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The Special Collection ”Biomedical Data Analyses Facili-
tated by Open Cheminformatics Workflows” (https://​
www.​biome​dcent​ral.​com/​colle​ctions/​BDAOCW) aimed 
to collect and publish cheminformatics workflows for 
curation and analysis of diverse life science data sets. 
Especially at a time where in many areas of science repro-
ducibility of results is significantly challenged [1, 2], it is 
important to encourage publication of workflows for data 
curation, including data extraction, integration, anno-
tation, cleaning/filtering, standardization and analysis. 
However, this reproducibility ”crisis” is not only a chal-
lenge but can become an opportunity for change and bet-
ter publication practise in the future [3].

For many scientific workflows, curation of data is 
essential and takes a significant amount of time. Many 
different scientific disciplines and data types depend on 
data standardization and preprocessing, which is nicely 
exemplified by the different areas covered in this spe-
cial issue - from small molecules, to metabolomics, and 
drug-protein interactions. However, choices made dur-
ing data curation can be quite subjective, i.e. containing 
user-defined cut-offs, and also depends on the prob-
lem at hand. Thus, published workflows shall enable 

comparability and reproducibility of results in line with 
FAIR (findable, accessible, interoperable, and reus-
able) principles both for data [4] as well as software [5]. 
Another advantage of using already existing workflows 
is avoiding mistakes and challenges others have already 
faced and overcome before.

Many scientific studies in the fields of cheminformatics 
and computational chemistry aim to extract and connect 
knowledge from (experimental) data. One fundamental 
assumption is the correctness of input data from experi-
mental resources. However, systematic errors, i.e. trans-
lation between 1D, 2D, and 3D structure representations, 
as well as random errors, such as incorrect human input, 
occur ranging from on average two errors per (medici-
nal chemistry) publication to 0.1−3.4% for different 
databases [6–8]. In addition to errors in experimental 
resources, the correct representation and standardization 
of molecules, including their tautomers and protonation 
states, can be highly challenging and time-consuming. 
Molecules are often represented by the Simplified Molec-
ular Input Line Entry System (SMILES) [9] or InChI [10, 
11] representation. However, there is no universal stand-
ard for SMILES and using different programs will lead 
to different representations for the same molecule. The 
importance of (automated) chemical structure curation is 
demonstrated by the publication of structure standardi-
zation workflows by major bioactivity data resources like 
ChEMBL [12], PubChem [13], or canSAR [14].

In the field of machine learning (ML) and artificial 
intelligence (AI) publication of code is more commonly 
applied. Due to increasing amount of published meth-
ods in that area, more publications including guidelines 
on reproducibility but also on model comparison itself 
became available [15–17]. It could serve as an example 
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for other areas of cheminformatics and computational 
chemistry for which open source publications and work-
flows are not yet commonly published with manuscripts.

Publication of data on the other hand is an even more 
challenging topic especially when considering proprie-
tary data. Public bioacitivty data often have a lower num-
ber of negative or inactive data compared to proprietary 
data, thus displaying a higher ratio of actives to inactives 
than commonly seen in i.e. high-throughput screening 
(HTS) runs [18–21]. Thus, public and proprietary data 
sets complement each other in terms of chemical space 
coverage. Another advantage of proprietary data is the 
estimation of experimental uncertainty, since often a 
more homogeneous curation pipeline and assay setup is 
applied as well as multiple measurements for the same 
compounds are available. In order to satisfy the request 
for reproducibility and data sharing without violating 
intellectual property (IP) rights, the application of devel-
oped methods and workflows to public and private data 
in the same manner is a good solution. This process has 
been encouraged for research papers submitted to J. 
Cheminf. as demonstrated by these examples [22, 23].

The workflows submitted for this special issue include 
KNIME workflows [24], Galaxy [25] or Jupyter note-
books[26]. In addition to these workflow tools, plat-
forms for publishing and sharing of code, such as GitHub 
[27] or GitLab are available and allow sharing with and 
enhancements by peers. Larger data that requires more 
storage space, such as model input data or machine 
learning models themselves, can be stored in open-repos-
itories such as Zenodo [28]. Docker [29] became popular 
in order to avoid any issues with cross platform installa-
tion. With all these resources available, ideal conditions 
for improvements and requirements for reproducibility 
are at hand.

Ultimately, publication of workflows does not mean 
that these workflows cannot be changed anymore. These 
serve as a basis and starting point for further research 
and can also help during teaching, with already existing 
initiatives such as TeachOpenCADD [30, 31]. Thus, we 
strongly encourage open access publication of workflows 
in order to help driving research the best way possible.

In this special issue, diverse topics were covered from 
data analysis (nonadditivity analysis, thermal shift assay 
analysis, or MS/MS analysis for metabolomics), struc-
tural analysis (drug-protein interactions, fragment-based 
virtual screening) to machine learning (retraining of 
ML models, ML for off-target predictions, MMPA and 
QSAR). This nicely illustrates how important data work-
flows and analysis are across different scientfic fields.

As mentioned already, data availability is still a great 
challenge especially when it comes to high quality data. 
Many of todays’ influential researchers have grown up in 

a culture where data and knowledge sharing has not been 
appreciated yet, but was rather seen as potentially lim-
iting their chances for securing one of the rare tenured 
academic positions. Herein, a reward system to encour-
age data sharing could be a first incentive. Additionally, 
data sharing initiatives, such as federated learning with 
the MELLODDY project [32], have been conducted to 
share proprietary data and enhance machine learning 
models across companies. In the future, it would be great 
to see more initiatives to share data cross company but 
also between academia and industry to advance method 
development.
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