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Abstract

Integer sequences play a pivotal role in cryptography, acting as foundational
elements for numerous cryptographic algorithms. This comprehensive investigation
examines integer sequences that have significantly impacted the sector in domains
such as key generation, hash function design, and encryption protocol development,
including their specific implementations. We conduct an unprecedented systematic
review of existing literature, analysing fundamental properties of these sequences
and detailing their contributions to well-established cryptographic areas. In addition,
the research emphasises the various strengths and limitations associated with these
sequences, as well as their practical applications in the realm of digital information
security. This is accomplished by developing a categorisation framework that
facilitates mapping of their contributions. Furthermore, this framework can be used
as a reference point for future analyses in this field.

As a result, our initial emphasis was on the thorough investigation and con-
ceptualisation of a novel integer sequence generation model. This model holds the
potential to be remarkably unique, capable of unifying and encompassing both
existing integer sequences and those yet to be discovered into a cohesive and com-
prehensive framework. Following this foundational work, our attention shifted to
analysing the prospective applications of this model, particularly within the field of
cryptography. Here, we honed in on the intricate concept of randomness, delving
into a detailed analysis of its potential significance and the various implications it
may hold for advancing cryptographic techniques and security protocols.

Randomness is a key ingredient in every area of cryptography and producing
it should not be left to chance. Unfortunately, it is very difficult to produce true
randomness, and consuming applications often call for large, high quality amounts
on boot or in quick succession. To meet this requirement, we make use of Pseudo-
Random Number Generators (PRNGs) which we initialise with a small amount of
randomness to produce what we hope to be high quality pseudo-random output.

Therefore, our model has been instrumental in the design of a PRNG which has
exhibited statistically significant capabilities, as well as satisfactory performance
metrics, to corroborate its inherent randomness properties.

In summary, this study emphasises the considerable potential that exists for
the ongoing exploration and development of novel applications involving integer
sequences within the domain of cryptography. The findings suggest that these
sequences could play a pivotal role in enhancing and advancing cryptographic
methodologies, opening avenues for new innovations and improvements.
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Chapter 1

Introduction

1.1 Motivation
Throughout the history of cryptography, there have been instances of encountering
specific sequences of numbers with distinctive characteristics. The most well-known
sequence is undoubtedly the set of prime numbers, but other sequences have also
been significant in various applications.

As mathematicians investigate integer sequences further, they discover new
patterns and connections that are relevant in fields like cryptography. These unique
sequences serve as the foundation for cryptographic algorithms and data encryption,
presenting opportunities to develop secure communication systems and protect
sensitive information based on their intricate relationships. Therefore, the study
of integer sequences is not only a fascinating pursuit in pure mathematics but
also a driving force behind innovative advancements in technology and science.
Its impact, from providing fundamental insights into number theory to enabling
secure communications and efficient data processing, underscores the far-reaching
significance of integer sequences in our modern world.

Therefore, studying new models to generate families of integer sequences is useful
for purposes aimed at by cryptography, particularly for those applications that
require randomness.

The absence of guarantees regarding the randomness of the generated numbers
can result in significant vulnerabilities within cryptographic protocols, which can be
exploited by attackers. A notable instance is the issue within the one version of the
Debian Linux distribution [CVE08], where a commented section in the OpenSSL
PRNG code contributed to inadequate entropy collection, consequently exposing
the TLS and SSH protocols to tangible attacks. In work [LHA+12], it was shown
that a significant fraction of RSA keys have common prime factors. In another
contribution [HDWH12], an analysis was provided that reveals how Linux PRNG
leads to the production of low-entropy keys, particularly when generated during boot
time. Furthermore, cryptographic algorithms are particularly susceptible to flaws
in the foundational random number generation process. For example, numerous
studies have shown that using a weak pseudo-random number generator to create
nonces for the DSS signature algorithm can lead to rapid recovery of the secret
key after observing only a few signatures (refer to [NS02] and related citations).
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This highlights the critical necessity for a thorough assessment of PRNGs under
well-defined security standards.

1.2 Our Contributions
Based on a thorough exploration of the bibliographic references outlined in the
preceding paragraph, it becomes apparent that there is a significant lack of systematic
review within the existing literature that thoroughly describes the use of integer
sequences in cryptography. Therefore, our research began by filling this gap within
the targeted scientific domain. In doing so, we intend to establish a foundational
framework that will facilitate the systematic examination of the use of integer
sequences in cryptographic practices.
The contributions presented within the context of this comprehensive systematic
literature review are as follows:

1. By synthesising the findings, we aim to provide a comprehensive analysis of
existing research. This seeks to offer a clear, detailed, and organised overview
of current trends, research gaps, and emerging directions within the field. The
comprehensive analysis helps identify areas that require further exploration
and emerging topics that are gaining attention.

2. We offer critical insights and form recommendations for practitioners and
researchers based on the current state of the field. This review serves as a
valuable resource for both researchers and practitioners, guiding their future
efforts. In addition, it fosters a deeper understanding of the cryptographic
landscape and its complexities, helping to advance both theoretical and applied
research.

3. We propose a conceptual framework for future research. This framework
outlines potential methodologies and theoretical perspectives that could be
employed to address the limitations and gaps identified in previous studies. By
suggesting new approaches and theoretical underpinnings, we aim to stimulate
innovative research directions and contribute to the advancement of the field.

Subsequently, on the basis of the analysis of the literature, we achieved the following
research results:

Result 1: Definition of a sequence generation model that is largely novel and capable of
aggregating existing sequences into a single family.

Result 2: Application of the aforementioned sequence generation model for the devel-
opment of a PRNG on which statistics have been performed to validate its
randomness.

1.3 Thesis organisation
The primary structure of the thesis is described as follows:
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■ Chapter 2 - We first recall some basic notions about sequences of integers
and the main tools for analysing their behaviour.

■ Chapter 3 - Outlines the primary sequences that have been employed in the
field of cryptography throughout history. In particular, the classification of
the uses of each sequence will be thoroughly and systematically carried out,
with consideration given to the macro-areas below, which will provide the
overarching framework for this process of categorisation and arrangement:

− Foundations. The paradigms, approaches, and techniques used to concep-
tualise, define, and provide solutions to natural cryptographic problems.

− Cryptographic hash functions. Algorithm that computes a numerical value
(called a hash value) on a data file or electronic message that is used to
represent that file or message and depends on the entire contents of the
file or message. A hash function can be considered to be a fingerprint of
the file or message.

− Secret-key cryptography. Also referred to as symmetric key cryptography,
is a cryptographic algorithm that uses the same secret key for its operation
and, if applicable, for reversing the effects of the operation (e.g., an AES
key for encryption and decryption).

− Public-key cryptography. Alternatively, named asymmetric cryptography
is a set of three cryptographic algorithms (KeyGen, Encrypt, and Decrypt)
that can be used by two parties to send secret data over a public channel.
Also known as an asymmetric encryption scheme.

− Cryptographic protocols. These protocols consist of a collection of rules
and processes in which cryptographic algorithms are used to guarantee
secure communication and data exchange.

− Implementation. Application that performs a cryptographic function.
− Attacks and cryptanalysis. The study of techniques to attempt to defeat

cryptographic techniques and information system security. This includes
the process of looking for errors or weaknesses in the implementation of
an algorithm or of the algorithm itself.

− Steganography. The art, science and practice of communicating in a way
that hides the existence of the communication, embedding data within
other data to conceal it.

Furthermore, in the corresponding subsections titled "Further details", for
each sequence, one of the applications in cryptography described synthetically
is chosen and analysed in depth. In the concluding segment of Chapter, in
Section 3.2 we provide a summary analysis highlighting the macro-areas of
cryptography in which the sequences have provided a significant contribution.

■ Chapter 4 - We describe the construction of a new model for generating
integer sequences capable of defining a new family of integer sequences.

■ Chapter 5 - The previously discussed model is utilised in cryptographic appli-
cations through the creation of a PRNG (Pseudo-Random Number Generator),
followed by a statistical evaluation of its randomness.
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Chapter 2

Preliminaries and Notation

2.1 Integer sequences
Integer sequences are found in various areas of mathematics and have practical uses
in fields such as computer science, physics, and engineering. They are frequently
used to represent real-world problems and phenomena, and understanding their
characteristics can provide valuable insights and solutions.

An essential part of comprehending integer sequences is to identify patterns
and links between the terms. This includes examining how the sequence behaves,
recognising recurring relationships, and investigating any fundamental mathematical
principles that govern its development. Furthermore, researching integer sequences
often involves discovering connections to other branches of mathematics such as
number theory, combinatorics, and algebra. By exploring these connections, mathe-
maticians can gain a deeper understanding of the nature of the sequences’ broader
significance.

2.2 On-Line Encyclopedia of Integer Sequences (OEIS)
The On-line Encyclopedia of Integer Sequences (OEIS) is a comprehensive and widely
used reference database that catalogues integer sequences [oei]. In 1964, Neil Sloan
began collecting integer sequences as a graduate student to support his research in
combinatorics. The database was initially stored on a punch card. He published two
book selections from the database:

− A Handbook of Integer Sequences (1973) [Slo73], which contains 2372 sequences
in lexical order and assigns numbers from 1 to 2372.

− The Encyclopedia of Integer Sequences (1995)[SP95], which contains 5488
sequences and assigns numbers M from M0000 to M5487. The encyclopedia
includes references to the corresponding sequence in the A Handbook of Integer
Sequences (in the few initial terms that may vary), i.e., N of N0001 to N2372
(instead of 1 to 2372). The encyclopedia contains the A numbers used in OEIS,
while the manual does not.

These books were highly appreciated, and especially after the second edition,
mathematicians provided a steady flow of new sequences for Sloane. The collection
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became unmanageable in book form and, when the database reached 16000 entries,
Sloan decided to go online, initially as an e-mail service in August 1994 and shortly
thereafter as a website in 1996. As a spin-off of database work, Sloane founded the
Journal of Integer Sequences in 1998. The database continues to grow at an annual
rate of about 10000 entries. Sloane has been personally managing his sequences for
nearly 40 years, but since 2002 a team of associate editors and volunteers has helped
maintain the database.

In 2004, Sloane celebrated the addition of the 100000th sequence to the database,
and in 2006 the user interface was overhauled and more advanced search capabilities
were added. Later, in 2009, he transferred OEIS intellectual property and hosting to
the OEIS Foundation. Sloane is the chairman of the OEIS Foundation and in 2010 an
OEIS wiki at OEIS.org was created to simplify the collaboration of the OEIS editors
and contributors. The OEIS registers information on integer sequences of interest to
both professional and amateur mathematicians and is widely cited. As of April 2023,
it contained more than 360000 sequences and is the largest database of its kind. To
each sequence OEIS assigns a unique identification code of the AXXXXXX type with
which a new database entry is established. Each entry contains key terms such as
sequences, keywords, mathematical motives, literature links, and other options such
as graphic generation and musical representations of sequences. The database can
be searched by keywords, subsequences, or one of 16 fields. It serves as a valuable
resource for mathematicians, researchers, and enthusiasts who study and analyse the
patterns and properties of integer sequences, providing insights into mathematical
patterns, and serving as a reference for researchers exploring the vast field about
them.

The OEIS promotes a strong sense of unity and cooperation within the field of
mathematics. By offering a platform for individuals to share their expertise, the
encyclopedia continues to develop and grow, benefiting from the collective knowledge
of mathematicians, researchers, educators, and students around the world.

Community involvement in the encyclopedia goes beyond simply submitting new
sequences and corrections. Users can participate in discussions, exchange ideas, and
provide suggestions for improving existing sequences. This collaborative approach
not only improves the quality and precision of the database, but also builds a vibrant
community where individuals can learn from one another while collectively advancing
their understanding of integer sequences.

In addition, the encyclopedia fosters collaboration by highlighting how different
sequences are connected and encouraging users to explore the relationships among
them. By recognising patterns, similarities, and dependencies between various
sequences, users contribute to expanding mathematical knowledge while uncovering
new connections that enhance research on integer sequences.The interactive nature of
OEIS underscores its vitality as a continually developing resource which is shaped by
active participation members. As users continue sharing their expertise discoveries,
user-generated content remains an integral aspect maintaining position at forefront
research valuable insights fostering spirit collaboration among maths specialists
enthusiasts.
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2.3 Notation and Mathematical Preliminaries
The chapter serves a vital role in establishing a strong foundation for the mathemat-
ical context of the work. Its objective is to create a shared and precise language,
necessary for an accurate comprehension of the material presented throughout the
text. By introducing specific notation and mathematical fundamentals, we aim to
establish a solid basis for developing subsequent arguments and proofs, enabling
clear communication of complex concepts that will be explored in this chapter as well
as throughout the entire work. Consistent notation and precise terminology demon-
strate our dedication to accurately treating the material, ultimately contributing to
a deeper understanding of the mathematical aspects covered in this work.

Sequence

Definition 2.3.1. An integer sequence is a sequence (i.e., an ordered list) of integers.

Remark 1. A sequence is an enumerated collection of objects in which repetitions
are allowed and order matters. Like a set, it contains members (also called elements
or terms). The sequence length is determined by the number of elements (possibly
infinite).

Symbolically (an)n∈N denotes a sequence whose nth element is given by the variable
an. For example:

a1 = 1 st element of (an)n∈N
a2 = 2 nd element
a3 = 3 rd element

...
an−1 = (n− 1) th element
an = nth element

an+1 = (n+ 1) th element
...

(2.1)

For the above, we can define a sequence of integers as:

− Explicit formula for its nth term. For example, the sequence 0, 3, 8, 15, . . . is
formed according to the formula n2 − 1 for the nth term.

− Relationship between its terms. For example, the sequence 0, 1, 1, 2, 3, 5, 8, 13, . . .
(Fibonacci sequence - OEIS: A000045) is formed by starting with 0 and 1 and
then adding any two consecutive terms to obtain the next one.

− Alternatively, an integer sequence may be defined by a property that members
of the sequence possess and that other integers do not possess. For example,
we can determine whether a given integer is a perfect number, even though we
do not have a formula for the nth perfect number.

Subsequences. Subsequences are sequences formed from the given sequence
by deleting some of the elements without disturbing the relative positions of the

https://oeis.org/A000045
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remaining elements. For example, the sequence of even positive integers (2, 4, 6, . . .)
is a subsequence of positive integers (1, 2, 3, . . .). In the case of deletion of some
elements, the positions of those elements change. However, the relative positions are
preserved.

In formal terms, a subsequence of the sequence (an)n∈N is any sequence of the
form (ank

)k∈N, where (nk)k∈N is a strictly increasing sequence of positive integers.

Recurrence relation

Definition 2.3.2. Let an be a sequence of numbers. A recurrence relation on an is
an equation according to which the nth term of a sequence of numbers is equal to
some combination of the previous terms.

More precisely, in the case where only the immediately preceding element is
involved, a recurrence relation has the form:

an = f(n, an−1) for n > 0 (2.2)

where
f : N×X → X (2.3)

is a function, where X is a set to which the elements of a sequence must belong.
For any n0 ∈ X, this defines a unique sequence with n0 as its first element, called
the initial value. It is easy to modify the definition to get sequences starting from
the term of index 1 or higher. This defines the first-order recurrence relation. A
recurrence relation of order k has the form:

an = f(n, an−1, an−2, . . . , an−k) for n ≥ k (2.4)

where f : N × Xk → X is a function that involves k consecutive elements of the
sequence. In this case, the initial values k are needed to define a sequence.
Example. Some examples to explain the order of a relation:

− The Fibonacci sequence (OEIS: A000045) is defined by the recurrence relation
Fn = Fn−2 + Fn−1, n ≥ 2, with the initial conditions F0 = 1 and F1 = 1. The
recurrence relation is called a second-order relation because Fn depends on
the two previous terms of F .

− The relation Tn = 2T 2
n−1 − kTn−3 is a third-order recurrence relation. If the

values of T0, T1 and T2 are specified, then Tn is fully defined.

− The recurrence relation Sn = S⌊n/2⌋ +5, n > 0, with S0 = 0 is infinitely ordered.
To determine Sn when n is even, you must go back to the terms of n/2. Since
n/2 grows unbounded with n, no finite order can be given to S.

Recurrence relations appear in a natural way when studying several different kinds
of problem, like computing increments or decrements of populations with given
reproduction rules, colouring pictures with just two colours, computing the number
of moves in different games, computing compounded interests, solving geometrical
problems, etc.

https://oeis.org/A000045
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Linear recurrence

Definition 2.3.3. Integer sequences that can be described as homogeneous linear
recurrence relations with constant rational coefficients.

Suppose that we have a function f : N → R. Setting an = f(n) for all n ∈ N,
we term the set {an}∞n=1 a sequence. Assuming that we know a1, . . . , ak and for
an = f (an−1, . . . , an−k) for some function f : Rk → R, we say that {an}∞n=1 is a
recursively defined sequence given by the recurrence relation an = f (an−1, . . . , an−k).

We say a recurrence relation is linear if f is a linear function or in other words:

an = f (an−1, . . . , an−k) = s1an−1 + · · ·+ skan−k + f(n) (2.5)

where si, f(n) are real numbers [EVDPS+03]. Moreover, a linear recurrence relation
is homogeneous if f(n) = 0 and non-homogeneous if f(n) ̸= 0.

Definition 2.3.4. Homogeneous linear recurrence relations with constant coefficients.
An order k homogeneous linear recurrence relation with constant coefficients is an
equation of the form:

k∑
i=0

cia(n− i) = c0a(n) + c1a(n− 1) + c2a(n− 2) + · · ·+ cka(n− k) = 0 (2.6)

where the k coefficients ci(∀i) are constants.

Example. Homogeneous linear recurrences (of order 1) with constant coefficients:{
a0 = 1
an = 2an−1, n ≥ 1 (2.7)

(OEIS: A000079) Powers of 2 : a(n) = 2n:

{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .}. (2.8)

From the generating function of powers of 2 (where in the second version the
denominator has the form of the recurrence):

G{2n,n≥0}(x) = 1
1− 2x =

(
x−1)1

(x−1)1 − 2 (x−1)0 , (2.9)

and setting x−1 to 10k, we get the form:(
10k

)1

(10k)1 − 2 (10k)0 = 10k

10k − 2 =
∞∑
n=0

2n

(10k)n
, k ≥ 1. (2.10)

For example, for the first few values of k, we have (note that overlapping would
occur if powers of 1 had more than k digits):

k = 1 : 10/8 = 1.25
(

here
∑∞
n=3

2n

(10n)n = 0.01, and 1 + 2/10 + 4/100 = (100 + 20 + 4)/100
)

k = 2 : 100/98 = 1.0204081632653061224489795918 . . .
k = 3 : 1000/998 = 1.002004008016032064128256513 . . .
k = 4 : 10000/9998 = 1.00020004000800160032006401 . . .

(2.11)

https://oeis.org/A000079
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A variant of the above is:

1
(10k)1 − 2 (10k)0 = 1

10k − 2 =
∞∑
n=0

2n

(10k)n+1 , k ≥ 1. (2.12)

For example, for the first few values of k, we have (note that overlapping occurs
when powers of 2 have more than k digits):

k = 1 : 1/8 = 0.125
(

here
∑∞
n=3

2n

(10k)n+1 = 0.001, and 1/10 + 2/100 + 4/1000 = (100 + 20 + 4)/1000
)

k = 2 : 1/98 = 0.010204081632653061224489795918 . . . (A021102)
k = 3 : 1/998 = 0.001002004008016032064128256513 . . . (A022002)
k = 4 : 1/9998 = 0.000100020004000800160032006401 . . .

(2.13)
Example. Homogeneous linear recurrences (of order 2) with constant coefficients:

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 for n ≥ 1

(2.14)

(OEIS: A000045) Fibonacci numbers:

{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, . . .}.
(2.15)

The generating function of the Fibonacci numbers is:

G{Fn,n≥0}(x) = x

1− x− x2 =
∞∑
n=0

Fnx
n. (2.16)

Rewriting the generating function as (which shows the form of the recurrence in the
denominator):

G{Fn,n≥0}(x) =
(
x−1)1

(x−1)2 − (x−1)1 − (x−1)0 , (2.17)

and setting x−1 to 10k, we get the form:(
10k

)1

(10k)2 − (10k)1 − (10k)0 = 10k

102k − 10k − 1 =
∞∑
n=0

Fn
(10k)n

, k ≥ 1. (2.18)

For example, for the first few values of k, we have (note that overlapping occurs
when Fibonacci numbers have more than k digits):

k = 1 : 10/89 = 0.11235955056179775280898876404 . . .
k = 2 : 100/9899 = 0.010102030508132134559046368320 . . .
k = 3 : 1000/998999 = 0.0010010020030050080130210340550 . . .
k = 4 : 10000/99989999 = 0.00010001000200030005000800130021 . . .

(2.19)

A variant of the above is:

1
(10k)2 − (10k)1 − (10k)0 = 1

102k − 10k − 1 =
∞∑
n=0

Fn

(10k)n+1 , k ≥ 1. (2.20)

https://oeis.org/A021102
https://oeis.org/A022002
https://oeis.org/A000045


2.3 Notation and Mathematical Preliminaries 10

For example, for the first few values of k, we have (note that overlapping occurs
when Fibonacci numbers have more than k digits):

k = 1 : 1/89 = 0.011235955056179775280898876404 . . . (A021093)
k = 2 : 1/9899 = 0.00010102030508132134559046368320 . . .
k = 3 : 1/998999 = 0.0000010010020030050080130210340550 . . .
k = 4 : 1/99989999 = 0.000000010001000200030005000800130021 . . .

(2.21)

Definition 2.3.5. Non-homogeneous linear recurrence relations with constant coef-
ficients.
An order k nonhomogeneous linear recurrence relation with constant coefficients is
an equation of the form(

k∑
i=0

cia(n− i)
)

+f(n) = (c0a(n) + c1a(n− 1) + c2a(n− 2) + · · ·+ cka(n− k))+f(n) = 0

(2.22)
where f(n) ̸= 0 and the k coefficients ci(∀i) are constants.

Example. Non-homogeneous linear recurrences (of order 1) with constant coeffi-
cients: {

a0 = 1
an = 2an−1 + 1, n ≥ 1 (2.23)

{
a0 = 1
an = 2an−1 + n, n ≥ 1 (2.24)

{
a0 = 1
an = 2an−1 + 2n, n ≥ 1 (2.25)

Example. Non-homogeneous linear recurrences (of order 2) with constant coeffi-
cients: {

a0 = 1
an = 3an−1 + 2an−2 + n, n ≥ 1 (2.26)

Recurrence equation

When formulated as an equation to be solved, recurrence relations are known as
recurrence equations or sometimes difference equations (i.e. a recurrence equation is
the discrete analogue of a differential equation).

Definition 2.3.6. A recurrence equation involves an integer function f(n) in a
form like:

f(n)− f(n− 1) = g(n) (2.27)

where g is some integer function. The above equation is the discrete analog of the
first-order ordinary differential equation:

f ′(x) = g(x). (2.28)

https://oeis.org/A021093
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For the foregoing, a linear recurrence equation is a recurrence equation in a
sequence of numbers {xn} expressing xn as a first degree polynomial in xk with
k < n. For example:

xn = Axn−1 +Bxn−2 + Cxn−3 + . . . . (2.29)

A quotient-difference table eventually yields a line of 0s iff the starting sequence is
defined by a linear recurrence equation. The solutions to a linear recurrence equation
can be computed straightforwardly, but quadratic recurrence equations are not so
well understood.
The sequence generated by a recurrence relation is called a recurrence sequence. Let:

s(X) =
m∏
i=1

(1− αiX)ni = 1− s1X − . . .− snXn (2.30)

where the generalized power sum a(h) for h = 0, 1, . . . is given by:

a(h) =
m∑
i=1

Ai(h)αhi (2.31)

with distinct nonzero roots αi, coefficients Ai(h) which are polynomials of degree
ni−1 for positive integers ni, and i ∈ [1,m]. Then the sequence {ah} with ah = a(h)
satisfies the recurrence relation:

xah+n = s1ah+n−1 + . . .+ snah. (2.32)

The terms in a general recurrence sequence belong to a finitely generated ring
over the integers; therefore, it is impossible for every rational number to occur in any
finitely generated recurrence sequence. If a recurrence sequence vanishes infinitely
often, then it vanishes on an arithmetic progression with a common difference 1 that
depends only on the roots. The number of values that a recurrence sequence can
take on infinitely often is bounded by some integer l that depends only on the roots.
There is no recurrence sequence in which each integer occurs infinitely often or in
which every Gaussian integer occurs.

Generating function

When studying sequences and recurrences, it is often convenient to represent the
sequence by a generating function. In mathematics, a generating function is a way
of encoding an infinite sequence of numbers an by treating them as the coefficients
of a formal power series. This series is called the generating function of the sequence.
Unlike an ordinary series, the formal power series is not required to converge: in fact,
the generating function is not actually regarded as a function, and the "variable"
remains indeterminate.

Definition 2.3.7. The ordinary generating function (OGF) of a sequence an is:

G (an;x) =
∞∑
n=0

anx
n. (2.33)
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When the term generating function is used without qualification, it is usually
taken to mean an ordinary generating function.

Definition 2.3.8. The exponential generating function (EGF) of a sequence an is:

EG (an;x) =
∞∑
n=0

an
xn

n! . (2.34)

Exponential generating functions are generally more convenient than ordinary
generating functions for combinatorial enumeration problems that involve labelled
objects.
Example. The sequence 1, 3, 6, 10, 15, . . . (OEIS: A000217) of triangular numbers
are given by the following explicit formulas:

Tn =
n∑
k=1

k = 1 + 2 + 3 + · · ·+ n = n(n+ 1)
2 = n2 + n

2 ,

(
n+ 1

2

)
(2.35)

where
(
n+ 1

2

)
, does not mean division, but is the notation for a binomial coeffi-

cient. It represents the number of distinct pairs that can be selected from objects
n+ 1, and is read aloud as "n plus one chooses two".

