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Energy and economic evaluation of a poplar plantation for woodchips 1 

production in Italy 2 

 3 

Abstract 4 

In Europe, farmers prefer the very Short Rotation Coppice (vSRC) cultivation model, with a 5 

very high plant density (5500-14000 p ha-1) and a harvesting cycle of 1-4 years; while in Italy, 6 

recently, the farmers prefer the Short Rotation Coppice (SRC) method, with a high plant 7 

density (1000-2000 p ha-1) and a harvesting cycle of 5-7 years. This is because the most recent 8 

poplar hybrids have enhanced productivity and improved the biomass quality (calorific 9 

value), as a result of a better wood/bark ratio.  10 

In order to evaluate, from the energy and economic point of view, a poplar SRC, in the river 11 

Po Valley, an ad hoc study was made and a specific model was developed. 12 

On the basis of this cultivation technique, an energy and economic evaluation of a poplar SRC 13 

in Northern Italy was realised. In detail, were considered data of poplar growth, in a plantation 14 

for the production of 6 year whips, in Western Po Valley, considering a SRC duration of 6 15 

years and a biomass (15 Mg ha-1 dry matter -D.M. per year) harvest at the end of cycle (6 16 

years). In this computing system it was pointed out that the SRC is very interesting from an 17 

energy point of view, since the output/input ratio results to be higher than 18. The same in not 18 

true for the poplar SRC from an economic point of view. In order to obtain economic SRC 19 

sustainability, the biomass price should be at least 115 € Mg-1 D.M. A large biomass diffusion 20 

will be possible only with an increase of the biomass market value, or with economic sustain 21 

for its production.  22 

 23 
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Introduction 27 

The cultivation of crops for biomass production on good, arable soils allows to increase the 28 

energy production, with many advantages from the environmental point of view. This solution 29 

increases the farmers’ revenues and leads to advantages for the environment [1,2,3,4,5]. 30 

In the last 10 years, the cultivation of crops for biomass production has been inserted in the 31 

cultural plans of several farms, particularly in Northern Italy; farmers take advantage of their 32 

low input requirement and the added possibility of exploiting set-aside areas [6]. In Italy, 33 

there are two different methods of cultivation: very Short Rotation Coppice (vSRC), with very 34 

high density, from 5,500 to 14,000 plants ha-1 and harvested with a rotation period of 1-4 35 

years and Short Rotation Coppice (SRC) with a high density from 1,000 to 2,000 plants ha-1 36 

and harvested with a rotation of 5-7 years [7,8]. In Europe, the farmers prefer the vSRC 37 

cultivation model [9,10,11,12,13], while in Italy, recently, the farmers prefer the previously 38 

described SRC method, because the most recent poplar hybrids have enhanced productivity 39 

and improved the biomass quality (high calorific value), as a result of a better wood/bark ratio 40 

[14,15,16,17]. Furthermore, it is also prefered, because in the rural development plans of the 41 

main Regions of northern Italy, the establishment of this cultural model is financed.  42 

Most of the studies carried out until now in Italy have focused only on the vSRC method, as 43 

they are more spread throughout the territory; little has been yet experienced on the SRC 44 

method [18,19]. 45 

In order to evaluate from the energy and economic point of view a poplar SRC in the river Po 46 

Valley an ad hoc study was made and a specific model has been developed.  47 

 48 

Materials and methods 49 

A series of data were collected, both in the nursery and in the poplar SRC plantation, nearby 50 

the experimental farm “MEZZI” of CRA-PLF, close to Casale Monferrato (AL), during 2006-51 

2012 period. All the cultural operations for poplar plantation were analysed: the working time 52 
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and both machines and manpower requirements were recorded on the field, in compliance 53 

with CIOSTA (Comité International d’Organisation Scientificue du Travail en Agricolture) 54 

methodology, on at least 5.000 m2 surface areas and for periods not shorter than 2 hours [20].  55 

The developed model allowed the determination of manpower and energy requirements, as 56 

well as the costs analysis considering different crop density and biomass production. The 57 

model considers a continuous poplar SRC plantation: the whole acreage is divided into 58 

different “modules”, each corresponding to 1 year of the crop cycle, allowing to refer all costs 59 

to annuity. Regarding the economic and energetic evaluation, a 6 years rotation, with 60 

harvesting carried out at the end of the cycle and with a starting poplar plants density of 1100 61 

for hectare was considered, with a 3.00 × 3.00 m spacing and a mean production of 15 Mg ha-62 

1D.M. year-1 [21,22]. For all post-emergency treatment, it was supposed to use traditional 63 

tractors with 4 RM, with a maximum width of 2.2 m. In detail, for the nursery and the poplar 64 

