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1 Introduction

Elliptic curves appear often in mathematics because they possess remarkably nice properties. For example,
elliptic curves relate elegantly to ideas from Galois theory. This Power Round will demonstrate the utility
of elliptic curves and Galois theory by using them to prove an interesting fact about the Somos-4 sequence.
(Note the test version calls this the “Tiger sequence.” This Somos-4 sequence is the proper name for the
sequence, and full credit must be given to those who have studied it.) We define the Somos-4 sequence {an}
for non-negative n recursively by a0 = a1 = a2 = a3 = 1 and for n ≥ 4, the relation

anan−4 = an−1an−3 + a2n−2.

We ultimately seek to prove the following theorem.

Theorem 1. Let π(x) be the number of primes less than or equal to x. Then

lim
x→∞

|{p ≤ x : p prime and p|an for some n}|
π(x)

=
11

21
.

This 11
21 fraction is called the density of primes that divides a term of the Tiger sequence.

While much mathematical machinery is needed to prove this, we have broken down the task into a series
of sections that culminate in a final proof in section 9. Please note that while the ultimate goal of this
Power Round is to prove the given theorem, the sections may include problems that are not essential to the
final proof, but are relevant and good problems to try. We have sorted the problems in as straightforward
a manner as possible with regards to the final proof, but as the various topics are very interconnected you
may find it useful to refer back to previous sections for ideas on how to proceed. As always, refer to the
rules at the start of the document for how to reference other problems.

In a similar vein, we have a couple housekeeping remarks:

• All definitions, propositions, lemmas, and theorems are labeled in increasing order using the same
index. For example, this document began by introducing a theorem labeled Theorem 1 and will soon
introduce its first lemma labeled Lemma 2 followed by its first official definition labeled Definition 3.

• While this document guides you through the final proof, it will not babysit your progress. In any given
part of the document, we may make assertions that will be necessary when solving a later problem. It
is your responsibility as the reader to keep track of such material. Details that are absolutely essential
will often be written in bold, but this is not an if and only if criterion for discerning important facts.

Lastly, you may be asking yourself: “Why is this interesting?” Well, we could name-drop famous math-
ematicians who have answered similar questions, or lie and say this is a large area of mathematics (this
specific flavor of math isn’t). But that would only tell you why this topic is interesting to others. Why
will it be interesting to you? Well, if we take a slightly more general view, the question becomes: Why
is math interesting to you? You have probably heard people say that math is necessary for science or as
a life skill. But, if you have voluntarily decided to take this contest, you might have a different opinion.
Sure, the science/life skills part might be true, but that’s not why you are here and that’s not why we have
organized this tournament for you. PUMaC is a competition for many different types of people created by
many different types of people, but we all share an interest in and appreciation for math for its own sake.
Math is pretty. Back to the original question, we hope that this Power Round will expose you to an area
of math you haven’t seen before and that is remarkably pretty (but we’ll leave that aesthetic judgment to
you). Now, please don’t get too carried away by the scoring and the fact that this is a competition. It may
be cliché, but please have fun as well.

-Heesu Hwang.

We’d like to acknowledge and thank many individuals and organizations without whom this would not
have been possible to exist. What has been called the “Tiger sequence” in the test version of this Power

2



PUMaC 2015 Power Round Section 1 page 3

Round is in fact well known as the Somos-4 sequence, and we give thanks to all that is known about it (as
well as to the authors of the Somos-5 sequence integrality proof). The author thanks Jeremy Rouse, whose
work was repeatedly referenced and whose outline for a paper on iterated galois representations was the
inspiration for this power round. By extension, the author thanks the Wake Forest REU where much of this
work was learned. Thanks as always to Princeton University, the sponsor of PUMaC, and PUMaC itself.
Lastly, the author gives thanks to all the individuals who helped extensively in the revision and editing
process, including the contestants themselves.
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2 Let’s Get Started

Firstly, if you haven’t read the introduction, then go back and read the introduction! It really does add big-
picture context to the problems you’re doing. Now as a preliminary and as an example of the standards of
justification we expect throughout this power round, here is a classical number theory result called Bézout’s
Lemma, with proof. Very quickly, here is a spot of terminology:

Definition 2. Z represents the set of integers. Q represents the set of rational numbers. R represents the
set of real numbers. C represents the set of complex numbers. Finally, N represents the set of positive
integers. (A point of interest, Europeans include 0 in this set while Americans do not. Do you agree? Is 0 a
natural number?)

Definition 3. Sets. A set is a collection of objects. We write that set A = {ai} for integers 1 ≤ i ≤ n if
A contains exactly elements ai and nothing else. We may similarly have infinite sets. Here is some specific
notation with sets:

• a ∈ A: Let A be a set such that A contains the element A; then we write a ∈ A.

• A\B: Let A and B both be sets. Then A\B denotes the set of elements that are inside A but not in
B.

• A ⊂ B: Let A and B both be sets. If every element of A lies inside B, we write A ⊂ B.

• ∀a ∈ A: The notation ∀a ∈ A is read in English as “for all elements a in A”, and means we consider
all elements of set A.

• ∃a(∈ A): This notation is read as “there exists an element a (in set A).” It is usually followed up by
the phrase “such that.” For example, ∃x ∈ R such that x > 0.

Lemma 4 (Bézout’s Lemma). Prove that if x and y are coprime integers, then there exist integers a and b
such that ax+ by = 1.

Proof. We prove the more general case of integers x and y with a general gcd.
Examine the set S := {c ∈ N : c = ax + by where a, b ∈ Z}. Since gcd(x, y) divides x and y, gcd(x, y)

divides any element of S.
Suppose that l is the least element of S by the well-ordering principle (which states that every non-empty

set of positive integers has a least element); thus let a0 and b0 be integers such that l = a0x+ b0y. Take any
other arbitrary element of S; for example k = a1x+ b1y. Then by integer division, suppose that k = l · q+ r
where 0 ≤ r < l. Thus

l = a0x+ b0y =⇒ lq = a0qx+ b1qy =⇒ r = k − lq = (a1 − a0q)x+ (b1 − x0q)y.

Since l by assumption was the least positive integer that was a linear combination of x and y, we must have
r = 0. Thus k = l · q, and every element of S is divisible by l.

Note that |x|, |y| ∈ S; thus l| gcd(x, y). But clearly gcd(x, y)|l, and so they are equal. Thus there is some
integer solution to l = ax+ by.
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3 Group Theory

Groups are fundamental to mathematics. They form the basis (pun!) of algebra, one of the two overarching
subjects of math. It is important that anyone who wishes to explore math further understands groups well.
A group is defined as follows.

Definition 5. A group is a set of elements G with a closed binary operation ∗. Binary means ∗ operates on
two elements. Closed means that for any a, b ∈ G, a ∗ b is contained inside G. These elements and operation
obey the following three rules.

• There exists an unique element e ∈ G such that for all elements g ∈ G, e ∗ g = g ∗ e = g. This is called
the identity element. (In cases of ambiguity, we will denote this as eG.)

• For any element g ∈ G, there exists a unique element h ∈ G such that g ∗ h = h ∗ g = e. This element
h is usually denoted g−1 (in additive groups (to be explained), it is denoted −g).

• For all a, b, c ∈ G, the associative property holds:

a ∗ (b ∗ c) = (a ∗ b) ∗ c.

Definition 6. Suppose {G, ∗} is a group. Suppose ∗ is commutative. That is, for all a and b in the group,
a ∗ b = b ∗ a. Then G is called commutative or abelian.

To demonstrate all this, Z is a group with addition as the operation. This is a group because we may
always add two integers and get another integer, 0 is the additive identity, and similarly the other group
properties are satisfied. In fact, {Z,+} is an abelian group. Now here are some warm-up problems.

Problem 3.1 (Basic Group Theory; 2, 2, 2, 2). Give justification for each of the following.

a) Is {Z,−}, the set of integers under subtraction, a group?

b) Is {N,+}, the set of positive integers under addition, a group?

c) Is {Q, ·}, the set of rationals under multiplication, a group?

d) Is {Q\{0}, ·}, the set of rationals without zero under multiplication, a group?

Proof. a) No. The associative property does not hold. For example, 4− (2− 7) = 9 6= −5 = (4− 2)− 7.

b) Nope! Additive inverses do not exist. For example, the inverse of 2 doesn’t exist.

c) Still no! Zero still doesn’t have a multiplicative inverse.

d) Yes. This is true by definitions.

We turn now briefly to the topic of modular numbers where we find groups arising naturally. We denote
Z/nZ as the integers mod n. Elements of this set are integers m where 0 ≤ m < n. Note that by division,
for any integer z ∈ Z, we may write z = n · q + r where 0 ≤ r < n and q and r are both integers. Thus
in this set of integers mod n, z ≡ r (mod n). For examples, in the set of integers mod 7 (Z/7Z), 10 ≡ 3
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mod 7, −5 ≡ 4 mod 9, and 1063 ≡ 3 mod 10. A nice property of mods is that we may substitute equivalent
quantities at any time. For example,

6546 · 773− 1650 · 945 + 8654651 = (935 · 7 + 1) · (110 · 7 + 3)− (235 · 7 + 5) · (135 · 7) + (7 + 1)654651

≡ 1 · 3− 5 · 0 + 1654651 (mod 7)

≡ 4 (mod 7).

We mention mods because they are very fundamental to number theory and algebra. For one, note that
Z/nZ is a group with respect to addition (morally, you should really prove this to yourself, but there is no
problem to write up). If n = p is prime, we equivalently write Fp = Z/pZ. Primes are really nice numbers,
and in general “things” like Fp that are associated with primes are also often very nice, as we shall see in
depth later (fields!). For now, here’s just a small problem about mods.

Problem 3.2 (Finite Field; 5). Let p ∈ Z be a prime. Setwise, the unit group of Fp is Z/pZ\{0}. Prove
that the unit group of Z/pZ, denoted as Z/pZ×, is a group under multiplication.

Proof. Everything is really easy to check except inverses (but should be written out in full). Having proved
Bezout’s earlier, let a ∈ Z/pZ× be an arbitrary element. Then a 6= 0 means that (a, p) = 1 and for some
m,n ∈ Z, ma+ np = 1 =⇒ a ·m ≡ 1 (mod p). Thus a−1 = m exists as desired.

Turning back now to group theory, if the operation of a group is called “addition,” we call it an additive

group. Notationally, for any g ∈ G and n a non-negative integer, ng :=
n∑
i=1

g denotes g added to itself n

times and for n < 0, ng = −((−n)g). Also, 0 denotes the group identity. Similarly, if the operation is called

multiplication, then for any g ∈ G and n a non-negative number, gn =
n∏
i=1

g denotes g multiplied by itself n

times, and for n < 0, ng = (|n|g)−1. Also, 1 is the group identity. When notation is written with powers, it
is implicitly implied that the operation is multiplication, and similarly notation that uses scalar multiples of
group elements implies the operation is addition. With that, here are a bunch of problems and definitions!

Definition 7. The order of any element g ∈ G is the least positive integer l such that gl = e. If no such l
exists, then the order is called infinite.

Secondly, the order of a group G is the number of elements of G. Note if G has infinitely many elements,
the order of G is infinity.

For example, 2015 has infinite order in the group of integers under addition. However, 2015 has order 2
in Z/4030Z.

Problem 3.3 (Finite Group; 5). Let G be a finite group. Prove that every element of G has a finite order.

Proof. Let g ∈ G be an arbitrary element. Then examine the set 〈g〉 := {gn : n ∈ N}. By pigeonhole,
there have to be some repetitions. So suppose that gi = gj for some WLOG i > j. Then gi · (g−1)j =
gj · (g−1)j =⇒ gi−j = 1. Thus g has finite order.

We only consider finite groups in depth during this power round. However, we have seen examples
of infinite groups (such as the integers under addition). In general, there aren’t really large philosophical
differences between the two categories. However, we primarily present finite groups here because it’s easier
to work with them when first starting out.
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Definition 8. Suppose that G is a finite group and H ⊂ G is a non-empty subset of the elements of G that
is itself a group. Then H is called a subgroup of G where H inherits the operation of G.

The motivation behind such a construction of a subgroup is simple enough; it is a group in its own right
that just happens to be contained inside another! You know what, here’s a fun trick that you may find useful
sometime (you likely won’t use it in this power round, unfortunately).

Problem 3.4 (Subgroup Test; 5). Let G be a group and H ⊂ G a non-empty subset of G. Suppose H is a
set that has the property that for all a, b ∈ H, ab−1 ∈ H. Prove that H is a subgroup of G.

Proof. It’s clear that associativity holds since H ⊂ G. Note that choosing a = b shows 1 ∈ H. Furthermore,
choosing a = 1 shows that b−1 ∈ H. Thus the identity and inverse always exists. Note that we just found
b ∈ H =⇒ b−1 ∈ H. Thus for all a, b ∈ H, a(b−1)−1 = ab ∈ H, and closure holds as well. Thus H is a
group.

Subgroups in fact are very nice, natural constructions from groups. Think back to the group of integers
and the group of integers mod n; for example let’s take n = 7. Another way to think about mods is
to imagine that the numbers 0 ≤ k < 7 simply represent the classes of numbers {c · 7 + k : c ∈ Z}.
For example, 0 represents the class of numbers [0] := {· · · ,−14,−7, 0, 7, 14, · · · }, 1 represents the class
[1] := {· · · ,−13,−6, 1, 8, 15, · · · }, and so forth. In this manner, note that [0] is a subgroup of Z under
addition. However, [1] is unfortunately not a subgroup. For example, 1 + 1 = 2 is not in the set [1].
However, [1] is still a pretty natural construction; maybe there is a name for it? Yes, there is!

Definition 9. Let H be a subgroup of G. For all g ∈ G, we call gH := {g · h : h ∈ H} a left coset. For all
g ∈ G, we call Hg := {h · g : h ∈ H} a right coset.