The generating functions of the sequence are:

G(x) = 1
(1− x)3 ,

E(x) =
(

1 + 2x+ x2

2

)
ex.

(2.36)

Generating functions provide a very efficient way to represent sequences.

Autocorrelation

Autocorrelation is a measure of the similarity between a sequence and a time-shifted
replica of the sequence. Ideally, the autocorrelation function (ACF) should be
impulsive, i.e. peak value at zero time shift and zero values at all other time shifts.

Crosscorrelation

Cross orrelation is the measure of similarity between two different sequences. The
cross correlation between two sequences is the complex inner product of the first
sequence with a shifted version of the second sequence, which indicates whether
the two sequences are distinct. Ideally, it is desirable to have sequences with zero
cross-correlation value at all time shifts.

Analysis

Various methodologies can be used to analyse integer sequences [Slo73] [SP95]. These
include using a data compression algorithm, computing the discrete Fourier transform,
or seeking a linear recurrence equation that links the terms or a generating function

https://oeis.org/A000217
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that produces them. Moreover, there exist a substantial number of transformations
that establish a connection between different integer sequences. Such transformations
include the Euler transform, the exponential transform, the Möbius transform, and
others.
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Chapter 3

Integer Sequences in
cryptography

To conduct our research, we performed a thorough search-string inspection in multiple
academic databases and search engines, with a primary focus on all available journals
and conference proceedings. Our search strategy used a two-stage approach, with
the first stage involving manual inspection using several search strings and their
combinations using booleans. The databases and digital libraries we inspected
within included ScienceDirect, Scopus, ACM Digital Library, Springer, IEEE Xplore,
and Web of Science. In particular, all digital resources for publications from the
International Association for Cryptologic Research (IACR) [iac] and the Journal of
Integer Sequences [jis] were carefully searched. Moreover, we also used several web
search engines, such as Google Scholar and Microsoft Academics, to access related
literature across all publishing formats and disciplines.

During the first stage of our inspection, we conducted combinatorial searches
using the search strings made up of various strings and terms within the combination
of the above-mentioned booleans. We also tested the search strings on an iterative
basis to fine-tune our search results, which enabled us to tackle the challenge
of aligning our searches with completeness and consistency. The search strings
were distinctively implemented in the title, abstract and corresponding keywords.
In addition to this, we manually obtained several reputed journals and veteran
conferences related to the domain of our research. These selected journals and
conferences include previously held research in the field of cryptography. We also
performed a second stage procedure to obtain a more significant sample of our
research at the previous stage. During this stage, we scanned all reference lists and
examined all of the main research to find additional articles. Our search strategy
yielded a total of approximately 500 papers from all databases considered during
the initial phase. After implementing our search strategy, we finally found a total
of around 100 articles related to our relevant survey study. This fine-tuning of our
search results and the use of multiple databases and search engines enabled us to
conduct a comprehensive and rigorous analysis of the literature in our field of study.
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3.1 Literature survey

3.1.1 Prime numbers

The history of prime numbers dates back to ancient times. Greek mathematicians,
who were the first to study them extensively. The mathematicians of Pythagorean
school (500 BC to 300 BC) were interested in numbers for their mystical and
numerological properties, and they understood the idea of primality. The Rhind
Mathematical Papyrus, from around 1550 BC, has Egyptian fraction expansions
of different forms for prime and composite numbers. Euclid’s Elements (c. 300
BC) proves the infinitude of primes and the fundamental theorem of arithmetic and
shows how to construct a perfect number from a Mersenne prime. Eratosthenes,
another Greek mathematician, created a screening method known as the Sieve of
Eratosthenes, which allows all the prime numbers of a limited list to be identified by
crossing multiples.

Interest in prime numbers was revived at the end of the Middle Ages. In the 17th
century, the French monk Marin Mersenne defined the prime numbers that bear his
name, obtained as Mp = 2p − 1. Italian mathematician Pietro Cataldi had already
shown in 1588 that 219 − 1 = 524287 is prime, setting a record for his time. In the
19th century, mathematicians such as Gauss and Riemann made further advances in
the study of prime numbers, including the Prime Number Theorem. In the 20th
century, computers gradually became important in calculating data for theorists
to ponder. Since 1951, all the largest known primes have been found using tests
on computers, such as the Lucas-Lehmer primality test. The search for ever-larger
primes has generated interest and spurred the development of various branches of
number theory, focussing on analytic or algebraic aspects of numbers.

Today, prime numbers are used in a variety of fields, including computer science,
cryptography, and number theory.

Proprieties

Definition 3.1.1. A number p is prime if (and only if) it is greater than 1 and has
no positive divisors except for 1 and p.

As is well known since primary school, by multiplying prime numbers, we can
obtain in an essentially unique way each positive integer number. This is the
gist of the Fundamental Theorem of Arithmetic, which Euclid already knew and
expounded in Book VII of his Elements. Before discussing the Fundamental Theorem
of Arithmetic, it is necessary to state the following simple but crucial characterisation
of prime numbers.
OEIS. The first terms of the sequence are available in the OEIS database:

Proposition 3.1.1. A positive integer number p > 1 is irreducible if and only if the
following property holds: (P ) whenever p divides a product ab, p divides a or b.

Proof. We assume that p is irreducible and prove that (P ) holds. So, assume that
p divides ab and that p does not divide a. As p does not divide a, and as p does
not have factors other than ±p and ±1, we see that p and a have no non-trivial
common factors, that is, gcd(a, p) = 1. Therefore, there exist integers s and t such
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A-number A000040
Name The prime numbers.
Data 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, · · ·

Offset 1, 1
Link https://oeis.org/A000040

Table 3.1 Number primes in OEIS database.

that 1 = sa+ tp. By multiplying both sides by b, we obtain b = sab+ tpb. As p | ab
and p | p, we may conclude that p | b. Vice versa, assume that (P ) holds. If p were
not prime, we would have p = hk with h, k positive integers smaller than p. But we
have p | hk = p, so p | h or p | k, both of which are impossible because h and k are
smaller than p.

We are now in a position to prove the following.

Theorem 3.1.1. (Fundamental Theorem of Arithmetic). Let n be an integer greater
than 1. Then:

n = ph1
1 ph2

2 ph3
3 · · · p

hs
s , (3.1)

where p1, p2, . . . , ps are distinct prime numbers and the exponents hj are positive,
for all j = 1, . . . , s. Furthermore, the representation (3.1) for n, called prime
decomposition or factorisation of n, is unique up to the order of the factors.

Proof. We shall prove separately the existence and the uniqueness of the factorisation.

− Existence of a factorisation. The proof is by induction on the integer n to
be factored. If n = 2, there is nothing to prove. Therefore, we may assume
that the existence of a factorisation has been proved for each positive integer
k with 2 ≤ k < n, and prove the same for n. If n is prime, there is again
nothing to prove. Thus, let n be reducible, so it can be written as n = ab, with
positive a and b, both greater than 1 and, therefore, smaller than n. Then, by
the induction hypothesis, a and b are factorisable as products of primes:

a = p1p2 · · · pr, b = p̄1p̄2 · · · p̄s. (3.2)

Then,
n = p1p2 · · · prp̄1p̄2 · · · p̄s. (3.3)

Clearly, it suffices to group together, on the right-hand side, equal prime
numbers in order to obtain the result in the form (3.1).

− Uniqueness of the factorisation. To prove the uniqueness of the factorisa-
tion for any integer n, we proceed by induction, this time on the number m of
irreducible factors in any factorisation of n. Note that the number of factors
appearing in the factorisation (3.1) is m = h1 + h2 + · · ·+ hs. If m = 1, then
the number n having that factorisation is a prime number p. Assume that
n = p has another factorisation:

p = qk1
1 qk2

2 · · · q
kt
t . (3.4)

https://oeis.org/A000040
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As p is a prime that divides the right-hand side, it divides one of the factors
of the right-hand side, for example p | q1 (see Proposition 3.1.1). But q1 is
prime as well, so it has no non-trivial factors: hence p = q1. By the cancelation
property, which holds in Z, we get:

1 = qk1−1
1 qk2

2 · · · q
kt
t . (3.5)

This relation implies that all the exponents on the right-hand side are zero,
otherwise we would have a product equal to 1 of integers greater than 1. Then
the original right-hand side equals q1, so p = q1 is the only factorisation of n.
So we have proved the basis of the induction. Assume now that the uniqueness
of the factorisation has been proved for all integers that admit a factorisation
into irreducible factors m− 1. Let n be an integer that admits a factorisation
into m irreducible factors. Let us then:

n = ph1
1 ph2

2 · · · p
hs
s = qk1

1 qk2
2 · · · q

kt
t (3.6)

be two factorisations of n into irreducible factors, the first consisting of m
irreducible factors, that is, h1 +h2 + · · ·+hs = m. Now, p1 is a prime dividing
the right-hand side, so it divides, for instance, q1 (see again Proposition 3.1.1).
As before, we have p1 = q1 and then, by the cancelation property, we get:

ph1−1
1 ph2

2 · · · p
hs
s = qk1−1

1 qk2
2 · · · q

kt
t (3.7)

where the number of irreducible factors on the left-hand side is m− 1. By the
induction hypothesis, in this case the uniqueness of the factorisation holds,
so the primes qj and the primes pi are the same, up to the order. Then the
factorisation of n is also unique.

The distribution of prime numbers. How many prime numbers are there? Euclid
already knew the following theorem, which can be proved in several ways. We give
here a completely elementary proof dating back to Euclid himself.

Corollary 3.1.1. There are infinitely many prime numbers.

Proof. Assume that the set of prime numbers is finite, consisting, for instance, of the
numbers p1 < p2 < · · · < pn. Consider the number N = p1 · · · pn + 1. This number
is not prime, as it is greater than pn, which, by hypothesis, is the greatest prime
number. So N has a prime decomposition which can be written as:

N = ph1
1 · · · p

hn
n (3.8)

with at least one of the numbers h1, . . . , hn positive. Assume hi > 0. Then pi | N .
Moreover, pi | (N − 1) = p1 · · · pn. Thus, pi | 1 = N − (N − 1), which is not possible,
as pi > 1.

Recurrence relation. A possible formula using a recurrence relation is defined by:

an = an−1 + gcd (n, an−1) , a1 = 7 (3.9)
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where gcd(x, y) denotes the greatest common divisor of x and y. The sequence of dif-
ferences an+1−an starts with 1, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1, . . .
(sequence OEIS: A132199). It is proven that this sequence contains only ones and
prime numbers [Row08]. However, it does not contain all the prime numbers, since
the terms gcd (n+ 1, an) are always odd and thus never equal to 2. 587 is the
smallest prime (other than 2) not appearing in the first 10,000 results that are
different from 1.
Nevertheless, it was conjectured that it contains all odd primes, even though it is
rather inefficient. It is important to note that there is not a trivial programme that
enumerates all and only prime numbers, as well as more efficient ones, so these
recurrence relations are more curious than useful.
Functions. The distribution of primes among natural numbers has been intuited
since antiquity, and it is well known that it is a random distribution. Consequently,
functions that reliably generate prime numbers have often been acknowledged to
have traction on the prime number set.
In order to obtain prime numbers, it is natural to ask for functions f defined for all
natural numbers n ≥ 1, which can be calculated in practice and produce some or
all prime numbers. Several prime-generating functions can be classified into three
classes for this purpose [Rib96]:

(a) f(n) = pn; (the nth prime) for all n ≥ 1.

(b) f(n) is always a prime number, and if n ̸= m, then f(n) ̸= f(m).

(c) The set of prime numbers is equal to the set of positive values assumed by the
function.

In practice, these functions are generally impossible to compute. For example,
both Gandhi’s formula [pri71]:

pn =

1− log2

−1
2 +

∑
d|Pn−1

µ(d)
2d − 1

 (3.10)

where Pn = p1p2 · · · pn, and Willans’ formula [Wil64]:

pn = 1 +
2n∑
i=1


 n∑i

j=1

⌊(
cos (j−1)!+1

x π
)2
⌋


1/n
 (3.11)

satisfy condition (a) but are essentially versions of the sieve of Eratosthenes [Gol74;
GW67]. Gandhi’s formula depends on properties of the Möbius function µ(d), while
Willans’ formula is based on Wilson’s Theorem.

From a theoretical perspective, the functions satisfying (b) are interesting, even
though all known members of this class are not practical prime generators. The
first example proved the existence of a real number A such that

⌊
A3n⌋ is the prime

for n ≥ 1 (Mills’ function). The only known way to find an approximation to a
suitable A is by working backward from known large primes. Several relatives can
be constructed similarly [Dud69].
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The peculiar condition (c) is tailored to a class of multivariate polynomials
constructed with this property [Mat71; JSWW76]. These results are implementations
of primality tests in the language of polynomials, and thus they also cannot be used
to generate primes in practise.

Applications to cryptography

Prime numbers play a crucial role in various cryptographic applications due to their
unique mathematical properties. Here are some different uses of prime numbers in
cryptography:

• Cryptographic hash functions

− Prime numbers contribute to cryptographic hashing algorithms. They are
used to create strong and unique hash values that are resistant to collision
attacks. For example, SHA-2 is a family of cryptographic hash functions
that produce a fixed length output from a variable length input [pri03].
In particular, SHA-2 uses prime numbers in several ways, to generate
the initial values of the internal state, to generate the round constants,
to generate the initial values of the truncated variants, to ensure the
security of the message padding, which requires that the message length
be a multiple of 512 bits.

• Public-key cryptography

− RSA stands as a significant cryptographic algorithm in the realm of secur-
ing sensitive information across potentially insecure channels. Introduced
by Ron Rivest, Adi Shamir, and Leonard Adleman in 1977, RSA relies on
the intricate properties of prime numbers to perform its encryption tasks
[RSA78]. At its core, the fundamental premise of RSA is based on the
complexity of factoring composite numbers into their prime components.
This property sets the stage for its operation.
RSA’s security hinges on the formidable challenge of factoring the modu-
lus, a semiprime resulting from the product of two prime numbers. This
factorisation obstacle, especially with the inclusion of large prime num-
bers, renders the decryption process computationally formidable. In the
contemporary landscape, RSA finds extensive use, acting as a linchpin
for secure digital communication in various domains, including online
transactions, digital signatures, and more. However, as computational
capabilities grow, the need for longer key lengths arises to maintain a
robust level of security.

− Elliptic Curve Cryptography (ECC) represents a cryptographic method-
ology that draws on the intrinsic characteristics of elliptic curves and
prime numbers to establish a robust layer of security for digital commu-
nication [Kob87; Mil86]. Unlike conventional approaches such as RSA
and Diffie-Hellman, ECC operates by manipulating these elliptic curves,
which are essentially sets of points that satisfy particular mathematical
equations. Within the ECC, prime numbers are pivotal in shaping its
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operational framework. Firstly, ECC operates within a "prime field", a
finite mathematical space delineated by a prime number p. This field
serves as the context within which mathematical operations like addition
and multiplication take place on the chosen elliptic curves. This finite
field, derived from prime numbers, forms the bedrock of ECC’s security.
Secondly, ECC generates cryptographic key pairs through a process sim-
ilar to other encryption techniques. However, ECC distinguishes itself
by utilising elliptic curves instead of modular exponentiation on integers.
The heart of ECC’s key generation process involves establishing a base
point or "generator" on the elliptic curve. The private key emerges from
multiplying this base point by a private integer, while the public key is
the result of this base point being multiplied by the same integer.
In essence, ECC capitalises on the intricate properties of elliptic curves
and prime numbers to create a cryptographic framework of increased
security. By incorporating prime numbers into the formation of finite
fields and key generation, the ECC ensures a strong mathematical foun-
dation for secure communications and the implementation of advanced
cryptographic algorithms.

• Cryptographic protocols

− Diffie-Hellman Key-Exchange is a cryptographic method that allows two
parties to establish a shared secret key, which can be used to secure their
communication over an insecure channel. This protocol is named after its
creators, Whitfield Diffie and Martin Hellman, and was introduced in 1976.
The core of the Diffie-Hellman protocol is based on the mathematical
challenge of calculating discrete logarithms within a finite field. The
following is how the Diffie-Hellman Key-Exchange process works, along
with the role of prime numbers in this context. To start, the two involved
parties, Alice and Bob, need to agree on some public parameters. These
parameters include a large prime number p and a generator modulo p,
often referred to as g. These public values are known to both parties
and can be communicated without risk. Next, both Alice and Bob select
a private key. This private key is a number chosen randomly within a
specific range. Using their private key, each calculates the corresponding
public key. This public key is calculated by raising the generator g to the
power of the private key and then taking the remainder when divided
by the prime number p. The public keys are then exchanged between
Alice and Bob. Once both parties have received each other’s public keys,
they can calculate a shared secret key. This is done by increasing the
received public key to the power of their own private key and taking the
rest when divided by the prime number p. Surprisingly, both Alice and
Bob arrive at the same value for the secret key, even though they started
with different private and public keys.
The prime numbers play a critical role in this process, as we shall see
below.

• Implementation
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− Implementation of the previous cryptographic primitives plays crucial
roles in ensuring the security and integrity of Internet communication, au-
thentication, email encryption, secure shell connections, VPNs, blockchain
transactions, and the establishment of trust through certificate authorities.

Further details

Remark on Cryptography protocols. One of the primary objectives of cryp-
tography is to establish secure communication channels between different parties.
Security in this context encompasses various aspects such as data confidentiality,
message integrity, and participant authentication. An approach to constructing
secure channels is for the parties to share suitable cryptographic keys, which they
maintain in strict confidence and use as inputs to encryption and message authen-
tication algorithms. Typically, keys deemed appropriate for such cryptographic
applications are required to possess the properties of length and randomness. This
essentially ensures that they cannot be anticipated or thoroughly searched within a
reasonable timeframe. We are now faced with the challenge of establishing these keys
over an insecure network. Key-Exchange protocols are designed to address this issue.
More formally, a Key-Exchange protocol is a cryptographic procedure in which two
or more entities exchange messages to jointly determine a strong cryptographic key
that cannot be computed by external parties.
In-depth analysis of sequence application. As we mentioned in the previous
paragraph, Diffie-Hellman Key-Exchange is a fundamental cryptographic protocol
that allows two parties to securely share a secret key over an insecure communication
channel. This protocol relies heavily on the mathematical properties of prime
numbers and generators within a finite cyclic group, typically involving modular
arithmetic. The prime number p and the generator g play a critical role in ensuring
the security and functionality of this cryptographic method, as it makes it difficult
for attackers to deduce the secret key even if they know the public keys.

• Prime number p. The prime number p is a cornerstone of the Diffie-Hellman
Key-Exchange. Its primary role is to define the finite field Zp, which is the
set of integers modulo p. This field has several important properties that are
leveraged in the protocol:

− Finite field definition. The prime p ensures that the set Zp forms a finite
field, which is a set of numbers with well-defined addition, subtraction,
multiplication, and division operations (excluding division by zero). The
finiteness of the field is important because it limits the number of possible
values, making exhaustive search attacks computationally infeasible.

− Modular arithmetic. Operations in the Diffie-Hellman Key-Exchange are
performed modulo p. This modular arithmetic ensures that the results
of these operations remain within the set Zp, preventing overflow and
maintaining the integrity of the computations.

− Security foundation. The security of the Diffie-Hellman protocol is based
on the difficulty of solving the discrete logarithm problem within the finite
field Zp. Specifically, given ga mod p and gb mod p, it is computationally
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challenging to determine a or b without knowing the other value. The
choice of a large prime p makes this problem even more difficult, improving
the security of Key-Exchange.

− Public parameter . The prime p is a public parameter that is shared
between the communicating parties. Both parties agree on this value
before initiating the Key-Exchange process. The public nature of p does
not compromise security, as the difficulty of the discrete logarithm problem
remains regardless of the knowledge of p.

• Generator g. The generator g is another critical component of the Diffie-
Hellman Key-Exchange. It is an element of the finite field Zp that has the
specific properties necessary for the protocol:

− Primitive root. Ideally, the generator g is chosen to be a primitive root
modulo p. A primitive root is an element whose powers generate all
the non-zero elements of the field Zp. In other words, g is a generator
of the multiplicative group of integers modulo p, meaning that the set{
g1, g2, . . . , gp−1} mod p contains all the elements from 1 to p− 1. This

property ensures that the key space is maximized, making it more difficult
for an attacker to guess the secret key.

− Public parameter . Like the prime p, the generator g is also a public
parameter. Both parties agree on g before the Key-Exchange begins. The
public nature of g does not reduce the security of the protocol because
the security relies on the difficulty of the discrete logarithm problem.

− Exponential operations. During the Key-Exchange, each party selects a
private key (a random integer) and computes an exponential value using
g. For example, if Alice chooses a private key a and Bob chooses a private
key b, they compute ga mod p and gb mod p, respectively. These values
are then exchanged over the insecure channel. The use of g in these
exponential operations is important because it ensures that the resulting
values are uniformly distributed over the field Zp, making it difficult for
an attacker to predict the private keys.

− Shared secret computation. After exchanging the exponential values, each
party uses their private key to compute the shared secret. Alice computes(
gb mod p

)a
mod p, and Bob computes (ga mod p)b mod p. Due to the

properties of modular arithmetic, both computations yield the same result:
gab mod p. This shared secret can then be used as a key for symmetric
encryption algorithms to secure further communications.

Example of Diffie-Hellman Key-Exchange. To illustrate the roles of p and g in
the Diffie-Hellman Key-Exchange, consider the following example:

− Public parameters. Alice and Bob agree on a large prime p = 23 and a generator
g = 5.

− Private keys. Alice selects a private key a = 6, and Bob selects a private key
b = 15.
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− Compute public values:

. Alice computes A = ga mod p = 56 mod 23 = 8.

. Bob computes B = gb mod p = 515 mod 23 = 19.

− Exchange public values. Alice and Bob exchange their computed public values
A and B.

− Compute shared secret:

. Alice computes the shared secret as S = Ba mod p = 196 mod 23 = 2.

. Bob computes the shared secret as S = Ab mod p = 815 mod 23 = 2.

Both Alice and Bob now share the secret value S = 2, which can be used for further
secure communication. The prime number p and the generator g are fundamental
to the security and functionality of the Diffie-Hellman Key-Exchange protocol. The
prime p defines the finite field Zp and ensures the security of the protocol through
the difficulty of the discrete logarithm problem. The generator g acts as a primitive
root and facilitates exponential operations that are essential to compute the shared
secret. Together, these components enable two parties to securely exchange a secret
key over an insecure channel, forming the basis for secure communication in many
cryptographic systems.

3.1.2 Mersenne prime

The storey of Mersenne numbers begins in the 17th century with the French mathe-
matician Marin Mersenne. Mersenne was a polymath who corresponded with many
of the leading scientists and thinkers of his time, including René Descartes and
Galileo Galilei.

Marin Mersenne introduced a special class of numbers that would later bear his
name. These numbers took the form 2n−1, where n is a positive integer. Mersenne’s
interest in these numbers was not merely theoretical; he believed that they had
unique properties that made them suitable candidates for prime numbers.

Mersenne’s contributions to the study of prime numbers extended beyond just
naming these numbers. He developed what is now known as "Mersenne’s test" to
determine if a Mersenne number is prime. His test stated that if 2n − 1 is prime,
then n must also be prime. This observation was a significant step forward in
understanding prime numbers.

While Mersenne made strides in prime number theory, it was not until the 19th
century that mathematicians like Édouard Lucas and Édouard Barbier began to
explore the divisibility properties of Mersenne numbers in more detail. Their work
laid the foundation for later research into these numbers.

The quest to find large prime numbers of the form 2n− 1 continued into the 20th
century and beyond. With the advent of computers, it became possible to search
and verify the primality of Mersenne numbers with exceptionally large values of n.
The efforts of mathematicians and computer enthusiasts converged in projects like
the Great Internet Mersenne Prime Search (GIMPS), founded by George Woltman
in 1996.
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GIMPS harnessed the power of distributed computing to systematically search
for Mersenne primes. This collaborative effort led to the discovery of many record-
breaking prime numbers, including some of the largest known primes.

In conclusion, the history of Mersenne numbers is a testament to the enduring
fascination with prime numbers and the collaborative efforts of mathematicians and
technology enthusiasts. These numbers, initially introduced by Marin Mersenne
in the 17th century, continue to be a rich source of mathematical exploration and
discovery in the modern era.

Proprieties

Definition 3.1.2. A Mersenne prime is any prime number defined as Mn = 2n − 1
where n is an integer.

OEIS. The first terms of the sequence are available in the OEIS database:

A-number A000668
Name Mersenne primes (primes of the form 2n − 1).
Data 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, · · ·

Offset 1, 1
Link https://oeis.org/A000668

Table 3.2 Mersenne primes in OEIS database.

Numbers of the form Mn = 2n − 1 without the primality requirement may be called
simply Mersenne numbers (OEIS: A000225).
Connections to Perfect numbers. A positive integer n is called a perfect number
if it is equal to the sum of all its positive divisors, excluding n itself. More than
2300 years ago, Euclid proved that if 2k − 1 is a prime number (it would be a
Mersenne prime), then 2k−1

(
2k − 1

)
is a perfect number. A few hundred years ago

Euler proved the converse (that every even perfect number has this form). It is still
unknown whether there are any odd perfect numbers (but if there are, they are large
and have many prime factors).

Theorem 3.1.2. If 2k−1 is a prime number, then 2k−1
(
2k − 1

)
is a perfect number

and every even perfect number has this form.

Proof. Suppose first that p = 2k − 1 is a prime number and set n = 2k−1
(
2k − 1

)
.

