characteristics, investor behavior, and regulatory factors. Since our focus of interest 
is Bitcoins, which can be bought anytime, we rely on daily observations for all seven days of 
the week, including weekends. Time series of a weekday frequency (i.e., Monday to Friday) 
are converted to a daily 7‐day frequency. To this end, a piecewise constant interpolation is 
performed to fill in gaps on bank holidays and weekends. In line with Corsetti et al. (2005) and 
Forbes and Rigobon (2002), we consider non-synchronous trading hours using two-day roll-
ing averages for the time series. To establish stationarity, we logarithmically transform each 
data series into the firs-difference form. The inverse hyperbolic sine (IHS) transformation is 
used for a time series that contains negative or zero values and is defined as (Ravallion 2017):

where ‡t is the time series with zero or negative values.

Liquidity proxy

Given the heterogeneity of the factors underlying the liquidity concept, the extant 
literature sets forth a mixture of proxies that reflect some, but not all, of these 

(7)‡̃t = log

(
‡t +

√
1+ ‡2t

)

https://www.Bitcoincharts.com
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dimensions. According to Ametefe et al. (2016), metrics of liquidity can be classified 
into price impact measures (e.g., Amihud 2002; Hasbrouck and Schwartz 1988; Pás-
tor and Stambaugh 2003), time-based measures (e.g., Donald et al. 1996; Peng 2001), 
return-based measures (e.g., Goyenko et  al. 2009; Roll 1984), trading volume-based 
measures (e.g., Mann and Ramanlal 1996; Rouwenhorst 1999), and transaction cost-
based measures (e.g., Chordia et  al. 2001; Demsetz 1968; Hamao and Hasbrouck 
1995). From a data frequency perspective, liquidity metrics can be estimated using 
either high-frequency (i.e., intraday) trade and order book data or low-frequency (i.e., 
daily, weekly, or monthly) transaction-based data. Although widely used in research, 
Amihud’s (2002) mean-adjusted illiquidity measure has certain limitations. For 
instance, it captures only the price impact dimension, suffers considerable size bias, 
and cannot reveal the trading frequency aspect of liquidity (Cochrane 2005; Florackis 
et  al. 2011). Brauneis et  al. (2021a) show that this measure fails to reflect the time-
series variability in cryptocurrency liquidity.

In the empirical analysis, we adopt the bid/ask spread estimator developed by 
Corwin and Schultz (2012) (CS, hereafter). This metric is derived from high- and 
low-price data obtained from a time series with either low or high frequency. The 
CS estimator is based on the idea that the midpoint of bid and ask prices can be 
employed as a proxy for the true underlying value of an asset. The estimator meas-
ures the volatility of this midpoint price over a certain period to estimate the bid/
ask spread. More explicitly, it calculates the squared returns of the midpoint price 
over two consecutive periods and then takes the average of the squared returns as an 
estimate of the spread. The CS estimator is designed specifically for high-frequency 
trading data, allowing for a more accurate estimation of bid/ask spreads. Moreover, 
it is robust to changes in market conditions, such as changes in liquidity and trading 
volume. The estimator also estimates the true trading costs associated with buying or 
selling financial assets, which can benefit investors when making informed decisions. 
Brauneis et al. (2021a) document that the CS measure demonstrates a superior abil-
ity to capture time-series variations in cryptocurrency liquidity. Schestag et al. (2016) 
find that the CS estimator satisfactorily captures changes in transaction costs in the 
US over-the-counter bond markets. Karnaukh et al. (2015) show that the CS estima-
tor performs well in spot foreign exchange markets.

Consider a string of intraday high pricesHi , low pricesLi , and readings. The highest 
and lowest prices for two successive subintervals i, i + 1 of 60-min length in interval t 
are given as Hi,i+1 = MAX(Hi,Hi+1) andLi,i+1 = MIN (Li, Li+1) , respectively. We then 
produce the following sample estimates:

A closed-form high-low spread estimator can be defined as follows, with some sim-
plifying assumptions:

(8)γ̂ =
[
ln

(
Hi,i+1

Li,i+1

)]2

(9)ϑ̂ =
[
ln

(
Hi

Li

)]2
+

[
ln

(
Hi+1

Li+1

)]2
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where,

e is a mathematical constant. As the series of ĈS may contain negative values, we fol-
low Corwin and Schultz (2012) and set them to zero. Finally, for each interval t, an 
unweighted mean of all the estimates of ĈS across all successive subintervals is generated.

Candidate determinants

As indicated in the Introduction, due to the nascency and peculiarity of the Bitcoin mar-
ket, only a few studies (e.g., Brauneis et al. 2021b; Corbet et al. 2022; Choi 2021; Dimpfl 
and Mäckle 2020; Eross et al. 2019; Fink and Johann 2014; Yue et al. 2021; Zhang and 
Gregoriou 2020) have been undertaken to identify which variables contribute most to 
its liquidity dynamics. In the sequel, we assess the roles of an extensive array of crypto-
currency-specific and external influences as robust liquidity determinants in the Bitcoin 
market. The candidate explanatory set comprises 18 variables reflecting the cryptocur-
rency sphere’s primary aspects and the global economic system. We examine the poten-
tial contributions of as many candidate determinants as possible. The selected factors 
symbolize crypto-market characteristics (Bitcoin’s signed returns and volatility, trading 
volume, transaction fees, hash rate, number of Bitcoins mined, number of transactions, 
and total market capitalization), public attention (Google search volume), macro-
economic and financial factors (benchmark stock indices of the US and Europe, spot 
exchange rates of EUR/USD, term spread, and gold markets), and global uncertainty and 
stress (US economic policy uncertainty, fear, and stress indicators). The choice of these 
variables is motivated by three considerations. First, based on a systematic literature sur-
vey, we select factors identified in prior studies as important drivers of liquidity. Second, 
data availability impeded incorporating of other potential factors into the analysis. Third, 
following Levine and Renelt (1992), to limit the total number of regressors, the popula-
tion of doubtful variables U , from which a conditioning information set is selected for 
each regression analysis run, is kept reasonably small. Table 1 summarizes the variables 
and their respective data sources.