SRC plantation it was assumed to prepare the soil with ploughing at 40 cm depth after seed 65 

bed fertilization – 500 kg ha-1 of 8.24.24 (N,P,K).  66 

Secondary tillage was carried out by two harrowing interventions, while for the plantations of 67 

rods (1.20-2.00 m in length), an Allasia V1 planter was considered [23]. The cultural 68 

operations assumed for the SRC cultivation and nursery were fertilization and weed control, 69 

both necessary to allow a high production of biomass [24,25]. Finally, it was assumed to use a 70 

heavy cultivator for stumps removal (table 1-2).  71 

For biomass harvesting, a chipper prototype Gandini Bio-harvester (purchase cost € 60,000) 72 

was used, with a tractor of 190 kW Case Magnum 260 EP (purchase cost € 170,000). The 73 

working capacity of the Gandini Bio-harvester is about 60 t h-1 (about 120 plants h-1)[26]. For 74 

the transport of the biomass in the farm (about 400 meters distant), two tractors with trailers 75 

were used. The average cost of the Gandini Bio-harvester was determined considering 76 

contractors costs.  77 

 78 
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The manpower requirement was determined considering the number of operators and the 79 

working time to carry out every cultural operation. 80 

 81 

The energy consumption were determined considering both direct costs – fuel and lubricant 82 

consumption - and primary energy – machine, equipment and mineral fertilizer energy 83 

contents (table 3) [27]. Machine fuel consumption was determined by refilling the machine 84 

tank at the end of each working phase. The tank was refilled using a 2000 cm3 glass pipe with 85 

20 cm3 graduations, corresponding to the accuracy of our measurements. 86 

The lubricant consumption was determined in function of the fuel consumption using a 87 

specific algorithm setup by Piccarolo [28]. 88 

The human work was expressed in manpower hour requirement, for every cultural operation, 89 

but it was not considered from the energy point of view. 90 

 91 

The economic evaluation was determined for every cultural operation considering both the 92 

machine cost and that of the production factors (fertilizers, plant protection products) 93 

(table 4). 94 

The hourly cost rate of each machine was evaluated using the method proposed by Miyata 95 

[29], with prices updated to 2013. An annual utilization of at least 500 hours (tractor used also 96 

for other operations) was assumed for tractors, and the power requirement was calculated by 97 

taking into consideration the data recorded during experimentation and the drawbar pull and 98 

power requirement, in the different operating conditions. Labor cost was set to 18.5 € hour-1. 99 

Fuel cost was assumed to be 0.9 € kg (subsidized fuel for agricultural use). Also the tractor 100 

hourly cost was determined with the methodology proposed by Miyata [29]. 101 

For the evaluation of economic sustainability it was determined the Net Present Value (NPV) 102 

that indicates the difference between the total income and the total costs determined 103 
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considering a biomass value of 100 € Mg-1D.M. This determination was done for different 104 

costs of land and water use [30]. 105 

 106 

Results 107 

Near 27 hours per year-1 of manpower were required for the cultivation of one SRC hectare.  108 

The biomass harvesting required less than 45% of the total time, while the pesticides 109 

application required more than 9% (Fig. 1). 110 

 111 

The energy consumption for the cultivation and management of 100 ha of poplar irrigated 112 

SRF is of 15.2 GJ ha-1 per year and represents about the 5% of the biomass energy production 113 

(about 270 GJ ha-1 for year). The input/output ratio is close to 18. The largest part of energetic 114 

input (44%) is linked to cultural operations, in particular at the top dressing (36% of the total 115 

energy requirement). Harvesting and biomass transport to the farm storage represents about 116 

25% of the total energy requirements; the flood irrigation does not require any energy input 117 

(Fig. 2). 118 

In conclusion, for arable surfaces between 50 and 200 ha, the total energy cost resulted 119 

between 4.9 and 5.2% of the energy produced. 120 

In the total balance, the direct energy cost results to be 1.9% and the indirect energy cost the 121 

3.0%, for a 50 ha SRC cultivation and 3.2% for a 200 ha SRC cultivation.  122 

 123 

The production cost of the SRC with 6 year cycle resulted closely connected to both the 124 

cultivated surfaces and to the production level. Considering a biomass production of 125 