For example, let H = 7Z, the set of numbers that is 7 times an integer, and let G = Z the integers. Note
that H is [0] as mentioned above. Then 1 +H is a coset of G (note in this case, this is both a left and right
coset) that in this case is the class [1] mentioned directly above.

Cosets are very valuable tools in the proofs of group theory problems. Why? Because they are very
symmetric in a sense, and this leads to neat properties. For example, if aH and bH are two cosets of a group
G, do you think they have to intersect non-trivially? Well no; [0] and [1] as we saw above do not intersect
([0] is the coset 0 +H in our example). Well if aH and bH do intersect, do you think they can intersect only
a little bit? That is, can aH ∩ bH be non-empty, but aH ∩ bH is strictly smaller than both aH and bH? Or
if G is a finite group, do you think that aH and bH have to have the same size? Or do you think that every
element of G has to be contained inside some coset? These are all questions that you should think about.

Finally, this leads us to a what we call Lagrange’s Theorem.

Problem 3.5 (Lagrange’s Theorem; 10). Suppose G is a finite group of order n. Then prove for all g ∈ G,
gn = 1.

Proof. Let H ⊂ G be any subgroup. Then examine all cosets ciH for 1 ≤ i ≤ k. It is clear that the cosets
are non-intersecting and everything in G is in one of the cosets; also all cosets have the same size. Thus
|G| = k · |H|, and the size of subgroups divides the size of their parent group.

For this problem, examine 〈g〉 := {gn : n ∈ N} for any element g ∈ G. Note that |〈g〉| divides |G|, and
we are done.

And now, before we proceed to other sections, here is a final group theory problem.

8
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Problem 3.6 (Odd Order; 5). Let G be a finite group. Prove that an element g has odd order in G if and

only if for every positive integer k, there exists some element hk ∈ G such that (hk)2
k

= g. (Note that we
do not specify G as abelian; it is sufficient to take G a finite group.)

Proof. (Note to graders: many proofs of this may get very long and overly convoluted. Make sure that they
do not make any more assumptions beyond the given that G is finite).

(⇒) Suppose g2l+1 = 1 is the order. Then g2(l+1) = g. By induction, we see that for all k ∈ N,
(
g(l+1)k

)2k
=

g.
(⇐) Note that an element g has odd order iff some odd power of g is 1. So suppose |G| = 2l · x where x is

odd. Then look at g = h2
l

l . We see gx = 1, and g has odd order.

Hopefully you have found these problems illuminating (hint: you may see these things again). However,
to end this section, we would just like to present some standard material that we think is enriching to
experience.

Suppose we have two groups G and H, and we create a function f between them f : G → H. But
we don’t want any old functions; we want functions that somehow show that the structure of G and H
have similarities. For example, examine Z and 2Z as additive groups (2Z is notation for the set of all even
numbers). Any addition done with the even numbers is linked to addition done with regular numbers. For
example,

2 + 46 = 48⇔ 2(1) + 2(23) = 2(24).

We want functions between groups to somehow reflect the similarities between them. Thus we impose more
conditions on f .

Definition 10. Let G and H be groups with a function f : G→ H. This function f is called a homomor-
phism if:

• For all a, b ∈ G, f(a∗G b) = f(a)∗H f(b) (∗G and ∗H represent the operations of G and H respectively).

For example, let G = Z, H = 2Z, and let f(a) = 2a. We encourage you to check that this is indeed
a homomorphism, and that it has the property we wanted: that it represents the relationship between the
structure of G and H.

Definition 11. Let f : G→ H be a homomorphism. If every element of H is the image of some element of
G, then f is surjective and is a surjection.

Definition 12. Let f : G → H be a homomorphism. If the only element of G that is mapped to eH , the
identity element of H, is eG, then f is injective and is an injection.

Definition 13. If a group homomorphism is both injective and surjective (if it satisfies both, then it is also
called bijective), then it is called an isomorphism.

You may want to convince yourself that in the example above, the homomorphism is indeed bijective. In
general, the same terminology applies to general functions. If a function f : A → B has the property that
∀b ∈ B, ∃a ∈ A such that f(a) = b (surjective) and that ∀a, a′ ∈ A, f(a) = f(a′) =⇒ a = a′ (injective),
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then f is bijective (this is an adjective) and is a bijection (this is a noun).

Next, we introduce the idea of mashing groups together. Recall that a number line can be represented as
R. A coordinate plane is similarly represented by the notation R2 or R×R. This is called a direct product, and
elements of R2 are coordinate pairs (a, b) where a and b both come from R. Well, this is something we can do
with groups as well. For example, taking two groups G and H, we denote G×H := {(g, h) : g ∈ G, h ∈ H}.
The group operation on this new set is the combination of the operations of G and H component-wise
respectively. One fact that we ask the reader to convince themself (this is clearly grammatically not “correct,”
but the author strongly believes this should be an official singular, gender-neutral pronoun) is that G ×H
is itself a group. While this isn’t an official problem, you should convince yourself that this works because
it’s necessary to understand for the next part.

We first introduce a definition. We will explore this topic more thoroughly in section 7, but the definition
is sufficient here for now.

Definition 14. Let R be a set of elements with a closed binary operation we call addition such that {R,+}
is an additive, commutative group. Furthermore, suppose R admits another closed binary operation · that
we can call multiplication; it is commutative, and ∀a, b, c ∈ R, a · (b · c) = (a · b) · c; a · (b+ c) = a · b+ a · c;
and (b+ c) · a = b · a+ c · a. Finally, there exists a multiplicative identity we call 1 such that for all a ∈ R,
a · 1 = 1 · a = a. Then R is called a ring.

Definition 15. Let R be a ring. Then GLn(R) is called the general linear group, and denotes the group of
n× n invertible matrices with elements in R as a group under multiplication.

There is yet another way to make a group from two smaller groups. As a generalization of the direct
product, we introduce the semidirect product. We start with a group G and a group H, where H is a group
of functions that act on elements of G. For example, let G be the set of vectors Z× Z, and let H be the set
of matrices GL2(Z).

In other words, G is a set of vectors of the form (a, b) where a and b are both integers, and H is the
set of invertible 2× 2 matrices with integer coefficients (invertible under multiplication). Elements of H are
indeed functions that act on elements of G; for example if h ∈ H and g ∈ G, then h · g is another vector.
Thus we can define a semidirect product as follows.

Proposition 16. Let the semidirect product setwise be defined as GoH := {(g, h) : g ∈ G, h ∈ H} where H
is a group of functions that acts on G (yes, groups may have functions as elements). Let ∗g and ∗h denote the
group operations of G and H respectively. Then the group operation on this set for (g1, h1), (g2, h2) ∈ GoH
is defined by

(g1, h1) ∗ (g2, h2) := (g1 ∗g h1(g2), h1 ∗h h2).

GoH is a group.

Thus in our example here, we can define a group (Z×Z)oGL2(Z) (this is an example of an affine general
linear group as we shall see later). Here is an example operation:([

2
0

]
,

[
−5 2
2 −1

])
∗
([

1
5

]
,

[
1 0
0 1

])
=

([
2
0

]
+

[
−5 2
2 −1

]
·
[
1
5

]
,

[
−5 2
2 −1

]
·
[
1 0
0 1

])
=

([
2
0

]
+

[
5
−3

]
,

[
−5 2
2 −1

]
·
[
1 0
0 1

])
=

([
7
−3

]
,

[
−5 2
2 −1

])
.
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Later on when we revisit this affine general linear group, we use this notation AGL2(R) to denote (R)2 o
GL2(R) where R is a general ring. We will go in depth about this later. With this, we turn now to the topic
of elliptic curves.

4 Elliptic Curves

Elliptic curves are integral (hah! it’s a pun!) to mathematics, and in fact have even higher generalizations
called varieties. For the purposes of this power round, we define an elliptic curve as follows.

Definition 17. An elliptic curve E is the curve satisfying an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the coefficients ai are INTEGERS (can’t stress this enough :p).

The strange coefficient numberings are of historical significance. The reason that elliptic curves are
interesting is that there is a natural group on the set of points on them.

Very important remarks: for the entirety of this power round, we take coefficients of elliptic curves
to be integers. However, we may allow points on the curve to be rational or something else. Unless oth-
erwise specified, any elliptic curve has integer coefficients and any points we consider on it are rational points.

Now, if you’re the average person looking at this equation, you may be slightly disgusted by how unwieldy
it looks; come on, that xy term looks atrocious. So let’s get rid of it.

Problem 4.1 (Transformation of EC; 2, 8).

a) Let f(x) = x3 + a2x
2 + a1x + a0 be a polynomial with rational coefficients. Find some linear change of

variables x = mx′ + n such that f(x) = x′3 + b1x
′ + b0 is another polynomial with rational coefficients.

b) Let E : y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6 be an elliptic curve. Find a change of variables y 7→ y′ and

x 7→ x′ such that y′2 = x′3 + Ax′ +B. This gives us another elliptic curve E′; note that E′ is an elliptic
curve, and so A,B ∈ Z. (Hint: you may have to use a change of variables that involves two variables at
once. Also keep in mind that the starting and final coefficients have to be integral.)

Proof.

a) Use the change x = x′ − a2
3 .

b) We use a change of variables y 7→ 1
2 (y−a1x−a3) to get an equation of the form y2 = 4x3+b2x

2+b1x+b0.
Then multiplying by 42 gives (4y)2 = (4x)3 + b2(4x)2 + 4b1(4x) + 16b0. So another change of variables in
x from the question right above gets rid of the x2 term (also 4y 7→ y).

Thus we find some transformed elliptic curve F : y2 = x3 + Ax + B for rational A and B (this entire
process involves non-trivial denominators). However, Let N ∈ N be an integer such that NA,NB ∈ Z.
Then multiplying by N6, we find that (n3y)2 = (N2x)3+AN4(N2x)+BN6. This last change of variables
gives us the desired form.

There are again a few ways to approach this. This is just one of the more compact (another pun!)
transformations.

This latter form is what is called the short Weierstrass form. This form can be much easier to work with
at times. Substitution for y2 is a lot easier for example. Let’s try to work with this form.

11
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Let E : y2 = x3 − 20x − 15 be an elliptic curve. Note the points P = (−4, 1) and Q = (−1,−2) lie on
E. The picture below shows the graph of the elliptic curve in blue with two points on it P and Q. In the
picture, notice the black line through points P and Q. It intersects the elliptic curve again at another point
we call P ∗Q at coordinates (6,−9). Finally, the reflection of point P ∗Q vertically over the x-axis is shown
by the red line. This gives us a point we call P +Q at (6, 9). Thus we write (−1,−2) + (−4, 1) = (6, 9).

Figure 2: Addition of Two Rational Points.

This method in general gives us a way to define the “addition” of two points that will lead us to a group.
Let’s do a few more examples first, though. We stress that getting P +Q from P ∗Q by reflecting over the
x-axis only works for elliptic curves in short Weierstrass form.

Problem 4.2 (Addition Computation; 2, 2). Let E : y2 = x3 − 20x − 15 be an elliptic curve. Note that
(6,−9), (−4, 1), (6, 9), and (204, 2913) all lie on the curve.

a) What is (6,−9) + (−4, 1)?

b) What is (6, 9) + (204, 2913)?

Proof.

a) While we can just bash it out with algebra, note by looking at the example case that these points are
very well known. We know (6,−9) ∗ (−4, 1) = (−1,−2) as given. Thus (6,−9) + (−4, 1) = (−1, 2).

b) By calculation, the sum is (46/9, 109/27).

We are ready to present the group on an elliptic curve. Again, we reiterate that we have only seen
addition for elliptic curves in short Weierstrass form.

Definition 18. Let E be a general elliptic curve. Then E(Q) denotes the set of rational points on E. That
is, those points (α, β) with α, β ∈ Q such that (α, β) lies on the curve E.

12
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Definition 19. Let E be a general elliptic curve with points P and Q on E. Note that line PQ intersects
E at a third point. This point is called P ∗ Q. (The cautious reader might see some problems with this
definition. For example, what if P = Q? This statement will be fully justified later, although you may be
able to prove it yourself.)

Proposition 20. Let E be an elliptic curve in short Weierstrass form. Then {E(Q),+} is a group where
the binary operation on two points P and Q is called addition. Namely, P +Q is the reflection of P ∗Q over
the x-axis.

Proving that this group (incredibly) exists can be unnecessarily complicated in general. For example, the
existence of the identity element requires machinery that is a little too complicated to build here (we will
build it later though!). Also, digest for a moment the almost magical nature of what this says. Given a line
through two rational points on an elliptic curve, you get another rational point! With this in mind, it is a
good exercise to prove some of the basic facts of this group law, after which you may assume this proposition
is true.

Problem 4.3 (Addition Theory; 2, 8). Let E : y2 = x3 + Ax + B be an elliptic curve with A,B ∈ Z and
P = (a, b), Q = (c, d), and H = (e, f) be rational points on E. For simplicity, we assume the x-coordinates
of P , Q, and H are distinct.

a) Prove that P +Q is a rational point.

b) Prove that the associative property holds. Namely, show that (P + Q) + H = P + (Q + H). You may
furthermore assume the x coordinates of P +Q and H are different, and that of P and Q+H are different
as well.