Correlation analysis

Given the large number of variables, a preliminary examination of their dependence 
structures is useful. A heatmap depicting pairwise correlations between variables is 
shown in Fig. 1. Blank cells denote correlation coefficients that are not statistically signif-
icant. Aquamarine (pale green) cells indicate a very weak positive (negative) association, 
while those in dark blue (dark brown) signify a very strong positive (negative) associa-
tion between the two variables. A perusal of the heatmap grid reveals that most cross-
correlations are either statistically insignificant (i.e., p ≥ 0.10 ) or weak (i.e., 

∣∣rxy
∣∣ < 0.40 ). 

Nonetheless, there are some pairwise cases with moderately positive or negative 

(10)ĈSi,i+1 =
2
(
eα̂ − 1

)

1+ eα̂

(11)α̂ =

√
2ϑ̂ −

√
ϑ̂

3− 2
√
2

−

√
γ̂

3− 2
√
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Table 1 Candidate determinants of Bitcoin liquidity

Dimension Variable (symbol) Description Data source

Crypto market charac-
teristics

Absolute returns of 
Bitcoin (ABSR)

AR is used as a proxy for 
information flow. Chordia 
et al. (2002, 2004) find that 
bid-ask spreads are posi-
tively related to absolute 
returns

Author’s own calculations

Negative returns of 
Bitcoin (NEGR)

Early theoretical research 
works (e.g., Bernardo and 
Welch, 2004; Kyle and 
Xiong 2001; Morris and 
Shin 2004) predict that 
market downturns trigger 
asset illiquidity. From the 
raw returns of Bitcoin, 
Rt ,  we obtain a series of 
negative returns as fol-

lows.
R
−
t =

{
Rt ifRt < 0

0otherwise

Author’s own calculations

Bitcoin realized volatility 
(BV)

The summation of 
60-min squared returns 
observed during a trading 
day. In formulaic terms, 

RV t =
(∑

S

i=1 R
2
t ,i

)0.5
, 

1 ≤ i ≤ S, t ∈ (1, 2, . . . , T ).

Author’s own calculations

Trading volume (TV) The daily dollar worth of 
the units exchanged on 
the Bitstamp platform

https:// bitco incha rts. com/

Transaction fees (TF) The sum of transac-
tion fees paid to miners 
(excluding the value of 
block rewards in coinbase)

https:// www. quandl. com/

Number of bitcoins mined 
(NB)

The total number of 
Bitcoin units that are in 
circulation per day. We 
adopt this variable as 
a proxy for the Bitcoin 
market’s supply side

https:// www. quandl. com/

Number of transactions 
(NT)

The total number of 
Bitcoin transactions that 
are validated and added 
to a blockchain ledger per 
day. We use this variable 
as a proxy for the Bitcoin 
market’s demand side

https:// www. quandl. com/

Total market capitalization 
(MC)

MC is the result of 
multiplying the current 
price per unit by the total 
number of bitcoins that 
are already in circulation

https:// data. nasdaq. com/ 
data/ BCHAIN/ MKTCP- bitco 
in- market- capit aliza tion

Hash rate (HASH) Hash rate measures the 
processing capability of 
powerful mining equip-
ment used by individual 
miners to unlock new Bit-
coin units. It is expressed 
as tera hashes per second 
(i.e.,  1012 hashes/s)

https:// www. quandl. com/

https://bitcoincharts.com/
https://www.quandl.com/
https://www.quandl.com/
https://www.quandl.com/
https://data.nasdaq.com/data/BCHAIN/MKTCP-bitcoin-market-capitalization
https://data.nasdaq.com/data/BCHAIN/MKTCP-bitcoin-market-capitalization
https://data.nasdaq.com/data/BCHAIN/MKTCP-bitcoin-market-capitalization
https://www.quandl.com/
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Table 1 (continued)

Dimension Variable (symbol) Description Data source

Public attention Google search volume 
index (GSVI)

GSVI measures the aver-
age volume of searches 
made on Google for a 
given subject or phrase 
(such as "Bitcoin"). In 
order to obtain GSVI at a 
daily granularity, we use 
the method outlined in 
Lyócsa et al. (2020). This 
variable is utilized as a 
proxy for public interest 
in Bitcoin

https:// trends. google. com/ 
trends/ explo re?q= bitco in

Macroeconomic and 
financial factors

US stock market (USM) We use the S&P 500 com-
posite index to represent 
the price performance of 
US stocks

https:// www. spglo bal. com/ 
spdji/ en/ indic es/ equity/ sp- 
500/# overv iew

European stock market 
(ESM)

We employ the bench-
mark  S&P Europe 350 
index to reflect the price 
movements of European 
stocks

https:// www. spglo bal. com/ 
spdji/ en/ indic es/ equity/ sp- 
europe- 350/# overv iew

EUR/USD exchange rate 
(EXRATE)

The euro’s spot price vis-à-
vis one unit of USD

https:// fred. stlou isfed. org/

Term spread (TSD) The term spread serves 
as a proxy for the US 
Federal Reserve’s stance 
on monetary policy. To 
calculate TSD, the yield on 
the three-month treasury 
bill is subtracted from 
the yield on the ten-year 
government bond

https:// fred. stlou isfed. org/

Gold market (GLD) Daily spot prices 
expressed in USD per troy 
ounce are deployed to 
reflect the performance of 
the gold market

https:// www. gold. org/

Global uncertainty and 
stress

US economic policy 
uncertainty (EPU)

The EPU index, developed 
by Baker et al. (2016), is a 
common indicator of the 
overall economic uncer-
tainty corresponding to 
policy in the US

https:// www. polic yunce 
rtain ty. com/ us_ month ly. 
html

CBOE volatility index (VIX) The VIX is a popular gauge 
of short-term anxiety and 
uncertainty in the US 
financial markets

https:// fred. stlou isfed. org/

Global financial stress 
index (FSI)