To show n is perfect, we need only show σ(n) = 2n. Since σ is multiplicative and
σ(p) = p+ 1 = 2k, we know:

σ(n) = σ
(
2k−1

)
· σ(p) =

(
2k − 1

)
2k = 2n. (3.12)

This shows that n is a perfect number.
On the other hand, suppose n is any even perfect number and write n as 2k−1m
where m is an odd integer and k ≥ 2. Again σ is multiplicative so:

σ
(
2k−1m

)
= σ

(
2k−1

)
· σ(m) =

(
2k−1

)
· σ(m). (3.13)

https://oeis.org/A000668
https://oeis.org/A000225
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Since n is perfect we also know that:

σ(n) = 2n = 2km. (3.14)

Together these two criteria give:

2km =
(
2k − 1

)
· σ(m) (3.15)

so 2k − 1 divides 2km hence 2k − 1 divides m, say m =
(
2k − 1

)
M . Now substitute

this into the equation above and divide by 2k − 1 to get 2kM = σ(m). Since m and
M are both divisors of m we know that:

2kM = σ(m) ≥ m+M = 2kM, (3.16)

so σ(m) = m+M . This means that m is prime and its only two divisors are itself
(m) and one (M). Thus, m = 2k − 1 is a prime and we have proved that the number
n has the prescribed form.

Theorem 3.1.3. If for some positive integer n, 2n − 1 is prime, then so is n.

Proof. Let r and s be positive integers, then the polynomial xrs−1 is xs−1 times
xs(r−1) + xs(r−2) + . . .+ xs + 1. So if n is composite (say rs with 1 < s < n ), then
2n − 1 is also composite (because it is divisible by 2s−1 ).

Notice that we can say more: suppose that n > 1. Since x− 1 divides xn − 1,
for the latter to be prime the former must be one. This gives the following.

Corollary 3.1.2. Let a and n be integers greater than one. If an − 1 is prime, then
a is 2 and n is prime

Usually the first step in factoring numbers of the forms an − 1 (where a and n
are positive integers) is to factor the polynomial xn − 1. In this proof, we just used
the most basic of such factorisation rules.
Lucas-Lehmer test. Let Mp = 2p − 1 be the Mersenne number to test with p an
odd prime. The primality of p can be efficiently checked with a simple algorithm
such as trial division, since p is exponentially smaller than Mp. Define a sequence
{si} for all i ≥ 0 by:

si =
{

4 if i = 0
s2
i−1 − 2 otherwise.

(3.17)

The first few terms of this sequence are 4, 14, 194, 37634, . . . (OEIS: A003010).
Then Mp is prime if and only if:

sp−2 ≡ 0 (modMp) . (3.18)

The number sp−2 mod Mp is called the Lucas-Lehmer residue of p. (Some authors
equivalently set s1 = 4 and test sp−1 mod Mp).
Example. The Mersenne number M3 = 23 − 1 = 7 is prime. The Lucas-Lehmer test
verifies this as follows. Initially s is set to 4 and then updated 3− 2 = 1 time:

s← ((4× 4)− 2) mod 7 = 0. (3.19)

https://oeis.org/A0003010
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Since the final value of s is 0 , the conclusion is that M3 is prime.
On October 21, 2024, GIMPS discovered the largest known prime number, 2136,279,841−
1, having 41,024,320 decimal digits. The new prime number, also known as
M136279841, has been calculated using the Lucas-Lehmer primality test.
Open problems. It is not known whether the set of Mersenne primes is finite or
infinite.

Applications to cryptography

The principal applications of Mersenne Prime numbers in cryptography are as follows:

• Foundations

− A general-purpose pseudorandom number generator (PRNG), called
Mersenne Twister, provides a 623-dimensional equidistribution up to
32-bit accuracy [MN98]. In this algorithm, a Mersenne prime period is
used, which is achieved by modifying the previously proposed generators.
For a n-bit word length, the Mersenne Twister generates integers in the
range [0, 2n − 1]. The algorithm is based on a matrix linear recurrence
over a finite binary field F2. It is a twisted generalised feedback shift
register of rational normal form, with state bit reflection and tempering.
The basic idea is to define a series xi through a simple recurrence rela-
tion, and then output numbers of the form xTi , where T is an invertible
F2-matrix called a tempering matrix. The most commonly used ver-
sion of the Mersenne Twister algorithm is based on the Mersenne prime
219937 − 1. The standard implementation of that, MT19937, uses a 32-bit
word length. There is another implementation (with five variants) that
uses a 64-bit word length, MT19937-64 and generates a different sequence.
Furthermore, the generator has an algorithm that is provided to check
its primitivity and the computational complexity of this primitivity test
is O(p2), where p is the degree of the polynomial. However, it is not
cryptographically secure, i.e. Cryptographically Secure Pseudorandom
Number Generator (CSPRNG), unless the CryptMT variant is used. The
reason is that observing a sufficient number of iterations (624 in the case
of MT19937, since this is the size of the state vector from which future
iterations are produced) allows one to predict all future iterations.
Specifically, CryptMT is a stream cipher which is a combination of Linear
Feedback Shift Register (LFSR) like Mersenne Twister and non-linear
filter based on multiplication [MNHS05]. The period and high dimension
of equidistribution as a stream cipher are theoretically assured. Moreover,
it uses a booter to generate shorter sequence efficiently.

• Cryptographic hash functions

− An hash function scheme called Hash Mersenne Number Transform
(HMNT) based on a New Mersenne Number Transform (NMNT) [MD20].
The HMNT is defined as the modulo of the Mersenne numbers, where
arithmetic operations are simple equivalents to ones’ complement. It takes
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an arbitrary length as input and generates a hash value with variable
lengths (128, 256, and 512-bits or longer).

• Public-key cryptography

− A public-key cryptosystem whose security is based on arithmetic modulo
of Mersenne numbers [AJPS18]. These numbers have an extremely useful
property. For any number x modulo p, and y = 2z, where z is a positive
integer, x · y is a cyclic shift of x by z positions and thus the Hamming
weight of x is unchanged under multiplication by powers of 2 . The
encryption scheme is based on the simple observation that, given a
uniformly random n-bit string R, when we consider T = F ·R+G( mod p),
where the binary representation of F and G modulo p has low Hamming
weight, then T looks pseudorandom, i.e., it is hard to obtain any non-
trivial information about F,G from R, T . The public-key is chosen to
be the pair (R, T ), and the secret key is the string F . The encryption
scheme also requires an efficient error correcting code with.

Further details

Remark on cryptographic Hash functions. Hash functions are cryptographic
algorithms that transform an input of arbitrary length into a fixed-length output,
known as a "digest" or "hash value", unique representation of the original input.
They must have several key properties to be secure and effective, as their function
is fundamental in many security and cryptographic applications due to the hash
functions’ ability to ensure:
− Data integrity. Hash functions are used to ensure the integrity of the data.

If we have the hash of a message or file, we can compare it with the hash
of a received message or file to verify that it has not been altered. This is
commonly used in checksums and digital signatures.

− Digital signatures. A hash function is a crucial component in digital signatures.
The hash of a document is calculated and then encrypted with the sender’s
private key. The recipient can decrypt the hash using the sender’s public key
and compare it to the hash calculated from the received document to verify
its authenticity and integrity.

− Password hashing. Passwords are usually stored as hashes rather than as plain
text. When a user enters a password, its hash is calculated and compared with
the stored hash. This ensures that even if a password database is compromised,
attackers cannot easily retrieve the original passwords.

− Key Derivation Functions (KDFs). Hash functions are used to derive crypto-
graphic keys from passwords or other sensitive information. KDFs transform an
input of arbitrary length into fixed-length keys that can be used in encryption
algorithms.

− Security protocols. Hash functions are used in various security protocols such
as TLS, SSL, IPSec, and in technologies like Bitcoin and other cryptocurrencies
to ensure the integrity and security of transactions and communications.
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In-depth analysis of sequence application. As mentioned previously, from
the Mersenne numbers it has been possible to construct a hash function scheme
(HMNT) derived from NMNT [BH95]. The NMNT has proved to be an important
Number-Theoretic Transform (NTT), which has been firmly recognised within the
field of signal processing. Interesting applications of NTTs are found in the areas of
digital filtering, image processing, fast coding and decoding, multiplication of large
integers and matrices, deconvolution, and cryptography [Shp12].

The most recognised NTTs are the Fermat (FNT) [AB74] and Mersenne (MNT)
[Rad72] number transforms. However, for standard signal processing applications
the main drawback of these transforms is the stringent relationship between word
length (the number of bits in the modulus), obtainable transform length, and a
limited choice of possible word lengths. In order to retain the advantages of NTTs,
the NMNT was consequently introduced, which alleviates this relationship. NMNT
is defined modulo the Mersenne numbers, where arithmetic operations are simple
equivalent to the complement of 1 and has the cyclic convolution property; therefore,
it can be used for fast calculation of error-free convolutions and correlations [HB14].
The NMNT is a particularly interesting NTT as it has a long powers of two lengths
up to 2p, making it amenable to fast algorithms. However, NMNT can be used in
one or several dimensions. Moreover, NMNT has several inherent advantages, such
as its sensitivity to slight input variation, the long transform length, and variable
block size [AGB10].

These properties can be exploited to design a hash function that is more secure
and efficient.

Definition 3.1.3. (Transform definition). The NMNT of an integer sequence x(k)
of length L is given by:

X(k) =
〈
L−1∑
l=0

x(l)β(lk)
〉
Mp

, k = 0, 1, 2, . . . , L− 1 (3.20)

and its inverse has exactly the same form:

x(n) =
〈
L−1

L−1∑
k=0

X(k)β(nk)
〉
Mp

, n = 0, 1, 2... . . . , L− 1 (3.21)

where:

β(lk) = β1(lk) + β2(lk)

β1(lk) =
〈
Re (α1 + α2)lk

〉
Mp

β2(lk) =
〈
Im (α1 + jα2)lk

〉
Mp

(3.22)

also:

α1 = ±⟨2q⟩Mp

α2 = ±⟨−3q⟩Mp

q = 2p−2

⟨⟩Mp represents modulo Mp

(3.23)
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The values of α1 and α2 are of order L = 2p+1. For transform length L/d where
d is an integer power of two, β1 and β2 are given by:

β1(lk) =
〈

Re
(
(α1 + jα2)d

)lk)〉
Mp

β2(lk) =
〈

Im
(
(α1 + jα2)d

)lk)〉
Mp

(3.24)

Re() and Im() denote real and imaginary parts of the enclosed term respectively,(
L−1) exists and is given by (2p−d), where L = 2d and d is an integer, 0 ⩽ d ⩽ p.

Calculating the transform parameters starts with choosing a prime number (p).
The value of the prime number depends on the desired transform length and dynamic
range. For example, for simplicity, choose a prime number p = 7. The modulus
for the chosen prime is Mp = 27 − 1 = 127 and the maximum transform length,
Lmax = 128.

Definition 3.1.4. (NMNT cyclic convolution property). The NMNT has the cyclic
convolution property; if x(n) and h(n) are two sequences to be convolved and [y(n) =
x(n) ⊛ h(n)] is: the convolution result, then:

Y (k) = X(k)ΓH(k) = X(k) •Hev(k) +X(N − k) •Hod(k) (3.25)

where ⊛ is the cyclic convolution operator and • is point-by-point multiplication.

X(k), H(k) and Y (k) stand for the NMNT transforms of x(n), h(n) and y(n)
respectively. Hev(k) and Hod(k) stand for even and odd parts of H(k) respectively,
which are given by:

Hev(k) =
〈
(H(k) +H(N − k))× 2p−1〉

Mp

Hod(k) =
〈
(H(k)−H(N − k))× 2p−1〉

Mp .
(3.26)

If both x(n) and h(n) are properly padded with zeros, their circular convolution
given in (3.25) will be equivalent to their linear convolution. To avoid overflow, the
modulus Mp must be chosen so that y(n) does not exceed Mp, an upper bound is
given by [AB75; BH95]:

|y(n)| ⩽ |x(n)|max

N−1∑
n=0
|h(n)| ⩽Mp/2 (3.27)

(HMNT scheme). An input message M of arbitrary length is required to generate
a variable hash value H. Usually, HMNT supports three lengths of hash values, i.e.
H = 128, 256 and 512 bits or longer. The HMNT process consists of the following
steps:

− Step 1 . Convert the input message M into the corresponding ASCII code
value.

− Step 2 . The original message M is divided into a number of blocks (m):
M = {M0,M1, . . . ,Mm−1}. The length of each block is denoted as n, where n
is the length of the hash value. The shortage in the last block is padded with
the equivalent number of space characters in the ASCII code, which is 32.
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− Step 3 . The secret key K is a series of characters that modify the input
message M . These characters also convert into the corresponding ASCII code
values. If the character length is less than the length of the hash value (n), the
block is padded with the equivalent number of space characters in the ASCII
code. Then, elements are added one by one to each block of the input message
M .

− Step 4 . Upon modifying the input message using the secret key K, NMNT
(a formula that performs mathematical operations to transfer each block of
the message to the transform domain) is applied to each block in the input
message.

− Step 5 . The final hash value H of the message M is obtained by summation
(element-by-element addition) of transform output NMNT to each block.

3.1.3 Sophie German prime

Sophie Germain was born in Paris, France, in 1776, during a time when women were
largely excluded from formal education and the world of mathematics. Despite these
obstacles, her passion for mathematics led her to teach herself from the books in her
family library. She adopted the alias "Monsieur LeBlanc" to correspond with some
of the most prominent mathematicians of her era, including Carl Friedrich Gauss
and Adrien-Marie Legendre.

One of Germain’s early interests was in the field of number theory, and she
focused her efforts on Fermat’s Last Theorem, a famous problem that had puzzled
mathematicians for centuries. Although she did not succeed in proving the theorem,
her work was groundbreaking. She introduced the concept of "Fermat’s Last Theorem
for n = p," where p is a prime number. Around 1825, Sophie Germain proved, in
fact, that the first case of Fermat’s last theorem is true for such primes, i.e., if p is a
Sophie Germain prime, then there do not exist integers x, y, and z different from 0
and none a multiple of p such that xp + yp = zp. Her insights into this special case
of the theorem laid the groundwork for future mathematicians who would eventually
prove it, most notably Andrew Wiles in 1994.

However, Sophie Germain’s most enduring legacy lies in her contributions to
prime number theory. She became fascinated with prime numbers and, in particular,
the study of primes of the form 2p+ 1, where both p and 2p+ 1 are prime. These
special prime numbers, now known as "Sophie Germain primes," played a crucial
role in her investigations. She developed theorems and relationships involving these
primes, and her work was foundational for the development of modern number
theory.

Despite facing significant gender-based discrimination and barriers to her mathe-
matical pursuits, Sophie Germain’s dedication to mathematics and her groundbreak-
ing contributions to number theory continue to inspire mathematicians and serve as
a testament to the power of determination and passion in the face of adversity. Her
work opened doors for future generations of female mathematicians and remains a
source of inspiration in the field.
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Proprieties

Definition 3.1.5. A prime number p is a Sophie Germain prime if 2p+ 1 is also a
prime.

OEIS. The first terms of the sequence are available in the OEIS database:

A-number A005384
Name Sophie Germain primes p: 2p+ 1 is also prime.
Data 2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, · · ·

Offset 1, 1
Link https://oeis.org/A005384

Table 3.3 Sophie Germain primes in OEIS database.

Safe prime. The number 2p+ 1 associated with a Sophie Germain prime is called
a safe prime. For example, 23 is a Sophie Germain prime and 2 · 23 + 1 = 47 is its
associated safe prime.
Strong prime. A prime number q is a strong prime if q + 1 and q − 1 have a large
prime factor (approximately 500 digits). For a safe prime value q = 2 p + 1, the
number q − 1 naturally has a large prime value, that is, p, so a safe prime value q
meets part of the criteria for a strong prime. The execution time of certain methods
of factoring a number with q as the primary factor depends in part on the size of
the primary factor q − 1. This is true, for example, with Pollard’s p− 1 algorithm.
Conjecture. It is conjectured that there are infinitely many Sophie Germain primes,
although this has never been proven, and that the number of Sophie Germain primes
up to x is

SG(n) ∼ C n

(logn)2 (3.28)

where C is Hardy–Littlewood’s twin prime constant.

C := 2
∏
p>2

p(p− 2)
(p− 1)2 ≈ 1.32032, (3.29)

and the product is over all primes p > 2 [Sho09].

Applications to cryptography

The principal applications of Sophie German prime numbers in cryptography are as
follows:

• Foundations

− Sophie-Germain prime moduli are used in parallel Linear Congruential
Generators (LCGs) for Monte Carlo simulations, providing an alternative
to the commonly used Mersenne primes [MC04]. These primes, of the form
2q − k, where k can be as large as

√
2q, are used as moduli in LCGs, and

modular multiplication in an LCG with a Sophie-Germain prime modulus
can be written in a specific equation. The choice of Sophie-Germain
primes reduces initialisation time and provides competitive generation

https://oeis.org/A005384
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time when appropriately chosen. The resulting Sophie-Germain prime
modulus LCGs have been tested and compared to Mersenne primes.

• Secret-key cryptography

− Mode called Sophie Germain Counter Mode (SGCM) has been proposed
as a variant of the Galois/Counter Mode of operation for block ciphers.
Instead of the binary field GF

(
2128), it uses modular arithmetic in GF(p)

where p is a safe prime 2128 + 12451 with the corresponding Sophie
Germain prime p−1

2 = 2127 + 6225 [Saa11]. Although SGCM prevents the
specific "weak key" attack, there are other ways to modify the message
that will achieve the same forgery probability against SGCM as is possible
against GCM: By modifying a valid n-word message, you can create an
SGCM forgery with probability circa n

2128 . That is, its authentication
bounds are no better than those of Galois/Counter Mode.

• Public-key cryptography

− Safe and strong primes were useful as the factors of secret keys in the
RSA cryptosystem [RS01; VZGS13], because they prevent the system
being broken by some factorization algorithms such as Pollard’s p − 1
algorithm. However, with current factorisation technology, the advantage
of using safe and strong primes appears to be negligible today.

• Cryptographic protocols

− The issues about safe e strong primes apply in other cryptosystems as
well, including Diffie-Hellman Key-Exchange and similar systems that
depend on the security of the discrete log problem rather than on integer
factorization [Che06]. If 2p+ 1 is a safe prime, the multiplicative group
of modulo integers 2p + 1 has a subgroup of high prime order. This
prime order subgroup is usually desirable and the reason for using safe
primes is so that the modulus is as small as possible relative to p. For
this reason, the key generation protocols for these methods often depend
on efficient algorithms to generate strong primes, which in turn depend
on assumptions that these primes have sufficient density [Gor85].

Further details

Remark on Secret-key cryptography. Secret-key cryptography is usually
classified as block ciphers or stream ciphers. In a block cipher, the plaintext is
divided into fixed-sized chunks called blocks. A block is specified to be a bitstring
(i.e. a string of 0’s and 1’s) of some fixed length (e.g., 64 or 128 bits). A block
cipher will encrypt (or decrypt) one block at a time. In contrast, a stream cipher
first uses the key to construct a keystream, which is a bitstring that has exactly the
same length as the plaintext (the plaintext is a bitstring of arbitrary length). The
encryption operation constructs the ciphertext as the exclusive-or of the plaintext
and the keystream. Decryption is performed by computing the exclusive-or of the
ciphertext and the keystream [Sti05].
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In this regard, a block cipher mode of operation is an algorithm that uses a block
cipher to provide information security such as confidentiality or authenticity [oSC]. A
mode of operation describes how to repeatedly apply a cipher’s single-block operation
to securely transform amounts of data larger than a block. Most modes require a
unique binary sequence, often called an Initialization Vector (IV), for each encryption
operation. The IV must be non-repeating, and for some modes must also be random.
The IV is used to ensure that distinct ciphertexts are produced even when the same
plaintext is encrypted multiple times independently with the same key. Historically,
encryption modes have been extensively studied in regard to their error propagation
properties in various scenarios of data modification. Later development regarded
integrity protection as an entirely separate cryptographic goal. Some modern modes
of operation combine confidentiality and authenticity in an efficient way, and are
known as authenticated encryption modes.
One such mode is Galois/Counter Mode (GCM) which is widely adopted for its
performance. GCM throughput rates for high-speed state-of-the-art communication
channels can be achieved with inexpensive hardware resources [oSC07].
In-depth analysis of sequence application. (Description of GHASH). Let X
be a concatenation of authenticated unencrypted data, CTR-encrypted ciphertext,
and padding. This data is split into m 128-bit blocks Xi :

X = X1 ∥X2∥ · · · ∥Xm (3.30)

AES is used to derive the root authentication key H = EK(0). The same AES
key K is also used as the data encryption key. In this case, we assume that H is
unknown to the attacker as the scheme would otherwise be trivially breakable.

GHASH is based on operations in the finite field GF
(
2128). Horner’s rule is used

in this field to evaluate the polynomial Y :

Ym =
m∑
i=1

Xi ×Hm−i+1 (3.31)

The authentication tag is T = Ym + EK
(
IV

∥∥031∥∥ 1
)
, assuming that a 96-bit IV

is used. The IV value must never be repeated as that would lead to the "forbidden
attack" discussed by Joux in [oSC].
(SGCM). Mathematically, SGCM differs from GCM inly in the underlying field
where GHASH’s arithmetic operations are performed. While GCM uses the binary
field GF

(
2128), SGCM uses traditional modular arithmetic in GF (p), where:

p = 2128 + 12451 = 340282366920938463463374607431768223907 (3.32)

Here p−1
2 is also a prime, a Sophie Germain prime.

All other aspects of SGCM are equivalent to GCM, except those described in the
’Multiplication operation on blocks’ and the ’GHASH function’ of NIST Special
Publication 800-38D [oSC07].

3.1.4 Fibonacci numbers

Leonardo of Pisa, who later became known as Fibonacci, was born in Pisa, Italy,
around 1170. He travelled extensively with his merchant father, which exposed him
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to various mathematical ideas from different cultures. During his travels, Fibonacci
encountered the Hindu-Arabic numeral system, which was much more efficient for
arithmetic calculations than the Roman numerals commonly used in Europe at the
time.

Fibonacci was greatly impressed by the Hindu-Arabic numerals and wanted
to introduce them to Europe. He realised that to do so, he needed to write a
comprehensive book that would demonstrate the superiority of these numerals. This
endeavour led him to write "Liber Abaci" in 1202, where he not only introduced the
Hindu-Arabic numeral system but also included various mathematical topics.

In this influential book, Fibonacci discussed a problem that would eventually
lead to the discovery of the Fibonacci sequence. The problem was related to the
growth of a hypothetical rabbit population. He described a scenario in which a pair
of rabbits produces another pair in their first month of life and then each subsequent
month, they produce another pair, assuming that they never die.

The sequence of rabbit pairs that resulted from this scenario turned out to be
the Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, and so on. Each number in the
sequence represents the number of pairs of rabbits at the end of each month.

Fibonacci initially used the sequence to solve this rabbit population problem,
but he soon realised its broader mathematical significance. He used the sequence
to illustrate various mathematical concepts, including algebraic and geometric
progressions.

Although Fibonacci did not name the sequence after himself, it became widely
known as the "Fibonacci sequence" in his honour. The sequence gained popularity
and importance over the centuries, and mathematicians like Leonardo Euler and
Édouard Lucas made significant contributions to its study.

Today, the Fibonacci sequence is not only a mathematical curiosity but also a
fundamental concept in mathematics and various fields such as art, architecture,
and nature, where its mathematical properties are celebrated and explored.

Proprieties

Definition 3.1.6. Fibonacci numbers can be defined by the recurrence relation:
F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 for n ≥ 1

(3.33)

In some older definitions, the value F0 = 0 is omitted, so that the sequence starts
with F1 = F2 = 1, and the recurrence Fn = Fn−1 + Fn−2 is valid for n > 2.
OEIS. The first terms of the sequence are available in the OEIS database:
Recurrence relation. Another recurrence relation for the Fibonacci numbers is:

Fn+1 =
⌊
Fn(1 +

√
5) + 1

2

⌋
=
⌊
ϕFn + 1

2

⌋
, (3.34)

where ⌊x⌋ is the floor function and ϕ is the "golden ratio" (ϕ = 1
2(1 +

√
5) =
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A-number A000045
Name Fibonacci numbers: F (n) = F (n − 1) + F (n − 2) with F (0) = 0

and F (1) = 1.
Data 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, · · ·

Offset 0, 4
Link https://oeis.org/A000045

Table 3.4 Fibonacci numbers in OEIS database.

1.618033988 . . . ). This expression follows from the more general recurrence relation:∣∣∣∣∣∣∣∣∣∣
Fn+1 Fn+2 · · · Fn+k
Fn+k+1 Fn+k+2 · · · Fn+2k

...
... . . . ...

Fn+k(k−1)+1 Fn+k(k−1)+2 · · · Fn+k2

∣∣∣∣∣∣∣∣∣∣
= 0 (3.35)

for k > 2. (The k = 1 case is trivially Fn+1, while the k = 2 case is essentially
Cassini’s identity and therefore equal to (−1)n.)
Generating function. The generating function of the Fibonacci sequence is the
power series:

s(z) =
∞∑
k=0

Fkz
k =

∞∑
k=1

Fkz
k = 0 + z + z2 + 2z3 + 3z4 + . . . (3.36)

This series is convergent for any complex number z satisfying |z| < 1/φ, and its sum
has a simple closed form:

s(z) = z

1− z − z2 . (3.37)

Proof. This can be proved by multiplying by
(
1− z − z2) :

(
1− z − z2

)
s(z) =

∞∑
k=0

Fkz
k −

∞∑
k=0

Fkz
k+1 −

∞∑
k=0

Fkz
k+2

=
∞∑
k=0

Fkz
k −

∞∑
k=1

Fk−1z
k −

∞∑
k=2

Fk−2z
k

= 0z0 + 1z1 − 0z1 +
∞∑
k=2

(Fk − Fk−1 − Fk−2) zk

= z

(3.38)

where all terms involving zk for k ≥ 2 cancel out because of the defining Fibonacci
recurrence relation.