Proof. As an aside, I apologize to the grader of this problem for part b).

a) There is a linear equation defining line PQ. Substituting this line into the E equation gives a cubic
equation in terms of x. Note this cubic already has two rational solutions (the x-coordinates of P and
Q), and so it has a third rational solution. This gives a rational solution for x(P ∗Q), the x-coordinate
of P ∗Q, and therefore rational y-coordinate as well.

b) While there are some high-powered ways to do this, the expected way to prove this here is by algebra bash,
which is straightforward. Here is a sketch. Let A = (a, b), B = (c, d), and C = (e, f). If any of A,B,C
is O, then associativity is clear since the addition cancels out. Thus assume that all a, b, c, d, e, f ∈ Q.
Since it’s clear the operation is abelian, it suffices to show (A+B)+C = (C+B)+A. For notations sake
let x(P ) be the x-coordinate of any point P on our curve E : y2 = x3 + 2x + 3, and similarly for y(P ).
Note that x((A + B) + C) = f1(a, b, c, d, e, f) will be a rational function in 6 variables. If we can show
that f1(a, b, c, d, e, f) = f1(e, f, c, d, a, b), this shows that x((A+B) +C) = x((C +B) +A). Similarly for
y((A+B) + C) = f2(a, b, c, d, e, f).

For two general points (m,n), (r, s) ∈ E(Q), note they form the line y − n = s−n
r−m (x − m) and we

substitute into E to find the third point. By Vieta’s formula, since we know two solutions to E with
y substituted (m and r), we may just look at the x2 coefficient to find the third x-coordinate. Thus

x((m,n) + (r, s)) =
(
s−n
r−m

)2
−m− r. Then y((m,n) + (r, s)) = −

(
s−n
r−m · (x((m,n) + (r, s))−m) + n

)
.

13
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Thus the above gives us that x(A+B) =
(
d−b
c−a

)2
−a− c, y(A+B) =

(
d−b
c−a

)3
− (2a+ c) d−bc−a + b, and then

x((A+B) + C) =


(
d−b
c−a

)3
− (2a+ c) d−bc−a + b− f(
d−b
c−a

)2
− a− c− e


2

−

((
d− b
c− a

)2

− a− c

)
− e,

and

y((A+B)+C) =


(
d−b
c−a

)3
− (2a+ c) d−bc−a + b− f(
d−b
c−a

)2
− a− c− e


3

−(2e+

(
d− b
c− a

)2

−a−c)

(
d−b
c−a

)3
− (2a+ c) d−bc−a +−f(

d−b
c−a

)2
− a− c− e

+f.

By very careful expansion, we have (A+B)+C = ((a7−a6c+a6e−3a5c2−2a5ce−a5e2−2a4b2+2a4bd−
2a4bf+3a4c3−a4c2e+3a4ce2 +a4d2 +4a4df−a4e3 +a4f2 +2a3b2c−2a3b2e−2a3bcd+2a3bcf+4a3bde+
3a3c4 + 4a3c3e− 2a3c2e2 − 4a3cd2 − 10a3cdf + 4a3ce3 − 4a3cf2 − 2a3d2e+ 3a2b2c2 + 2a2b2ce+ a2b2e2 +
6a2bc2f−4a2bcde−2a2bde2−3a2c5−a2c4e−2a2c3e2 +3a2c2d2 +6a2c2df−6a2c2e3 +6a2c2f2 +2a2cd2e+
a2d2e2+ab4−2ab3d+2ab3f−4ab2c3+2ab2c2e−2ab2ce2−6ab2df−2abc3d−10abc3f−4abc2de+4abcde2+
2abd3 + 6abd2f − ac6 − 2ac5e+ 3ac4e2 + 2ac3d2 + 2ac3df + 4ac3e3 − 4ac3f2 + 2ac2d2e− 2acd2e2 − ad4 −
2ad3f−b4c+b4e+2b3cd−2b3cf−4b3de+b2c4−2b2c3e+b2c2e2+6b2cdf+6b2d2e+2bc4d+4bc4f+4bc3de−
2bc2de2−2bcd3−6bcd2f−4bd3e+c7+c6e−c5e2−2c4d2−2c4df−c4e3+c4f2−2c3d2e+c2d2e2+cd4+2cd3f+
d4e)/(a6− 2a5c+ 2a5e−a4c2− 6a4ce+a4e2− 2a3b2 + 4a3bd+ 4a3c3 + 4a3c2e− 4a3ce2− 2a3d2 + 2a2b2c−
2a2b2e−4a2bcd+4a2bde−a2c4 +4a2c3e+6a2c2e2 +2a2cd2−2a2d2e+2ab2c2 +4ab2ce−4abc2d−8abcde−
2ac5−6ac4e−4ac3e2+2ac2d2+4acd2e+b4−4b3d−2b2c3−2b2c2e+6b2d2+4bc3d+4bc2de−4bd3+c6+2c5e+
c4e2−2c3d2−2c2d2e+d4), (a9b−2a9d−2a9f+3a8cd+6a8cf−3a8ef−6a7bc2−3a7be2+6a7c2d+12a7cef+
6a7de2 − 3a6b3 + 9a6b2d+ 3a6b2f + 2a6bc3 + 6a6bce2 − 6a6bd2 − 2a6be3 + 3a6bf2 − 10a6c3d− 16a6c3f −
12a6c2ef − 21a6cde2− a6d3− 6a6d2f + 4a6de3− 6a6df2 + a6e3f − a6f3− 6a5b2cd− 12a5b2cf + 6a5b2ef +
12a5bc4 + 9a5bc2e2 + 3a5bcd2 + 6a5bcdf + 6a5bce3− 9a5bcf2− 12a5bdef − 6a5c4d+ 12a5c4f − 12a5c3ef +
18a5c2de2 +9a5cd3 +24a5cd2f−18a5cde3 +27a5cdf2−6a5ce3f+6a5cf3 +6a5d2ef+12a4b3c2 +6a4b3e2−
21a4b2c2d+12a4b2c2f−18a4b2cef−21a4b2de2−6a4bc5−30a4bc3e2 +6a4bc2d2−24a4bc2df+36a4bcdef+
24a4bd2e2 + 12a4c5d+ 12a4c5f + 30a4c4ef + 15a4c3de2−12a4c2d3−33a4c2d2f + 30a4c2de3−45a4c2df2 +
15a4c2e3f−15a4c2f3−18a4cd2ef−9a4d3e2+3a3b5−12a3b4d−5a3b3c3−9a3b3ce2+15a3b3d2−6a3b3df+
2a3b3e3−3a3b3f2 +15a3b2c3d+12a3b2c3f +12a3b2c2ef +39a3b2cde2−3a3b2d3 +18a3b2d2f −6a3b2de3 +
9a3b2df2−10a3bc6+15a3bc4e2+15a3bc3d2+36a3bc3df−20a3bc3e3+30a3bc3f2−24a3bc2def−51a3bcd2e2−
6a3bd4−18a3bd3f+6a3bd2e3−9a3bd2f2+2a3c6d−16a3c6f−12a3c5ef−30a3c4de2−5a3c3d3+12a3c3d2f−
20a3c3de3 + 30a3c3df2 − 20a3c3e3f + 20a3c3f3 + 12a3c2d2ef + 21a3cd3e2 + 3a3d5 + 6a3d4f − 2a3d3e3 +
3a3d3f2+3a2b4cd+6a2b4cf−3a2b4ef−12a2b3c4−9a2b3c2e2−3a2b3cd2−6a2b3cdf−6a2b3ce3+9a2b3cf2+
12a2b3def + 6a2b2c4d − 33a2b2c4f + 12a2b2c3ef + 9a2b2c2de2 − 9a2b2cd3 − 18a2b2cd2f + 18a2b2cde3 −
27a2b2cdf2−18a2b2d2ef+6a2bc7+18a2bc5e2−21a2bc4d2−24a2bc4df+30a2bc4e3−45a2bc4f2−24a2bc3def+
9a2bc2d2e2+15a2bcd4+30a2bcd3f−18a2bcd2e3+27a2bcd2f2+12a2bd3ef−6a2c7d−12a2c6ef+9a2c5de2+
12a2c4d3 +12a2c4d2f +15a2c4e3f −15a2c4f3 +12a2c3d2ef −9a2c2d3e2−6a2cd5−12a2cd4f +6a2cd3e3−
9a2cd3f2−3a2d4ef −6ab5c2−3ab5e2 + 15ab4c2d−12ab4c2f + 6ab4cef + 15ab4de2 + 9ab3c5 + 21ab3c3e2−
9ab3c2d2 + 30ab3c2df + 6ab3c2e3− 9ab3c2f2− 24ab3cdef − 30ab3d2e2 + 3ab2c5d+ 24ab2c5f − 18ab2c4ef −
51ab2c3de2−3ab2c2d3−18ab2c2d2f−18ab2c2de3+27ab2c2df2+36ab2cd2ef+30ab2d3e2+3abc8−21abc6e2−
6abc5d2 + 6abc5df − 18abc5e3 + 27abc5f2 + 36abc4def + 39abc3d2e2 + 3abc2d4 − 6abc2d3f + 18abc2d2e3 −
27abc2d2f2−24abcd3ef−15abd4e2+6ac8f+12ac7ef+6ac6de2−12ac5d2f+6ac5de3−9ac5df2−6ac5e3f+
6ac5f3 − 18ac4d2ef − 9ac3d3e2 + 6ac2d4f − 6ac2d3e3 + 9ac2d3f2 + 6acd4ef + 3ad5e2 − b7 + 5b6d− b6f +
3b5c3 +3b5ce2−9b5d2 +6b5df −6b4c3d+6b4c3f −3b4c2ef −15b4cde2 +5b4d3−15b4d2f − b3c6−9b3c4e2−
3b3c3d2 − 18b3c3df − 2b3c3e3 + 3b3c3f2 + 12b3c2def + 30b3cd2e2 + 5b3d4 + 20b3d3f − 6b2c6d− 6b2c6f +
6b2c5ef + 24b2c4de2 + 15b2c3d3 + 18b2c3d2f + 6b2c3de3 − 9b2c3df2 − 18b2c2d2ef − 30b2cd3e2 − 9b2d5 −
15b2d4f−2bc9 +6bc7e2 +9bc6d2 +4bc6e3−6bc6f2−12bc5def−21bc4d2e2−12bc3d4−6bc3d3f−6bc3d2e3 +
9bc3d2f2 + 12bc2d3ef + 15bcd4e2 + 5bd6 + 6bd5f + c9d−2c9f −3c8ef −3c7de2−3c6d3 + 3c6d2f −2c6de3 +
3c6df2+c6e3f−c6f3+6c5d2ef+6c4d3e2+3c3d5+2c3d3e3−3c3d3f2−3c2d4ef−3cd5e2−d7−d6f)/(a9−
3a8c+3a8e−12a7ce+3a7e2−3a6b2+6a6bd+8a6c3+12a6c2e−15a6ce2−3a6d2+a6e3+6a5b2c−6a5b2e−
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12a5bcd+12a5bde−6a5c4+12a5c3e+27a5c2e2+6a5cd2−6a5ce3−6a5d2e+3a4b2c2+18a4b2ce−3a4b2e2−
6a4bc2d− 36a4bcde+ 6a4bde2 − 6a4c5 − 30a4c4e− 15a4c3e2 + 3a4c2d2 + 15a4c2e3 + 18a4cd2e− 3a4d2e2 +
3a3b4 − 12a3b3d − 12a3b2c3 − 12a3b2c2e + 12a3b2ce2 + 18a3b2d2 + 24a3bc3d + 24a3bc2de − 24a3bcde2 −
12a3bd3 + 8a3c6 + 12a3c5e− 15a3c4e2 − 12a3c3d2 − 20a3c3e3 − 12a3c2d2e+ 12a3cd2e2 + 3a3d4 − 3a2b4c+
3a2b4e + 12a2b3cd − 12a2b3de + 3a2b2c4 − 12a2b2c3e − 18a2b2c2e2 − 18a2b2cd2 + 18a2b2d2e − 6a2bc4d +
24a2bc3de+ 36a2bc2de2 + 12a2bcd3 − 12a2bd3e+ 12a2c6e+ 27a2c5e2 + 3a2c4d2 + 15a2c4e3 − 12a2c3d2e−
18a2c2d2e2− 3a2cd4 + 3a2d4e− 3ab4c2− 6ab4ce+ 12ab3c2d+ 24ab3cde+ 6ab2c5 + 18ab2c4e+ 12ab2c3e2−
18ab2c2d2−36ab2cd2e−12abc5d−36abc4de−24abc3de2 +12abc2d3 +24abcd3e−3ac8−12ac7e−15ac6e2 +
6ac5d2−6ac5e3 +18ac4d2e+12ac3d2e2−3ac2d4−6acd4e−b6 +6b5d+3b4c3 +3b4c2e−15b4d2−12b3c3d−
12b3c2de+20b3d3−3b2c6−6b2c5e−3b2c4e2 +18b2c3d2 +18b2c2d2e−15b2d4 +6bc6d+12bc5de+6bc4de2−
12bc3d3 − 12bc2d3e+ 6bd5 + c9 + 3c8e+ 3c7e2 − 3c6d2 + c6e3 − 6c5d2e− 3c4d2e2 + 3c3d4 + 3c2d4e− d6)).