Introduced by the Office 
of Financial Research 
(OFR), FSI is a composite 
metric capturing systemic 
disruptions in the world’s 
financial markets. The 
construction of FSI relies 
on aggregating daily data 
from 33 major financial 
variables, such as 2-Year 
US Swap Spread, BaML 
Euro Area High Yield 
Bond Index, and valuation 
measures

https:// www. finan cialr esear 
ch. gov/ finan cial- stress- 
index/

This table provides a concise description of all explanatory variables used in the empirical analysis. The different sources of 
data are reported in the last column

https://trends.google.com/trends/explore?q=bitcoin
https://trends.google.com/trends/explore?q=bitcoin
https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview
https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview
https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview
https://www.spglobal.com/spdji/en/indices/equity/sp-europe-350/#overview
https://www.spglobal.com/spdji/en/indices/equity/sp-europe-350/#overview
https://www.spglobal.com/spdji/en/indices/equity/sp-europe-350/#overview
https://fred.stlouisfed.org/
https://fred.stlouisfed.org/
https://www.gold.org/
https://www.policyuncertainty.com/us_monthly.html
https://www.policyuncertainty.com/us_monthly.html
https://www.policyuncertainty.com/us_monthly.html
https://fred.stlouisfed.org/
https://www.financialresearch.gov/financial-stress-index/
https://www.financialresearch.gov/financial-stress-index/
https://www.financialresearch.gov/financial-stress-index/
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correlation coefficients (i.e., 0.40 ≤
∣∣rxy

∣∣ < 0.80 ), including Bitcoin liquidity-Bitcoin 
volatility (CS-BV), absolute returns-total market capitalization (ABSR-MC), transaction 
fees-number of transactions (TF-NT), transaction fees-EUR/USD exchange rate (TF-
EXRATE), trading volume- European stock markets (TV-ESM), VIX-US stock markets 
(VIX-USM), and VIX-European stock markets (VIX-ESM). As a further step toward 
reducing potential multicollinearity, we enforce two rules. First, for a given Q variable, 
we limit the number of Z variables included in each regression to five, following Sala-i-
Martin (1997) and Kim et al. (2019). Second, regression models with a variance inflation 
factor (VIF) above a threshold of 5 are excluded from the analysis.

Empirical evidence
An important procedure before performing EBA is to pinpoint the free variables ( X ), 
focus variables ( Q ), and doubtful variables ( Z ). Free variables represent those whose 
theoretical and empirical relationships with a particular response variable have been 
demonstrated in the literature and, therefore, have great acceptance. Owing to their 
prominence, these variables always appear in all the estimated models. The focus vari-
ables are those of one’s main interest and whose robust explanatory potential is under 
investigation. Doubtful variables are a conditioning set of covariates that change with 
each regression run. To provide a comprehensive assessment, we run the EBA with-
out setting a free variable. Next, we evaluate the robustness of each of the 18 candidate 
factors by treating it as a focus variable in succession while designating the others (17 

Fig. 1 A heatmap representation of the correlation structure of variables
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variables) as doubtful ones, which means that Q and Z are interchangeable. Additionally, 
for a given Q variable, we limit the number of Z variables included in each regression run 
to five (i.e., N = 5). The ordinary least squares (OLS) estimator with heteroskedasticity-
robust standard errors (White 1980) is deployed to generate the EBA regression results.1 
In all hypothesis testing, we choose a 0.05 significance level to test the null hypothesis 
that the individual parameter coefficients of each model are not different from zero. Our 
estimation is based on a more realistic assumption that the parameter estimates, β̂  , are 
not normally distributed. In the same spirit as Sala-i-Martin (1997) and Hartwig and 
Sturm (2014), we infer that the covariate of interest is robust only if its corresponding 
estimated coefficient has a CDF(0) ≥ 0.90.

Panels A, B, and C in Table  2 report the EBA results. Specifically, some summary 
statistics for coefficient estimates, β̂  , of each focus variable are listed in Panel A, while 
Panels B and C show the EBA estimation output from Leamer’s and Sala-i-Martin’s 
versions, respectively. Three salient observations can be made from Panel A. First, the 

Table 2 Estimation results of EBA

This table shows the results of extreme bounds analysis, based on both Leamer’s (1983, 1985) and Sala-i-Martin’s (1997) 
versions. Regression models with a VIF threshold > 5 are removed from the analysis. Q is the focus variable of interest, 
and its coefficient estimate is β̂  . Each of the 18 candidate factors is set as a focus variable in succession.  β̂Q   and 

−
S.E .  are 

the respective weighted averages of {β̂Q,i}
P

i=1 and their corresponding heteroskedasticity-robust standard errors. No. of 
β̂Q  denotes the number of models per variable passing the VIF test. Lower (upper)  β̂  denotes the minimum (maximum)  
value of β̂  minus (plus) 1.96σ̂ . CDF(0) shows the percentage of the cumulative distribution function of {β̂i}

P

i=1 located on 
the right or left side of zero, whichever is larger. The sign of β̂Q   indicates whether most of CDF(0) is above or below zero. 
The estimates of β̂  are assumed to be not normally distributed. A likelihood-based weighting scheme is used to compute 
the aggregate CDF(0) of β̂ . The overall number of possible 5-variable combinations is 18,564 and the total number of 
regressions estimated for a particular Q variable amounts to 6,188. A candidate determinant is deemed robust if its 
corresponding CDF(0) ≥ 0.95. For variable abbreviations, see Column (2) of Table 1

Variable Panel A:   β̂Q statistics Panel B: Leamer’s approach Panel C: Sala‑i‑Martin’s 
Approach

β̂Q

−

S.E. No. of β̂Q Lower β̂ Upper β̂ Classification CDF(0) Classification

ABSR  − 0.107 0.090 6188  − 1.910 0.630 Fragile 34.212 Fragile

NEGR 1.872 0.657 6188  − 0.618 6.413 Fragile 96.779 Robust
BV 0.995 0.124 6188 0.609 1.384 Robust 100.000 Robust
TV  − 0.431 0.217 6188  − 3.751 1.657 Fragile 93.845 Robust
TF 0.012 0.089 6188  − 0.673 0.672 Fragile 62.549 Fragile

NB  − 0.029 0.079 6188  − 0.845 0.477 Fragile 62.530 Fragile

NT  − 0.008 0.115 6188  − 1.034 0.913 Fragile 57.664 Fragile

MC  − 0.027 0.109 6188  − 1.550 1.125 Fragile 64.272 Fragile

HASH 0.059 0.046 6188  − 0.315 0.506 Fragile 90.163 Robust
GSVI  − 0.373 0.233 6188  − 2.975 0.700 Fragile 92.395 Robust
USM 0.035 0.190 6062  − 1.533 3.332 Fragile 61.515 Fragile