Applications to cryptography

The main applications of Fibonacci numbers in cryptography are as follows:

• Foundations

https://oeis.org/A000045
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− A Lagged Fibonacci Generator (LFG) is an example of a pseudo-random
number generator based on Fibonacci sequence. This class of random
number generators is aimed at being an improvement on the "standard"
linear congruential generator. Generalising the sequence (3.33)

Sn ≡ Sn−r ⊗ Sn−s (mod m), 0 < r < s (3.39)

the new term is some combination of any two previous terms. m is
usually a power of 2

(
m = 2M

)
, often 232 or 264. The ⊗ operator denotes

a general binary operation. This may be either addition, subtraction,
multiplication, or the bitwise exclusive-or operator (XOR). The theory
of this type of generator is rather complex, and it may not be sufficient
simply to choose random values for j and k. These generators also tend
to be very sensitive to initialisation. Generators of this type employ k
words of state (they "remember"’ the last k values). If the operation
used is addition, then the generator is described as an Additive Lagged
Fibonacci Generator (ALFG) [MCPR95], if multiplication is used, it is a
Multiplicative Lagged Fibonacci Generator (MLFG) [MS04], and if the
XOR operation is used, it is called a Two-tap generalised feedback shift
register (GFSR). The GFSR is also related to the Linear-Feedback Shift
Register (LFSR) [Gol82; GK02].

− A variety of keystream generators have been suggested that are based
on Fibonacci sequences, and at least one has been implemented. These
generators are appealing because they can take advantage of the security
results from the theory of shift register-based keystream generators, while
running much faster in software [And95].

− Although LFSRs are one of the most popular devices for generating
pseudo-random sequences, since they are simple, fast, and easy to im-
plement in software and hardware, the main disadvantage is that in an
LFSR, the current state is a linear function of the previous state, thus
cryptographically insecure. As an alternative, a Non-Linear-Feedback
Shift Register (NLFSR), Fibonacci based also, whose current state is a
nonlinear function of its previous state can be used. More specifically, for
an n-bit shift register r its next state is defined as:

ri+1 (b0, b1, b2, . . . , bn−1) = ri (b1, b2, . . . , f (b0, b1, b2, . . . , bn−1)) , (3.40)

where f is the non-linear feedback function. At present, the main appli-
cation area of NLFSRs is cryptography [Zhi13]. The output sequences
of NLFSRs are normally very hard to break with existing cryptanalytic
methods.

− p-Fibonacci error-correcting codes are a type of error-correcting codes that
are based on the Fibonacci p-sequence. They are defined as the numerical
sequence ap,n given by the recursive relation ap,n = ap,n−1 + ap,n−p−1,
with initial values ap,1 = . . . = ap,p+1 = 1. For a given integer p ≥ 1, the
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p-Fibonacci matrix Qp is a (p+ 1)× (p+ 1) matrix of the following form:

Qp =



1 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

... . . . ...
...

0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 1
1 0 0 0 . . . 0 0


. (3.41)

Fibonacci Qp matrices allow us to define a method to encode and decode
a message M and also to detect and correct errors that might occur in
transmission of the encoding of M . These codes are used in cryptography
to design identification protocols and quantum-resistant signature schemes
[BMM21].

• Cryptographic hash functions

− An audio fingerprint is a compact representation of an original signal
and is considered as a short summary of an audio object. Therefore, the
fingerprint is considered identification in the sense that it almost uniquely
represents the signal. Audio fingerprinting can achieve the monitoring
of audio content without metadata, which helps to identify an unknown
audio clip from a database via the Internet, PC, microphone, mobile phone,
etc. Furthermore, people also adopt audio fingerprinting technologies
to protect the copyright of music, prohibit copyright infringement of
songs, etc. A fast retrieval algorithm based on Fibonacci Hashing for the
extension of the Philips’s method to save memory and improve query
speed [CXM+13].

− Protein family classification is crucial for applications such as smart drug
therapies, understanding protein functions, and building phylogenetic
trees. Although sequencing techniques can reveal biological similarities
between protein families, they are time-consuming. To address this
challenge, a computer and artificial intelligence-based classification system
has been developed. This system converts protein sequences into numerical
representations. A novel protein mapping method based on Fibonacci
Hashing assigns each amino acid code to Fibonacci numbers based on
integer representations. These coded amino acids are then inserted into a
hashing table for classification using recurrent neural networks [AT21].

• Steganography

− Steganographic solution in which Fibonacci numbers play a crucial role
in improving the capacity and security of data embedding in images
[ACS06]. Using image decomposition based on the Fibonacci sequence,
the algorithm can create a larger number of bit levels, specifically 12 levels
compared to traditional 8. This increase in levels allows for a more efficient
distribution of secret data, significantly improving the overall capacity
of information embedding. In addition, the combination of Fibonacci
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numbers with T -order statistics allows the algorithm to embed secret data
in less obvious regions of the image. This adaptive approach minimises
the visual impact of changes made during the embedding process, thus
improving the resistance to detection by various steganalysis tools.

− In another approach, the pixel location choice is obtained by resorting
to the p-Fibonacci series Fp(i), where Fp(i) = Fp(i− 1) + Fp(i− p− 1)
and p is a non-negative integer that decides the sequence of values given
to a singular series [Gow17]. Pixel positions are taken whose values are
multiples of the numbers of Fp(i) and embed information in them.

Further details

Remark on Pseudo-Random Number Generators. Pseudo-Random Number
Generators (PRNGs) play a crucial role in cryptography for several reasons:

− Key Generation. PRNGs are used to generate cryptographic keys, which need
to be random and unpredictable to ensure the security of the cryptographic
system. A weak PRNG can lead to key predictability, making the system
vulnerable to attacks.

− Initialization Vectors (IV). In many cryptographic algorithms, Initialization
Vectors (IVs) are used to ensure that identical plaintexts produce different
ciphertexts on encryption. PRNGs are often used to generate these IVs.

− Nonces. PRNGs generate nonces (numbers used once) that are crucial for
preventing replay attacks where an attacker tries to reuse a previously captured
set of messages.

− Salts. In password hashing, salts are random data added to passwords before
hashing to ensure that even identical passwords have different hash results.
PRNGs are used to generate these salts.

− Stream Ciphers. In stream ciphers, PRNGs generate a pseudorandom keystream
that is XORed with plaintext to produce ciphertext. The security of stream
ciphers is highly dependent on the strength and unpredictability of the PRNG.

In summary, PRNGs are fundamental to ensuring the randomness and security
required in various cryptographic processes, and a compromise in PRNG quality can
lead to severe vulnerabilities in the entire cryptographic system.
In-depth analysis of sequence application. In this context, LFGs have occupied
a special place among such generators and have gained popularity for their ease
of implementation and relatively low cost and complexity. For this reason, it has
been used successfully in many situations since 1958 and it was a real shock to
discover in the 1990s that they actually fail an extremely simple, non-contrived test
for randomness. As anticipated in the previous paragraph, these generators are
defined by their recurrence relation:

xn = xn−r ⊗ xn−s mod m. (3.42)



3.1 Literature survey 39

The symbol ⊗ represents an operation that could be any of the following: addition
(+), subtraction (−), multiplication (×), or exclusive OR (⊕) [Knu69]. To generate
R bits random number, m = 2R; r and s are called the lags of the generator where
r > s > 0 [Alu97]. The output sequence is represented by xn, and the time is
denoted by n. See [LEMV17] for a more detailed analysis of this generator.

The maximum period that can be achieved by LFG depends on the specific
operation employed, as illustrated in Table 3.5.

Operations Maximum Attainable Period
Addition, mod p = 2N−1 (2r − 1)
Subtraction, mod p = 2N−1 (2r − 1)
Multiplication mod p = 2N−3 (2r − 1)
Exclusive-or p = 2r − 1

Table 3.5 Maximum attainable periods p of LFG xn = xn−r ⊗ xn−s mod 2m

The term AFG is used to group generators that use the + or - operator. As
shown in the above table, + and operators obtain large periods; therefore, most
stringent statistical tests show that AFG produce satisfactory outcomes even if the
lags have small values. As such, the equation of an AFG can be expressed as:

xn = xn−r ± xn−s mod m. (3.43)

Where m denotes the base, r and s represent the lags of the past samples, and
{x0, . . . , xr−1}, constitute the seeds values [Alu97].

When m = 2N , N being the length of the word, and the trinomial xr + xs + 1
is irreducible and primitive over F2, the maximum period p is reached (subject to
the condition that at least one of the seed values must be odd) and its value is
p = 2N−1 (2r − 1).

As already mentioned, despite their advantages, LFG is subject to limitations
regarding randomness and security. Therefore, in order to have sufficiently large
periods and exhibit ideal random behaviour, large lags are required. However, large
lags mean large amounts of memory, since the state of an LFG is proportional to its
lags [MHK+21]

Recently, various studies have been done to modify LFG, due to its easy imple-
mentation and simplicity [MSH+22]. To overcome the aforementioned issues, a more
sophisticated architecture for generating keys has been introduced in this work.

3.1.5 Lucas sequences

The storey of the Lucas sequence begins with its namesake, Édouard Lucas, a
French mathematician born in 1842. Lucas was a prolific mathematician and number
theorist who made significant contributions to various areas of mathematics. His
interest in number sequences led him to the discovery and study of what would later
be known as the Lucas sequence.

In the mid-19th century, Lucas started investigating sequences that shared
similarities with the more famous Fibonacci sequence, which had been introduced
to the western world by Leonardo of Pisa (Fibonacci) in his book Liber Abaci in
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1202. Like Fibonacci, Lucas noticed that certain sequences of numbers exhibited a
pattern in which each number was obtained by adding the two preceding ones.

Lucas decided to explore these sequences further and, in 1877, published a paper
titled "Théorie des Nombres" where he introduced what we now call the Lucas
sequence. He defined it as a sequence that starts with the numbers 2 and 1, just like
Fibonacci, and then continues with each subsequent number being the sum of the
two preceding ones. His goal was to study the properties and relationships of this
sequence.

The sequence quickly gained attention in the mathematical community, and it
was found to have various intriguing properties. It appeared in the study of number
theory, particularly in the analysis of prime numbers. Lucas himself made significant
contributions to the study of primes and was a pioneer in what would later be known
as "Lucas sequences."

Over time, mathematicians and researchers continued to explore the properties
of the Lucas sequence, uncovering its connections to many areas of mathematics,
including algebra, combinatorics, and geometry. It also found applications in
computer science, where it was used in algorithms and cryptography.

The Lucas sequence has even found its way into the natural world and art, with
its mathematical patterns resembling some aspects of plant growth and aesthetics.
This mathematical curiosity continues to captivate mathematicians and enthusiasts,
serving as a testament to the enduring fascination with the beauty and elegance of
mathematical patterns in our universe.

Proprieties

Definition 3.1.7. The Lucas sequences Un(P,Q) and Vn(P,Q) are constant-recursive
integer sequences that satisfy the recurrence relation:

Ln = P · Ln−1 −Q · Ln−2 (3.44)

where P and Q are fixed integers [BW23].

Any sequence satisfying this recurrence relation can be represented as a linear
combination of the Lucas sequences Un(P,Q) and Vn(P,Q).
Recurrence relations. Given the previous two integer parameters P and Q, the
Lucas sequences of the first kind Un = Un(P,Q) (n ∈ N) and of the second kind
Vn = Vn(P,Q)(n ∈ N) are defined by the recurrence relations [HZ10]:

U0 = 0, U1 = 1, and Un = P · Un−1 −Q · Un−2(n ≥ 2),
V0 = 2, V1 = p, and Vn = P · Vn−1 −Q · Vn−2(n ≥ 2).

(3.45)

The characteristic equation x2−Px+Q = 0 of the sequences Un and Vn has two
roots α = (P +

√
D)/2 and β = (P −

√
D)/2 with the discriminant D = P 2 − 4Q.

Note that D1/2 = α − β. Furthermore, D = 0 means x2 − Px + Q = 0 has the
repeated rootα = β = P/2. It is well known that for any n ∈ N ([Rib96]),

P · Un + Vn = 2 · Un+1, Un = αn − βn

α− β
, Vn = αn + βn. (3.46)
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More generally, the Lucas sequences Un(P,Q) and Vn(P,Q) represent sequences
of polynomials in P and Q with integer coefficients. Famous examples Un and Vn
can be considered as the generalisation of many integer sequences such as Fibonacci
numbers, Mersenne numbers, Pell numbers, Lucas numbers, Jacobsthal numbers,
and a superset of Fermat numbers (Table 3.6).

P Q Un(P,Q) Vn(P,Q)
1 -1 Fibonacci numbers (OEIS:

A000045)
Lucas numbers (OEIS: A000032)

1 -2 Jacobsthal numbers (OEIS:
A001045)

Jacobsthal–Lucas numbers (OEIS:
A014551)

2 -1 Pell numbers (OEIS: A000129) Pell–Lucas numbers (OEIS:
A002203)

3 2 Mersenne numbers 2n − 1 (OEIS:
A000225)

Numbers of the form 2n + 1,
which include the Fermat numbers
(OEIS: A000051)

Table 3.6 Some Lucas sequences generated for different values of P and Q
.

Generating functions. Ordinary generating functions are:∑
n≥0

Un(P,Q)zn = z

1− Pz +Qz2 (3.47)

∑
n≥0

Vn(P,Q)zn = 2− Pz
1− Pz +Qz2 (3.48)

Applications to cryptography

The principal applications of Lucas sequences in cryptography are as follows:

• Foundations

− Probabilistic Lucas pseudoprime tests, which are part of the commonly
used Baillie-PSW primality test [BW80]. The test defines Lucas pseudo-
primes as follows: given integers P and Q, where P > 0 and D = P 2−4Q,
let Uk(P,Q) and Vk(P,Q) be the corresponding Lucas sequences. Let
n be a positive integer and let

(D
n

)
be the Jacobi symbol. We define

δ(n) = n−
(D
n

)
. If n is a prime that does not divide Q, then the following

congruence condition holds: Uδ(n) ≡ 0 (modn). If this congruence does
not hold, then n is not prime. If n is composite, then this congruence
usually does not hold. These are the key facts that make Lucas sequences
useful in primality testing.

− Lucas sequences are used in some primality proof methods, including the
Lucas-Lehmer-Riesel test, and the N + 1 and hybrid N− 1/N + 1 methods
such as those in Brillhart-Lehmer-Selfridge 1975 [BLS75]. The algorithm
is very similar to the Lucas-Lehmer test, but with a variable starting
point depending on the value of k. Defined a sequence ui for all i > 0

https://oeis.org/A000045
https://oeis.org/A000045
https://oeis.org/A000032
https://oeis.org/A001045
https://oeis.org/A001045
https://oeis.org/A014551
https://oeis.org/A014551
https://oeis.org/A000129
https://oeis.org/A002203
https://oeis.org/A002203
https://oeis.org/A000225
https://oeis.org/A000225
https://oeis.org/A000051
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by: ui = u2
i−1 − 2. Then N = k · 2n − 1, with k < 2n is prime if and only

if it divides un−2. The starting value u0 is determined using the Lucas
sequence term Vk(P, 1) taken mod N .

• Public-key cryptography

− Lucas sequence Vn(P,Q) has been proposed to be used for public key
cryptosystem (LUC), in a manner similar to the famous RSA, but using
Lucas sequences modulo a composite number instead of exponentiation
[SL93]. It has stipulated to have the same security level as RSA for the
same size key, but is about twice as slow. However, many of the sup-
posed security advantages of LUC over cryptosystems based on modular
exponentiation are either not present, or not as substantial as claimed
[BBL95]. Furthermore, the security of Lucas functions is polynomial-time
equivalent to the generalized discrete logarithm problems [LTT95].

− Similarly, Lucas sequences have been used in several discrete logarithm-
based encryption schemes that have been proposed over time. In par-
ticular, a variant of a probabilistic public-key encryption scheme based
on LUC [JHW05], another scheme based on quadratic fields quotients
[Cas07], a novel algorithm for the computation of Lucas sequences is pro-
posed to improve the efficiency of cryptosystems based on LUC [LLX+12],
a cryptosystem based on second order linear sequences in which semantic
security is ensured [EF12]. Moreover, as linear sequences are not multi-
plicative, the main advantage of Lucas cryptosystems is that they are not
formulated in terms of exponentiation.

• Implementation

− An approach for anonymous multi-receiver public key encryption based
on Lucas sequences and the Chinese Remainder Theorem, which provides
secure transmission of messages to authorized receivers via insecure chan-
nels. The scheme is shown to be better against renowned attacks and
prevailing anonymous multi-receiver algorithms through computational
analysis [CEF19].

− A cryptography method based on relationships of hyperbolic balancing and
Lucas-balancing functions, as well as through the use of direct and inverse
matrices, as well as the balancing matrices. The applying Strassen’s
method to improve the time complexity of solving equations involving the
balancing matrix. This demonstrates that the use of matrices to represent
and protect initial messages in the cryptography method [Ray20].

• Attacks and cryptanalysis

− Lucas sequences were used for factoring RSA modules through an S-
index formation as a comparative tool in the factoring process. The
S-index pattern is used to design an algorithm to factor RSA modules
by determining the quadratic residual on ciphertexts. Non-positional
nature of Residue Number Systems (RNS) is used and compared with
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the Comparative S-Index, which is equivalent to magnitude comparison
in RNS [AALA16].

Further details

Remark on Public-key cryptography. Since the inception of the Internet, it has
become customary to make use of public-key (or two-key) cryptography to secure
Internet commerce. In such a scheme, each member of a group of individuals wishing
to exchange information will have both a private key and a public key unique to that
person. If Alice and Bob are members of this group and Alice wishes to communicate
with Bob, she looks up his encryption key in a public directory and encrypts her
message M to him using this key. On receiving this ciphertext, Bob uses his
decryption key to decipher it and produce M . As an example of such a cryptosystem,
consider the RSA system seen in Section 3.1.1. Each member of the group, say Bob
(or a trusted authority acting on Bob’s behalf), selects two large primes p and q of
k digits at random, keeps them secret and computes N = pq. He also selects at
random an integer e(< N) such that gcd(e, φ(N)) = 1(φ(N) = (p− 1)(q − 1)) and
solves the linear congruence:

ed ≡ 1 (modφ(N)) (3.49)

by the extended Euclidean algorithm to find d with 0 < d < φ(N). Bob’s public
encryption key is the pair (e,N), and his private decryption key is d. If Alice wishes
to send a secure numerically encoded message M(0 < M < N, gcd(M,N) = 1) to
Bob, she calculates C ≡ M e(modN)(0 < C < N) and sends C to Bob. Bob can
recover M from C by calculating:

Cd ≡M ed ≡M1+tφ(N) ≡M (modN), (3.50)

by Euler’s theorem. Since M < N , it is uniquely determined. This scheme has
been the subject of many cryptographic attacks, but with some modifications it
has endured them all and is still widely used today. See Boneh [Bon99]. Of course,
if an adversary can factor in the RSA modulus N , then he can break the system.
However, in spite of the many improvements to integer factoring algorithms since the
announcement of the RSA system in 1977, factoring N when k = 1024, say, seems
still to lie in the distant future. Of course, this statement could become invalid
should some group of clever individuals develop a new and better factoring algorithm
or produce a universal quantum computer with a sufficient number of qubits. At this
point, the latter scenario seems more likely. For information on quantum computers
and computing, see Kaye et al. [KLM06].

One of the problems associated with the RSA cryptosystem is the process of
selecting p and q. We note that because of the existence of factoring techniques p− 1
and p+ 1, it is essential for the security of the system that each of the four numbers
p ± 1 and q ± 1 has at least one large prime factor. The problem of producing
such p and q was first examined by Williams and Schmid [WS79], where the use of
the primality tests of [BLS75] was advocated. Since then, there have been further
developments by Shawe-Taylor [ST86] and Maurer [Mau95]. The latter paper is a
particularly valuable contribution to this problem.
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In-depth analysis of sequence application. In 1993, Smith [Smi93] produced
a public-key cryptosystem, called LUC, which was based on Lucas functions, as
previously discussed. "The basic idea behind LUC is that of providing an alternative
to RSA by substituting the calculation of Lucas functions for that of exponen-
tiation. Although Lucas functions are somewhat more complex mathematically
than exponentiation, they produce superior ciphers". However, the system has
some important weaknesses, as pointed out by Bleichenbacher et al. [BBL95].
Nonetheless, it has since been recommended as a possible authentication system
and continues to be the subject of active research. (See, e.g., Ibrahimpašić [Ibr09].)
If we suppose that N is an RSA modulus and gcd(QD,N) = 1, the basic idea
behind LUC is the simple result, easily proved from the law of appearance, that
Umψ(N)(P,Q) ≡ 0 (modN) and Vmψ(N)(P,Q) ≡ 2(modN), where m is any posi-
tive integer and ψ(N) =

(
p2 − 1

) (
q2 − 1

)
. In this scheme, Bob computes ψ(N) and

finds some positive e < N at random such that gcd(e, ψ(N)) = 1. As in RSA, the
pair (e,N) will constitute his public key. He next solves the linear congruence:

ed ≡ 1 (modψ(N)) (3.51)

for his private key d. (This is not exactly what is recommended in [Smi93], but as
mentioned in [BBL95], it avoids the problem of message dependence).
For Alice to send a message M(< N) to Bob, she first places P = M and Q = 1
and computes C ≡ Ve(M, 1)(modN) and sends C to Bob. Bob can recover M by
computing Vd(C, 1) ≡M(modN). To see why this works, we observe that:

Vd(C, 1) ≡ Vd (Ve(M, 1), 1) ≡ Ved(M, 1) = V1+tψ(N)(M, 1) ≡M(modN) (3.52)

The latter congruence follows from:

2V1+tψ(N)(M, 1) = V1(M, 1)Vtψ(N)(M, 1) +DU1(M, 1)Utψ(N)(M, 1)
≡ 2M (modN).

(3.53)

The values of C and Vd(C, 1) can be quickly computed with appropriate techniques.
We have mentioned that if an adversary can factor N , then the RSA scheme (and
LUC) can be broken. This leaves the question of whether breaking RSA is equivalent
in difficulty to factoring N . Boneh and Venkatesan [BV98] have provided evidence
that suggests this is not the case, and Boneh and Durfee [BD00] have shown that
if d < N0.292, then N can be effectively factored. However, Aggarwal and Maurer
[Mau95] have shown that breaking RSA is equivalent in difficulty to factoring the
modulus under a generic model of computation, but this is a very restrictive model,
as it does not exploit the bit representation of elements except for testing equality.
However, there is a scheme somewhat similar to LUC for which it can be proved
that breaking it is equivalent in difficulty to factoring N . This system makes use of
the solutions of a certain Pell equation [JW09], which we have seen are essentially
given by the Lucas functions. More information on this system can be found in
Müller [Mul06].

3.1.6 Catalan numbers

The history of Catalan numbers is a fascinating journey that spans over 200 years,
from their first discovery in the 18th century to modern times. Catalan numbers
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have a rich history of multiple rediscoveries and have become a fundamental concept
in mathematics [Sta15].

− History. The storey begins with Ming Antu, a Chinese scientist and mathe-
matician who wrote a book in the 1730s called "Quick Methods for Accurate
Values of Circle Segments." Although the integrality of Catalan numbers did
not play a role in Ming Antu’s work, his book included trigonometric identities
and power series that involved Catalan numbers. However, it was not until
1839 that the connection between Ming Antu’s work and Catalan numbers
was observed by Luo Jianjin.
In 1751, Leonhard Euler, one of the most influential mathematicians in history,
introduced and found a closed formula for Catalan numbers. Euler defined
Catalan numbers as the number of triangulations of an (n + 2)-gon. He
provided the values of Catalan numbers for n ≤ 8 and observed a pattern in
successive ratios. Euler guessed a formula for Catalan numbers and derived
the generating function for them. Christian Goldbach and Johann Segner
assisted Euler in his proof of the formula, and by 1759, a complete proof was
obtained. Johann Andreas von Segner, another correspondent of Euler, played
a significant role in the history of Catalan numbers. In the late 1750s, Euler
suggested to Segner the problem of counting the number of triangulations of
an n-gon. Segner accepted the challenge and found a recurrence relation for
Catalan numbers. However, he made an arithmetic mistake in computing some
values of Catalan numbers. Euler corrected the mistake and published Segner’s
paper with his own summary. The combination of Euler’s and Segner’s results,
along with Goldbach’s observation, provided a complete proof of the product
formula for Catalan numbers.
In 1766, Semen Kirillovich Kotelnikow, a Russian mathematician, wrote a paper
elaborating on Catalan numbers. Although he claimed to have another way
to verify the product formula for Catalan numbers, his work mainly involved
playing around with the formula. Nicolas Fuss, Euler’s assistant, introduced
the Fuss-Catalan numbers and a generalisation of Segner’s recurrence relation
in 1795.
In the 19th century, the French school of mathematicians made significant
contributions to the study of Catalan numbers. Joseph Liouville, a French
mathematician, received a question from Olry Terquem about deriving Euler’s
formula for Catalan numbers from Segner’s recurrence. Liouville communicated
this problem to various geometers, which led to a series of papers on Catalan
numbers. Gabriel Lamé provided an elegant double-counting argument to
derive Euler’s formula. Eugene Charles Catalan obtained standard formulas
for Catalan numbers and studied the problem of counting bracket sequences.
Olinde Rodrigues, another mathematician, also made contributions to the
study of Catalan numbers during this period.

− Modern interpretations and Applications. As mathematical research
progressed, Catalan numbers found applications in numerous areas, including
algebraic topology, graph theory, computer science, and more. Researchers and
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mathematicians discovered new combinatorial interpretations [Bru12; Gri06;
Gri12; Kah13] and deeper connections between numbers and various mathe-
matical phenomena. Stanley [Sta99] gave a list of 66 different combinatorial
descriptions of Catalan numbers, and added some more to the list [Sta]. Some
of the specific instances are as follows:

− The number of movements in xy-plane from (0, 0) to (n, n) with two kinds
of moves:

R : (x, y)→ (x+ 1, y), U : (x, y)→ (x, y + 1), (3.54)

such that the path never rises above the line y = x.
− Triangulations of a convex (n+ 2)-gon into n triangles by n− 1 diagonals

that do not intersect in their interiors.
− Binary parentheses of a string of n+ 1 letters.
− Binary trees with n vertices.