Similarly, we find that (C+B)+A = ((−a3c4+4a3c3e−6a3c2e2+4a3ce3−a3e4−a2c5+3a2c4e−2a2c3e2+
a2c2d2− 2a2c2df − 2a2c2e3 + a2c2f2− 2a2cd2e+ 4a2cdef + 3a2ce4− 2a2cef2 + a2d2e2− 2a2de2f − a2e5 +
a2e2f2 +ac6−2ac5e−ac4e2−2ac3d2 +4ac3df +4ac3e3−2ac3f2 +2ac2d2e−4ac2def −ac2e4 +2ac2ef2 +
2acd2e2− 4acde2f − 2ace5 + 2ace2f2 + ad4− 4ad3f − 2ad2e3 + 6ad2f2 + 4ade3f − 4adf3 + ae6− 2ae3f2 +
af4+b2c4−4b2c3e+6b2c2e2−4b2ce3+b2e4−2bc4d+4bc4f+2bc3de−10bc3ef+6bc2de2+6bc2e2f+2bcd3−
6bcd2f −10bcde3 +6bcdf2 +2bce3f −2bcf3−2bd3e+6bd2ef +4bde4−6bdef2−2be4f +2bef3 + c7− c6e−
3c5e2−2c4d2 +2c4df+3c4e3 +c4f2 +2c3d2e−2c3def+3c3e4−4c3ef2 +3c2d2e2−3c2e5 +3c2e2f2 +cd4−
2cd3f − 4cd2e3− 2cde3f + 2cdf3− ce6 + 2ce3f2− cf4−d4e+ 2d3ef +d2e4 + 2de4f − 2def3 + e7− 2e4f2 +
ef4)/(a2c4−4a2c3e+6a2c2e2−4a2ce3+a2e4+2ac5−6ac4e+4ac3e2−2ac2d2+4ac2df+4ac2e3−2ac2f2+
4acd2e− 8acdef − 6ace4 + 4acef2− 2ad2e2 + 4ade2f + 2ae5− 2ae2f2 + c6− 2c5e− c4e2− 2c3d2 + 4c3df +
4c3e3−2c3f2+2c2d2e−4c2def−c2e4+2c2ef2+2cd2e2−4cde2f−2ce5+2ce2f2+d4−4d3f−2d2e3+6d2f2+
4de3f − 4df3 + e6− 2e3f2 + f4), (a3bc6− 6a3bc5e+ 15a3bc4e2− 20a3bc3e3 + 15a3bc2e4− 6a3bce5 +a3be6−
2a3c6d+4a3c6f+6a3c5de−18a3c5ef+30a3c4e2f+2a3c3d3−6a3c3d2f−20a3c3de3+6a3c3df2−20a3c3e3f−
2a3c3f3−6a3c2d3e+18a3c2d2ef+30a3c2de4−18a3c2def2+6a3c2ef3+6a3cd3e2−18a3cd2e2f−18a3cde5+
18a3cde2f2 +6a3ce5f−6a3ce2f3−2a3d3e3 +6a3d2e3f+4a3de6−6a3de3f2−2a3e6f+2a3e3f3−3a2c7d+
6a2c7f + 6a2c6de− 21a2c6ef + 9a2c5de2 + 18a2c5e2f + 6a2c4d3 − 21a2c4d2f − 30a2c4de3 + 24a2c4df2 +
15a2c4e3f−9a2c4f3−9a2c3d3e+39a2c3d2ef+15a2c3de4−51a2c3def2−30a2c3e4f+21a2c3ef3−a2c2d3e2+
9a2c2d2e2f+18a2c2de5+9a2c2de2f2+9a2c2e5f−9a2c2e2f3−3a2cd5+15a2cd4f+21a2cd3e3−30a2cd3f2−
51a2cd2e3f + 30a2cd2f3 − 21a2cde6 + 39a2cde3f2 − 15a2cdf4 + 6a2ce6f − 9a2ce3f3 + 3a2cf5 + 3a2d5e−
15a2d4ef − 9a2d3e4 + 30a2d3ef2 + 24a2d2e4f − 30a2d2ef3 + 6a2de7 − 21a2de4f2 + 15a2def4 − 3a2e7f +
6a2e4f3− 3a2ef5− 3abc8 + 12abc7e− 12abc6e2 + 6abc5d2− 12abc5df − 12abc5e3 + 6abc5f2− 18abc4d2e+
36abc4def+30abc4e4−18abc4ef2+12abc3d2e2−24abc3de2f−12abc3e5+12abc3e2f2−3abc2d4+12abc2d3f+
12abc2d2e3−18abc2d2f2−24abc2de3f+12abc2df3−12abc2e6+12abc2e3f2−3abc2f4+6abcd4e−24abcd3ef−
18abcd2e4+36abcd2ef2+36abcde4f−24abcdef3+12abce7−18abce4f2+6abcef4−3abd4e2+12abd3e2f+
6abd2e5 − 18abd2e2f2 − 12abde5f + 12abde2f3 − 3abe8 + 6abe5f2 − 3abe2f4 − b3c6 + 6b3c5e− 15b3c4e2 +
20b3c3e3−15b3c2e4+6b3ce5−b3e6+3b2c6d−6b2c6f−9b2c5de+27b2c5ef−45b2c4e2f−3b2c3d3+9b2c3d2f+
30b2c3de3−9b2c3df2 +30b2c3e3f+3b2c3f3 +9b2c2d3e−27b2c2d2ef−45b2c2de4 +27b2c2def2−9b2c2ef3−
9b2cd3e2 + 27b2cd2e2f + 27b2cde5 − 27b2cde2f2 − 9b2ce5f + 9b2ce2f3 + 3b2d3e3 − 9b2d2e3f − 6b2de6 +
9b2de3f2 + 3b2e6f − 3b2e3f3− 2bc9 + 6bc8e+ 3bc6d2− 16bc6e3− 6bc6f2− 12bc5d2e+ 6bc5def + 12bc5e4 +
24bc5ef2 + 12bc4d2e2−24bc4de2f + 12bc4e5−33bc4e2f2−6bc3d3f + 12bc3d2e3 + 18bc3d2f2 + 36bc3de3f −
18bc3df3 − 16bc3e6 + 12bc3e3f2 + 6bc3f4 + 6bc2d4e − 6bc2d3ef − 33bc2d2e4 − 18bc2d2ef2 − 24bc2de4f +
30bc2def3 +12bc2e4f2−12bc2ef4−12bcd4e2 +30bcd3e2f +24bcd2e5−18bcd2e2f2 +6bcde5f −6bcde2f3 +
6bce8−12bce5f2 + 6bce2f4− bd6 + 6bd5f + 6bd4e3−15bd4f2−18bd3e3f + 20bd3f3−6bd2e6 + 18bd2e3f2−
15bd2f4−6bde3f3 +6bdf5−2be9 +3be6f2− bf6 + c9d−2c9f +3c8ef −6c7de2 +6c7e2f −3c6d3 +9c6d2f +
2c6de3−6c6df2−10c6e3f−c6f3−6c5d2ef+12c5de4+3c5def2−6c5e4f+9c5ef3+12c4d3e2−21c4d2e2f−
6c4de5 + 6c4de2f2 + 12c4e5f − 12c4e2f3 + 3c3d5− 12c3d4f − 5c3d3e3 + 15c3d3f2 + 15c3d2e3f − 3c3d2f3−
10c3de6 + 15c3de3f2 − 6c3df4 + 2c3e6f − 5c3e3f3 + 3c3f5 + 3c2d4ef − 12c2d3e4 − 3c2d3ef2 + 6c2d2e4f −
9c2d2ef3 + 6c2de7 − 21c2de4f2 + 15c2def4 − 6c2e7f + 12c2e4f3 − 6c2ef5 − 6cd5e2 + 15cd4e2f + 9cd3e5 −
9cd3e2f2 +3cd2e5f−3cd2e2f3 +3cde8−6cde5f2 +3cde2f4−d7 +5d6f+3d5e3−9d5f2−6d4e3f+5d4f3−
d3e6−3d3e3f2+5d3f4−6d2e6f+15d2e3f3−9d2f5−2de9+9de6f2−12de3f4+5df6+e9f−3e6f3+3e3f5−
f7)/(a3c6−6a3c5e+15a3c4e2−20a3c3e3+15a3c2e4−6a3ce5+a3e6+3a2c7−15a2c6e+27a2c5e2−3a2c4d2+
6a2c4df−15a2c4e3−3a2c4f2+12a2c3d2e−24a2c3def−15a2c3e4+12a2c3ef2−18a2c2d2e2+36a2c2de2f+
27a2c2e5 − 18a2c2e2f2 + 12a2cd2e3 − 24a2cde3f − 15a2ce6 + 12a2ce3f2 − 3a2d2e4 + 6a2de4f + 3a2e7 −
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3a2e4f2+3ac8−12ac7e+12ac6e2−6ac5d2+12ac5df+12ac5e3−6ac5f2+18ac4d2e−36ac4def−30ac4e4+
18ac4ef2− 12ac3d2e2 + 24ac3de2f + 12ac3e5− 12ac3e2f2 + 3ac2d4− 12ac2d3f − 12ac2d2e3 + 18ac2d2f2 +
24ac2de3f − 12ac2df3 + 12ac2e6 − 12ac2e3f2 + 3ac2f4 − 6acd4e + 24acd3ef + 18acd2e4 − 36acd2ef2 −
36acde4f+24acdef3−12ace7 +18ace4f2−6acef4 +3ad4e2−12ad3e2f−6ad2e5 +18ad2e2f2 +12ade5f−
12ade2f3 +3ae8−6ae5f2 +3ae2f4 +c9−3c8e−3c6d2 +6c6df+8c6e3−3c6f2 +6c5d2e−12c5def−6c5e4 +
6c5ef2+3c4d2e2−6c4de2f−6c4e5+3c4e2f2+3c3d4−12c3d3f−12c3d2e3+18c3d2f2+24c3de3f−12c3df3+
8c3e6−12c3e3f2+3c3f4−3c2d4e+12c2d3ef+3c2d2e4−18c2d2ef2−6c2de4f+12c2def3+3c2e4f2−3c2ef4−
3cd4e2+12cd3e2f+6cd2e5−18cd2e2f2−12cde5f+12cde2f3−3ce8+6ce5f2−3ce2f4−d6+6d5f+3d4e3−
15d4f2−12d3e3f+20d3f3−3d2e6+18d2e3f2−15d2f4+6de6f−12de3f3+6df5+e9−3e6f2+3e3f4−f6)).

Factorization by Magma tells us that a factor of the numerator of x((C +B) +A)− x((A+B) + C) is

a3c− a3e− ac3 + ad2 + ae3 − af2 − b2c+ b2e+ c3e− ce3 + cf2 − d2e. (1)

However, note that by virtue of A,B,C ∈ E(Q), b2 = a3 + 2a+ 3, d2 = c3 + 2c+ 3, and f2 = e3 + 2e+ 3.
Substitution of all three shows that expression 1 is in fact 0:

a3c− a3e− ac3 + ad2 + ae3 − af2 − b2c+ b2e+ c3e− ce3 + cf2 − d2e
= a3c− a3e− ac3 + a(c3 + 2c+ 3) + ae3 − a(e3 + 2e+ 3)− (a3 + 2a+ 3)c+ (a3 + 2a+ 3)e

+ c3e− ce3 + c(e3 + 2e+ 3)− (c3 + 2c+ 3)e

= a3c− a3e− ac3 + ac3 + 2ac+ 3a+ ae3 − ae3 − 2ae− 3a− a3c− 2ac− 3c+ a3e+ 2ae+ 3e

+ c3e− ce3 + ce3 + 2ce+ 3c− c3e− 2ce− 3e

= 0.

Thus x((A + B) + C) = x((C + B) + A). Similarly, Magma shows that expression 1 is a factor of
y((A+B) + C)− y((C +B) +A); thus y((A+B) + C) = y((C +B) +A).

Therefore (A+B)+C = A+(B+C), and addition of rational points is associative for E : y2 = x3+2x+3.
Therefore E(Q) is indeed a group.

For reference, the following is code for Magma that was used to simplify the algebraic expressions.

{

Addition := function(x_0,y_0,x_1,y_1)

x:=(y_1-y_0)^2/(x_1-x_0)^2-x_0-x_1;

y:=(y_1-y_0)/(x_1-x_0)*(x-x_0)+y_0;

return x, -y;

end function;

R<a,b,c,d,e,f>:=FunctionField(Rationals(),6);

x1,y1:=Addition(a,b,c,d);

x2,y2:=Addition(e,f,x1,y1);

m1,n1:=Addition(e,f,c,d);

m2,n2:=Addition(m1,n1,a,b);

Factorization(Numerator(m2-x2));

Factorization(Numerator(n2-y2));

mminusx:=a^3*c - a^3*e - a*c^3 + a*(c^3+2*c+3) + a*e^3 - a*(e^3+2*e+3) - (a^3+2*a+3)*c

+ (a^3+2*a+3)*e + c^3*e - c*e^3 + c*(e^3+2*e+3) - (c^3+2*c+3)*e;

}
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Problem 4.4 (Reduced Rational Point; 5). Let E : y2 + e1xy + e3y = x3 + e2x
2 + e4x + e6 be an elliptic

curve with integer coefficients. Suppose that P =
(a
b
,
c

d

)
on E is a rational point in reduced form (i.e. both

the coordinates are reduced fractions). We may assume b and d are positive (since a or c can be negative).
Give an equality relating b and d by writing one as a positive power of the other.

Proof. Take the equation of E and stick in a/b and c/d for x and y. Clearing the denominators in least form
and seeing what divides what gives a series of information that will bound b and d in terms of each other.
We have the following equation (call it H):

c2

d2
+ e1

ac

bd
+ e3

c

d
=
a3

b3
+ e2

a2

b2
+ e4

a

b
+ e6.

1. Multiply H by b2d2 shows that b|d2.

2. Multiply H by b3d shows that d|b3.

3. Item 2 and multiplying H by b4 shows that d2|b4 =⇒ d|b2.

4. Item 3 and multiplying H by db2 shows that b|d.

5. Item 4 and multiplying by d2 shows that b3|d2.

6. Item 3 and multiplying by b3 shows that d2|b3.

Therefore d2 = b3. Accept either d = b3/2 or b = d2/3.

So if you are morally convinced by now that E(Q) should be a group (as you should be), then you might
also morally accept that Proposition 20 is also true for any elliptic curve, not just those written in short
Weierstrass form. And it is! However, the definition of addition is slightly different in the general case. The
reason we took P +Q as the reflection of P ∗Q in the short Weierstrass case is that for elliptic curves written
in short Weierstrass form, there is a natural horizontal line of symmetry at the x-axis. In the general case,
we can find another natural horizontal line of symmetry; and so in the general case, while P ∗ Q is always
the same, P +Q will be different.