ESM 0.108 0.111 6188  − 0.765 1.003 Fragile 84.492 Fragile

EXRATE  − 0.004 0.021 6188  − 0.150 0.121 Fragile 55.650 Fragile

TSD 0.041 0.095 6175  − 1.030 1.441 Fragile 53.708 Fragile

GLD  − 0.238 0.107 6188  − 10.452 12.551 Fragile 50.304 Fragile

EPU 0.011 0.015 6188  − 0. 137 0.104 Fragile 82.714 Fragile

VIX 0.339 0.270 5986  − 1.453 4.899 Fragile 80.026 Fragile

FSI 0.180 0.239 6188  − 25.666 31.463 Fragile 50.776 Fragile

1 To achieve estimation results, we use ExtremeBounds, an R package created by Hlavac (2016).
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estimated coefficients associated with Bitcoin’s negative returns and volatility, transac-
tion fees, hash rates, S&P 500 index returns, S&P Europe 350 index returns, term spread, 
the US economic policy uncertainty index, VIX, and the global financial stress index 
are, on average, positively signed, which suggests that as these explanatory variables 
increase, so does the CS spread (i.e., a decrease in Bitcoin liquidity). On the other hand, 
the corresponding coefficients for the remaining independent variables have, on aver-
age, a negative sign, implying that positive changes in those regressors tend to positively 
impact Bitcoin liquidity. Second, regarding the magnitude of the parameter coefficients, 
β̂  , negative returns and volatility of Bitcoin (the number of transactions and EUR/USD 
exchange rates) appear to have the largest positive (smallest negative) influence on Bit-
coin price spreads. Third, for US stock market returns, term spread, and VIX, we notice 
that the number of model specifications passing the VIF test declines to 6062, 6175, and 
5986, respectively, from a maximum of 6188. This suggests that the VIF values for some 
of the estimated coefficients pertaining to the three variables are greater than the thresh-
old level of 5; therefore, these coefficients are removed from the EBA.

Panel B of Table 2 presents the estimation results based on Leamer’s demanding ver-
sion of EBA. Interestingly, the realized volatility of Bitcoin (BV) is the only variable that 
survives the restrictive criterion of robustness since its coefficients remain statistically 
significant and retain the same sign across all possible combinations of doubtful vari-
ables. This robust determinant has a positive sign, implying that an increase in volatility 
leads to a decrease in bitcoin liquidity. The other 17 regressors are considered fragile, 
given that their respective coefficients change sign at least once and thus fail to with-
stand alterations in the conditioning information set. It should be noted that the upper 
and lower bounds of β̂  for global financial stress (economic policy uncertainty and EUR/
USD exchange rates) are far apart from (close to) each other, which could be indicative 
of less (more) precision in their respective coefficient estimates.

Paralleling our findings, several studies highlight the key role of volatility in explain-
ing cryptocurrency liquidity. For example, Scharnowski (2021) shows that the bid-ask 
spreads of Bitcoin are positively associated with its volatility. Based on data for four 
major cryptocurrencies (Bitcoin, Ethereum, Litecoin, and Ripple) traded on Bitfinex, 
Bitstamp, Coinbase Pro, and Kraken, Brauneis et al. (2021b) find a significant positive 
relationship between realized volatility and illiquidity. Comparably, Dimpfl and Mäckle 
(2020) indicate that higher levels of bitcoin volatility and greater microstructure noise 
induce less liquidity in Kraken. Marshall et  al. (2019) demonstrate that volatility and 
the number of trades are the primary determinants of Bitcoin spreads. Using cross-
sectional data on 456 cryptocurrencies, Wei (2018) finds that low volatility and high 
efficiency prevail in liquid markets, wherein active traders are expected to rule out the 
potential for return predictability. Koutmos (2018) shows that during episodes of low 
liquidity uncertainty, Bitcoin’s liquidity uncertainty is positively (negatively) corre-
lated with returns and realized range volatility (market capitalization, trading volume, 
and transaction fees). In contrast, realized volatility is the sole determinant in times of 
high liquidity uncertainty. Corbet et al. (2022) report evidence of considerable dynamic 
interactions between liquidity changes and conditional volatilities in 12 cryptocurren-
cies before and during the COVID-19 pandemic. On the contrary, some studies reveal 
results that contradict our findings. For instance, Dyhrberg et al. (2018) find an inverse 
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relationship between volatility and the quoted and effective spreads of Bitcoin. Using 
daily and weekly frequency data for a group of the 12 most-traded cryptocurrencies, 
Búdowska-Sójka et al. (2020) establish that high volatility Granger causes high liquidity. 
Eross et al. (2019) employ GMT-timestamped tick-level data for Bitcoin to investigate its 
intraday dynamics across four sample periods from 2014 to 2017. Among other results, 
they demonstrate the absence of significant causality between liquidity and returns and 
realized volatility.

Next, we proceed to the results from Sala-i-Martin’s version of the EBA, as shown 
in Panel C of Table 2. A close look at the results indicates that crypto industry-specific 
influences and investor attention are relevant to explaining the liquidity of Bitcoin, while 
conventional financial market dynamics and global macroeconomic risks are not. Sev-
eral main points are worth mentioning: First, as expected, under this less restrictive 
approach, four additional independent variables (i.e., Bitcoin’s negative returns, trading 
volume, hash rates, and Google search volume index) are no longer fragile. Thus, out of a 
pool of 18 candidate factors, only five seem to matter systematically for Bitcoin liquidity; 
consequently, they are labeled as robust determinants. Second, in terms of importance, 
realized volatility appears to take the overall lead with a CDF(0) = 100 percent, followed 
by negative returns, trading volume, and Google search queries, with CDF(0) values 
ranging between 96.779 percent and 92.395 percent. The hash rate variable hovers near 
the bottom of the robustness ranking, achieving a borderline CDF(0) value of 90.163.