The solution to these problems is the nth Catalan number.

Proprieties

Definition 3.1.8. The nth Catalan number can be expressed directly in terms of
the central binomial coefficients by:

Cn = 1
n+ 1

(
2n
n

)
= (2n)!

(n+ 1)!n! =
n∏
k=2

n+ k

k
for n ≥ 0 (3.55)

OEIS. The first terms of the sequence are available in the OEIS database:

A-number A000108
Name Catalan numbers: Cn = 1

n+1
(2n
n

)
Data 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, · · ·

Offset 0, 3
Link https://oeis.org/A000108

Table 3.7 Catalan numbers in OEIS database.

An alternative expression for Cn is:

Cn =
(

2n
n

)
−
(

2n
n+ 1

)
for n ≥ 0 (3.56)

which is equivalent to the expression given above because
(

2n
n+ 1

)
= n

n+1

(
2n
n

)
.

This formulation shows that Cn is an integer, which is not immediately obvious
from the first formula given. The above expression forms the basis for a proof of the
correctness of the formula.

https://oeis.org/A000108
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An additional representation expression is:

Cn = 1
2n+ 1

(
2n+ 1
n

)
(3.57)

which can be directly interpreted in terms of the cycle lemma.
Asymptotically, the Catalan numbers increase as:

Cn ∼
4n

n3/2√π
, (3.58)

in the sense that the quotient of the nth Catalan number and the expression on the
right tends towards 1 as n approaches infinity.
Recurrence relation. Catalan numbers satisfy the recurrence relation:

Cn+1 = C0Cn + C1Cn−1 + · · ·+ CnC0 =
n∑
k=0

CkCn−k (3.59)

and
C0 = 1 and Cn+1 = 2(2n+ 1)

n+ 2 Cn. (3.60)

Proof. There are several ways to prove (3.59), but perhaps the most elegant is by
appealing to Dyck paths of length 2(n+ 1), which we saw above that Cn+1 counts.
Given a Dyck path of length 2(n+ 1), let 2(k + 1) be the first non-zero coordinate
x where the path hits the x-axis, then 0 ≤ k ≤ n. The path is broken up into two
pieces, the part on the left of 2(k + 1) and the part on the right. The part to the
right is a Dyck path of length 2(n− k), so it is counted as Cn−k. The part to the left
is a north-east step, then a Dyck path of length 2k, and then a south-east step. (The
middle path is a Dyck path "on stilts"; it never dips below its starting point because
it cannot hit the x-axis earlier than 2(k + 1).) There are Ck of these. Therefore,
there are a total of CkCn−k paths that hit the x-axis first at 2(k+ 1), and combining
these terms gives Cn+1, which is the recurrence relation.

Example. If n+ 1 = 3, then Cn+1 counts the five Dyck paths pictured above:

− Path 1 has k = 2, counted in C2C0.

− Path 2 has k = 2, counted in C2C0.

− Path 3 has k = 1, counted in C1C1.

− Path 4 has k = 0, counted in C0C2.

− Path 5 has k = 0, counted in C0C2.

The middle path of length 4 on paths 1 and 2 , and the top half of the left peak of
path 3, are the Dyck paths on stilts referred to in the proof above.
Remark. Dyck Path is a lattice path in the coordinate plane that starts at the origin
(0,0) and consists of steps in the positive x and y directions (up and right) with the
following conditions:
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− The path never goes below the x-axis (no steps below y = 0).

− The path ends on the line y = 0.

Generating function. The generating function for Catalan numbers is:

Cn =
∞∑
n=0

Cnx
n = 1−

√
1− 4x

2x = 2
1 +
√

1− 4x
. (3.61)

Given the recurrence (3.59), let us now just mention one aspect of generating
functions, namely the binomial theorem for arbitrary exponents. When a is any
complex number, or even an indeterminate, and k ∈ N, then we define the binomial
coefficient: (

a

k

)
= a(a− 1) · · · (a− k + 1)

k! . (3.62)

The "generalized binomial theorem" due to Isaac Newton asserts that:

(1 + x)a =
∑
n≥0

(
a

n

)
xn. (3.63)

This formula is just the formula for the Taylor series of (1 + x)a at x = 0. For
our purposes, we consider generating function formulas such as equation (3.63) to
be "formal" identities. Questions of convergence are ignored.

Proof. Multiply the recurrence (3.59) by xn and sum on n ≥ 0. On the left-hand
side we get: ∑

n≥0
Cn+1x

n = C(x)− 1
x

. (3.64)

Since the coefficient of xn in C(x)2 is
∑n
k=0CkCn−k, on the right-hand side we

get C(x)2. Thus:
C(x)− 1

x
= C(x)2, (3.65)

or
xC(x)2 − C(x) + 1 = 0. (3.66)

Solving this quadratic equation for C(x) gives:

C(x) = 1±
√

1− 4x
2x . (3.67)

We have to determine the correct sign. Now, by the binomial theorem for the
exponent 1/2 (or by other methods),

√
1− 4x = 1− 2x+ · · · . (3.68)

If we take the plus sign in (3.67) we get:

1 + (1− 2x+ · · · )
2x = 1

x
− 1 + · · · , (3.69)
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which is not correct. Hence, we must take the minus sign. As a check,

1− (1− 2x+ · · · )
2x = 1 + · · · , (3.70)

as desired.
From the generating function, it is easy to obtain the formula of Cn (3.61).

Corollary 3.1.3. We can now prove Cn in the Definition 3.1.8:

Cn = 1
n+ 1

(
2n
n

)
= (2n)!
n!(n+ 1)! . (3.71)

Proof. Consider the following:

√
1− 4x = (1− 4x)1/2 =

∑
n≥0

(
1/2
n

)
xn. (3.72)

hence by (3.67),

C(x) = 1
2x

1−
∑
n≥0

(
1/2
n

)
(−4x)n


= −1

2
∑
n≥0

(
1/2
n+ 1

)
(−4)n+1xn.

(3.73)

Equating coefficients of xx on both sides gives:

Cn = −1
2

(
1/2
n+ 1

)
(−4)n+1. (3.74)

It is routine to expand the right-hand side of equation (3.74) and verify that it is
equal to 1

n+1

(
2n
n

)
.

The expression 1
n+1

(
2n
n

)
is the standard way to write Cn explicitly. There is an

equivalent expression that is sometimes more convenient:

Cn = 1
2n+ 1

(
2n+ 1
n

)
. (3.75)

Note also that:
Cn = 1

n

(
2n
n− 1

)
. (3.76)

Applications to cryptography

The principal applications of Catalan numbers in cryptography are as follows:

• Secret-key cryptography
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− Encryption and decryption procedure that involves dividing the message
into blocks of m characters each, coding each character to its equivalent
8 − bit binary number using the ASCII code table, and XORing the
resulting binary number with the 8421 code of a decimal digit converted
to a 4 − bit binary number [KSC12]. The encrypted binary number is
then coded back to text characters using the ASCII code table. This
procedure is applied to all data blocks. The decryption procedure is the
reverse of the encryption procedure.

− Encryption and decryption method which aims to establish a secure
communication channel between two entities [SAM+21a]. It involves gen-
erating Catalan values that satisfy the Catalan number property, defining
the Lattice Path movement space, and defining the key equalisation rules.
Both sides generate a random value of an arbitrary length and encrypt
it with their chosen Catalan-key. The encrypted values are used as the
initial values of the first phase of the Maurer’s protocol. Values A and
B (key material) are completely equalised after the second phase and
are usable for generating a symmetric cryptographic key through the
final phase (privacy amplification) in Maurer’s protocol. This neutralises
the mutual information between Eve and the other participants that
existed at the beginning of the protocol. Overall, the proposed procedure
aims to provide a high level of security for the Key-Exchange process by
using the specific properties of Catalan numbers and the Lattice Path
combinatorics.

• Public-key cryptography

− An elliptic curve encryption algorithm is proposed based on integer
sequences of Catalan numbers [AKH13]. The proposed approach uses
the Catalan sequence to generate secure keys, which are then used to
encrypt the data. The set of points follows a secure key based on circular
rotation, and the corresponding point that falls below the Catalan number
is taken as the secured key noted Ki. The sequence and K are used to
generate secure keys Ki. The addition operation is performed between
the selected point and Ki to obtain a point Qi, which is then used to form
the encrypted block. Therefore, Catalan numbers are used to generate
secure keys in the proposed ECC-based encryption algorithm.

• Cryptographic protocols

− Secret key sharing protocol for establishing secure communication between
two entities in smart city applications [SAM+20]. The protocol is based on
the properties of Fuss-Catalan numbers and Lattice Path combinatorics.
The proposed scenario consists of three phases: generating a Fuss-Catalan
object based on the grid dimension, defining the movement in the Lattice
Path Grid, and defining the key equalisation rules. The authors present
the security analysis of the protocol and its test in the experimental
part. They also examine the equivalence of the proposed scenario with
Maurer’s satellite scenario and suggest a new scenario that implements an



3.1 Literature survey 51

information-theoretical protocol for public-key distribution. The paper
concludes with proposed research directions on key management in smart
city applications.

• Implementation

− Encryption method based on Catalan objects and combinatorial struc-
tures with noncrossing or nonnested matching [SAM+21b]. The results
showed that it is much more difficult to recognize ciphertext generated
with the Catalan method than one made with the Data Encryption
Standard (DES) algorithm. The paper also evaluated the quality of the
generated Catalan key using statistical testing proposed by the National
Institute of Standards and Technology. The proposed method has po-
tential applications in e-Health IoT and smart cities data storage and
processing.

− Encrypting and decrypting files and plaintext using the Lattice Path
method for combinatorial encryption [SAB18]. The plaintext is first
converted into binary form and then a binary key is generated using the
Catalan number formula. The binary key is used to determine which
characters from the plaintext are transferred to the ciphertext. The
encryption process involves selecting an ordered pair of 1 and 0 for each
character in the plaintext, and transferring the character to the ciphertext
only when its corresponding bit 1 gets its pair of bit 0. The decryption
process is performed in reverse order of reading the binary key record,
starting from the last bit and ending at the first bit in the key. The
occurrence of bit 0 indicates an open pair and 1 closed pair. The number
of possible valid paths in the network is directly determined by the
calculating formula for the Cn set of Catalan numbers.

− Procedure for generating cryptographic keys from a segment of a 3D
image using a computational geometry algorithm [SSS18]. The generated
keys are then used to encrypt and decrypt text based on the balanced
parentheses combinatorial problem. The encryption process involves
permuting the bits of the message using the generated key, while the
decryption process involves reversing the permutation using the same key.
The triangulation of the separated polygon is converted into a record
that represents the Catalan key, which is then used in the encryption
and decryption of text based on the balanced parentheses combinatorial
problem. The authors also discuss the properties of Catalan keys and the
number of valid values that satisfy the condition of balance for a given
basis.

− Encryption method based on Catalan random walks offers new possibilities
for multimedia data protection to ensure the rights of participants in
the multimedia distribution chain [SSA21]. The proposed encryption
and decryption procedure consists of five phases: conversion, division,
selection, encryption, and generation. In the conversion phase, the data
(text or image) is loaded and converted into binary form. In the division
phase, the binary sequence is divided into binary blocks of a specific size,
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and the basis n is loaded for generating the set Cn, representing the set
of Catalan objects, i.e., the set of keys. In the selection phase, the valid
random walks through the binary block are generated using the Catalan
key. In the encryption phase, the binary block is encrypted using the
generated random walk. In the generation phase, the encrypted binary
blocks are combined to form the encrypted multimedia content. The
decryption procedure is the reverse of the encryption procedure, where
the encrypted multimedia content is divided into binary blocks, and the
valid random walks are generated using the Catalan key. The binary
blocks are then decrypted using the generated random walk, and the
decrypted binary blocks are combined to form the original multimedia
content.

− Application of Ballot Problem, Stack Permutations, and Balanced Paren-
theses in encryption and decryption of files and plaintext [SKB18]. These
combinatorial problems are used to generate a secret key based on Catalan
numbers, which is then used for encryption and decryption. The Ballot
Problem is used to determine the number of combinations to put the
2n votes in such a way that in each adding a new vote, the number of
votes that has been won by candidate A is greater than or equal to the
number of the votes that candidate B has received. Stack Permutations
are used to determine the number of ways to stack n distinct objects in a
pile. Balanced Parentheses are used to determine the number of ways to
arrange n pairs of parentheses such that they are balanced.

• Steganography

− Novel data hiding method using Catalan numbers and Dyck words
[SAM+19]. The data carrier retains its original shape and a Gener-
ateStegoKey class is responsible for generating a complex stego-key that
later allows retrieving a hidden message from the data carrier. The
proposed encryption and decryption procedure involves selecting bits in
the data carrier based on the sets ni that generate the value Cn, which
serves to generate Dyck Words. The set of additional parameters S,E,R
reveals the initial and end position of bits and an additional condition.
The initial position and end of the bits give a schedule in which they are
taken, and the value D determines which bits are taken in the unchanged
form and which are complemented. In the last step, a stego-key consisting
of an ordered triple K = ni, S, E,R,Di. The security of the system is
proven through state-of-the-art machine learning analysis.

− Encryption process based on encoding an image in a binary record,
converting a secret message (hidden information) into a binary record,
and creating a Delaunay triangulation of a binary record of an image
whose vertices are carriers of the secret message bit [SSSK21]. After that,
by applying the stack permutation method and Catalan objects to the
coordinates (x, y) of the Delaunay vertex, a completely new encrypted
triangulation is obtained whose vertex coordinates (x, y) are placed in a
sequence. The original image, an encrypted string with vertex coordinates
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(x, y) in the form of Base64 code and an encrypted Delaunay triangulation,
are sent to the user via the medium (Internet). Finally, in the process of
decryption, by reapplying the Catalan object and the stack permutation
method, the original Delaunay triangulation of the binary record of the
image is created and the original information is revealed.

− An integer sequence named Catalan Transform (CT) has been exploited
in the image steganography domain. At the outset, the cover image
is decomposed into 2 × 2 non-overlapping blocks in row major order
[MHGS21]. Then, each such block, that is, 4− pixel group, is converted
into the transform domain using CT. Secret bits are embedded in the
transformed components in varying proportions, which facilitates us to
achieve a payload in the range of 1 to 4 bpp (bits per pixel). Inverse
Catalan Transform (ICT) is applied over transformed cum embedded
quadruples to generate the stego-pixels in spatial domain. Successive
embedding operation over an entire image ensures the formation of stego-
image.

Further details

Remark on Steganography. A fundamental characteristic of image steganography
is the assurance of secure communication during the transmission of stego-images
across various networks or communication channels. Various methodologies for
image steganography have been proposed, depending on the specific application and
stages involved within the embedding process. Consequently, these systems can
be categorised according to several criteria, including the type of cover-image used
(either 2D or 3D images), the intended application, the retrieval process (whether
reversible or irreversible), the nature of the embedding process (whether in the
spatial or transform domain) and adaptive steganography.

The process of embedding secret data within the cover-image constitutes the
fundamental mechanism of steganography. Given the potential for embedding secret
data within both the spatial and transform domains of the cover-image, an intricate
classification system predicated on the nature of the cover domain is employed.

Steganography in the transform domain involves embedding within the frequency
domain. Before embedding within the spatial domain, the content is converted
into the frequency domain. Upon completion of the embedding process, an inverse
transform is executed to generate a steganographic image. Similarly, the extraction
process requires execution in the frequency domain. Embedding in the frequency
domain typically enhances the robustness, imperceptibility, and security of the
embedded message. In the incipient phase of the development of steganography,
the transform domain was not widely adopted because of significant distortion
effects, despite offering greater message robustness in lossy channels. This occurs
because the embedded bits are diffused over a broader area of the image, making
it more suitable for robust watermarking. However, contemporary steganographic
techniques continue to advance within the transform domain due to their inherent
complexity and the potential to produce secure and robust steganographic outcomes
[KPVH19; RAS+23].
In-depth analysis of sequence application. In the transform domain employed
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in steganography, we find the Catalan Transform (CT). CT is one of the invertible
transformations in the sequence of integers associated with Catalan numbers [Bar05].
Catalan transform has been used in image steganography and was only implemented
in 2021 in research [MHGS21].

Proposition 3.1.2. (Riordan matrix). The general term T (n, k) of the Riordan
matrix (1, C(x)) is given by

T (n, k) =
k∑
j=0

(
k

j

)(
j/2
n

)
(−1)n+j22n−k (3.77)

where C(x) is defined in (3.67).

Proof. We seek [xn] (xC(x))k. To this end, we develop the term (xC(x))k as follows:

xkc(x)k = xk
(

1−
√

1− 4x
2x

)k
= 1

2k (1−
√

1− 4x)k

= 1
2k

k∑
j=0

(
k

j

)
(−
√

1− 4x)j

= 1
2k
∑
j

(
k

j

)
(−1)j(1− 4x)j/2

= 1
2k
∑
j

(
k

j

)
(−1)j

∑
i

(
j/2
i

)
(−4x)i

= 1
2k
∑
j

(
k

j

)
(−1)j

∑
i

(
j/2
i

)
(−4)ixi

=
∑
j

(
k

j

)∑
i

(
j/2
i

)
(−1)i+j22i−kxi.

(3.78)

Thus [xn] (xC(x))k =
∑k
j=0

(k
j

)(j/2
n

)
(−1)n+j22n−k.

Definition 3.1.9. (Catalan transform). Given a sequence an, its Catalan transform
bn is given by:

bn =
n∑
k=0

k

2n− k

(
2n− k
n− k

)
ak

=
n∑
k=0

k

n

(
2n− k − 1
n− k

)
ak

(3.79)

or
bn =

n∑
j=0

n∑
k=0

2k + 1
n+ k + 1(−1)k−j

(
2n
n− k

)(
k

j

)
aj . (3.80)
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The inverse transformation is given by:

an =
⌊n/2⌋∑
k=0

(
n− k
k

)
(−1)kbn−k

=
n∑
k=0

(
k

n− k

)
(−1)n−kbk.

(3.81)

Proof. Using [Spr04] we have:

T (n, k) = 22n−k(−1)n
k∑
j=0

(
k

j

)(
j
2
n

)
(−1)j

= 22n−k(−1)n
{

(−1)n2k−2n
((

2n− k − 1
n− 1

)
−
(

2n− k − 1
n

))}

=
(

2n− k − 1
n− 1

)
−
(

2n− k − 1
n

)

= k

n

(
2n− k − 1
n− 1

)
= k

n

(
2n− k − 1
n− k

)
.

(3.82)

But:
k

n

(
2n− k − 1
n− k

)
= k

n

2n− k − (n− k)
2n− k

(
2n− k
n− k

)

= k

n

2n− k − n+ k

2n− k

(
2n− k
n− k

)

= k

2n− k

(
2n− k
n− k

)
.

(3.83)

This proves the first two assertions of the proposition. The last assertion follows
from the expression for the general term of the matrix (1, x(1− x)) obtained above.
The equivalence of this and the accompanying expression is easily obtained.

(Catalan transform-based secured image steganography). The application of CT
in image steganography is innovative, with its most prominent characteristic being
the significant variations in transformed coefficients caused by embedding. This
is due to the unique computational process of the coefficients, making the scheme
effectively impervious to adversarial attacks. Furthermore, the ingenuity of the
approach is further highlighted by the precise manipulation of these transformed
coefficients through an adaptive embedding rule, which guarantees a high payload
capacity, improved perceptual quality and, critically, the ease of data extraction by
the recipient without compromising the embedding capacity [MHGS21].

Let us consider p0, p1, . . . , pn be the pixel values in a given pixel group P.
Applying CT [10] one can compute the transformed components t0, t1, . . . , tn as
follows:

tn =
n∑
k=0

k

2n− k

(2n− k
n− k

)
pk (3.84)
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where, for all n, 0 ≤ n ≤ size(P )−1. By using (3.84), CT is applied over 4−pixel
groups (i.e. size (P ) = 4) to derive transformed quadruples as follows:

ti =


p0 if i = 0
p1 if i = 1
p1 + p2 if i = 2
2p1 + 2p2 + p3 if i = 3

(3.85)

Again, by applying inverse CT (ICT), one can recalculate pixel values p′
0, p

′
1, . . . , p

′
n

as:

p′
n =

n∑
k=0

(−1)(n−k)
(

k

n− k

)
tk (3.86)

where, for all n, 0 ≤ n ≤ size(P )−1. Using (3.86), ICT is applied over transformed
quadruples to recompute the 4− pixel groups as follows:

p′
i =


t0 if i = 0
t1 if i = 1
−t1 + t2 if i = 2
−2t2 + t3 if i = 3

(3.87)

In case of no embedding, all recomputed pixel values are found to be exactly
the same corresponding to the pixel values used prior to applying CT, i.e., p′

i = pi.
The advantages of transform domain approaches and the application of CT have

been previously mentioned. CT is utilised to convert each 2 × 2 non-overlapping
block of the cover image from the spatial domain into the transformed domain.
The core principle of CT involves the creation of an integer polynomial sequence
in coefficient form through additions and multiplications based on the pixel values.
Instead of embedding the secret bits directly into the pixel values, they are inserted
into the transformed coefficients, thereby achieving increased robustness against
typical signal processing attacks. Additionally, the extraction phase is employed to
retrieve the secret image from the stego-image.
Specifically, the method is divided into two distinct phases that yield the following
outcomes:

− The cover-image of dimension m× n is decomposed into 2× 2 nonoverlapping
blocks where the pixel values p0, p1, p2 and p3 are arranged as one dimensional
sequence named as 4− pixel group. CT is then applied to each pixel group
to convert the same to the transform domain. Secret bit-stream s is obtained
from the secret image. To achieve an average payload of n bpp, 4n numbers of
bits from secret bit stream s (as obtained from secret image) are embedded
in the transformed quadruples (t0, t1, t2 and t3). ICT is applied over the
transformed cum embedded quadruples to get back Stego-pixels in the spatial
domain. The above steps are repeated until and unless the secret bit-stream
gets fully embedded and the stego-image is produced.

− The stego-image of dimension m× n is decomposed into 2× 2 non-overlapping
blocks where the stego-pixels p′, p′

1, p
′
2 and p′

3 are arranged as a one-dimensional
sequence named group 4− pixel. CT is then applied on each group of pixels
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to convert the same into the transform domain. For an average payload of n
bpp, 4n numbers of secret bits are extracted from the transformed quadruples.
ICT is applied to get the 4 − pixel group back in the spatial domain. This
process is repeated until and unless the entire secret bit-stream is extracted
and the secret image is reproduced.

3.1.7 Narayana numbers

In 1356, the Indian mathematician Narayana Pandit wrote his famous book titled
Ganita Kaumudi where he proposed the following problem of a herd of cows and
calves: A cow produces one calf every year. Beginning in its fourth year, each calf
produces one calf at the beginning of each year. How many calves are there altogether
after 20 years? [AJ96] [Goy18]

We can translate this problem into our modern language of recurrence sequences.
In this problem, we observe that the number of cows increased by one after one
year, increased by one after two years, increased by one after three years, increased
by two after four years, and so on. Hence we obtain the sequence 1, 1, 1, 2, . . . in
the n-th year [BDG20]. This problem appears to be similar to the Fibonacci rabbit
problem discussed earlier.

The Narayana sequence has a close connection to some famous numbers or
sequences and plays an important role in cryptography and combinatorics [RS15].
For example, it can be seen as the number of compositions of n in parts 1 and 3.
For n ≥ 3, the Narayana sequence can be expressed as the sums of rows of Pascal’s
triangle with triplicated diagonals, while the Fibonacci number Fn is the row sums
of Pascal’s triangle with slope diagonals of 45 degrees. Narayana’s sequence has
a beautiful distribution pattern, the ratio of consecutive terms whose consecutive
terms approximate the super-golden ratio, which is closely related to the golden
ratio [Siv20]. Moreover, the Narayana sequence satisfies good cross-correlation
and autocorrelation properties, which provide wide applications in data coding,
information theory, and cryptography [Lin21].

Proprieties

Definition 3.1.10. Narayana’s cow sequence can be defined by the recurrence
relation: 

N0 = 0
N1 = N2 = 1
Nn = Nn−1 +Nn−3 for n ≥ 3

(3.88)

a natural variation on the Fibonacci sequence.

OEIS. The first terms of the sequence are available in the OEIS database:
Recurrence relation. Narayana’s cows sequence satisfies a third-order recurrence:
relation

Nn = Nn−1 +Nn−3, for n ≥ 3. (3.89)

This has the initial values N0 = 0 and N1 = N2 = N3 = 1. Explicitly, the
characteristic equation of Nn is:

x3 − x2 − 1 = 0 (3.90)
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A-number A000930
Name Narayana’s cows sequence: a(0) = a(1) = a(2) = 1; thereafter

a(n) = a(n− 1) + a(n− 3).
Data 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, · · ·

Offset 0, 4
Link https://oeis.org/A000930

Table 3.8 Narayana sequence in OEIS database.

and the characteristic roots are:

α = 1
3

(
3

√
1
2(29− 3

√
93) + 3

√
1
2(3
√

93 + 29) + 1
)

β = 1
3 −

1
6(1− i

√
3) 3

√
1
2(29− 3

√
93)− 1

6(1 + i
√

3) 3

√
1
2(3
√

93 + 29)

γ = 1
3 −

1
6(1 + i

√
3) 3

√
1
2(29− 3

√
93)− 1

6(1− i
√

3) 3

√
1
2(3
√

93 + 29)

(3.91)

Then, the Narayana sequence can be obtained by Binet’s formula:

Nn = Aαn +Bβn + Cγn. (3.92)

Generating function. For n ∈ Z≥0, the generating function of the Narayana
sequence is:

g(x) = 1
1− x− x3 =

∞∑
n=0

Nn+1x
n. (3.93)

With the Vieta theorem, we have:
α+ β + γ = 1
αβ + βγ + αγ = 0
αβγ = 1

(3.94)

From (3.92), we obtain:

N0 = A+B + C = 0
N1 = Aα+Bβ + Cγ = 1
N2 = Aα2 +Bβ2 + Cγ2 = 1

(3.95)

which implies:

A = 1− β − γ
(α− β)(α− γ) , B = 1− α− γ

(β − α)(β − γ) , C = 1− α− β
(γ − β)(γ − α) . (3.96)

With formula (3.94), we can simplify A, B, and C and obtain:

A = α

α2 − αβ − αγ + βγ
= α

α2 + 2βγ = α2

α3 + 2 (3.97)

and
B = β2

β3 + 2 , C = γ2

γ3 + 2 . (3.98)

https://oeis.org/A000930
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The Narayana sequence was originally defined at positive indices. Actually, it can
be extended to negative indices by defining:

N−n = A

αn
+ B

βn
+ C

γn
(3.99)

The following recurrence relation holds for all integral indices:

Nn = Nn−1 +Nn−3, n ∈ Z. (3.100)

Through a simple computation, the first few terms of Nn at negative indices can
be obtained from formulas (3.98) and (3.99), so that N−1 = 0, N−2 = 1, N−3 =
0, N−4 = −1, which also satisfies relation (3.100).