For example, consider the curve y2−2015y = x3−36x2 +x. Notice that for all points (a, b) on the curve,
by how left hand side is written, the point (a, 2015 − b) is also on the curve. Thus the horizontal line of
symmetry in this case is 2015

2 . For this curve then, P ∗Q is defined as the third point of intersection of the

line PQ and the curve, and P +Q is defined as the reflection of P ∗Q over the line y =
2015

2
. More generally

for all the curves we consider in this power round, this process of reflecting over the line of symmetry applies.

Definition 21. Let E be an elliptic curve. Then P +Q is the reflection of P ∗Q over the horizontal line of
symmetry of E.

Consider now the elliptic curve E : y2 + y = x3 − x and the point P = (0, 0) on this curve. From this
point on, we mostly refer to this curve and point P . It is the most important curve that we examine in order
answer our question about prime density.

Problem 4.5 (E Symmetry; 2, 2). Let E be the elliptic curve y2 + y = x3 − x.

a) For every point (a, b) on E, there is another point (a, c) on E as well. What is c?

b) There is the horizontal line of symmetry y = α for this curve E. What is α?

17
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Figure 3: Horizontal Line of Symmetry.

Proof.

a) Given b, it’s clear that c = −1− b.

b) This leads to α = −1
2 .

Now, remember that sequence we mentioned in the introduction? Recall that the Somos-4 sequence {an}
is defined by a0 = a1 = a2 = a3 = 1 and recursively by anan−4 = an−1an−3 +a2n−2. You’ll get to prove some
facts about this sequence later. This following problem should keep you occupied with it until then. Keep
in mind that we fixed a curve E and point P above. One fact about E and P is that P +P = (1, 0) (for the
interested, adding a point to itself requires the use of a tangent line; learn calculus!).

Problem 4.6 (Sequence and Curve; 10). Prove for n > 1 that (2n − 3)P =
(
f(n)
a2n

, g(n)a3n

)
where f(n) =

a2n − an−1an+1 and g(n) = a2n−1an+2 − 2an−1anan+1. (Recall from section 3, the group theory section, that

kP =
∑k
i=1 P .)

Proof. When n = 1, (2n − 3)P = −P . Given that the line of symmetry of this curve is y = −1/2,

−P = (0,−1). Checking the base case, we find

(
12 − 1 · 1

12
,

12 · 1− 2 · 1 · 1 · 1
13

)
= (0,−1) as desired; thus

the case n = 1 is true.
Now suppose for the sake of induction that for some k ∈ N, for all n ≥ k, our claim is true. Then

(2k − 3)P =

(
a2k − ak−1ak+1

a2k
,
a2k−1ak+2 − 2ak−1akak+1

a3k

)
. Let Q = 2P = (1, 0) as given. Thus we may

directly add (2k − 3)P + 2P = (2(k + 1)− 3)P , and check that the equations do match.
Adding the points is very straightforward using the following lemma: Let {ak−1, ak, ak+1, ak+2} be any

four consecutive elements of our sequence. Then a2k−1a
2
k+2−4ak−1akak+1ak+2+ak−1a

3
k+1+a3kak+2+a2ka

2
k+1 =

0. (This is easily verified through standard induction, and by substitution for larger terms. In fact, we may

find
ak+3

ak−1
· (a2k−1a2k+2 − 4ak−1akak+1ak+2 + ak−1a

3
k+1 + a3kak+2 + a2ka

2
k+1) = a2ka

2
k+3 − 4akak+1ak+2ak+3 +

aka
3
k+2 + a3k+1ak+3 + a2k+1a

2
k+2.

18
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We present a general method of solving for the x-coordinate. Note that we may create an equation of the
line with points (2k−3)P and Q = 2P . Let this be equation y = mx+ b. Secondly, we have the equation for
the line y2 + y = x3 − x. Substituting, m2x2 + 2mbx+ b2 +mx+ b = x3 − x. By Vieta’s formulas, the sum

of the three solutions in x is −m2. We know two solutions already, 1 from 2P = (1, 0) and (
a2k − ak−1ak+1

a2k
from (2k− 3)P . Thus the third solution, x((2k− 1)P ), is −m2 minus these. (Simplification of this using the
above lemma shows us the x-coordinate is exactly as we desired. Similar algebraic substitutions show the
y-coordinates match as well.

Thus the inductive step holds, and therefore the formula holds for all n ∈ N as desired.
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5 Sequences

So we turn now to the Somos-4 sequence again. A priori, we know nothing about this sequence. From the
definition, it’s not even clear that it’s integral! (Hint: it is). As reference, here are some of the first few
values starting with a0: 1, 1, 1, 1, 2, 3, 7, 23, 59, 314, · · · . Well, that is royally unhelpful. Let’s try to get
our hands dirty working with these types of non-linear recurrences. Note by the recursive definition of the
Somos-4 sequence that we may define terms of the sequence for negative n. For example, a−1a3 = a0a2 + a21
gives a way to define a−1. This may be necessary for you to establish base cases.

Definition 22. For n ∈ N, define sn := an−3an+3 − an−2an+2.

As it turns out, this new sequence of numbers is intimately related to the Somos-4 sequence, which may
help us prove integrality.

Problem 5.1 (Secondary Sequence; 5, 2).

a) Prove that a2nsn−1 = a2n−1sn for n ∈ N.

b) Prove that sn = 4a2n for n ∈ N.

Proof.

1. This is a purely arithmetic fact. Most derivations all likely involve two instances of substitutions of sk
and akak−4 = ak−3ak−1 + a2k−2. One example is shown where the substituted parts are underlined:

a2nsn−1 = a2n−1sn

an−4a
2
nan+2 − an−3a2nan+1 = an−3a

2
n−1an+3 − an−2a2n−1an+2

an+2(an−4a
2
n + an−2a

2
n−1) = an−3(a2n−1an+3 + a2nan+1)

an+2(an(an−1an−3 + a2n−2) + an−2a
2
n−1) = an−3(an−1(anan+2 + a2n+1) + a2nan+1)

an−3an−1anan+2 + a2n−2anan+2 + an−2a
2
n−1an+2 = an−3an−1anan+2 + an−3a

2
nan+1 + an−3an−1a

2
n+1

an−2an+1(an−2an + a2n−1) = an−3an+1(an−1an+1a
2
n)

an−3an−2an+1an+2 = an−3an−2an+1an+2.

2. This is true by induction. The base cases are easy. Then using the previous part a) above for the
inductive step, note that

sn = 4a2n ⇐⇒
a2nsn−1
a2n−1

= 4a2n.

Problem 5.2 (Is Integral; 10). Prove that an is integral for n ∈ N and that the following are true,
gcd(an, an−1) = gcd(an, an−2) = 1.

Proof. The main idea of this proof is the following. We induct on ak+3 for some k. For some x and y where
(x, y) = 1, we show that both ak+3x and ak+3y are both integers. By Bezout’s lemma, this means there
exist some integers r and s such that rx + sy = 1 =⇒ rxak+3 + syak+3 = ak+3. So this implies ak+3 is
an integer. Separately, we induct to prove the coprimeness condition using the fact that for integers a and
b such that (a, b) = 1, both (a+ b, b) = (a, a+ b) = 1.

20



PUMaC 2015 Power Round Section 5 page 21

The first few base cases are easily checked for both integrality and coprimeness. We induct on some k ∈ N
such that for all n ≤ k+ 2, both an is an integer and (an, an−1) = (an, an−2) = 1. Then by the definition of
the sequence and the previous problem, note that

ak+3ak−3 = 4a2k + ak−2ak+2,

ak+3ak−1 = ak+2ak + a2k+1.

By the inductive hypothesis, the right sides of both equations are integers, and so both ak+3ak−3 and
ak+3ak−1 are integers. Furthermore by the inductive hypothesis, we know (ak−3, ak−1) = 1, and so by
Bezout’s lemma, we have that for some integers r and s that

rak−3 + sak−1 = 1 =⇒ ak+3 = rak−3ak+3 + sak+3ak−1,

and ak+3 is an integer as desired.
To check the coprime condition, we again induct to show that ak+3 is coprime to the two previous terms.

Note that by the inductive hypothesis, (ak+2ak, a
2
k+1) = 1. This implies

(ak−1ak+3, a
2
k+1) = (ak+2ak + a2k+1, a

2
k+1) = 1 =⇒ (ak+3, ak+1) = 1.

Adding the other way shows that (a2k+1, akak+2) = 1, which shows (ak+3, ak+1) = 1 as desired. Thus by
induction the coprime condition holds as well.

Because there are so many ways to create a recursive sequence, there aren’t really centralized strategies
for dealing with them in much generality. But maybe this set of problems was interesting. As a parting
shot, here are few more problems.

Problem 5.3 (Sequence Divisibility; 5). We define a recursive sequence {bn} by b0 = b1 = b2 = 1 and for
n ≥ 3, bn = bn−1bn−2 + bn−3. Prove that for all integers n > 1, there exists a k ≥ 0 such that n|bk.

Proof. First let’s fix n > 1 and consider the function f : (Z/nZ)3 → (Z/nZ)3 which maps (x, y, z) 7→
(y, z, yz + x). This is an injective function because f(x, y, z) = (0, 0, 0) =⇒ x = y = z = 0 and it is
surjective because for any (x, y, z) ∈ (Z/nZ)3, we have f(z − xy, x, y) = (x, y, z). So this is a bijective
function from (Z/nZ)3 to itself and since there are only a finite number of pairs (x, y, z) mod n, the function
f is a permutation of the elements.

The special part of the function is that it corresponds with our recurrence relation with f(bi, bi+1, bi+2) =
(bi+1, bi+2, bi+3). Now denote fk(x, y, z) to be the result by applying f k times to (x, y, z) with the convention
that f0 is the identity. Considering the sequence fo triplets f0(1, 1, 1), f1(1, 1, 1), f2(1, 1, 1), . . . , since there
are only a finite number of values f can take on and this is an infinite sequence, we know that ∃i < j :
f i(1, 1, 1) = f j(1, 1, 1) and since f is bijective, it has an inverse so f−if i(1, 1, 1) = f−if j(1, 1, 1) =⇒
(1, 1, 1) = f j−i(1, 1, 1) for some j − i > 0. But now we are done because we can see that f(0, 1, 1) = (1, 1, 1)
and since f is injective, we have that f j−i−1(1, 1, 1) = (0, 1, 1) but f j−i−1(1, 1, 1) = (bj−i−1, bj−i, bj−i+1)
and hence bj−i−1 ≡ 0 mod n or n | bj−i−1 with j − i− 1 ≥ 0.

Problem 5.4 (Integrality, Integrality!; 8, 12).

a) We define a recursive sequence {cn} by c0 = c1 = c2 = c3 = c4 = 1 and for n ≥ 5, cncn−5 = cn−4cn−1 +
cn−2cn−3. Prove that this sequence is integral for n ≥ 0.

b) We define a recursive sequence {dn} by d0 = 1, d1 = 2, d2 = 1, and d3 = −3 and for n ≥ 4,

dn =


dn−1dn−3 − d2n−2

dn−4
if n ≡ 0, 1 (mod 3)

dn−1dn−3 − 3d2n−2
dn−4

if n ≡ 2 (mod 3).
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Prove that the sequence {dn} is an integral sequence for n ≥ 0.

Proof.

a) The proof of this is very similar to the proof of the Somos-4 sequence. The main difference is that we
use s′n := c2n + cn−2cn+2 which gives cn−3s

′
n = cn+1s

′
n−2, which by corollary gives sn := −2cn−1cn+1 if n

is even and sn = 3cn−1cn+1 if n is odd, and the rest of the proof is nearly identical. A full proof is given
at http://www.maths.ed.ac.uk/ mwemyss/Somos5proof.pdf with all due credit to its authors.

b) The flavor of proof is identical to that of the problem above and the outline of the Somos-4 sequence. A
full proof is attached in Appendix A
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6 Interlude

As the reader may have noticed by now, this Power Round is a rather eclectic collection of math topics. The
following rephrases our previous work into a form we may use later.

We introduce projective space, specifically projective 2-space, denoted P2(R) (this means that coordinates
are elements of R; we can also work instead in P 2(Q), but that is not necessary). The motivation of such
a system of numbers is hard to flesh out fully here. (For the interested reader, consider this system as an
attempt to fix the “problem” that two parallel lines do not intersect by adding points at infinity. For the
artists out there, this is a formalization of the concept of perspective drawings in which parallel lines do in
fact converge. Unfortunately, the implementation we present here may not make it clear why these things
are true.)

Elements of P2(R) represent the lines in R3, real 3-space, that pass through the origin. Examine such a
line ` that passes through the origin (0, 0, 0). We represent ` by a triplet of coordinates (a : b : c) where `
passes through points (0, 0, 0) and (a, b, c). This clearly doesn’t give a unique representation of `. Under this
representation, for all real numbers s, (sa : sb : sc) and (a : b : c) will always represent the same line. For
example, if ` is a line that passes through (0, 0, 0) and (2, 4, 3), then we can denote this line in P 2(R) in many
ways: (2 : 4 : 3) ∼= (4 : 8 : 6) ∼= (π : 2π : 3π

2 ), and so forth. When possible, it is convention to standardize the

way we represent these vectors by making the last coordinate 1; thus if c 6= 0, then (a : b : c) = (ac : bc : 1),
and the latter is the preferred form.

Definition 23. Let P2(R) represent projective 2-space. Then elements α ∈ P2(R) are represented as α =
(a : b : c) where if c 6= 0, we may assume c = 1.

The reason we introduce this space is because it is in some sense the “correct” medium in which to
examine elliptic curves.

Definition 24. Let E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 be an elliptic curve. Denote another curve

in three variables (adding z) as F : y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3. We say that F has
been homogenized because each term has the same degree (degree is the sum of the powers of all variables).
F is an elliptic curve in P2(R).

By the three variables given by homogenization, we can start to look at F as a curve lying in projective
2-space. It’s clear that if (a, b) is a solution to E, then (a : b : 1) is a solution to F . We may say more.