Third, in terms of the sign, the estimated CDFs for negative returns, realized volatil-
ity, and hash rates (trading volume and Google search queries) are practically located 
on the right-(left-) hand side of zero, as revealed by their respective β̂Q  , which sug-
gests a predominantly positive (negative) relation with Bitcoin price spreads across 
the entire spectrum of model specifications. Indeed, this finding implies that nega-
tive returns, realized volatility and hash rates (trading volume and Google search 
queries) tend to have negative (positive) effects on Bitcoin liquidity. Consistent with 
our results, several studies demonstrate a significant association between cryptocur-
rency liquidity and these robust variables in cryptocurrency and mainstream financial 
markets. For instance, Dimpfl and Mäckle (2020) document that the total transac-
tion volume, hash rates, and number of transactions are important drivers of Bitcoin 
liquidity. Using data on 34 cryptocurrencies, Yao et  al. (2021) establish that static 
investor attention tends to exert a short-term positive effect on liquidity, while abnor-
mal investor attention has a persistent negative effect. Choi (2021) reports evidence 
that rising levels of investor attention, proxied by the number of tweets, enhance Bit-
coin liquidity. Scharnowski (2021) finds that Bitcoin spreads correlate with hash rates 
and lagged negative returns. Brauneis et al. (2021b) establish that Bitcoin spreads are 
positively (negatively) related to the average trade size (total trading volume). In con-
trast, the theoretical models of Brunnermeier and Pedersen (2009), Kyle and Xiong 
(2001), Bernardo and Welch (2004), and Morris and Shin (2004) predict that large 
stock price declines lead to a reduction in the supply of liquidity in equity markets. 
Kyle and Xiong (2001) and Hameed et al. (2010) show that lack of liquidity is posi-
tively associated with negative returns. Similarly, Chordia et al. (2001) find that bid/
ask spreads tend to increase following a sharp fall in stock prices. Liu (2015) finds 
that stock markets become more liquid as investor sentiment increases. The results 
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of Adachi et al. (2017) suggest a positive link between the liquidity of Japanese start-
up stocks and Google search intensity, thus substantiating the “investor recogni-
tion hypothesis” of Merton (1987) and the “price pressure hypothesis” of Barber and 
Odean (2008). Based on data for 290 stocks from seven countries, Aouadi et al. (2018) 
find that Google search volume, as a proxy for information demand, positively cor-
relates with stock market liquidity. El Ouadghiri et al. (2022) demonstrate that insti-
tutional investor attention, proxied by the number of times Bloomberg terminal users 
search for information about a specific stock, positively influences stock liquidity and 
volatility.

Fourth, perhaps more surprisingly, the remaining candidate variables (i.e., abso-
lute returns of Bitcoin, transaction fees, the number of bitcoins, number of transac-
tions, market capitalization, S&P 500 index, S&P Europe 350 index, exchange rates of 
EUR/USD, term spread, gold markets, US economic policy uncertainty, VIX, global 
financial stress) turn out to be fragile in the sense that their respective coefficients 
fail to meet the robustness threshold of CDF(0) ≥ 90 percent. Once a tiny change in 
the conditioning information set occurs, the estimated coefficients of the independ-
ent variables flip their signs or become statistically insignificant. At a deeper glance, 
it appears that most of these fragile factors are outside or peripheral to the world of 
cryptocurrencies, suggesting that liquidity is driven almost entirely by factors inher-
ent in the Bitcoin network. Parallel to our findings, Brauneis et al. (2021b) establish 
that the liquidity of Bitcoin, Ethereum, Litecoin, and Ripple is unrelated to the return 
and liquidity dynamics of conventional financial asset markets. Scharnowski (2021) 
suggests that unique addresses, TED spreads, US economic policy uncertainty, and 
the VIX are unimportant for explaining Bitcoin spreads. Marshall et  al. (2019) find 
no consistent relationship between Bitcoin liquidity and the VIX or the TED spread. 
Quang et  al. (2020) find that changes in the geopolitical uncertainty index have no 
significant influence on the liquidity of cryptocurrency portfolios. Based on a wavelet 
coherence analysis, Umar et al. (2021) document very limited co-movements between 
the liquidity of the NYSE composite index and the Nikkei 225 index and those of 
major cryptocurrencies during the COVID-19 pandemic.

As illustrative evidence, Fig.  2 depicts a graphical representation of the empirical 
frequency distribution of the coefficient estimates, 

{
β̂i

}P

i=1
, for the individual focus 

variables. In each histogram plot, the horizontal axis indicates magnitudes of β̂  
obtained from all possible model specifications, while the vertical axis indicates the 
corresponding probability density. The vertical red line at zero denotes the value of β̂  
in the null-hypothesis significance test (i.e.,  H0: β̂ = 0 ). The blue curve depicts the 
kernel density of the focus variable, and the green curve represents a normally dis-
tributed approximation of the coefficient estimates. An examination of the two curves 
assists in establishing whether 

{
β̂i

}P

i=1
 follows a normal distribution or not. If most 

yellow bars are located to the right (left) of zero, we infer that most coefficient esti-
mates of a given regressor are positive (negative). A perusal of the individual histo-
grams reveals that the coefficient estimates of negative returns (NEGR), realized 
volatility (BV), and hash rates (HASH) are located rightward away from the red line, 
whereas those of the trading volume (TV) and Google search volume (GSVI) lie 
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almost completely on the left side of the red line. Nonetheless, for the remaining vari-
ables, the area under the density function of their respective coefficients lies on both 
sides of the red line, confirming their fragility. We notice that the blue curves in most 
histograms exhibit two or more peaks, reflecting multimodality of the distribution of 
the corresponding coefficient estimates. Additionally, as the kernel density curve for 
each variable does not closely resemble the shape of an approximate normal distribu-
tion curve, the graphs support our decision to use the generic EBA model.

Taken together, these findings support  H1 and  H2, which posit that Bitcoin liquidity is 
robustly affected by cryptomarket characteristics and public attention, respectively. On 
the contrary, no evidence substantiates  H3, which states that Bitcoin liquidity is robustly 
associated with macroeconomic and financial development. Comparably, our results are 
against  H4, which predicts that global uncertainty and stress factors are robust determi-
nants of Bitcoin liquidity.