Corollary 3.1.4. (Limiting Ratio). Assuming that the ratio of the consecutive terms
of the Narayana cow sequence described in (3.88) and through the recursive relation
(3.89) is constant, we shall try to determine that constant.

Proof. First we assume that lim Nn+1
Nn

= λ then as n→∞:

lim Nn+k
Nn

= lim
[
Nn+k
Nn+k−1

× Nn+k−1
Nn+k−2

× · · · × Nn+1
Nn

]
= λ× λ · · · × λ = λk (3.101)

From Recursive Relation (3.89), we have as n→∞

lim (Nn+3) = lim (Nn+2 +Nn) . (3.102)

That is:
lim Nn+3

Nn
= lim Nn+2

Nn
+ 1. (3.103)

Now using (3.101), we have λ3 = λ2 + 1 leading to λ3 − λ2 − 1 = 0. But this
is precisely equation (3.90), whose positive root we found in to be approximately
1.46557. Thus λ = 1.46557 . . . and this is the ratio of the consecutive terms of the
Narayana’s cows sequence. We call the limiting ratio 1.46557 . . . the Supergolden
Ratio in view of the extension of the Golden Ratio obtained as the limiting ratio of
two consecutive terms of the Fibonacci sequence.

In addition, the Supergolden Ratio is the fourth smallest Pisot number OEIS:
A092526).

Applications to cryptography

The principal applications of Narayana numbers in cryptography are as follows:

• Foundations

− The Narayana universal code is generated using the Narayana sequence
and constraining rules to ensure unique coding [KK16]. The number of
bits required for the representation of the codeword follows the Narayana
sequence. The code can be used to encode any positive integer, and
decoding involves assigning the remaining bits with values from the
Narayana sequence. A variant of Narayana coding can also be derived
using a second-order Narayana sequence [DS19], with the third-order
variant being even more beneficial for cryptographic applications [Çe21].

https://oeis.org/A092526
https://oeis.org/A092526
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• Implementation

− The Narayana sequence modulo p is shown to have good autocorrelation
and crosscorrelation properties [Kir15]. It has good randomness properties,
so they might be used for cryptographic and key distribution applications.

Further details

Remark on Perfect Secrecy. Perfect ciphers hold significant allure within
the field of cryptography, having been widely implemented since C. Shannon’s
seminal publication, in which he delineated the characteristics of such ciphers and
demonstrated the theoretical perfection of the one-time pad, also known as the
Vernam cipher [Sha49].

The studied concept pertains to symmetric-key cryptography involving three
entities: Alice, Bob, and Eve. Alice seeks to transmit a confidential message to Bob
while ensuring its secrecy from Eve, who possesses the capability to intercept all
communications between Alice and Bob. To achieve this, Alice and Bob employ
a cipher with a secret key k (i.e., a sequence from a defined alphabet), which is
pre-shared between them but remains unknown to Eve. When Alice intends to
dispatch a message m, she initially encrypts m using the key k and subsequently
transmits the encrypted message to Bob, who then decrypts it with the same key k.
Eve intercepts the encrypted message and attempts decryption without knowledge of
the key. The cryptosystem is deemed perfectly secure if Eve, even with unbounded
computational resources and infinite time, is incapable of extracting any information
regarding the original message. C. Shannon not only provided a rigorous definition
of perfect (or unconditional) secrecy but also demonstrated that the one-time pad
(or Vernam cipher) embodies such a secure system. A salient characteristic of this
cryptosystem is that the length of the secret key must match the length of the message
(or its entropy). This requirement often constrains practical implementation, as
contemporary telecommunication systems routinely process and store vast quantities
of data.

A fundamental characteristic of this cryptographic system is the requirement that
the secret key be of equivalent length to the message or its entropy. This attribute
is frequently impractical for many contemporary telecommunication systems that
routinely transmit and store data on the scale of megabytes. Consequently, a logical
approach involves the pre-encryption compression of messages using lossless data
compression techniques, thus reducing the message length and, correspondingly,
the length of the secret key, prior to applying the one-time pad [SP21; Rya23].
Furthermore, the expected length of a secret key can be approximated near the
theoretical limit (i.e., Shannon entropy), contingent upon whether the probability
distribution of the encrypted messages is known or unknown. In scenarios where the
probability distribution is known, the well-established Huffman coding algorithm is
applicable; conversely, when the distribution is unknown, a universal coding scheme
(or standard compression algorithm) is employed.
In-depth analysis of sequence application. Integer number sequences have often
been used to designate universal codes useful for compression activities employed in
cryptography and described previously.
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Universal coding of integers is a variable-length code for discrete memory-less sources
with infinite alphabets, and the probability distribution of the sources does not
require prior knowledge. The fundamental framework for universal coding of integers
considers discrete memoryless sources S = (P,A) with a countable alphabet set
A = N+ = {1, 2, 3, · · · } and a Decreasing Probability Distribution (DPD) P of
N+(i.e.,

∑∞
n=1 P (n) = 1, and P (m) ≥ P (m + 1) ≥ 0, for all m ∈ N+) [Eli75]. Let

H(P ) = −
∑∞
n=1 P (n) log2 P (n) denote the Shannon entropy of P . Let C be a

variable-length code for the source S =
(
P,N+); it maps the positive integers N+

onto the binary codewords {0, 1}∗. Let LC(·) denote the length function such that
LC(m) = |C(m)|, for all m ∈ N+, where C(m) is the corresponding codeword of m.
Furthermore, EP (LC) =

∑∞
n=1 P (n)LC(n) denotes the expected codeword length of

C. We say that C is universal if:

EP (LC)
max{1, H(P )} ≤ KC (3.104)

for all DPDs P with H(P ) < ∞.KC is called the expansion factor of universal
coding of integers C, and K∗

C ≜ inf {KC | ∀DPDP and H(P ) < ∞} is called the
minimum expansion factor of universal coding of integers C. Moreover, C is called
asymptotically optimal if C is universal and there exists a function RC(·) such that:

EP (LC)
max{1, H(P )} ≤ RC(H(P )) (3.105)

for all DPDs P with H(P ) <∞ and:

lim
H(P )→+∞

RC(H(P )) = 1 (3.106)

Let L(j) denote the length of the jth codeword cj of the set of codewords C. Then:

− if, for all j, L(j) ≥ jt, for some constant t > 0, then the set is not universal;

− if, for all j, L(j) ≤ K1 +K2 log2 j, for some constants K1 and K2, then the set
is universal;

− if, for all j, L(j) ≥ K1 +K2 log2 j, for some constant K1 and K2, where K2 > 1,
then the set is not asymptotically optimal.

All universal encoding methods for countable sources are constructive and do roughly
the same thing. Two techniques can be distinguished: the message length strategy
and the flag strategy [Cap90]. The length strategy focusses on encoding an integer
by first encoding the length of the integer (i.e. binary), followed by the encoding of
the integer itself. This method allows for a variable-length code that can efficiently
represent small integers with shorter bit sequences while using longer sequences for
larger integers. Unlike flag strategy, it is more about adding a specific pattern or
prefix (flag) to the code to indicate the range or category of the integer and then
encoding the integer within that context. This method is often used in schemes
where integers are categorised into different ranges and each range has a unique
prefix or flag that helps decode.
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(Fibonacci codes). The Fibonacci family of codes is probably the most famous
flag pattern strategy for universal coding of integers [AF87]. The Fibonacci code is
closely related to the Zeckendorf representation, a positional numeral system that
uses Zeckendorf’s theorem and has the property that no number has a representation
with consecutive 1’s. The Fibonacci code word for a particular integer is exactly
the integer’s Zeckendorf representation with the order of its digits reversed and an
additional "1" appended to the end.

Theorem 3.1.4. (Zeckendorf’s theorem). Every positive integer has a unique
representation as the sum of non consecutive Fibonacci numbers.
Let n be a positive integer. Then there is a unique increasing sequence (ci)ki=0 such
that ci ≥ 2 and ci+1 > ci + 1 for i ≥ 0, and that:

n =
k∑
i=0

Fci (3.107)

We will call such a sum the Zeckendorf representation for n.

Proof. Zeckendorf’s theorem has thus two parts [Zec72]:

1. (Existence). Every positive integer n has a Zeckendorf representation.
We see that 1 = F2, 2 = F3, 3 = F4, and 4 = F2 + F4 = 1 + 3. Suppose now
that we can find such a representation for all positive integers up to k. If k+ 1
is a Fibonacci number, then that provides the Zeckendorf representation. If
k + 1 is not a Fibonacci number, then ∃j ∈ N is such that Fj < k + 1 < Fj+1.
Define a = k+ 1−Fj , so a ≤ k, meaning a has a Zeckendorf representation by
hypothesis. We also note that:

Fj + a = k + 1 < Fj+1 = Fj + Fj−1

a < Fj−1.
(3.108)

Thus, the Zeckendorf representation of a does not contain a Fj−1 term, so
k+ 1 = Fj + a will yield a Zeckendorf representation for k+ 1. This proves the
existence of the Zeckendorf representation for positive integers by induction.

2. (Uniqueness). No positive integer n has two different Zeckendorf representa-
tions.
Let n be a positive integer with two non-empty sets of terms S and T that
form Zeckendorf representations of n. Let S′ = S\T and T ′ = T\S. Since
both sets lost the same common elements, we still have:∑

x∈S
x−

∑
a∈S∩T

a =
∑
y∈T

y −
∑

b∈S∩T
b

∑
x∈S′

x =
∑
y∈T ′

y
(3.109)

Thus, if S′ or T ′ is empty, it will produce a sum of 0. Since all terms are
non-negative, the other sum, equal to 0, must also be empty, which means
that S′ = T ′ = ∅, so S = S ∩ T = T . Let us now assume that both sets S′
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and T ′ are non-empty. Let Fs = maxS′ and Ft = max T ′. Since S′ ̸= T ′, we
may say without loss of generality that Fs < Ft. Thus, we may say that:∑

x∈S′

x < Fs+1 ≤ Ft. (3.110)

Since the sums over S′ and T ′ are non-negative and equal, this is a contradiction,
so S′ = T ′ = ∅, and S = T .

Definition 3.1.11. (Fibonacci codes). For a number N , if d(0), d(1), . . . , d(k −
1), d(k) represent the digits of the code word representing N then we have:

N =
k−1∑
i=0

d(i)F (i+ 2), and d(k − 1) = d(k) = 1 (3.111)

where F (i) is the i th Fibonacci number, and so F (i+2) is the i th distinct Fibonacci
number starting with 1, 2, 3, 5, 8, 13, . . . The last bit d(k) is always an appended bit
of 1 and does not carry place value.

To encode an integer N :
1. Find the largest Fibonacci number equal to or less than N ; subtract this

number from N , keeping track of the remainder.

2. If the subtracted number was the ith Fibonacci number F (i), put a 1 in place
i− 2 in the code word (counting the leftmost digit as place 0).

3. Repeat the previous steps, substituting the remainder for N , until a remainder
of 0 is reached.

4. Place an additional 1 after the rightmost digit in the code word.
To decode a code word, remove the final "1", assign the remaining the values
1, 2, 3, 5, 8, 13 . . . (Fibonacci sequence - OEIS: A000045) to bits in the code word,
and sum the values of "1" bits.

Fibonacci coding possesses a distinctive attribute that renders it appealing in
comparison to other universal codes: it exemplifies a self-synchronizing code, which
facilitates the recovery of data from a compromised stream. With most other
universal codes, if a single bit is altered, none of the data that follows it will be
correctly read.
(Narayana codes). To generate Narayana code as a generalisation of Fibonacci
universal code, we need to be able to map any given positive integer representing
source code into variable-length code word in a manner used earlier [Tho07].

A more general Narayana sequence Na(k) is given by a, b, c, a+ c, a+ b+ c, a+
b+ 2c, 2a+ b+ 2c, 3a+ 2b+ 4c and so on with a = 1, b = 2 and c = 3.
Definition 3.1.12. A variant of the Narayana coding scheme can be obtained by
defining the second-order variant Narayana sequence, V N (2)

a (k), such that b = 3− a
and c = 1− a [KK16]. This yields:

V N
(2)
a (0) = a (a ∈ Z)

V N
(2)
a (1) = 3− a

V N
(2)
a (2) = 1− a

V N
(2)
a (k) = V N

(2)
a (k − 1) + V N

(2)
a (k − 3) for k ≥ 3

(3.112)

https://oeis.org/A000045
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In the light of the above definition, we get a variant of the Narayana series:

V N
(2)
−2 (n) = {−2, 5, 3, 1, 6, 9, 10, 16, 25, . . .} (3.113)

and
V N

(2)
−5 (n) = {−5, 8, 6, 1, 9, 15, 16, 25, 40, . . .}, and so on. (3.114)

Moreover, we obtain there is no Zeckendorf representation for integers 3 and 15
using the sequence V N (2)

−1 (k) = {−1, 4, 2, 1, 5, 7, 8, 13}, and integers 2 and 13 can’t be
represented using sequence V N (2)

−3 (k) = {−3, 6, 4, 1, 7, 11, 12, 19}. Upon examination
of the second order variant Narayana codes [DS19] we obtained:

− for the only positive integer k = 1, the second order variant Narayana code
V N

(2)
u (k) exactly exists for u = −1,−2, . . . ,−20;

− for 1 ≤ k ≤ 50, there is at most j consecutive undetectable values (NA) the
second order variant of Narayana code in V N (2)

−j (k) column in which 1 ≤ j ≤ 20;

− as long as j raises, the detectable of Narayana code is reduced in V N
(2)
−j (k)

column in which 1 ≤ j ≤ 20.

Definition 3.1.13. The third order variant Narayana sequences V N (3)
a (k) is de-

scribed with the sequence {a, b, c, a+ c, a+ b+ c, 2a+ b+ 2c, 3a+ 2b+ 3c, . . .} where
b = 3− a and c = 1− a, that is:

V N
(3)
a (1) = a

V N
(3)
a (2) = 3− a

V N
(3)
a (3) = 1− a

V N
(3)
a (4) = 1

V N
(3)
a (5) = 4− a

V N
(3)
a (k) = V N

(3)
a (k − 1) + V N

(3)
a (k − 3) + V N

(3)
a (k − 5) for k ≥ 6

(3.115)

The third order variant Narayana coding scheme can be obtained by defining
the third order variant Narayana sequence, V N (3)

u (k), such that b = 3 − a and
c = 1 − a [Çe21]. In variant Narayana sequences, some integers have more than
one Narayana code, while others have no Narayana code. For example, for the
second-order variant Narayana sequence V N (2)

−1 (k) = {−1, 4, 2, 1, 5, 7, 8, 13} while
there is no Narayana code for integers k = 2 and k = 11 [DS19], there are two
Narayana codes for integer k = 4. These codes are 011 and 100011. Similarly, for
the third-order variant Narayana sequence V N (3)

−7 (k) = {−7, 10, 8, 1, 11, 12, 23, 42}
while there is no Narayana code for integers k = 7 and k = 40, there are two
Narayana codes for integer k = 1. These codes are 000111 and 10111. We obtain
the third order variant of Narayana codes V N (3)

u (k) or undetectable values (NA) of
the positive integer k for 1 ≤ k ≤ 50 and for u = −1,−2, . . . ,−20. The results for
the third order variant Narayana codes are:

− for the positive integers k = 1, 2, 3, 4, 5, 6, the third order variant of Narayana
code V N (3)

u (k) exactly exists for u = −1,−2, . . . ,−20.
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− for 1 ≤ k ≤ 50, there are at most j consecutive undetectable values (NA) the
third-order variant of the Narayana code in V N

(3)
−(6+j)(k) column in which

1 ≤ j ≤ 14.

− for 1 ≤ k ≤ 50, as long as j increases, the detectable third-order variant
Narayana code is reduced in V N

(3)
−(6+j)(k) column in which 1 ≤ j ≤ 14.

3.1.8 Other sequences

Discussion of other sequences that have not had cryptographic applications as
widespread in the literature as the previous ones, but which are significant.

Fermat primes

Definition 3.1.14. A Fermat prime is a Fermat number 22n + 1, that is prime.

Fermat conjectured in 1650 that every Fermat number is prime, and Eisenstein
in 1844 proposed as a problem the proof that there are an infinite number of Fermat
primes [Rib96]. However, currently, the only Fermat numbers Fn for n ≥ 5 for which
primality or compositeness has been established are all composite.
OEIS. The first terms of the sequence are available in the OEIS database:

A-number A019434
Name Fermat primes: primes of the form 22k + 1, for some k >= 0.
Data 3, 5, 17, 257, 65537, · · ·

Offset 1, 1
Link https://oeis.org/A019434

Table 3.9 Fermat primes in OEIS database.

Applications to cryptography. Historically, the use of Fermat numbers in
cryptography is primarily related to their role in the generation and testing of
large prime numbers, which are fundamental to many cryptographic protocols
and systems. Recently, Fermat numbers have been proposed as the main module
for system computations in Fully Homomorphic Encryption (FHE) cryptosystems
[Jou19].

Proth primes

Definition 3.1.15. A Proth number is a natural number of the form k · 2s + 1 where
k, s ∈ N, k is odd and k < 2s. A Proth prime is a Proth number that is prime in N.

Fermat numbers
(
k = 1, s = 2t

)
and Cullen numbers (k = s) are special cases of

Proth numbers.
Their name was given in honour of the French mathematician François Proth

who introduced these numbers in his 1878 paper [Pro78]. He developed a theorem
to determine whether a number of the form k · 2n + 1 is prime or composite. This
theorem is based on the evaluation of k · 2n (mod n), where n must be greater than
k. If the result satisfies specific criteria, the number is considered a Proth prime.

https://oeis.org/A019434
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To date, the largest Proth prime discovered is 10223 ·231172165 +1 having 9383761
decimal digits, found by the PrimeGrid distributed computing project in 2016. This
is the largest known non-Mersenne prime number.

It is also noted that the theory of Proth numbers and Proth primes is surprisingly
limited, and even basic results were not documented in the scientific literature.
OEIS. The first terms of the sequence are available in the OEIS database:

A-number A080076
Name Proth primes: primes of the form k · 2m + 1 with odd k < 2m,

m ≥ 1.
Data 3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, · · ·

Offset 1, 1
Link https://oeis.org/A080076

Table 3.10 Proth primes in OEIS database.

Applications to cryptography. Proth primes have applications in cryptography;
for example, they can optimise the Boer reduction between the Diffie–Hellman
problem and the Discrete logarithm problem [Bro14]. The prime number 55 · 2286 + 1
has been used in this way. Furthermore, Proth primes are used to design efficient
and flexible Number Theoretic Transform (NTT) architectures for Post-Quantum
Cryptography (PQC) and FHE [PS21].

Gaussian integers

Definition 3.1.16. The Gaussian integers are the set Z[i] = {x+ iy : x, y ∈ Z} of
complex numbers whose real and imaginary parts are both integers.

Z[i] is a ring (really a subring of C) since it is closed under addition and
multiplication:

(x+ iy) + (p+ iq) = (x+ p) + i(y + q) (3.116)

(x+ iy)(p+ iq) = (xp− yq) + i(xq + yp) (3.117)

The second follows from the fact that i satisfies the quadratic polynomial i2 + 1 = 0.
The Gaussian integers have many special properties that are similar to those of the
integers, and they are named after the German mathematician Carl Friedrich Gauss.
Gaussian primes. As Gaussian integers form a principal ideal domain, they
also form a unique factorisation domain. This implies that a Gaussian integer is
irreducible (that is, it is not the product of two non-units) if and only if it is prime
(that is, it generates a prime ideal).
The prime elements of Z[i] are also known as Gaussian primes. An associate of a
Gaussian prime is also a Gaussian prime. The conjugate of a Gaussian prime is also
a Gaussian prime (this implies that Gaussian primes are symmetric about the real
and imaginary axes).
A positive integer is a Gaussian prime if and only if it is a prime number that is
congruent to 3 modulo 4 (that is, it may be written 4n+ 3, with n a non-negative
integer). The other prime numbers are not Gaussian primes, but each is the product
of two conjugate Gaussian primes.

https://oeis.org/A080076
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A-number A002145
Name Primes of the form 4k+ 3 (natural primes which are also Gaussian

primes).
Data 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, · · ·

Offset 1, 1
Link https://oeis.org/A002145

Table 3.11 Gaussian primes in OEIS database.

OEIS. The first terms of the sequence are available in the OEIS database:
Applications to cryptography. Gaussian integers are used to extend the tra-
ditional RSA algorithm within its domain [EES02]. The extension also involves
adapting existing algorithms, such as the extended Euclidean algorithm, to the
domain of Gaussian integers. This allows for the definition of a modified version
of Euler’s totient function, necessary for choosing the encryption and decryption
exponents in RSA, and for understanding how to encrypt and decrypt messages
within this new context. The method is demonstrated to represent messages as
Gaussian numbers, and the product of two Gaussian primes is used to form the
modulus of the cryptographic system, a key component of the security of RSA.
Additionally, a new hybrid public/private key cryptography scheme uses Perfect
Gaussian Integer Sequences (PGIS) with a period of N = pq, where p and q are odd
primes [HLCX21]. This novel scheme is based on circular convolution over PGISs,
which is shown to be a trapdoor one-way permutation function, allowing for both
cipher encryption and digital signatures. The authors assert that the security level of
this new scheme is comparable to that of the RSA system, while potentially offering
better performance in terms of system capacity due to the abundance of PGISs
available. Additionally, the proposed scheme is especially suitable for use on the
Internet of Things (IoT) platforms, where lightweight cryptographic functions are
needed due to the limited resources of IoT devices.

3.2 Our considerations
A comprehensive review of the literature reveals that integer sequences have exerted
a profound influence in diverse domains of cryptography. As mathematicians engage
in more rigorous exploration of integer sequences, they discern novel patterns and
interconnections that bear significant practical implications within these domains.
However, it is crucial to emphasise that certain sequences exhibit a higher degree of
relevance with respect to their applicability to specific subdomains of cryptography.
Nevertheless, it is evident that all principal areas of cryptography examined in our
study have been affected by at least one integer sequence:

This elucidates the extensive scope and efficacy of employing such sequences over
time. Specifically, a review of the literature underscores that integer sequences have
been effectively used in public-key cryptography, where they have demonstrated
robust security properties. Furthermore, their application in symmetric key cryptog-
raphy underscores their versatility and appropriateness for various cryptographic
algorithms, thereby underpinning the development of resilient and secure crypto-

https://oeis.org/A002145
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Macro-areas Prime Mersenne Sophie German Fibonacci Lucas Catalan Narayana
Foundations ■ ■ ■ ■ ■
Cryptographic hash functions ■ ■ ■
Secret-key cryptography ■ ■
Public-key cryptography ■ ■ ■ ■ ■
Cryptographic protocols ■ ■ ■
Implementation ■ ■ ■ ■
Attacks and cryptanalysis ■
Steganography ■ ■

Table 3.12 Using the main integers sequences in the principal macro-areas of the cryptog-
raphy domain.

graphic systems. The diverse applications of integer sequences thus underscore their
flexibility and adaptability in different cryptographic contexts. Our analysis suggests
that it is imperative to continue investigating and harnessing the potential of integer
sequences within the domain of cryptography, given their multifaceted implications
and the broad spectrum of contexts in which they can be effectively employed.
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Chapter 4

A new generalized family of
Integer Sequences

4.1 Sieve theory
A sieve represents a method designed to restrict the size of a set by removing
elements that exhibit "undesirable properties," typically related to number theory.
Such undesirable traits may include divisibility by a prime number from a specified set,
other multiplicative limitations (e.g., divisibility by a perfect square), or belonging
to a specific set of residue classes. The inclusion-exclusion principle provides an
exact solution; however, it results in 2k terms for k properties, making practical
computations challenging. A sieve serves as an approach to approximate the count
of "desirable" elements within the set utilising the kO(1) terms. Although not precise,
sieves frequently achieve very accurate estimates of the set’s size.

The original method for identifying primes is the Sieve of Eratosthenes, a
well-known technique for constructing a table of prime numbers by systematically
eliminating integers that are divisible by smaller primes while retaining the primes
themselves. In the period 1915-1922, Viggo Brun developed a modern sieve to
address renowned unsolved problems like Goldbach’s Conjecture and the Twin Prime
problem, although these efforts have not yet met with success [Bru15]. Sieve methods
have since become widely utilized in number theory and serve as valuable tools in
tackling various other challenges, such as investigating Diophantine equations.

4.1.1 The Sieve problem

Let A be a finite set of objects and let P be an index set of primes such that to each
p ∈ P we have associated a subset Ap of A. The sieve problem is to estimate, from
above and below, the size of the set:

S(A,P) := A\ ∪p∈P Ap (4.1)

This is the formulation of the problem in the most general context. Of course, the
"explicit" answer is given by the familiar inclusion-exclusion principle in combinatorics.
More precisely, for each subset I of P, denote by:

AI := ∩p∈IAp (4.2)
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Then the inclusion-exclusion principle gives us:

#S(A,P) =
∑
I⊆P

(−1)#I#AI , (4.3)

where for the empty set ∅ we interpret A∅ as A itself. This formula is the basis in
many questions of probability theory (see the exercises).