Proposition 25. There is a bijective correspondence between an elliptic curve E and a homogenized F
with a further bijective correspondence between points on E and F .

We check this by proof by example! (Note this is not actually a proof. Never actually do this, but
this example should illustrate clearly why this proposition is true.) Examine the elliptic curve E : y2 =
x3 − 20x− 15 again. Then the homogenization is F : y2z = x3 − 20xz2 − 15z3. Since (−4, 1) is a solution to
E, we see (−4 : 1 : 1) is clearly a solution to F . Conversely note (1284 : −5601 : 64) is a solution to F (you
may way want to check this). Then it is clear

(
321
16 : −560164 : 1

)
is also a solution to F , and so

(
321
16 ,

−5601
64

)
is

a solution to E. Note the importance of homogenization in this work. For example, what would have failed
if F were made by simply multiplying every term by exactly one factor z?

And finally, here is why we needed projective space: how do we look at elliptic curves over a finite field?
An example of a finite field is Fp (you know enough to verify that is indeed a field). Fields are explored more
thoroughly in section 7.
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Definition 26. Let K be a ring. Furthermore let K also have the additional property that for all non-zero
elements a, ∃a−1 ∈ K such that a · a−1 = a−1 · a = 1. Then K is called a field.

Perhaps it is unclear here why we would want to look at elliptic curves over Fp, but you‘ll see why soon
enough. So, is there a notion of an elliptic curve over Fp where p is a prime? In case you haven’t noticed by
now how these rhetorical questions go... Yes! There is. Suppose E : y2 + a1xy+ a3y = x3 + a2x

2 + a4x+ a6
is an elliptic curve with integer coefficients. We can look at points in E/Fp (read E over Fp meaning that we
take E as an equation and points on E all inside Fp) in two ways: by solving E in Fp from the start, or by
reducing points from E/Q. The first is easy to do: simply solve E : y2 + a1xy + a3y ≡ x3 + a2x

2 + a4x+ a6
(mod p).

Problem 6.1 (EC over Finite Field; 5). Let E : y2 = x3 + 3x+ 9 be an elliptic curve over F13. Find all the
elements of E(F13). (Hint: there are 14 total elements. You may have to read on first to find the identity
element.)

Proof. It is sufficient to give a list of all of them. As given later in this section, the identity element is
(0 : 1 : 0). Every other element (a : b : c) has c = 1 as usual, thus we simply solve y2 ≡ x3 +3x+9 (mod 13).
There are 13 solutions here. Thus the total list of solutions is {(0 : 1 : 0), (0 : 3 : 1), (0 : 10 : 1), (1 : 0 : 1), (2 :
6 : 1), (2 : 7 : 1), (6 : 3 : 1), (6 : 10 : 1), (7 : 3 : 1), (7 : 10 : 1), (8 : 5 : 1), (8 : 8 : 1), (10 : 5 : 1), (10 : 8 : 1)}.

Otherwise, we can find points on E over finite fields by mapping rational points of E over Q by the
“obvious” mapping to try. Suppose that (ab ,

c
d ) ∈ E(Q) is a rational point on E. We look at the reduction

of E onto Fp by first translating to projective space; this point naturally maps to (ad : bc : bd). Here
in projective space, we divide by any powers of p necessary such that gcd(ad/pk, bc/pk, bd/pk) = 1 (else
the point would vanish trivially over Fp). Finally we translate into Fp by taking these coordinates modulo
p. Thus in summary,

(
a
b ,

c
d

)
7→ (ad (mod p), bc (mod p), bd (mod p)), modulo some conditions on clearing

denominators with powers of p.
As promised before, we can now present the identity of the group E(Q): it’s (0 : 1 : 0). This furthermore

shows that the identity of E(Fp) is also (0 : 1 : 0). This gives us the following corollary (corollary of what I
wonder...)

Problem 6.2 (An Odd Divisor; 5). Let p be a prime. Prove p divides some term of the Somos-4 sequence
{an} if and only if P = (0, 0) has odd order in the group E(Fp) where E : y2 + y = x3 − x.

Proof. This is a corollary of problems 4.6 and 5.2.

(⇒) Suppose p|an for some n ≥ 1, and then note that (2n − 3)P =
(
a2n−an−1an+1

a2n
,
a2n−1an+2−2an−1anan+1

a3n

)
.

Note that the side-results of problem 5.2 show that the denominators and numbers of the x and y-coordinates
of (2n−3)P as written are coprime. Therefore, (2n−3)P (mod p) =

(
an(a2n − an−1an+1) : a2n−1an+2 − 2an−1anan+1 : a3n

)
≡

(0 : 1 : 0) (mod p). Therefore, note an odd multiple of P equals the identity; thus P has odd order.
(⇐) Secondly if kP = (0 : 1 : 0) (mod p) where k is odd, then (2·(k+3

2 )−3)P = (0 : 1 : 0), and p|a(k+3)/2.

This is a rather magical connection between divisibility of a sequence and elliptic curves, don’t you think?
However, strangely enough, we will soon be able to make even weirder equivalent statements.
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7 Galois Theory

Unfortunately, for the sake of time (we can’t build up all of Galois theory from scratch for this Power
Round!), we won’t be able to give more than a heuristic of some of the methods we use here. (Un)Luckily
for you, the reader, this also means there aren’t many problems directly on Galois theory :(. We hope that
regardless of your mathematical background, this section is still interesting enough to try to understand. We
describe first some of the necessary groundwork.

We previously introduced a fundamental object of algebra: groups. This was essentially the most basic
“thing” we could do math on. We have only one operation on a group at all times. Anything simpler would
have very little to it. Since then, we further saw a taste of more complicated algebraic objects, which as
promised, we explore here. One step up from the group is another essential object of mathematics: a ring.
Rings in some sense can be thought of as an extension of (additive) groups.

Definition 27. Let R be a set of elements that has a closed, binary operation we call addition such that
{R,+} is an additive, commutative group and a second closed, binary, commutative operation · that we can
call multiplication. Suppose R has these properties:

• The operation · is associative.

• For all a, b, c ∈ R,
a · (b+ c) = a · b+ a · c,

and
(b+ c) · a = b · a+ c · a.

• Finally, there exists a multiplicative identity we call 1 such that for all a ∈ R, a · 1 = 1 · a = a.

Then R is called a ring.

The consequences of such a definition is thatR contains 0 (necessary by the addition law), and 1 (necessary
by the multiplication law). Many definitions also add that 1 6= 0, but this is not strictly necessary.

Problem 7.1 (0 Ring; 5). Let A := {0} be the set of just the element 0. Let + and · be operations on A
such that 0 + 0 = 0 · 0 = 0. Prove or disprove that A is a ring.

Proof. Note that A is a set of elements that has a closed, binary operation labelled +. Verifying every
condition of rings boils down to the fact that for all a ∈ A, a = 0, and so any operation evaluations to 0.
For example, 0 + 0 = 0 is indeed commuatative, 0 · (0 · 0) = (0 · 0) · 0 = 0, etc. Thus every property holds,
and this ring, the trivial ring, is indeed a ring.

If you find the definition of rings a little scary looking, all it really says is that a ring is something like
the integers Z. (Mathematicians have this tendency of taking familiar objects like the integers and building
abstractions of them. If you see one of these abstractions first, they can seem intimidating. But, if you know
where the abstraction came from, you might see that it is quite natural. Rings are one example of this.)
However, if you recall from the exercises in section 3, the integers are missing something. This leads us to
something else called a field.

Definition 28. Let K be a ring where 1 6= 0. Furthermore let K also have the additional property that for
all non-zero elements a, ∃a−1 ∈ K such that a · a−1 = a−1 · a = 1. Then K is called a field.

Again, this is an example of an abstraction of a natural object. A field really emulates the properties
of the rational numbers Q. In the same way Q is built from Z, fields are built from rings. Also, note the
relationship between rings and fields. A field is always a ring, but not the other way around.
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There are many examples of fields. While Q may have been a motivating example for the abstraction
for a field (history fun fact: I have no idea if this is true. I made it up because this might be true...), fields
are so common that you probably already know many other examples. A few more examples of fields are
the real numbers R; the complex numbers C; and finite fields Z/pZ = Fp. Something of interest is that the
rational numbers are a subset of the real numbers; we write this Q ⊂ R and say that Q is a sub-field of R;
equivalently, we also say that R is a field extension of Q. Another example is R ⊂ C. We can say much more
about the relationships between fields than characterizing them as subsets of each other.

The only thing that R really lacks compared to C is the number i. Every complex number is the
combination of a real part and an imaginary part. This gives us another way to construct C. We may write
C ∼= R[i]. This notation R[i] means we take the set of real numbers R, and also add in the element i. We
can then take any finite sum of scalar multiples of powers of i. More formally,

R[i] := {c0 + c1 · i+ c2 · i2 + c3 · i3 + c4 · i4 + · · ·+ cn · in : n ∈ N, ci ∈ R}.

Notice that since i2 = −1 · i0, any power of i greater than 1 may be re-written as a power less than 2.
Thus in practice, we may also write R[i] = {c0 +c1 · i : ci ∈ R}. This shows us why we call R a field extension
of Q—we build the former by literally adding things to the latter.

In general, if R is a ring, R[α] is defined similarly.

Definition 29. LetR be an arbitrary ring. If α is algebraic overR, thenR[α] := {
∑n
i=0 ciα

i : n ∈ N, ci ∈ R}.

There are some conditions necessary on the value of α—namely that α be algebraic. However, algebraic
numbers are something we do not address here (for interested readers, this is what transcendental numbers
pertain to). Now to make sure things make sense so far, here is a problem.

Problem 7.2 (Fields; 4, 2, 2, 4).

a) Examine Q[
√

2]. Setwise, are Q[
√

2] and {a + b
√

2 : a, b ∈ Q} equivalent? Why or why not? (Keep in
mind the justification of R[i] = {c0 + c1 · i : ci ∈ R} was not fully fleshed out. You must start with an
arbitrary maximum degree n and reduce it to 1.)

b) Is 1
8 inside Z[ 12 ]? Why or why not?

c) Is 1
3 inside of Z[ 16 ]? Why or why not?

d) Are Q[
√

2] and Q[
√

3] equivalent? (Two fields are equivalent if they are setwise equivalent; i.e. K and F
are equivalent fields if K ⊂ F and F ⊂ K.) Why or why not?

Proof. a) Yes, they are equivalent. It’s clear that {a + b
√

2 : a, b ∈ Q} ⊂ Q[
√

2] by definition since we
basically just take the first two terms of the infinite sum. To see the other direction, take an arbitrary

element of Q[
√

2], α =

N∑
i=0

ai ·
√

2
i

for ci ∈ Q. Note that when i is even, we get a rational number for the

term. Thus we re-write α as

α =

N∑
i=0

ai ·
√

2
i

=

N∑
i=0

i even

ai · 2i/2 +

N∑
i=0
i odd

ai · 2
i−1
2

√
2

=

 N∑
i=0

i even

ai · 2i/2

+

 N∑
i=0
i odd

ai · 2
i−1
2

√2.
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So we see that every element of Q[
√

2] is also an element of {a + b
√

2 : a, b ∈ Q}, and so they are
equivalent.

b) Yes. By definition, 1
8 = 0 · 1 + 0 · 12 + 0 · 14 + 1 · 18 is inside Z[ 12 ].

c) Yes. Yup, by definition, 1
6 = 0 · 1 + 2 · 16 is inside Z[ 16 ].

d) No. We saw that every element of Q[
√

2] can be written as a + b
√

2 for a, b ∈ Q. So it suffices to show
that

√
3 cannot be written in this form. This is clear by writing

√
3 = a+ b

√
2, and squaring both sides

to find a contradiction to that
√

2 is irrational.

Finally, a more “professional” way to think about R[i] ∼= C comes from realizing that i is a root of the
polynomial x2 + 1. Notice that the two roots of x2 + 1 are ±i. This leads to the construction denoted
R[x]/(x2 + 1), which we take to mean that we adjoin to R a root of the polynomial x2 + 1 (it doesn’t
matter if we take i or −i since they give equivalent fields). In this case, adjoining to R a root of x2 + 1
is exactly the same as adjoining i. Thus we now have three ways of representing the complex numbers:
C ∼= R[i] ∼= R[x]/(x2 + 1). This latter notation is most important for us. It demonstrates a way of thinking
about field extensions: adjoining roots of polynomials. This leads naturally to the concept of Galois groups.

Definition 30. For certain rational polynomials f(x), the details of which we omit for the sake of time,
Q[x]/(f(x)) is called a Galois extension.

(The specifics of what polynomials are necessary is omitted. They involve definitions which are unnec-
essary in the scheme of this Power Round, but specific polynomials make their field extensions Galois.)
Examine all the roots of f(x) that exist in this new field K but don’t exist in Q. We can form a group
(of functions) that acts on these roots by sending them to each other. For example, for the construction
Q[x]/(x2 + 1), we can imagine a function that sends i to −i and vice versa (this is conjugation). The impor-
tant thing about conjugation is that it sends rational numbers to rational numbers: it fixes elements that
were in the base field. We assert that conjugation and the “do nothing” function (the identity function) are
the only such functions that exist. They act on Q[x]/(x2 + 1) but are the identity function when restricted
to Q. Thus our group of functions has two elements: the conjugation function, and the identity function.
We encourage the reader to convince themself that this small thing is indeed a group. In general, this group
that we construct of functions is known as the Galois group of the field extension.

Definition 31. Suppose K = Q[x]/(f(x)) is a Galois extension. Then σ : K → K is a Galois automorphism
if the following hold:

• If a ∈ Q, σ(a) = a (this is called “fixing a”).

• Let A = {r ∈ K, r /∈ Q : f(r) = 0}. Then σ : A→ A is a bijection.

• If α, β are two elements of K, then σ(α+ β) = σ(α) + σ(β) and σ(α · β) = σ(α) · σ(β).