Finally, it is worth emphasizing that our study aims to identify the factors contribut-
ing to the liquidity of Bitcoin, which is the most influential cryptocurrency in terms of 
market capitalization, widespread adoption, brand recognition, and the global com-
munity. Our study also focuses on a single trading venue, Bitstamp, widely recognized 
for its professional reputation, high liquidity, fiat support, large geographical reach, and 
strong security measures. Therefore, our results pertain only to bitcoin units traded on 
one of the well-established and reputable cryptocurrency exchanges, Bitstamp. Compa-
rable to our approach, Dimpfl and Mäckle (2020) examine the liquidity determinants of 
Bitcoin traded on the US-based cryptocurrency exchange, Kraken. Choi (2021) investi-
gates the impact of high-frequency Bitcoin tweets on liquidity using Bitstamp-exchange 
tick data. Indeed, we acknowledge that our empirical evidence is not generalizable to 
other cryptocurrencies or exchanges. Cryptocurrency liquidity can differ significantly 
across various currencies and trading venues, as demonstrated by several studies (e.g., 

Fig. 2 The empirical density of coefficient estimates on each focus variable
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Brauneis et  al. 2021b; Dyhrberg et  al. 2018; Loi 2018; Marshall et  al. 2019). Although 
Bitcoin is the most well-known and widely traded cryptocurrency, it may exhibit unique 
characteristics compared with other cryptocurrencies. Cryptocurrencies have varying 
levels of market capitalization, market structure, trading volume, and user demand, all 
of which bear liquidity in one way or another. For instance, Bitcoin and Ethereum are 
generally considered the most liquid cryptocurrencies, owing to their widespread adop-
tion and trading volumes. Other major cryptocurrencies (e.g., Tether and Ripple) tend to 
have higher liquidity than smaller or less popular altcoins (e.g., Solana and Tradecurve). 
Accordingly, it stands to reason to recognize that findings for Bitcoin may not apply 
directly to other cryptocurrencies without appropriate justification.

Comparably, cryptocurrencies’ liquidity can differ across trading venues. Specifi-
cally, major centralized exchanges (e.g., Bitstamp, Binance, and Kraken) generally offer 
higher liquidity for popular cryptocurrencies. These exchanges have large user bases 
and high trading volumes and provide access to multiple trading pairs, contributing to 
their liquidity. However, smaller or less-established exchanges (e.g., BitMart, KuCoin, 
and CoinEx) may have lower liquidity and may experience wider bid-ask spreads, which 
can trigger higher trading costs and less efficient order execution. By contrast, while 
decentralized exchanges offer user control and security advantages, their liquidity can 
be lower than that of their centralized counterparts. Finally, liquidity may differ across 
exchanges based on geographic location. Exchanges that cater to specific regions may 
experience varying levels of liquidity based on local demand and trading activity. Braun-
eis et al. (2022) show that Bitcoin liquidity disparities between trading venues are more 
substantial and persistent than those in stock markets. They also find that liquidity is 
linked much more to blockchain activity and exchange-specific factors than to global 
factors.

While our evidence yields important insights into the robust determinants of the 
liquidity of Bitcoin traded on the Bitstamp crypto exchange, caution must be exercised 
in generalizing these findings to other cryptocurrencies and trading venues. Additional 
research and empirical evidence specific to other cryptocurrencies and exchanges of 
interest are necessary to support claims of generalizability.

Additional analyses
In this section, we conduct additional checks to ensure the validity of the empirical evi-
dence. Specifically, Abdi and Ranaldo’s (2017) bid/ask spread estimator is adopted to 
assess the sensitivity of our results to alternative liquidity proxies. The elastic net algo-
rithm of Zou and Hastie (2005), a variable shrinkage and selection technique, is used to 
verify whether our results are driven by the methodology applied in the main analysis.

An alternative liquidity proxy

Our first exercise involves re-running the EBA using Abdi and Ranaldo’s (2017) spread 
estimator (AR, hereafter) as an alternative proxy indicator of liquidity. This estimator 
is inspired by Roll’s (1984) autocovariance measure and Corwin and Schultz’s (2012) 
bid-ask spread estimator. The motivation behind the AR estimator is to bridge Roll’s 
(1984) spread illiquidity measure, which employs close-to-close prices, and Corwin 
and Schultz’s (2012) bid-ask spread estimator, which is built on high and low prices. It 
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is worth highlighting that the AR estimator considers market volatility by utilizing the 
square root of the number of observations deployed to compute the mid-price in the 
denominator. Thus, as market volatility rises, the spread estimator also increases, reflect-
ing the higher risk associated with trading in a more volatile market. Besides, one of 
the challenges in estimating the spread is that bid and ask prices can fluctuate rapidly 
in response to changes in market conditions or trading activities. This can result in a 
noisy spread estimate, which may not accurately reflect the true cost of trading financial 
assets. To address this challenge, the AR estimator captures bid-ask bounces by employ-
ing the difference between the bid and ask prices in the numerator. Abdi and Ranaldo 
(2017) show that the AR spread, compared to other low-frequency estimators, has the 
highest correlation with the effective spread of Trade and Quotes (TAQ), which serves 
as a benchmark measure. Several recent studies have adopted the AR measure as a proxy 
for liquidity (e.g., Abad et al. 2023; Ahmed 2022a, b; Bianchi et al. 2022; Brauneis et al. 
2021b; Choi et al. 2023; Yang et al. 2023). Let hi , li , and ci represent the logarithmic trans-
formations of high, low, and close prices during subinterval i. To calculate the “two-day 
corrected” AR estimator, we use data from two successive subintervals, i, i + 1. The esti-
mator is formally described as

where,

ηi is the midrange of hi , and li during i and is calculated as ηi = (hi + li)/2, N  denotes 
the number of subintervals i in a trading day t. Equation (13) illustrates that the negative 
estimates are replaced with zeros before the spread is computed. Table  3 displays the 
estimation results.

Overall, the results appear qualitatively similar to those reported in Table 2. Panel A 
of Table 3 reveals that the coefficient estimates on the absolute returns of Bitcoin, trad-
ing volume, Google search queries, EUR/USD exchange rates, term spread, gold, and 
the financial stress index are, on average, negatively signed. On the contrary, the cor-
responding coefficients for the rest of the explanatory variables have, on average, a 
positive sign. In absolute terms, the negative returns and realized volatility of Bitcoin 
(the number of transactions, EUR/USD exchange rates, and US economic policy uncer-
tainty) demonstrate the largest (smallest) effect on Bitcoin spreads. The results based on 
Leamer’s and Sala-i-Martin’s versions are given in Panels B and C of Table 3. As Panel 
B shows, Bitcoin’s realized volatility maintains its supremacy as the sole robust driver 
of liquidity, whereas the remaining ones are fragile. Nevertheless, under Sala-i-Martin’s 
lenient robustness, Panel C shows that negative returns, trading volumes, hash rates, 
and Google Trends are upgraded to the level of robustness. Realized volatility is still 
in the overall lead with a CDF(0) = 100 percent, closely followed by negative returns, 
trading volume, and Google Trends, with a CDF(0) stretching between 99.414 percent 
and 96.352 percent. Again, the hash rate variable received the lowest ranking for sturdi-
ness, with a marginal CDF(0) of 91.558 percent. In terms of the sign, the estimated CDFs 

(12)ÂRt =
1

N − 1

N−1∑

i=1

ÂRi

(13)ÂRi =
√

MAX{4(ci − ηi)(ci − ηi+1), 0}
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for negative returns, volatility, and hash rates (trading volume and Google trends) are 
mostly located on the right-(left-) hand side of zero, as expressed by their respective β̂Q , 
which indicates a primarily positive (negative) association with price spreads of Bitcoin 
across all model specifications. Thus, we conclude that our findings do not depend on 
using a specific proxy for liquidity.