In number theory we often take A to be a finite set of positive integers and Ap
to be the subset of A consisting of elements lying in certain specified congruence
classes modulo p. For example, if A is the set of natural numbers ≤ x and Ap is the
set of numbers in A divisible by p, then the size of S(A,P) will be the number of
positive integers n ≤ x coprime to all the elements of P. Estimation #S(A,P) is a
fundamental question that arises in many disguises in mathematics and forms the
focus of attention of all sieve techniques. We will illustrate this in later chapters.

We could also reverse the perspective. That is, we can think of S = S(A,P) as
a given set whose size we want to estimate. We seek to do this by looking at its
image modulo primes p ∈ P for some set of primes P.

The Sieve of Eratosthenes

The original sieve is, of course, the sieve of Eratosthenes for finding prime numbers.
To find the prime numbers in {2, . . . , n}, you repeat the following operation as long
as there are unmarked numbers: find the first unmarked number p, mark it as prime,
then mark 2p, 3p, . . . as composite until you get to a number greater than n.

Of course, one need only sift out multiples of primes up to n1/2 in order to leave
only primes behind. More generally, if one is only able to sift out multiples of primes
up to nα, what remain are numbers with no prime factors less than nα. In particular,
any such number has at most

⌊
α−1⌋ prime factors, and so is in some sense "nearly

prime".
Of course, in the process of sieving, many numbers will be sifted out more than

once. If one wants to draw any sort of quantitative conclusion from this process, one
must keep track of the multiple counting; this suggests using inclusion-exclusion.

4.1.2 The principle of inclusion-exclusion

Let S be a finite set, and let P1, . . . , Pn be subsets of S. Think of each Pi as
containing the elements of S with a certain property.

Suppose that we have some way to count the number of elements in the intersec-
tion of any subcollection of Pi, but what we really want is to count the complement
of the union of all of the Pi. The formula that computes this is:

# (S\ (P1 ∪ · · · ∪ Pn)) =
∑

T⊆{1,...,n}
(−1)#T#

(⋂
t∈T

Pt

)
. (4.4)

Proof. if s ∈ S belongs to m of the subsets, then the number of times it gets counted
on the right side is: (

m

0

)
−
(
m

1

)
+ · · · (4.5)
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which equals 1 if m = 0 and vanishes otherwise. More generally, if f : S → C is
some function, and we want to compute the sum of f over the complement of the
Pi, we have:

∑
s∈S\(P1∪···∪Pn)

f(s) =
∑

T⊆{1,...,n}
(−1)#T

 ∑
s∈∩t∈TPt

f(s)

 . (4.6)

In number theory, we are often taking S = {1, . . . , N} and taking the sets P1, P2, . . .
to be the sets of multiples of certain small primes. It is convenient to rewrite the
principle of inclusion-exclusion in terms of the arithmetic function µ, the Möbius
function:

µ(n) =
{

(−1)d n = p1 · · · pd (p1, . . . , pd distinct, d ≥ 0)
0 otherwise.

(4.7)

Additional perspectives on Sieve theory can be found in [GHH97; CM05; Gre13]

4.2 Our contribution

4.2.1 New model for sub-sequence generation

Inspired by the foundational principle of the previously discussed sieve models, we
have devised an innovative algorithmic approach for selecting elements from a set to
form a sub-sequence.

Let E be an unordered and non-empty set of elements (•). We assume that
there exists a property Pr that allows to order the elements of E and to attribute
an index n to each that we define as an.

With regard to the property Pr, the set formed as E = {a1, a2, a3, . . . , an−1, an}
is capable of being represented graphically in the following manner:
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Definition 4.2.1. (Model). A model MIS that identifies a family of integer
sequences is a triplet of algorithms (Pattern, Shift, Sieve) that takes an input
sequence Fn and returns a sub-sequence Sm of an.

In essence, all sequences Sm that can be generated by the same modelMIS(Pattern,
Shift, Sieve) corresponding to a specific Fn are part of the same family of integer
sequences.

Let us now give a definition of the three algorithms that make up our model
MIS(Pattern, Shift, Sieve).

Definition 4.2.2. (Pattern algorithm). An algorithm (M) that assigns a pattern
(■) to the sequence elements an of the set E.

Definition 4.2.3. (Sieve algorithm). An algorithm (C) that extracts from an
a sub-sequence Sm whose elements satisfy specific conditions in the patterns (■)
assigned to the elements an of the set E:

Sm = C[M ]. (4.8)

In the following example, the algorithm C is designed to select the elements
an of the set E that satisfy a specific condition on the patterns distributed by the
algorithm M such that:

Sm = C[M ] = {a9, a25, ...} (4.9)
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Definition 4.2.4. (Shift algorithm). An algorithm (Ashift) that implements a
translation to patterns (■) through a sequence Fn:

Sm = C[M ← Ashift(Fn)]. (4.10)

In the illustrated example, if we apply the Shift algorithm Ashift to the model
M and then the Sieve algorithm C, we will obtain a new sub-sequence of an different
from 4.9:

Sm = C[M ← Ashift(Fn)] = {a12, a28, ...} (4.11)
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Considerations

With regards to the modeling construct denoted by MIS (Pattern, Shift, Sieve), we
are able to undertake initial preliminary analyses:

− The sequence Sm contains significantly fewer elements compared to the size of
the model MIS and the elements within Fn, where m≪ n.

− As specified, the algorithm Ashift(Fn) generates different pattern distributions
(■) for each Fn. This distribution characterises a "model state", represented
as ST[w]. The full range of potential distributions w that MIS can adopt
constitutes the set of model states W = {w1, w2, · · · , wg}.

4.2.2 Application of MIS to N

We will now use our sequence generation model MIS applied to the sequence of
natural numbers N, with which to extract sub-sequences Sm of N, which we will
denote with MN

IS . Specifically, we introduce the Pattern algorithm MN (1), which
allocates patterns related to each divisor number.
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Algorithm 1: Pattern algorithm MN
Input: dimension n of MN
Output: distribution of patterns (■)

1 for n← 0 to dimension do
2 if n = 0 then
3 for i← 0 to dimension do
4 line[n, i] = ■;
5 end
6 end
7 else
8 j = n;
9 for i← 0 to dimension do

10 if j < n then
11 j ← j + 1;
12 line[n, i] ← null;
13 end
14 else
15 line[n, i] = ■;
16 j ← 0;
17 end
18 end
19 end
20 end
21 return distribution array
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Let us now define in the following figure the Sieve algorithm CP (2) corresponding
to the selection criterion of prime numbers p over N. Therefore, we will have that:

CP [MN] = {p1, p2, · · · , pn−1, pn} (4.12)

Algorithm 2: Sieve algorithm CP
Input: distribution of patterns (■)
Output: sequence Sm

1 for i← 3 to dimension do
2 j ← 0;
3 for n← 0 to i− 1 do
4 if line[n, i] = null then
5 j ← j + 1;
6 if j = i− 2 then
7 sequence ← i;
8 end
9 end

10 end
11 end
12 return sequence
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Example of CP [MN ← Ashift(Fn)]

Suppose now we apply a Shift algorithm Ashift (3) where the shift sequence Fn is
defined as follows:

Fn = {4, 2, 0,−2, 4, 2, 0,−2, 4, 2, 0,−2, 4, 2, 0,−2, 4, 2, 0,−2 · · · } (4.13)

We will therefore obtain a sub-sequence Sm extracted from N:

CP [MN ← Ashift(Fn)] = {3, 5, 7, 11, 23, 47, 71, 83, 107, 131, 167, 227, 311, 383, · · · }
(4.14)

As shown, the elements of the sequence Sm are all prime numbers, and such an
original sequence is not present in the OEIS database!
In Appendix 6, several sequences Sm produced by the model MIS are presented as
illustrative, though not comprehensive, examples.

Considerations

Upon examining the model MN
IS as defined within N, we can derive the following

insights:

1. line[n,i], which represents the translation of a row in Ashift, can take on
n different positions. Therefore, the set of model states W will contain n!
elements (W = n!).

2. For ST[w0], corresponding to FST[w0]
n = {0, 0, 0, · · · , 0}, we will have:

P = CP [MN ← Ashift(F
ST[w0]
n )] (4.15)
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Algorithm 3: Shift algorithm to Pattern algorithm MN ← Ashift(Fn)
Input: dimension n of MN

sequence Fn
Output: distribution of pattern (■)

1 for n← 0 to dimension do
2 if n = 0 then
3 for i← 0 to dimension do
4 line[n, i] = ■;
5 end
6 end
7 else
8 m← n+ 1;
9 j ← n− (Fn mod m);

10 for i← 0 to dimension do
11 if j < n then
12 j ← j + 1;
13 line[n, i] ← null;
14 end
15 else
16 line[n, i] = ■;
17 j ← 0;
18 end
19 end
20 end
21 end
22 return sequence
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3. To each model state ST[w] is associated a sequence Fn:

F
ST[w]
n = {F1, F2, · · · , Fk, · · · , Fn | Fk ≤ k, ∀k ∈ [1, n]} (4.16)

which allows configuring ST[w] with the minimum number of translations
line[n,i].

4. Each sequence Fn can be linked to a corresponding FST[w]
n , which is capable of

generating the same sequence Sm:

CP [MN ← Ashift(Fn)] = CP [MN ← Ashift(F
ST[w]
n )] (4.17)

where:
F
ST[w]
k = Fk mod k, ∀k ∈ [1, n] (4.18)

5. Different model states ST[w1], ST[w2], . . . , ST[wz ] are capable of generating the
identical sequence Sm:

S
ST[w1]
m = S

ST[w2]
m = · · · = S

ST[wz ]
m (4.19)

The key points discussed in considerations 3, 4, and 5 are summarised in Figure 4.1.

Figure 4.1 Characteristic of model MN
IS :

−→ Compute Sm up to n using O(n) operations from F
ST[w]
n (linear time)

L99 Compute FST[w]
n up to n using O(n!) operations from Sm (factioral time)

Conjectures

Experimentally, the sequences Sm provided in the Appendix (Table A1), as well as
additional unlisted ones, have been confirmed for n values extending to approximately
n ≈ 109.
Based on these data, it is possible to formulate the following conjectures:
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1. Specified the value n of the modelMN
IS , computing all Sm for each combination

of the values of the elements of FST[w]
n , we observe that:

∃ am ∈ N | am ̸= CP [MN ← Ashift(F
ST[w]
n )], ∀w ∈W (4.20)

To put it differently, there are sequences am that cannot be obtained from the
model MN

IS .

2. Every sub-sequence of Prime numbers P can be deduced from the modelMN
IS :

∀Sm ⊂ P ∃ wp ∈W | Sm = CP [MN ← Ashift(F
ST[wp]
n )] (4.21)

For example, the sequence of Twin primes has been obtained as in Appendix
(Table A2).

Both conjectures are represented in Figure 4.2. In particular, it highlights howMN
IS

can be considered as a new generalized family of integer sequences that includes all
the sequences of prime numbers. Additionally, by setting a value n and computing
all the sequences Sm obtainable from the model MN

IS , for all combinations of the
possible values of FST[w]

k , it emerges that approximately only 30% of the sequences
Sm are contained in OEIS.

Figure 4.2 Conjectures on MN
IS

Set-builder notation

Another perspective onMN
IS can be articulated using Set-builder notation. Beginning

with the fundamental definition of Prime numbers:

P = {m ∈ N | m ̸≡ 0 mod n, ∀n ∈ [2,m− 1]} (4.22)

we can define the sequences Sm generated by the model MN
IS as the set:

Sm = {m ∈ N | m− Fn ̸≡ 0 mod n, ∀n ∈ [2,m− 1]} (4.23)

Thus, for the sequence Fn = {0, 0, 0, · · · , 0}, it follows that Sm = P.
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(Prospective research). Regarding possible future developments, which are not
currently the subject of this thesis, they could involve exploring a model MN

IS in
which an additional sequence, called Gn, is provided as input in the following way:

Sm = {m ∈ N | m− Fn ̸≡ 0 mod (Gn), ∀n ∈ [2,m− 1]} (4.24)
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Chapter 5

Random Bit Generation

This chapter presents key concepts related to Random Bit Generation and the
associated randomness tests. It not only provides definitions for these tests but
also underscores their significance. After reviewing the concepts of randomness and
random sequences, we delve into the functionality and characteristics of random
number generators. Thereafter, the randomness tests are elaborated upon, and the
strategies used to evaluate a generator’s accuracy are outlined.

Subsequently, we present our proposed generator construction, grounded on the
generation model MN

IS outlined in the previous chapter. Ultimately, its operational
effectiveness will be assessed through statistical test packages and the comparison of
computational performance with some of the most well-known PRNGs.

5.1 Randomness
The notion of randomness is widely recognised in everyday language, yet providing
a formal definition of what constitutes randomness is a complex task. Typically, the
term ’random’ is connected to phenomena that defy prediction, like the selection of
a winning lottery number, or appear to possess no discernible pattern or systematic
behaviour within a given framework. In ancient eras, the notion of randomness was
deeply connected to the idea of fate or destiny. People believed that random events,
such as dice casting, controlled the outcomes and fates of individuals. As centuries
passed, the word "random" began to be used within the gaming arena, a domain
where its usage continues to hold significance today. It was not until the dawn of
the 17th century mathematics and the subsequent development of sophisticated
computational methodologies that an exhaustive examination of randomness became
feasible. This progression enabled formalisation of the definition of a random
number by aligning it with the concept of a random variable, thus providing a more
structured understanding of randomness. Over the last few years, the concept of
randomness has been recognised as a crucial element in the field of information
theory, which is an area where random binary sequences are of significant importance.
In this context, there are three primary methodologies that have been developed to
characterise a sequence of random bits. The initial approach, proposed by von Mises,
relies on the principle that the individual elements within a random string, along
with its particular substrings, must exhibit a consistent frequency of occurrence.
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Kolmogorov’s 1963 model provided a foundational basis that establishes a connection
between the notion of randomness and the principles of complexity theory. He
conceptualised the randomness of a sequence by considering the minimal length of its
description, which is sufficiently detailed to enable its reconstruction. Subsequently,
in 1966, Martin-Löf advanced a quantitative perspective, positing that a truly
random sequence should possess only a limited quantity of regular patterns and, as
a result, should successfully pass specific statistical tests [She91]. It is crucial to
highlight that these methodologies are not isolated, but instead exhibit significant
interdependence.

5.2 Random sequences
An arbitrary sequence of bits can be regarded as analogous to the outcome of
repeatedly flipping a fair coin, with one face marked 0 and the other marked 1.
Because the coin is fair, each flip results in 0 or 1 with an identical probability of 1/2.
The challenging endeavour lies in ascertaining whether a given sequence of bits is
indeed random, as opposed to possessing some inherent pattern or predictability. To
illustrate this complexity, consider, for instance, the following strings, each comprised
of 41 bits:

00000000000000000000000000000000000000000
01101010000010011110011011000111000101001
11011110011101011111011100110011001110100

Upon initial inspection, the second and third strings might seem arbitrary, whereas
the first string is often deemed questionable. Nevertheless, within the framework
of probability theory, each of the three strings possesses an identical likelihood
of occurrence, specifically quantified as 1/241. Indeed, considering the entire set
of possible sequences of 41 bits, every individual sequence is assigned the same
probability of occurrence. The apparent non-random nature of the initial sequence is
connected to how humans perceive randomness. Upon observing the first sequence,
the brain instinctively memorizes its structure due to its straightforwardness; it
consists solely of 0s, making it exceptionally easy to recollect. In contrast, the
subsequent sequence appears to us to be random due to its lack of an evident
pattern, posing a greater challenge to compactly retain in memory. Despite its
seemingly random nature, the sequence is, in fact, the binary expansion of

√
2− 1

and results from a deterministic mathematical process. Thus, contrary to appearance,
it is not random. Interestingly, it bears a striking resemblance to a third sequence,
generated purely by the stochastic method of flipping a coin. This case demonstrates
two common misconceptions. Firstly, there is a tendency to assume randomness in
the generation of an object merely based on its appearance. Secondly, there is a
propensity to attribute chance patterns to non-random causes. Given the growing
prevalence of random bit sequences in practical applications, a significant issue
emerges regarding the methods necessary to produce sequences that are appropriate
for a variety of specific requirements.
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5.3 Random Number Generators
In this section, we elaborate on random bit generators which, as indicated by their
nomenclature, are devices designed to produce sequences of random bits. Currently,
there are a variety of random number generators in use, each distinguishable by an
array of performance metrics and unique characteristics. The generation of random
bit sequences can be achieved through multiple methodologies, broadly classified into
two fundamental categories: Non-Deterministic Random Bit Generators (NDRBGs),
also known as True Random Number Generators (TRNGs), and Deterministic
Random Bit Generators (DRBGs), commonly known as Pseudo-Random Number
Generators (PRNGs). The primary difference between these two categories is rooted
in the mechanism of their generation processes.

Unpredictable

In cryptographic applications, TRNGs and PRNGs are required to produce sequences
that are unpredictable. Specifically, with regard to PRNGs, even when the seed
remains undisclosed, each subsequent number generated should appear random and
undetermined, irrespective of the knowledge of any previously generated numbers
in the sequence. This characteristic is often referred to as forward unpredictability.
Additionally, it should be computationally infeasible to deduce the original seed from
any number of generated values, a principle known as backward unpredictability.
Furthermore, there should be no discernible relationship between the seed and any
numbers produced using that seed; rather, each output in the sequence must appear
to be the result of an independent stochastic process with an occurrence probability
of 1/2.

To maintain forward unpredictability, it is crucial to exercise caution in acquiring
seeds. Should the seed and the generation algorithm be known, the values output by
a Pseudorandom Number Generator (PRNG) become entirely predictable. Given
that, in numerous instances, the generation algorithm is accessible to the public, it
is imperative that the seed remains confidential and cannot be deduced from the
pseudorandom sequence it generates. Furthermore, the seed itself must inherently
possess an element of unpredictability.

5.3.1 True Random Number Generators

A True Random Number Generator (TRNG) employs a nondeterministic source,
known as the entropy source, in conjunction with a processing function known as the
entropy distillation process, to generate randomness [SK14]. The implementation of
a distillation process is crucial to address any potential deficiencies inherent in the
entropy source that may lead to the generation of sequences lacking randomness,
such as the presence of extended sequences composed solely of zeros or ones. The
entropy source generally involves a physical phenomenon, like the inherent noise in
an electronic circuit, the timing variations of user activities such as keystrokes or
mouse movements, or the quantum mechanical effects manifested in a semiconductor
material. It is common practice to use diverse combinations of these inputs to
enhance the robustness and quality of the randomness produced.
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Outputs generated by a TRNG can serve two purposes: they may be utilised
directly as random numbers, or they can be input into a PRNG to produce further
sequences. For direct usage - which implies no subsequent processing stages - the
output of any TRNG must adhere to stringent criteria of randomness. These criteria
are assessed through the application of statistical tests, which are designed to evaluate
and confirm the apparent randomness of the physical sources that supply inputs to
the TRNG. To illustrate, consider a physical source like electronic noise. Although it
may seem random at a glance due to its seemingly disorderly superposition of regular
patterns, such as waves or other periodic phenomena, comprehensive statistical
tests may reveal an underlying non-random structure. Thus, the assessment of
randomness is crucial to ensure the integrity of outputs from TRNGs.

In the context of cryptography, it is crucial that the output generated by TRNGs
remain unpredictable. However, certain physical sources, such as vectors derived
from date/time data, exhibit a level of predictability. To address these issues, a
strategy involves blending outputs from a variety of source types to create the
inputs for a TRNG. Nevertheless, even with this approach, the outputs generated
by the TRNG might still fall short when subjected to rigorous statistical testing.
Furthermore, the process of generating high-quality random numbers could be
prohibitively time-consuming, rendering it impractical, especially when there is a
demand for a vast number of random numbers. In situations requiring large volumes
of random numbers, the use of PRNG could present a more viable alternative.

5.3.2 Pseudo-Random Number Generators

A PRNG relies on one or more initial inputs to produce a series of numbers that
simulate randomness. These initial inputs are referred to as seeds. In scenarios
where a high level of unpredictability is essential, it is imperative that the seed itself
is both random and beyond prediction. Consequently, it is standard practice for
a PRNG to source its seeds from an actual TRNG, which means that a PRNG
requires the accompaniment of a TRNG to function correctly [STM10].

The results produced by a PRNG are generally deterministic, being defined
by the initial seed; in other words, any true randomness is restricted solely to the
generation of this seed. This deterministic characteristic of the process is the basis
for describing it as "pseudo-random". Consequently, since every component of a
pseudorandom sequence can be precisely recreated when required by using the seed
from which it was derived, it is sufficient to retain only this seed if there is a need to
replicate or verify the pseudorandom sequence.

Interestingly, pseudorandom numbers frequently seem more random than numbers
derived from physical phenomena. When a pseudorandom sequence is meticulously
designed, each number in the sequence is generated based on its predecessor through
transformations that seem to enhance randomness. A succession of these transfor-
mations can effectively remove statistical auto-correlations between input values and
the resulting output. Consequently, the outputs of a PRNG can possess superior
statistical attributes and be generated more rapidly than those of a TRNG.
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5.3.3 Properties

The essential attribute of a PRNG lies in its ability to output sequences of numbers
that give the impression of being random. In practical terms, it is crucial to ensure
that the sequences generated adhere to the criteria typically expected from truly
random sequences. It is practically unfeasible to provide a theoretical proof that
a given generator produces genuinely random sequences. Consequently, to assess
the uniformity and randomness of the output of a PRNG, comprehensive statistical
assessments are conducted on the sequences it generates.

To facilitate this evaluation process, a myriad of statistical tests are available
that proficiently examine the randomness of these sequences. Each statistical test is
designed to scrutinise a particular attribute of the sequence, determining whether it
conforms to the expectations of a uniform distribution. For example, when analysing
a binary sequence composed of n bits, where n is sufficiently large, it is expected
that the frequency of 0s should closely approximate n/2, similarly, the same is
expected for the frequency of 1s. This criterion is a fundamental expectation when
one assumes that the sequence is uniform in nature.

When statistical evidence is presented against the expected outcome, the sequence
in question will fail the test. It is crucial to note that this attribute cannot be
effectively assessed using only a single sequence. For the assessment of randomness to
be deemed robust and reliable, it is imperative to administer the test on a statistically
significant sample comprising multiple sequences. The generator quality is then
evaluated on the basis of the percentage of sequences that successfully pass the
test. It is important to recognise that a generator, even if it generally produces
high-quality output, may sporadically produce sequences that deviate from the
anticipated proportion of 0 and 1.

To accurately evaluate the performance of a generator, it is crucial to perform the
test on a sufficiently large sample of sequences generated by it. Detailed information
on randomness tests can be found in Section 5.4. Beyond this essential criterion,
several other attributes also play a significant role in defining the generator’s quality.
Some of the key parameters include the following:

− Period: Considering that the internal state space of a PRNG initialised with
a seed is finite, the generator will eventually revisit its initial state, forming
a cycle. Since output bits are produced deterministically from the internal
state, the outputs will inevitably repeat. The shortest cycle length before this
repetition is termed the PRNG period. Clearly, a longer period is indicative of
a higher-quality generator. Ideally, the period should closely match the total
number of unique internal states available to the generator.

− Efficiency: The evaluation of a PRNG’s effectiveness involves analysing its
memory consumption and processing speed. An efficient generator is expected
to utilise a minimal amount of computational resources.

− Repeatability: If initialised identically, pseudorandom number generators
(PRNGs) should consistently produce an identical sequence of random bits.

− Portability: Ensuring a PRNG is architected to operate independently of spe-
cific hardware and software is essential, allowing its deployment and utilisation
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in diverse environments.

Cryptographically Secure Pseudorandom Number Generator (CSPRNG)

Besides the previously mentioned features, a generator used in cryptographic contexts
must satisfy additional requirements to be classified as a Cryptographically Secure
Pseudorandom Number Generator. This fact leads to the question of how to
design PRNGs that are unpredictable in reasonable (i.e., polynomial) time. In
response to this question, the concept of cryptographically secure PRNGs was first
proposed by [BM84; Yao82]. A pseudorandom number generator (PRNG) is deemed
cryptographically secure if it withstands all statistical assessments executable in
polynomial time, meaning no polynomial time algorithm can distinguish the bit
sequences it produces from those generated by a true random process. Conversely, a
PRNG is termed polynomially predictable if there is a polynomial time algorithm
capable of predicting its subsequent outputs, given a sufficiently extensive sequence
of its generated bits.

Definition 5.3.1. (Pseudorandom Generator): A pseudorandom generator is a
deterministic polynomial-time algorithm G satisfying the following two conditions:

1. (Expansion) There exists a function l : N→ N such that l(n) > n for all n ∈ N,
and |G(s)| = l(|s|) for all s ∈ {0, 1}∗.

2. (Pseudorandomness) The ensemble {G (Un)}n∈N is pseudorandom.

The function 1 is called the expansion factor of G [Gol01; KL21].