Definition 32. Let G be the set of all Galois automorphisms of a field extension K of Q. Then G is a group
that is denoted Gal(K/Q) and called the Galois group of K.

In practice, to form a Galois automorphism, focus first on the second condition. If you impose conditions
on where the roots are sent and let rational numbers remain unchanged, the other properties tend to work
out as well.
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Problem 7.3 (Galois Automorphisms; 2, 8). Let f(x) = x4 − 70x2 + 25.

a) What are the roots of f(x)?

b) You are given that f(x) is a nice enough polynomial that Q[x]/(f(x)) is a Galois. Give four examples of
Galois automorphisms—an isomorphism from one set to itself. (You may just tell us where each root is
sent for each automorphism).

Proof. a) We have that the roots of f are
√

20 +
√

15,
√

20−
√

15, −
√

20 +
√

15, and
√

20−
√

15.

b) Let α =
√

20 +
√

15, and β =
√

20−
√

15, here are all of them:

σ1(α,−α, β,−β) 7→ (α,−α, β,−β),

σ2(α,−α, β,−β) 7→ (−α, α,−β, β),

σ3(α,−α, β,−β) 7→ (β,−β, α,−α),

σ4(α,−α, β,−β) 7→ (−β, β,−α, α).

The motivation for this comes from our example of Q[i]. A very natural thing to try is sending i 7→ −i.
If we try a similar method here, we may guess and check how the signs flip.

Before moving on though, we can go even further than what we have done here; we can adjoin multiple
roots of many different polynomials at once to Q. For example, a classic example you may see if you study
mathematics more is adjoining to Q the roots of both x2+x+1 and x3−2 at the same time to yield Q[ω, 3

√
2]

for ω a primitive 3rd root of unity.

8 Elliptic Curves and Galois Theory

Galois theory is incredibly rich, but unfortunately there are details we must omit about the subject for the
sake of time, and this is sufficient background; we can now relate Galois theory and elliptic curves. Suppose
you have a general elliptic curve E and a general point P on it. We define a k-division point of P as some
point Q on E such that kQ = P . A fact of elliptic curves is that there are exactly k2 such k-division points
in C (the coordinates of Q may be complex numbers), but likely many of them won’t be rational points.
But examine for a moment such a non-rational point βk such that kβk = P . Suppose we take the x and y
coordinates of βk and adjoined them to Q. What would we get? Going further, suppose we took all such
βki such that kβki = P and adjoined to Q all of the x and y coordinates of these division points. We get
some large field extension we label Kk. This directly gives us a way to use Galois theory in a way that gives
us information about our initial E and P .

Take on faith that Kk/Q is indeed a Galois extension, and examine some Galois automorphism σ of this
extension; it acts on all these coordinates we just adjoined. Let (a, b) be one of the k-division points; then
σ((a, b)) = (σ(a), σ(b)). Now we have a curious situation: we have found a Galois automorphism that acts
on points on an elliptic curve! Weee.

That these Galois automorphisms act on the set of k-division points is important. Can you visualize
how they are acting? These functions send coordinate pairs, essentially vectors, to other vectors. This is
quite similar to how matrices act on vectors! In fact, this leads to what is called a Galois representation: a
homomorphism from the Galois group to a linear algebra construct. Here we become guilty of omitting some
details, but it would take too much work to present in full rigor. But please take these two propositions to
be true.
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Proposition 33. Let E : y2 + y = x3 − x, P = (0, 0), and let Kk be the field described above, namely the
field extension of Q by adjoining all the coordinates of the k-division points of P . Then there is a surjective
homomorphism from the Galois group Gal(Kk/Q) to AGL2(Z/2kZ) = (Z/2kZ)2 o GL2(Z/2kZ). Denote
this by ϕ : Gal(Kk/Q)→ AGL2(Z/2kZ).

A quick word on notation here. We defined the semidirect product in Proposition 16, and here we see an
example of one. For an element of such a group AGL2(Z/2kZ), we will write it as (~v,M) where ~v ∈ (Z/2kZ)2

and M ∈ GL2(Z/2kZ).

Proposition 34. Let E : y2 + y = x3 − x and P = (0, 0) be a point on E. Let ` be a prime larger than 37.
Then P has odd order in E(F`), the reduction of the curve to this finite field, if and only if for all k ∈ N,

∃(~v,M) ∈ im(

[
Kk/Q
`

]
) ⊂ AGL2(Z/2kZ) such that ~v lies in the column space of M − I (the column space of

a matrix such as (M − I) is the set {(M − I) · ~v,~v ∈ (Z/2kZ)2}), where im is the image under the mapping

defined in Proposition 33. (This symbol

[
Kk/Q
`

]
is called the Artin symbol, which we unfortunately do not

have the time to define thoroughly. It is, however, a subset of Gal(Kk/Q). Hint: most important for you,
the contestant, is Proposition 37.)

Let’s parse this last proposition; recall from the interlude that prime ` divides some term of the sequence
if and only if P has odd order in E(F`). We saw earlier as well in problem 3.6 that this happens if and only
if for all integers i, there exists some element βi ∈ E(F`) such that 2i · βi = P . Finally, this condition is
equivalent to the latter part of the above proposition. If you are familiar with Galois theory, as a hint of
why this might be true, the fact that such a βi exists implies that it is fixed by the Fröbenius automorphism.
This leads to the fact that AGL2(Z/2kZ) acting on (Z/2kZ)2 fixes some element ~x. Thus (~v,M)(~x) :=
M · ~x+ ~v = ~x =⇒ (M − I)~x = −~v. From here it’s easy to see that ~v ∈ im(M − I)⇔ −~v ∈ im(M − I).

Definition 35. Let (~v,M) ∈ AGL2(Z/2kZ) be an element of the affine general linear group. We call (~v,M)
a ruminative element if ~v is in the column space of M − I.

For the observant reader, another way to describe this element (~v,M) is to say that M fixes a vector
~x ∈ (Z/2kZ)2 where the action of AGL2(Z/2kZ) on (Z/2kZ)2 is as described above.

Thus we have come from an original question about primes dividing terms of a sequence to a question
about the column space of matrices. This latter is something that we can much more likely solve directly.
(In general, this is a useful strategy. Linear algebra is a subject that is very well understood compared to
other mathematical subjects. This is the motivation behind group representations, for example. In fact,
that linear algebra is so well understood has given rise to the half-serious joke of dismissing a problem by
saying, “it’s just linear algebra!”) For one final step before we try to use linear algebra to find a fraction, we
present the Chebotarev Density Theorem.

Theorem 36. Suppose K/Q is a Galois extension with G := Gal(K/Q) where C ⊂ G is a conjugacy class

of G. Define πC(x) := #{p ≤ x : p is a prime that is unramified in K and

[
K/Q
p

]
= C}. Then

lim
x→∞

πC(x)

π(x)
=
|C|
|G|

.
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(The definition of unramified is unimportant for us. In our specific case, this equivalently means primes
that are greater than 37.) As written, this doesn’t seem to necessarily apply to anything we’ve written so
far. However, one of the facts that we obscured in our presentation of the two propositions above is that the
images of the Galois groups above are in fact images of conjugacy classes. The ultimate result of all of this
is the following.

Proposition 37. Let π(x) denote the number of primes less than x, and let π′(x) denote the number of

primes less than x that divide some term of the Tiger sequence. Let S represent

[
Kk/Q
`

]
, the conjugacy class

inside Gal(Kk/Q) where the k was such that βk such that 2k ·βk = P . Let S′ := im(S) and AGL2(Z/2kZ) =
im(Gal(Kk/Q)) represent the images under the homomorphism ϕ : Gal(Kk/Q)→ AGL2(Z/2kZ) from above.
Then

lim
x→∞

π′(x)

π(x)
= lim
k→∞

|S|
|Gal(Kk/Q)|

= lim
k→∞

|S′|
|AGL2(Z/2kZ)|

.

S here is equal to the Artin symbol of some prime number `.

In other words, the final fraction we have to compute is the last expression in the proposition above. The
best way to interpret S′ in the above is that S′ is the subset of AGL2(Z/2kZ) that consists of the ruminative
elements.

Here is a final note on the previous two sections. We are not fully defining some definitions such as
conjugacy classes and the Artin symbol. They are written here for full formality, but are not necessary for
you the contestants to fully understand. The only part of the previous parts to take away is that S′ is the
subset of AGL2(Z/2kZ) of elements that are ruminative, and we may calculate the number of such elements.
Hint: this interpretation is the only thing you have to take away from sections 7 and 8 in order to solve
section 9.

30



PUMaC 2015 Power Round Section 9 page 31

9 Final Fraction

Thus we are only left with calculating the density! Here are the final steps.

Definition 38. Let vp : Z → Z be a function such that vp(n) = m, where m is the exponent of p in the
prime factorization of n. For example, v2(24) = 3, v3(8) = 0, and v5(−25) = 2.

Proposition 39. Let M ∈ GL2(Z/2kZ) be a matrix such that v2(det(M − I)) = r. Then the number of
elements in the column space of M−I is 22k−r. (Two notes: we do not regard the cases where det(M−I) = 0,
and by definition, det(M − I) is reduced to be the integer n such that 0 ≤ n < 2k and n ≡ det(M − I)
(mod 2k) where det(M − I) is evaluated in Z.)

Problem 9.1 (Final Fraction; 10, 10, 10, 10). In all but the last sub-problem here, assume that k is a
fixed positive integer and we examine elements of AGL2(Z/2kZ) or GL2(Z/2kZ) as the problem dictates.
Vectors are arbitrary element (~v,M) ∈ AGL2(Z/2kZ).

a) Error notice: The problem originally stated here was incorrectly phrased. Due to the fact that we are
sending out a revision so late, we are awarding everyone the full 10 points for this problem. The problem
should have been Proposition 39, which you may assume is true.

b) Suppose that a, b ∈ Z/2Z, c ∈ Z/2nZ, and n ≥ 2. Prove the number of pairs (α, β) ∈ (Z/2nZ)2 with
αβ ≡ c (mod 2n) with α ≡ a (mod 2) and β ≡ b (mod 2) is

0 ab 6≡ c (mod 2),

2n−1 ab ≡ 0 (mod 2) and one of a or b is nonzero,

(2− 1)(v2(c)− 1)2n−1 a ≡ b ≡ c ≡ 0 (mod 2), c 6≡ 0 (mod 2n),

n2n−1 a ≡ b ≡ c ≡ 0 (mod 2), c ≡ 0 (mod 2n).

c) For k ≥ 1, prove the number of matrices M ∈ GL2(Z/2kZ) with det(M − I) ≡ 0 (mod 2k−1) but with
det(M − I) 6≡ 0 (mod 2k) is {

2 k = 1,

3 · 23k−2 − 3 · 22k−1 k ≥ 2.

d) Prove that the density of primes dividing a term of the Somos-4 sequence is 11
21 .

We present the proofs separately. For part b), we may in fact prove a generalization of the problem for
any prime `.

Lemma 40 (Generalization of b)). Suppose that a, b ∈ Z/`Z, c ∈ Z/`nZ, and n ≥ 2. Then, the number of
pairs (α, β) ∈ (Z/`nZ) with αβ ≡ c (mod `n) with α ≡ a (mod `) and β ≡ b (mod `) is

0 ab 6≡ c (mod `)

`n−1 ab ≡ c (mod `) and one of a or b is nonzero.

(`− 1)(v`(c)− 1)`n−1 a ≡ b ≡ c ≡ 0 (mod `), c 6≡ 0 (mod `n)

(n`− n− `+ 2)`n−1 a ≡ b ≡ c ≡ 0 (mod `), c ≡ 0 (mod `n).
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Proof. We count satisfactory solutions (α, β).

• It is clear that if (α, β) is a solution then c ≡ αβ ≡ ab (mod `).

• If a or b is nonzero, then α or β is invertible. If α is invertible it suffices to solve β ≡ α−1c (mod `n).
There are `n−1 choices for α, and once α is chosen, β is fixed. Similarly, if β is invertible, there are
`n−1 solutions.

• If c 6= 0 suppose that i = v`(α). Then, the congruence αβ ≡ c (mod `n) is equivalent to

α

`i
β ≡ c′ (mod `n−i),

where c′ · `i ≡ c (mod `n−i). Then, α/`i is invertible, and hence we have

β ≡ c
(α
`i

)−1
(mod `n−i).

There are `n−i − `n−i−1 choices for α and there are `i choices for β. Moreover, 1 ≤ i ≤ v`(c)− 1 and
hence we have

v`(c)−1∑
i=1

(`− 1)`n−1 = (`− 1)(ord`(c)− 1)`n−1.

• If c = 0, and a = b = 0 then all that we require is v`(α) + v`(β) ≥ n. The number of solutions is then

n−1∑
k=1

#{α : v`(α) = k} ·#{β : β ≡ 0 (mod `n−k)}+ `n−1

=

n−1∑
k=1

(`n−k − `n−k−1) · `k

=

n−1∑
k=1

(`n − `n−1) + `n−1

= (n− 1)(`− 1)`n−1 + `n−1 = (n`− n− `+ 2)`n−1.

Secondly, here is a lemma necessary for the proof of 9.1c):

Lemma 41. The number of M ∈ GL2(Z/`Z) for a prime ` such that det(M − I) = 0 is `3 − 2`.

We do not present a full proof here, as it is unnecessary to prove in generality for our problem that only
considers ` = 2. Note namely that it holds for ` = 2 because the four such matrices are [ 1 0

0 1 ], [ 1 1
0 1 ], [ 1 0

1 1 ],
and [ 0 1

1 0 ].