An alternative methodology

The second exercise examines the extent to which our results are driven by the meth-
odology used. For this purpose, we apply the elastic net (ENet) estimator of Zou and 
Hastie (2005), an alternative machine learning method. By enhancing the least absolute 
shrinkage and selection operator (LASSO) of Tibshirani (1996), this feature-selection 
technique can adequately handle the interpretability, predictive performance, and cal-
culation complexity issues of a particular regression model concurrently. Zou and Hastie 
(2005) show that the solution paths of LASSO are more likely to be unstable in the pres-
ence of high multicollinearity among the features of a given model. In this case, the 
LASSO pulls an arbitrary representative covariate out of each strongly correlated group. 
To remedy this shortcoming, Zou and Hastie (2005) propose the ENet method, which 
performs a “grouped selection” of highly collinear variables and its ability to implement 
LASSO-type continuous shrinkage and automatic feature selection. The variable selec-
tion results are listed in Table 4.

Table 3 Estimation results of EBA with an alternative proxy for liquidity

This table shows the results of extreme bounds analysis, based on both Leamer’s (1983, 1985) and Sala-i-Martin’s (1997) 
versions. Liquidity is proxied by the Abdi and Ranaldo’s (2017) spread estimator. Regression models with a VIF threshold > 5 
are removed from the analysis. A candidate determinant is deemed robust if its corresponding CDF(0) ≥ 0.95. For variable 
abbreviations, see Column (2) of Table 1

Variable Panel A:   β̂Q statistics Panel B: Leamer’s approach Panel C: Sala‑i‑Martin’s 
Approach

β̂Q

−

S.E. No. of β̂Q Lower β̂ Upper β̂ Classification CDF(0) Classification

ABSR  − 0.095 0.094 6188  − 1.875 0.662 Fragile 79.063 Fragile

NEGR 1.534 0.569 6188  − 0.788 5.961 Fragile 99.414 Robust
BV 0.937 0.125 6188 0.497 1.299 Robust 100.000 Robust
TV  − 0.477 0.219 6188  − 3.502 1.671 Fragile 96.352 Robust
TF 0.078 0.072 6188  − 0.565 0.668 Fragile 81.872 Fragile

NB 0.001 0.083 6188  − 0.796 0.472 Fragile 50.309 Fragile

NT 0.048 0.106 6188  − 0.936 0.896 Fragile 65.230 Fragile

MC 0.019 0.105 6188  − 1.482 1.047 Fragile 55.668 Fragile

HASH 0.038 0.050 6188  − 0.338 0.486 Fragile 91.558 Robust
GSVI  − 0.510 0.230 6188  − 2.829 0.671 Fragile 97.658 Robust
USM 0.111 0.180 6062  − 1.498 3.218 Fragile 68.122 Fragile

ESM 0.109 0.115 6188  − 0.761 1.044 Fragile 78.128 Fragile

EXRATE  − 0.009 0.020 6188  − 0.145 0.109 Fragile 64.524 Fragile

TSD  − 0.053 0.093 6175  − 1.159 1.229 Fragile 68.197 Fragile

GLD  − 0.676 0.092 6188  − 10.286 11.446 Fragile 70.011 Fragile

EPU 0.009 0.014 6188  − 0. 130 0.101 Fragile 69.267 Fragile

VIX 0.391 0.244 5986  − 1.379 4.793 Fragile 87.695 Fragile

FSI  − 0.131 0.850 6188  − 22.375 32.677 Fragile 51.513 Fragile
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In line with EBA evidence, the ENet results support the belief that cryptocurrency-
specific factors influence Bitcoin liquidity more than their global economic and finan-
cial counterparts do. The ENet identifies a subset of 10 of the 18 candidate factors as 
the most powerful determinants of liquidity. Largely reflecting attributes underlying the 
cryptocurrency world, these variables include negative returns, realized volatility, trad-
ing volume, transaction fees, the number of bitcoins, number of transactions, hash rates, 
Google search volume, term spread, and financial stress. Therefore, contrary to the EBA 
results, the ENet estimator nominates five more variables (i.e., transaction fees, num-
ber of Bitcoins, number of transactions, term spread, and financial stress) relevant to 
Bitcoin liquidity. By contrast, the remaining variables (absolute returns, market capitali-
zation, US and European stock markets, exchange rates of EUR/USD, economic policy 
uncertainty, gold, and VIX) appear to have no material bearing on liquidity. Consistent 
with those reported in Table 2, the estimated coefficients of negative returns, volatility, 
transaction fees, number of Bitcoins, number of transactions, and hash rates (trading 
volume, Google search volume, financial stress, and term spread) are positive (nega-
tive), which implies a negative (positive) impact on liquidity. Regarding the order-of-
magnitude ranking, we note that realized volatility, negative returns, and trading volume 
(transaction fees, hash rates, and number of transactions) are the most (least) important 
determinants of liquidity. Finally, the coefficient path of each variable included in the 
analysis is graphically shown in Fig. 3. It is clear that Bitcoin volatility, followed by nega-
tive returns, enters the penalized model early in the solution path, and their respective 
coefficients continue to diverge from the zero-horizontal axis even after other factors 

Table 4 Results of the elastic net method

This table presents variable selection results based on the elastic net method. Blank spaces correspond to coefficients 
shrunk to zero. The last column shows the rank order of importance for each coefficient according to their respective 
descending absolute values. A tenfold cross validation is used to choose the tuning parameter � . According to a ten-fold 
cross-validation, the mixing parameter α is 0.50. All variables are normalized, so that they have zero mean and unit variance. 
Due to standardization, there is no a constant term. For variable abbreviations, see Column (2) of Table 1

Dimension Variable Coefficient Ranking

Crypto market characteristics ABSR

NEGR 1.780 2

BV 8.823 1

TV  − 0.482 3

TF 0.152 8

NB 0.187 7

NT 0.077 10

MC

HASH 0.136 9

Public attention GSVI  − 0.280 6

Macroeconomic and financial factors USM

ESM

EXRATE

TSD  − 0.288 5

GLD

Global uncertainty and stress EPU

VIX

FSI  − 0.318 4
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enter the model. This finding indicates the predominant role played by both variables 
in explaining Bitcoin liquidity. Nevertheless, the other variables seem to take longer to 
depart from zero, possibly indicating their minor importance.