90 Mg ha-1 D.M. per cycle, equivalent to about 180 Mg ha-1 W.B., the production cost is close 126 

to 122 € Mg-1 D.M. for SRC surfaces of 100 ha (Fig. 3), a value higher than the market price 127 

of wood chips (95 € Mg-1 D.M.) . 128 
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The cultural operations that have the higher weight on the total production costs are the “crop 129 

management operations” (near 26,9%) (Fig. 4). The most expensive are the interrow 130 

cultivations (weed control) for post-emergence treatment and the irrigation intervention; but 131 

these operations are indispensable to get a high biomass production. Besides, land use costs 132 

showed also a high incidence on the total costs. For example, considering a 100 ha SRF 133 

surface, with 15 ha-1year-1 D.M. biomass production, for every cycle and zero cost for 134 

irrigation, the biomass cost production is 113 € Mg-1 D.M., with land use cost of 200 € ha-135 

1year-1. In the case of a land use cost of 400 € ha-1year-1 the biomass production cost is of 136 

126 € Mg-1 D.M. The land rent cost weights upon total production cost for the 11 and 21% 137 

respectively. Considering zero the cost rate of land, the biomass production cost fluctuates 138 

from 103 € Mg-1 D.M. to 119 € Mg-1 D.M. with 50 and 300 € ha-1 irrigation costs respectively 139 

(Fig 5-6). 140 

Nevertheless, it has to be considered the influence of the transport and storage costs in terms 141 

of biomass losses on the total biomass production cost. The transport cost weights upon total 142 

cost for the 2 and 15% for distances of 5 and 50 km respectively (Fig. 7).  143 

 144 

Discussion 145 

The poplar SRC plantation, in the considered condition, - 6 years rotations, with harvesting 146 

carried out at the end of the cycle and a production of 15 Mg ha-1D.M. year-1, -  is very 147 

interesting under the energy point of view, since the output/input ratio results to be higher 148 

than 18.  149 

This value is 5 points higher than that calculated for a vSRC by Manzone et al [17]. The better 150 

results are to be attributed at the minor energy consumption for SRC planting, because the 151 

rods preparation is less expensive compared to cuttings production and the SRC starting 152 

investment (1,700 plants ha-1) is minor to vSRC plantation (6,700 plants ha-1).  153 



 7

Furthermore, the use of rods in SRC planting reduces also the energy consumption for the 154 

weed control, because the shoots are placed at a height (50 – 120 cm) greater than that of the 155 

cuttings and they can better compete with the weeds. 156 

 157 

The largest part of energy input (44%) is linked to cultural operations, in particular at the top 158 

dressing (36.8% of the total energy requirement) necessary to have a high biomass production 159 

(15 Mg ha-1D.M. year-1) [31] as well as to choose the most appropriate clone for the site [11]. 160 

 161 

In the total balance, the energy input per unit biomass produced is 4.1% of the energy output. 162 

This value is similar to that found in another analysis made in Sweden on willow SRC [32]. 163 

 164 

The SRC economic evaluation, differently from energy point of view, is negative because the 165 

market price of the woodchip is low respect to value of production. In fact, in order to get 166 

economic SRC sustainability, the biomass price shall be at least 115 € Mg-1 D.M. (€ 15 more 167 

than to currently market price).  168 

But with this model, in 6 years trees with a diameter at breast height of 150-200 mm are 169 

grown. So the basal part of the trunk, up to 4-6 m, can be used to produce industrial wood 170 

(OSB panel, packaging) with a value higher than the one of wood chips for energy. In this 171 

case the economic balance become positive [33]. 172 

Since the tree have not a small diameter (> 150 mm), this biomass plantations  173 

offer woodchips of high quality, with high fibres content (85–90%) and favourable particle-174 

size distribution. On the contrary, vSRC presented a high bark content (>20%) and 175 

occasionally a mediocre particle-size distribution, being often too rich in fines (>10%). These 176 

problems were especially serious with fuel derived from 1-year old vSRC sprouts [18].  177 

A material with high bark content have a low market price because showed a low lower 178 

heating value and a high ash content [34,35,36]  179 
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 180 

Besides, it is to highlight that the rods planting is a difficult operation management due to the 181 

reduced available time (march and april) and because the planters used have a low working 182 

rate and required a high manpower [23]. 183 

 184 

Conclusions 185 

A large SRF plantation diffusion will be possible only with an increase of the biomass market 186 

value or with economic support for the production.  187 

At present, Italian farmer prefer the SRC cultivation model respect to that vSRC cultivation 188 

model because from tree with 6 years of age is possible to obtain wood assortment of high 189 

economic value to sell to sawmills (packaging) or for OSB panel production. 190 

It is to underline that SRC cultivation can contribute to solve the problem of the exceeding 191 

traditional cultivations and that it is able to improve the relations between agriculture and 192 

environment. It’s getting more important to find low environmental impact cultural solutions 193 

able to maximize the biomass yield by using the poplar auxometric curve.  194 

 195 
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