Lemma 42. For n ≥ 1, the number of M ∈ GL2(Z/`nZ) with det(M−I) ≡ 0 (mod `n−1) but det(M−I) 6≡
0 (mod `n) is {

`4 − 2`3 − `2 + 3` n = 1

(`− 1)2(`+ 1)`3n−2 − (`2 − 1)`2n−1 n ≥ 2.
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Proof. First we deal with the n = 1 case. In this case, it suffices to count the number of M ∈ GL2(F`) with
det(M − I) = 0. Using lemma 41 and the fact that |GL2(F`)| = (`− 1)2`(`+ 1), the result follows for n = 1.

Now assume that n ≥ 2. First, we count the number of matrices M ∈ GL2(Z/`nZ) with

M − I =

[
α β
γ δ

]

and ord`(det(M − I)) = n− 1. If M − I ≡
[
a− 1 b
c d− 1

]
(mod `), then the number of such is

`−1∑
ε=1

`n∑
i=1

#{(α, δ) : αδ ≡ i+ ε`n−1 (mod `n), α ≡ a− 1 (mod `), δ ≡ d− 1 (mod `)}

· {(β, γ) : βγ ≡ i (mod `n), β ≡ b (mod `), γ ≡ c (mod `)}.

Case I: M 6≡
[
1 b
c 1

]
(mod `) and M 6≡

[
a 0
0 d

]
(mod `).

In this case, we never have a − 1 ≡ d − 1 ≡ 0 or b ≡ c ≡ 0. Hence, from lemma 40, the number of
solutions is either 0 or `2n−2. We must have (a− 1)(d− 1) ≡ bc ≡ i (mod `), and hence the only restriction
is that i lie in a particular residue class mod `. Hence, any choice of ε is fine, and there are `n−1 choices for
i. Thus, the number of solutions is (`− 1)`3n−3. How many matrices M ∈ GL2(F`) satisfy the assumptions
of this case?

There are (`−1)2 diagonal matrices M , and `2−`+1 matrices M so that M =

[
1 a
b 1

]
. The only overlap

in these two categories is in the identity matrix. Thus, there are a total of

(`− 1)2 + (`2 − `+ 1)− 1 = 2`2 − 3`+ 1

excluded matrices. The number of matrices M with det(M − I) = 0 is `3 − 2` from lemma 41. Hence, the
number of matrices covered in this case is

(`3 − 2`)− (2`2 − 3`+ 1) = `3 − 2`2 + `− 1.

Thus, the total for this case is
(`− 1)(`3 − 2`2 + `− 1)`3n−3.

Case II: M 6≡ I (mod `) and M ≡
[
a 0
0 d

]
(mod `).

In this case, (a − 1) and (d − 1) are not both zero, but b and c are. This implies that i ≡ 0 (mod `2).
Moreover, any choice for ε will work. There are `n−1 solutions for (α, δ). However, for (β, γ) there are
(`− 1)(ord`(i)− 1)`n−1 solutions if i 6= 0 and if i = 0 there are (n`− n− `+ 2)`n−1 solutions. This gives a
total of ∑

i∈`Z/`nZ,i6=0

`n−1(`− 1)2(ord`(i)− 1)`n−1 + (n`− n− `+ 2)(`− 1)`2n−2

solutions. The first term above is

(`− 1)2`2n−2
∑

i∈`(Z/`nZ),i6=0

ord`(i)− 1

= (`− 1)2`2n−2
n−1∑
k=2

(k − 1)(`− 1)`n−k−1

= (`− 1)3`2n−2
n−2∑
k=1

k`n−k−2.

Now,
n−2∑
k=1

k`n−k−2 =
`n−1 − (n`− n− `+ 2)

(`− 1)2
.
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Hence, the total number of these matrices with M (mod `) fixed is

(`− 1)`2n−2(`n−1 − (n`− n− `+ 2)) + (`− 1)`2n−2(n`− n− `+ 2)

= (`− 1)`3n−3.

As there are `2 − 2` choices for the reduction of M mod `, the total number of such matrices is

(`− 2)(`− 1)`3n−2.

Case III: M ≡
[
1 b
c 1

]
(mod `) with b and c not both zero.

In this case it is more convenient to compute

`−1∑
β=1

`n∑
i=1

#{(α, δ) : αδ ≡ i (mod `n), α ≡ a− 1 (mod `), δ ≡ d− 1 (mod `)}

· {(β, γ) : βγ ≡ i− β`n−1 (mod `n), β ≡ b (mod `), γ ≡ c (mod `)}.

Since a − 1 ≡ d − 1 ≡ 0 (mod `) we must have that i ≡ 0 (mod `2). Since b and c are not both zero, we
have that there are `n−1 choices for (β, γ) for any i ≡ bc (mod `) and any ε. Thus, the number of matrices
with M mod ` fixed is

(`− 1)`n−1
n−1∑

i∈`(Z/`nZ),i6=0

(`− 1)(ord`(i)− 1)`n−1 + (`− 1)(n`− n− `+ 2)`2n−2.

This is the same contribution as from Case II and is hence (`− 1)`3n−3. In this case, there are `2− ` choices
for M mod ` giving a total of

(`− 1)2`3n−2

matrices.
Case IV: M ≡ I (mod `).
In this case, β ≡ γ ≡ 0 (mod `) and hence i ≡ 0 (mod `2). If n = 2, then 0 ≡ αδ ≡ i + ε` (mod `2), a

contradiction and so there are no solutions in this case. Assume therefore that n ≥ 3.
We then have that the total number of matrices is

(`− 1)3`2n−2
∑

i∈`(Z/`nZ),i6=0,i6=−ε`n
(ord`(i)− 1)(ord`(i+ ε`n−1)− 1)

+ 2(`− 1)2(n− 2)(n`− n− `+ 2)`2n−2.

Note that if i 6= 0 and i 6= −ε`n then ord`(i) = ord`(i+ ε`n). Hence, the first term above is

(`− 1)3`2n−2
n−2∑
k=1

k2#{i ∈ (Z/`nZ) : ord`(i) = k + 1} − (`− 1)3`2n−2(n− 2)2.

The subtracted term takes account for the i = −ε`n−1 term which was omitted above. The above sum is

(`− 1)4`3n−4
n−2∑
k=1

k2

`k
− (`− 1)3`2n−2(n− 2)2.

We now make use of the identity

m∑
n=1

n2xn =
m2xm+3 + (1− 2m− 2m2)xm+2 + (m+ 1)2xm+1 − x2 − x

(x− 1)3
.

Taking x = 1
` and m = n− 2 we obtain

n−2∑
k=1

k2

`k
=
`(`+ 1)

(`− 1)3
− (n− 1)2`2 − (2n2 − 6n+ 3)`+ (n− 2)2

`n−2(`− 1)3
.
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Hence, the total number of matrices is

(`− 1)(`+ 1)`3n−3 − (`− 1)((n− 1)2`2 − (2n2 − 6n+ 3)`+ (n− 2)2)`2n−2

− (`− 1)3`2n−2(n− 2)2 + 2(`− 1)2(n− 2)(n`− n− `+ 2)`2n−2

= (`2 − 1)`3n−3 − (`2 − 1)`2n−1.

Note that this is zero for n = 2. Summing all the contributions, we get

(`− 1)2(`+ 1)`3n−2 − (`2 − 1)`2n−1.

Now finally, we have to prove the final equation concerning density 11/21.

Proof. By Proposition 37, we have most of what we need to prove the density. We must calculate the fraction
in the limit as described. We do this by checking the answer for k = 1, and then imagine lifting to higher
and higher k values. Here are two facts as well: |AGL2(Z/2kZ)| = 24 · 64k−1 (easily verifiable; exercise for
the reader! (it’s actually not that bad)).

• Suppose k = 1. Note that
∣∣AGL2(Z/21Z)

∣∣ = 24, and we may manually check that |S′| = 8. Thus the
density for k = 1 is 8/24 = 1/3.

• Suppose k = 2. Note that all 8 elements of AGL2(Z/21Z) that were ruminative lift to elements that are
ruminative in AGL2(Z/22Z). In general, note that ~v =

(
[ uv ] ,

[
a b
c d

])
∈ AGL2(Z/2kZ) has 64 elements

α =
([

u+{0,2k}
v+{0,2k}

]
,
[
a+{0,2k} b+{0,2k}
c+{0,2k} d+{0,2k}

])
∈ AGL2(Z/2k+1Z) such that α ≡ ~v (mod 2k). In this manner,

we see that all 8 ruminative elements of AGL2(Z/21Z) lift to 64 elements each in AGL2(Z/22Z) that
are also ruminative.

Next, we must add elements of AGL2(Z/22Z) that are ruminative but reduce modulo Z/2Z to non-
ruminative elements. These are the elements (~v,M) ∈ AGL2(Z/22Z) such that det(M − I) ≡ 0
(mod 2), det(M − I) 6≡ 0 (mod 4), and such that ~v is in the column space of M − I. By problem 9.1
d), note that there are 3 · 26−2 − 3 · 24−1 = 24 such matrices M , and by Proposition 39, each M has 8
such vectors.

Therefore in total, we have 8 · 64 + 24 · 8 = 702 ruminative elements of AGL2(Z/22Z). Therefore the

density for k = 2 is
704

24 · 64
=

11

24
. (So we are getting closer!).

Thus in general, we may repeat this process indefinitely.
At this point, we feel any major hurdle a team would have had in processing this problem is over, and

leave the rest of the problem as a final exercise for you to think about :)
As one last hint, we claim the number of ruminative elements inside AGL2(Z/2kZ) is 8 · 64k−1 +

k∑
r=1

(
(3 · 23r−2 − 3 · 22r−1) · 2r+1 · 64k−r

)
. Therefore, knowing that |AGL2(Z/2kZ)| = 24 · 64k−1, it suffices

to find the limit. We encourage you to work this out for yourself, but indeed,

lim
k→∞

|S′|AGL2(Z/2kZ) =

8 · 64k−1 +
k∑
r=1

(
(3 · 23r−2 − 3 · 22r−1) · 2r+1 · 64k−r

)
24 · 64k−1

=
11

21
,

and we are done!

That’s it! We hope you’ve had a fun ride.
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Appendices

A Proof of Integrality

We present the following facts about the sequence, including proofs that it is integral. As a quick remark,
note one can extend the sequence into negative indices by using the recursive definition of dn. Noting that

dn =


dn−1dn−3−d2n−2

dn−4
if n 6≡ 2 (mod 3)

dn−1dn−3−3d2n−2

dn−4
if n ≡ 2 (mod 3),

One has that for all n ∈ Z,

dn =


dn+3dn+1−d2n+2

dn+4
if n 6≡ 1 (mod 3)

dn+3dn+1−3d2n+2

dn+4
if n ≡ 1 (mod 3).

This fact will be used for establishing base cases in some proofs. Consider the following.

Definition 43. For n ∈ N, define sn := dndn+5 − dn+2dn+3.

Lemma 44. For all n ∈ N, dn+7sn = dn+1sn+3.

Proof. For all k ∈ N, we hope to show

dk+7sk = dk+1sk+3

⇔ dkdk+5dk+7 + dk+1dk+5dk+6 − dk+2dk+3dk+7 − dk+1dk+3dk+8 = 0.

Again after rewriting this expression with terms dk through dk+4, factoring, we may find h(k + 3) = 0 is a
factor. And equivalently, dk+2sk = dk−4sk+3 as desired.

Corollary 45. For all n > 1,

sn =

{
dn+1dn+4 if n ≡ 0, 1 (mod 3)

3dn+1dn+4 if n ≡ 2 (mod 3).

Proof. Examine first the case n ≡ 0 mod 3. Computationally. s3 = d3∗d8−d5∗d6 = (−3)(247)−(−17)(2) =
−707 = (−7)(101) so the claim is true for n = 3. Now suppose for the sake of induction, suppose for all
n ≤ k satisfy the claim for some k ≡ 0 mod 3. Then

dk+1dk+4 = sk

dk+1dk+4 =
dk+1sk+3

dk+7

=⇒ sk+3 = dk+4dk+7.

Thus by induction, for all n ∈ N, n ≡ 0 (mod 3), our claim is true. The other two cases modulo 3 are
identical.

This is sufficient to see integrality.
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Proposition 46. For n ≥ 3, both dn ∈ Z and (dn, dn−2) = (dn, dn−1) = 1.

Proof. Proceed by induction. Note that the first 4 terms are 1, 2, 1,−3 ∈ Z, so the base case is true.
Suppose for all n ≤ k + 4 for some k that dn is integral and the coprime condition is true. Note since

k + 1 < k + 4 that (dk, dk+1) = 1. By Bezout’s lemma, ∃r, s ∈ Z such that 1 = rdk + sdk+1 =⇒ dk+5 =
rdkdk+5 + sdk+1dk+5.

By the definition of the sequence, for some coefficient c1 ∈ {1, 3}, dk+1dk+5 = dk+4dk+2 − c1d2k+3. Also
by the corollary above,

dkdk+5 − dk+2dk+3 = sk = c2dk+1dk+4 =⇒ dkdk+5 = c2dk+1dk+4 + dk+2dk+3,

for some c2 ∈ {1, 3}. Therefore by the inductive hypothesis, dk+1dk+5, dkdk+5 ∈ Z, and dk+5 = rdkdk+5 +
sdk+1dk+5 ∈ Z as desired.

To see that dk+5 is coprime to the three terms before it, note that (dk+1dk+4, dk+2dk+3) = 1 because by
the inductive hypothesis, both dk+1 and dk+4 are coprime to dk+2dk+3. Thus

(dk+1dk+4, dk+2dk+3) = 1

(dk+1dk+4, c2dk+1dk+4 + dk+2dk+3) = 1

(dk+1dk+4, dkdk+5) = 1.

Therefore dk+5 is coprime to dk+4 as desired. Similarly, (dk+4dk+2, d
2
k+3) = 1 =⇒ (dk+1dk+5, d

2
k+3) = 1,

and so dk+5 is coprime to dk+3 as well. Therefore, dk+5 is coprime to the two previous terms as desired.
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