Conclusion
Bitcoin has risen to prominence in practitioner and academic communities since its 
formal launch in 2009, gradually moving from the obscurity of technology to captur-
ing the attention of investors, global corporations, financial institutions, and govern-
ments. Many studies have been conducted over the last decade to better understand 
Bitcoin’s unique characteristics, such as speculation and bubbles, market efficiency, 
price discovery, price jumps and volatility, trading dynamics, and interactions with 
mainstream financial and commodity markets. A pertinent property of Bitcoin’s mar-
ket microstructure is liquidity, a crucial  condition through which Bitcoin can ade-
quately assume its role, whether as an unorthodox means of payment, an investment 
asset, or a safe haven commodity. This study conducts an empirical  inquiry into the 
robust determinants of Bitcoin liquidity while considering the issue of model uncer-
tainty. We evaluate the robustness of a broad range of candidate factors recognized 
in the literature as the main explanatory variables of liquidity. These factors feature 
crypto market attributes (Bitcoin’s signed returns and volatility, trading volume, 
transaction fees, hash rate, number of Bitcoins mined, number of transactions, and 
total market capitalization), public attention (Google search volume index), mac-
roeconomic and financial factors (benchmark stock indices of the US and Europe, 
exchange rates of EUR/USD, term spread, and gold markets), and global uncertainty 
and stress (US economic policy uncertainty, fear, and stress indicators). The liquidity 

Fig. 3 Coefficient paths based on the elastic net method
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of Bitcoin is proxied by the Corwin and Schultz’s (2012) bid/ask spread estimator, 
which is constructed from high- and low-price data. An extreme bound analysis, a 
large-scale sensitivity test, is deployed to address the problem of model uncertainty. 
The EBA delves into a universe of independent variables to determine whether a given 
parameter is robust or fragile in the face of a small change in the conditioning infor-
mation set.

The results from Leamer’s version of the EBA suggest that the realized volatility of 
Bitcoin is the only variable that passes the restrictive criterion of robustness since its 
coefficients remain statistically significant and maintain the same sign across all possi-
ble combinations of doubtful variables. The remaining explanatory variables are deemed 
fragile given that their respective coefficients flip sign at least once; hence, they fail to 
withstand alterations in the model specifications. Nevertheless, the results of Sala-i-
Martin’s variant indicate that Bitcoin’s negative returns, trading volume, hash rates, and 
Google search trends are robust determinants of liquidity. The rest of the candidate 
variables (i.e., absolute returns of Bitcoin, transaction fees, the number of bitcoins, the 
number of transactions, market capitalization, S&P 500 index, S&P Europe 350 index, 
exchange rates of EUR/USD, term spread, gold markets, US economic policy uncer-
tainty, VIX, global financial stress) turn out to be fragile in the sense that their respective 
coefficients are unable to meet the robustness threshold of CDF(0) ≥ 90 percent. The 
robustness checks indicate that our findings are independent of using a specific liquid-
ity proxy. Moreover, the ENet method identifies 10 out of 18 candidate factors as the 
most powerful drivers of liquidity. These variables are negative returns, realized volatil-
ity, trading volume, transaction fees, number of Bitcoins, number of transactions, hash 
rates, Google search volume, term spread, and financial stress.

Taken together, our evidence confirms that Bitcoin liquidity has minimal exposure to 
the dynamics of conventional financial markets and macroeconomic influences. In this 
respect, two important implications are highlighted. First, despite the fact that the litera-
ture offers many variables as primary determinants of Bitcoin liquidity, only a handful 
of these variables demonstrate reliability and sturdiness towards changes in the com-
position of the doubtful-variable subset. Several studies propose models that appear 
to be well-specified, given the available datasets. Yet, they arrive at contradictory find-
ings regarding the variables that should be identified as true drivers of Bitcoin liquidity, 
which could raise concerns regarding the validity of these results. To properly specify 
a model for understanding Bitcoin liquidity, many potential candidates, their linkages, 
and their interactions must be considered. The relevance of accounting for model uncer-
tainty when building models to explain liquidity dynamics is emphasized by the ambi-
guity regarding the most important drivers in past literature and the structural form of 
their relationships with Bitcoin liquidity. Second, Bitcoin’s realized volatility, negative 
returns, trading volume, hash rates, and Google search trends seem to contribute to a 
more profound apprehension of Bitcoin liquidity owing to their respective sturdiness. 
Thus, crypto asset investors looking for useful information about Bitcoin’s future liquid-
ity trends should keep an eye on the movements of such robust drivers. Over time, an 
increasing number of investors have become aware of Bitcoin’s long-term value, and 
paying close attention to the trajectory of these factors is essential for ensuring a stable 
and frictionless cryptocurrency trading environment.
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Lastly, as is typical of most studies, our paper has two limitations. First, because the 
empirical investigation is based on data spanning a sufficiently long period, there are 
likely structural breaks in the time path of a series, which is a problem that this study 
does not address. The multiple structural breaks approach developed by Bai and Per-
ron (1998, 2003) can be used to detect structural shifts in an underlying model. Thus, it 
would be interesting for future research to examine whether the factors contributing to 
Bitcoin liquidity are invariant across regime changes. Second, we explored the explana-
tory potential of only 18 variables. Nonetheless, to make the analysis more comprehen-
sive, this set can include other unaccounted-for factors such as cryptocurrency hacking 
incidents, energy markets, the TED spread, and other major cryptocurrencies’ prices, 
volatility, and liquidity. These two limitations call for additional investigations and offer 
potential directions for future research.
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