The input s to the generator is its its seed. The expansion condition requires that
the algorithm G map n-bit-long seeds into l(n)-bit-long strings, with l(n) > n. The
pseudorandomness condition requires that the output distribution induced by apply-
ing algorithm G to a uniformly chosen seed be polynomial-time-indistinguishable from
a uniform distribution, although it is not statistically close to uniform. Specifically,
we can bound the statistical difference between G (Un) and Ul(n) as follows:

1
2 ·
∑
x

∣∣∣Pr
[
Ul(n) = x

]
− Pr [G (Un) = x]

∣∣∣ = max
S

{
Pr
[
Ul(n) ∈ S

]
− Pr [G (Un) ∈ S]

}
≥ Pr

[
Ul(n) /∈ {G(s) : s ∈ {0, 1}n}

]
≥
(
2l(n) − 2n

)
· 2−l(n)

= 1− 2−(l(n)−n) ≥ 1
2

(5.1)
where the last inequality uses l(n) ≥ n+1. Note that for l(n) ≥ 2n, the statistical

difference is at least 1− 2−n.
The foregoing definition is quite permissive regarding the expansion factor

l : N → N . It asserts only that l(n) ≥ n + 1 and l(n) ≤ poly(n). (It also follows
that l(n) is computed in time polynomial in n; e.g., by computing |G (1n)|.) Clearly,
a pseudorandom generator with expansion factor l(n) = n+ 1 is of little value in
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practice, since it offers no significant saving in coin tosses. Fortunately, as shown in
the next subsection, even pseudorandom generators with such a small expansion factor
can be used to construct pseudorandom generators with any polynomial expansion
factor. Hence, for every two expansion factors l1 : N → N and l2 : N → N that can
be computed in poly (n) time, there exists a pseudorandom generator with expansion
factor l1 if and only if there exists a pseudorandom generator with expansion factor
l2. This statement is proved by using any pseudorandom generator with expansion
factor l1(n) def= n + 1 to construct, for every polynomial p(·), a pseudorandom
generator with expansion factor p(n). Note that a pseudorandom generator with
expansion factor l1(n) can be derived from any pseudorandom generator.

Each pseudorandom generator will have a predetermined expansion function.
We shall consider "variable-output pseudorandom generators" that, given a random
seed, will produce an infinite sequence of bits such that every polynomially long
prefix of it will be pseudorandom.

To resist cryptanalysis, a CSPRNG should remain secure even if an adversary
gains access to portions of its initial or subsequent states [Yao82; BM84]. The
essential characteristics are as follows:

− Prediction Resistance: Ensure that a breach in the DRBG’s internal state does
not compromise the security of future outputs is paramount. If an adversary
becomes aware of the internal state at iteration x and understands the PRNG’s
operation, they can predict future states from x + 1 onwards. To prevent
this vulnerability, it is necessary to refresh the seed by incorporating a new
entropy with each generation request, which matches the required security level.
When new entropy is limited, the attacker cannot ascertain subsequent states
easily, yet they face reduced but finite possibilities. Thus, the post-compromise
security hinges on the quantity of fresh entropy. A DRBG should consistently
access entropy sources and integrate new entropy into its process whenever
feasible.

− Backtracking Resistance: The assurance that the output sequences of a gen-
erator remain indistinguishable from perfect random sequences, even if the
PRNG becomes compromised at a later stage. In practical terms, backtracking
resistance guarantees that an adversary, even if in possession of state x, cannot
tell the difference between the outputs generated from states 1, 2, . . . , x−1 and
truly random outputs, nor can they reconstruct earlier states. This property
is achieved by designing the generation algorithm as a one-way function. A
one-way function, or unidirectional function, is computationally easy to per-
form but challenging to reverse. This signifies that from the internal state x,
transitioning to the next state x + 1 is straightforward. Nonetheless, given
the state x+ 1, there is no polynomial-time algorithm that can determine the
preceding state x.

A CSPRNG is consequently constructed to resist cryptanalysis. It is crucial to note
that while every CSPRNG is a type of PRNG, the inverse does not hold. Some
PRNGs may succeed in all randomness evaluations yet remain susceptible to reverse
engineering attacks. For instance, consider the Linear Congruential Generator
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(LCG) described in Section 3.1.3, a widely recognized generator often employed in
simulations, which, due to its predictability, is entirely unsuitable for cryptographic
applications [Kra86; Boy89a; Boy89b].

5.3.4 Standards

Nel 2010, il National Institute of Standards and Technology (NIST) ha prodotto
una serie di raccomandazioni su come si dovrebbe progettare un buon generatore di
numeri casuali.

The project provides guidelines through the Special Publication (SP) 800-90
series, which includes recommendations on deterministic random bit generator
(PRNG) mechanisms, entropy sources, and construction principles for TRNGs, and
has three parts:

− SP 800-90A, Recommendation for Random Number Generation Using Deter-
ministic Random Bit Generators [RBG15], specifies several approved PRNG
mechanisms based on approved cryptographic algorithms that, once provided
with seed material that contains sufficient randomness, can be used to generate
random bits suitable for cryptographic applications. NIST is revising SP 800
90A to be consistent with SP 800-90C.

− SP 800-90B, Recommendation for the Entropy Sources Used for Random Bit
Generation [RBG18], provides guidance for the development and validation of
entropy sources, which are mechanisms that generate entropy from physical or
non-physical noise sources and that can be used to generate the input for the
seed material needed by a PRNG or for input to an TRNG.

− SP 800-90C, Recommendation for Random Bit Generator (RBG) Constructions
[RBG24], specifies constructions for the implementation of TRNGs. SP 800-
90C also provides high-level guidance for testing TRNGs for conformance to
this recommendation.

The Figure 5.1 explains the relationship of the three parts of the series:

Figure 5.1 NIST Special Publication 800-90 series.
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Furthermore, NIST Interagency Report (IR) 8427 Discussion on the Full Entropy
Assumption of the SP 800 90 Series provides technical discussions to support the
full entropy definition used in the SP 800 90 series [RBG23].
The influence exerted by these publications has been significant, as prior to their
release, there was an absence of established guidelines for the correct construction
of a generator. As a result, many of the commonly used generators had security
measures that were insufficient for the purposes they were intended to serve.

5.4 Randomness test
To confirm the efficacy of a generator, it is necessary to check its indistinguishability
from an ideal generator. A fundamental criterion for a PRNG is its ability to generate
sequences that cannot be differentiated from truly random ones. To evaluate if the
generator in question meets this criterion, statistical evaluations, commonly referred
to as randomness tests, are conducted to detect specific types of vulnerabilities
the generator might exhibit. In an ideal scenario, to evaluate the distribution of
generated sequences, we would utilise a single test to confirm that every sequence
generated by the algorithm is equally likely. Given that the total number of potential
sequences is 2n, where n denotes the length of the sequence in bits, this test becomes
impractical as n grows larger. To determine the randomness of a PRNG, a rigorous
randomness analysis is conducted on its outputs. This involves applying various
statistical tests to the generated sequences. These tests assess whether the sequences
exhibit specific characteristics expected from genuinely random sequences. Each test
searches for "patterns," and their detection suggests non-randomness in the sequence.
The literature offers hundreds of established statistical tests that can be employed
to evaluate a generator’s randomness. A solitary test is insufficient to ascertain
the randomness of a sequence, owing to the possibility of various forms of non-
randomness. Nevertheless, if a generator successfully completes numerous diverse
tests, the confidence in its randomness is enhanced. Consequently, compilations
of multiple tests, commonly termed test suites or randomness test batteries, have
proliferated in the literature. Each test in the suite is designed to assess a different
feature of randomness. Should all tests or a particular fraction of them affirm that
the PRNG generates random numbers, the PRNG is regarded as high-quality. The
challenging issue lies in deciding which tests to perform, how many to conduct, and
determining the minimum threshold of passing tests relative to the total implemented
tests, so as to regard the generator as high-quality. Considering the possibility of
infinitely many tests, all equally legitimate, no finite collection of tests can be deemed
"complete." Any finite selection of tests inevitably fails to capture certain defects that
might exist in a generator. Hence, as previously noted, using all literature-known
tests would still not assure absolute certainty of the generator’s randomness. In
practical settings, resources are finite; thus, it becomes essential to choose a practical
number of tests. Typically, the selection is guided by the specific requirements
of the application employing the generator. Another challenging issue is deciding
which tests to incorporate into a suite, presupposing the existence of superior
tests. Nevertheless, as previously mentioned, all tests should be considered equally
valid. Each test provides a means to assess a generator’s randomness, and hence,
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irrespective of the feature evaluated by the test, a generator producing genuinely
random numbers ought to pass it.

5.4.1 Hypothesis test

The statistical evaluation of a random generator generally involves the use of one or
more hypothesis tests on the sequences it produces. These tests are a widespread
type of statistical analysis employed in numerous applications to assess a specific
hypothesis from the observations of experimental data. The results of these tests
indicate how well the observed data align with the predetermined hypothesis.

Within the framework of a hypothesis test, a random experiment is contemplated
in which samples are drawn at random from a specified sample space. In alignment
with the test’s objective, two hypotheses are articulated concerning the underlying
distribution of the sample drawing process, referred to as the data distribution:

− The null hypothesis, denoted as H0, represents the proposition subject to
verification. It imposes a condition on a parameter of the data distribution
(such as mean or variance) or directly on the distribution type (e.g. normal,
Poisson, uniform, etc.). In other words, the null hypothesis encompasses a
collection of potential data distributions that satisfy the proposed statement.
The null hypothesis is classified as simple if it specifies a single data distribution;
otherwise, it is termed composite.

− The alternative hypothesis (HA) refers to the proposition that stands in
contrast to the null hypothesis. Although it may theoretically correspond to
a distinct data distribution, it is generally characterised as the opposite of
the null hypothesis, comprising the infinite set of data distributions that are
complementary to the null hypothesis.

When a data sample is randomly selected from the sample space, the test aims to
either confirm H0 or reject it in favor of HA by comparing the observed sample with
the anticipated data from the theoretical model associated with H0. If the data
aligns well, H0 is supported; otherwise, it is dismissed in favor of HA. In this context,
alignment implies that any discrepancies between the observed and expected data
can be ascribed to random variation (in line with a predefined criterion) and do not
indicate a fundamental distinction between the two datasets.

Methodologically, the null hypothesis is presumed true unless the experimental
data, assessed via hypothesis testing, suggest that the alternative hypothesis holds.
Therefore, accepting the null hypothesis essentially signifies that the tests fail to
provide adequate evidence to substantiate the alternative hypothesis.

Methodology

Typically, when presented with a data sample, performing a hypothesis test involves
the following procedure. A numerical value, termed the test statistic, is derived from
the given data sample. A decision is then reached by contrasting this test statistic
against a pre-established acceptance region (commonly known as a confidence interval,
consisting of test statistic values for which H0 is accepted) and a rejection region
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(comprising values where H0 is rejected, thereby accepting HA). The methodology
by which a particular test statistic is linked to the data and the manner in which the
acceptance and rejection regions are predetermined define the specific hypothesis
test.

From a formal perspective, it is important to note that the data sample, prior
to observation, must be regarded as random. Consequently, as the test statistic
processes a random sample and outputs a numeric result, it can be represented as a
random variable.

Output

Considering the null hypothesis H0 and the alternative hypothesis HA, evaluation
with a data sample yields two potential conclusions from the test application:

− either to accept H0 (and refuse HA).

− or to refuse H0 (and accept HA).

Table 5.1 illustrates four potential configurations based on the test’s output and the
genuine state of H0 (either true or false), a variable that remains unknown. The
primary objective of a hypothesis test is, in fact, to deduce conclusions about this
unknown state.

TRUE SITUATION CONCLUSION
Accept H0 Accept Ha (reject H0)

Data is random (H0 is true) No error Type I error
Data is not random (Ha is true) Type II error No error

Table 5.1 Test configurations used to determine the acceptance or rejection of the null
hypothesis H0.

The different configurations, arising from the validation or erroneous conclusion of
the test, are depicted below:

− The null hypothesis is true (Data is random):

7→ and the test validates it (No error).
7→ but the test refutes it (false positive): this type of error is referred to as

a Type I Error. The likelihood of a Type I Error occurring is typically
represented by α. When the null hypothesis is dismissed, we state that
the test result is statistically significant at a significance level of α.

− The null hypothesis is false (Data is not random):

7→ and the test refutes it (No error).
7→ but the test accepts it (false negative): this kind of error is referred to as

a Type II error. The likelihood of incurring a Type II error is commonly
represented by β. Moreover, 1−β is termed the test power, which denotes
the probability that the test accurately favours the alternative hypothesis.
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In relation to this, we can discuss with respect to the parameters α and β:

− The value α tied to a test indicates the probability of obtaining false positives.
This occurs when the test statistic falls within the rejection region, even though
the null hypothesis is correct, meaning that the sample is drawn from the
sample space in accordance with the data distribution.

− In contrast, the parameter β denotes the likelihood of obtaining false nega-
tives, which occurs when the test statistic falls within the acceptance region
even though the null hypothesis is incorrect. If the alternative hypothesis
is accurately specified by a distinct probability distribution, then β can be
calculated. It can be shown that an increase in α results in a decrease in β,
and the opposite is also true.

The entire process is illustrated in Figure 5.2.

Figure 5.2 Hypothesis testing. Set of all possible observations (H0, H1).
.

5.4.2 Evaluation methods

Given the test statistic of an observed data sample, in order to decide if the null
hypothesisH0 has to be accepted or rejected (or, equivalently, to define the acceptance
region and the rejection region) two methods are typically used:

− The critical value method involves establishing one or more critical value(s)
that serve as thresholds to demarcate the acceptance region from the rejection
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region. Subsequently, for each sample of data, the null hypothesis H0 is rejected
if the test statistic is equal to or exceeds the critical value in the direction
favoring the alternative hypothesis (as further detailed later); if not, the null
hypothesis is accepted.

− The p-value method relies on the critical value method, adding a probabilistic
interpretation in order to make the testing process more friendly and the
results easier to interpret.

Specifically, the p-value represents the probability, under the assumption that the
null hypothesis holds true, of observing a test statistic as extreme as, or more extreme
than, the value obtained from the experiment. A decision is made by choosing a
threshold value α close to 0. If the p-value is less than or equal to α, the null
hypothesis is rejected; conversely, if the p-value surpasses α, the null hypothesis is
not rejected. A smaller p-value suggests stronger evidence against the null hypothesis.
It can be shown that:

− The significance level α corresponds to the probability of making a Type I
error: P(reject H0 | H0 is true) = α.

− The probability of a Type II error is denoted by β = P(accept H0 | H0 is false).

Typically, the likelihood of committing Type I errors is set at a constant value. In
cryptography, standard values for α fall within the interval [0.001; 0.01]. In contrast
to α, the parameter β is not constant and can assume a multitude of values, since
there are infinite scenarios where the hypothesis H0 may be false.
The two evaluation methods operate with two different approaches. Basically, they
operate within distinct domains. The critical value approach functions within the
range of potential test statistic outcomes, with the acceptance and rejection regions
delineated by the critical value(s). Conversely, the p-value approach works within
the probabilistic domain, specifically the interval [0, 1], where the acceptance and
rejection regions are determined by the parameter α.

5.4.3 Testing strategy and Result interpretation

To assess the randomness of a generator, randomness tests, which serve as hypothesis
tests, are typically employed. In these tests, the null hypothesis posits that the
sequence in question is random, whereas the alternative hypothesis contends that
the sequence is not random. Should empirical evidence suggest that H0 is incorrect,
the null hypothesis is rejected in favor of the alternative. Testing the randomness
of a PRNG involves subjecting a collection of its sequences to statistical tests and
analyzing the proportion that succeeds or fails. A sequence is deemed to pass the
randomness test if its p-value meets or exceeds the predetermined significance level.
Assuming the generator yields random bits, it is anticipated that around 1 − α
of the sequences will pass, with the rest α failing. Hence, even when a generator
functions correctly, the inherent nature of statistical testing implies some sequences
will not pass. The number of failing sequences aligns with α, as this represents the
probability of incurring Type I errors.
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Result interpretation

When subjecting a series of n sequences, each with a constant length m, to a
randomness test, a corresponding set of n p-values is obtained. By using a specified
significance level, α, for the randomness test, we can assess the test results for each
sequence. A sequence is considered to pass the test if its p-value is ≥ α; otherwise,
it fails. Consequently, a vector S = (s1, . . . , sn) of length n, where each element
si is either True or False. The True value indicates the i-th sequence passed the
randomness test, while False denotes a failure in passing. The NIST documentation
provides two distinct methods for assessing and interpreting the results obtained.

− Examine the proportion of sequences that pass a statistical test. We perform
a statistical analysis to determine if the empirically calculated proportion of
sequences passing a randomness test, denoted p̂, is statistically consistent with
the expected proportion 1 − α. If the proportion of success-sequences falls
outside of following acceptable interval, there is evidence that the data is
non-random:

p̂± 3

√
p̂ (1− p̂)

n
(5.2)

where p̂ = 1−α and n is the number of sequences. This interval is determined
to be 99.73% range of normal distribution which is an approximation of
the binomial distribution under the assumption that each sequence is an
independent sample. In cryptographic applications, where α is typically
α = 0.01, applying this approximation requires a minimum of 1000 sequences.

− Check the distribution of the p-values. According to statistical theory, when
conducting a hypothesis test with a valid null hypothesis and an invertible
cumulative distribution of the test statistic, the p-values are uniformly dis-
tributed across [0, 1]. In a randomness test, therefore, if the sequences are
genuinely random and the test statistic is continuous, the resulting p-values
should exhibit a uniform distribution throughout the interval [0, 1]. Assuming
that the conditions ensuring the uniform distribution of p-values are satisfied, a
suggested approach to verify their uniformity over [0, 1] is to partition the inter-
val from 0 to 1 into 10 equal parts and allocate p-values to these sub-intervals
based on where they fall. Following this categorisation, a chi-square test is
conducted to evaluate whether the number of p-values in each sub-interval is
evenly distributed. The chi-square test "χ" is a common statistical method to
test whether the observed frequencies correspond to the expected frequencies
of a specific probability distribution. In this scenario, given that the p-values
should follow a uniform distribution, the expected frequency for each of the
10 intervals should be n/10, where n denotes the total number of p-values.
We define the vector F , where Fi, for i = 1 . . . 10, represents the observed
frequency in the i-th sub-interval, and the chi-square statistic is then expressed
as:

χ2 =
10∑
i=1

(Fi − n/10)2

n/10 (5.3)

The distribution of this statistic is a chi-square with ν = 9 degrees of freedom.
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In order to confirm that the generator performs the statistical test, it is crucial that
the two evaluations mentioned above align with the anticipated theoretical results.
The following sections delve into the rationale and construction of these essential
checks in detail.

5.4.4 Statistical test suite

It is important to note that the test statistic related to a specific test serves as a
numerical indicator that summarizes the sample data. Naturally, since it represents
a synthesis, it inherently captures only certain characteristics of the data in question.

The range of statistical irregularities detectable by the test is dictated by the test
statistic, which generally limits its ability to identify other deviations from the null
hypothesis. For instance, in evaluating a random binary sequence, a test statistic
that tallies the number of 1s can effectively assess whether the sequence follows the
balancing criterion (i.e., the expected number of 0s matches the expected number
of 1s). However, it typically does not facilitate the detection of other anomalies,
such as correlations between consecutive bits. Consequently, the utility of the test
in yielding meaningful insights is contingent upon whether the detected properties
are pertinent to the specific application context.

To enhance the efficacy of analysis, we often employ test suites (also referred to
as collections or batteries) comprising multiple varied tests designed to capture a
wide range of statistical anomalies. Nevertheless, it remains impossible for any test
suite to detect every conceivable anomaly.

Thus, balancing the tests within a suite involves weighing the efficiency of their im-
plementation against their capacity to identify significant anomalies. Fundamentally,
our aims are to:

1. To decrease the costs associated with implementation, it is advisable to reduce
the number of tests conducted.

2. To enhance their efficacy, defined as the capacity to identify and delineate the
non-random characteristics pertinent to the particular application scenario, it
is essential. Based on the given use case, the analyst may prioritise certain
statistical properties over others due to their relevance and importance to the
analysis objectives.

3. Opt for independent tests. It is important to note a nuanced aspect in defining
a test suite: the independence of selected tests. Informally, two tests are said to
be independent if the outcome of one does not offer any insight into the outcome
of the other. Ensuring test independence within a battery is advantageous
for two primary reasons. To begin with, independent tests each offer new
insights into the validity of the null hypothesis, whereas dependent tests
may lead to the inefficient use of computational resources, yielding redundant
information. Furthermore, and perhaps more critically, independence facilitates
the derivation of more accurate conclusions from the application of multiple
tests.

In the literature, several suites have been proposed and are commonly used to
test the randomness quality of a given generator. The suites differ in many aspects,
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such as the choice of the tests, the efficiency of implementation, their flexibility,
and the user interface [LV21]. Presented below are the most well-known statistical
test suites, organized according to their chronological introduction in the scientific
community:

− Knuth: the initial comprehensive suite, introduced in 1969 [Knu69], encom-
passes a fundamental collection of 11 tests and is recognised as the forerunner
in systematic randomness testing. Although it focusses more on real numbers,
making it less ideal for integer (binary) sequences, its primary mention here is
for historical context.

− Crypt-X : the battery was presented in 1992 by the Information Security
Research Centre at Queensland University of Technology for commercial
purposes [Cae92]. This battery includes 6 tests: Binary derivative, Change
point, Frequency, Linear complexity, Runs and Sequence complexity. Crypt-X
supports stream ciphers, block ciphers, and keystream generators.

− Diehard: the test battery launched in 1995 [Mar95] continues to serve as a
valuable resource within the statistical community, although with constraints
regarding sample size and accessibility for users. A review of this battery is
discussed in [Ala10].

− SPRNG: released in 2020, the test suite for the Scalable Parallel Random
Number Generators Library (SPRNG) includes both statistical and physically-
based tests [MS00]. Statistical tests are structured so that the anticipated
value for a specific test statistic is predefined for an independent, identically
distributed random sample taken from a uniform distribution.

− NIST Statistical Test Suite (STS): First introduced by NIST in 2001 [RBG10],
this suite has become the accepted standard for evaluating binary random
sequences, particularly with an emphasis on applications in cryptography.
Detailed examinations and evaluations of the NIST suite have been discussed
in [KUH04; PRS12; MS15].

− Dieharder : an expanded edition of Diehard, featuring extra tests, was presented
in 2006 [BEB06]. A recent critique of the implementation of the suite has been
published in [SOMK22].

− Gjrand: released in 2006, the developed suite not only comprises a list of
PRNGs, but also includes a comprehensive list of statistical tests [Jon06].

− TestU01 : initially introduced by [LS07], this comprehensive package is notably
adaptable and features an efficient design, first proposed in 2007. For a detailed
assessment of the suite, see [McC06].

− ENT : alternative and less commonly used batteries include the ENT battery,
presented in 2008 [Wal08]. ENT is designed to evaluate systems for simulation
and cryptographic applications. The ENT battery operates in two modes:
binary and byte, and depending on the selected mode, it computes and presents
distinct statistical analyses.
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− PractRand: a practical and adaptable suite [DH10] presented in 2010, which is
increasingly being recognised in the research field. For a comparative analysis
between TestU01 and Practrand, refer to [SC20].

NIST Statistical Test Suite

The NIST suite comprises 15 empirical tests adapted to evaluate binary sequences
(bit-streams) [RBG10]. These tests assess randomness based on different statistical
properties of individual bits or blocks of bits as described in Table 5.2. Every
test within the NIST STS suite inspects the overall randomness in the bit-stream.
Additionally, some tests are capable of identifying localised nonrandomness by
segmenting the bitstream into multiple, generally large segments and calculating bit
characteristics for each segment. These individual characteristics are then used to
compute the test statistic.

Test Statistical property analysed
Frequency (Monobit) Proportion of 0s and 1s
Frequency within a Block Proportion of 1s within bit blocks

Runs Total number of runs (uninterrupted sequence of iden-
tical bit)

Longest Run of Ones in a Block Longest run of ones within blocks
Binary Matrix Rank Rank of disjoint sub-matrices
Discrete Fourier Transform (Spectral) Peak heights in the Discrete Fourier Transform
Non-overlapping Template Matching Occurrences of given aperiodic patterns
Overlapping Template Matching Occurrences of pre-specified target strings
Maurer’s Universal Statistical Number of bits between matching patterns
Linear Complexity Length of a linear feedback shift register (LFSR)
Serial Frequency of all possible overlapping patterns
Approximate Entropy Frequency of repeating patterns in the string

Cumulative Sums (Cusums) Maximal excursion of the random walk defined by the
cumulative sum of adjusted (-1, +1) digits

Random Excursions Number of cycles having exactly K visits in a cumula-
tive sum random walk

Random Excursions Variant Total number of times that a particular state is visited
(i.e., occurs) in a cumulative sum random walk

Table 5.2 Statistical properties analyzed in NIST STS.

Each NIST STS assessment is outlined by the test statistic pertaining to one
of the following three categories, and it evaluates the randomness of the sequence
based on:

1. bits - these tests examine various properties of bits, including bit proportion,
frequency of bit alternation (runs), and cumulative sum distribution.

2. m-bit blocks - these tests evaluate the distribution of m bit blocks, where m
generally comprises less than 30 bits within the sequence or its subdivisions.

3. M -bit parts - these tests examine intricate characteristics of M -bit segments
(where M commonly exceeds 1000 bits) of the sequence, such as the rank of
the sequence when regarded as a matrix, the sequence’s spectral properties, or
the linear complexity of the bitstream.
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Tests are parameterized based on n, which represents the bit-length of the
binary sequence subject to testing. Some tests additionally use a second parameter,
indicated as m or M . Since the reference distributions of the NIST STS test statistics
are approximated using asymptotic distributions (such as χ2 or normal), the accuracy
of the resulting p-values is ensured only for specific parameter values. Table 5.3
outlines the parameter values recommended by NIST for each specific test.

Test # Test name n m or M # sub-tests
1. Frequency (Monobit) n ≥ 100 - 1
2. Frequency within a Block n ≥ 100 20 ≤M ≤ n/100 1
3. Runs n ≥ 100 - 1
4. Longest run of ones in a Block n ≥ 128 1
5. Binary Matrix Rank n > 38912 - 1
6. Discrete Fourier Transform (Spectral) n ≥ 1000 - 1
7. Non-overlapping T. M. n ≥ 8m− 8 2 ≤ m ≤ 21 148∗

8. Overlapping T.M. n ≥ 106 1
9. Maurer’s Universal n > 387840 1
10. Linear complexity n ≥ 106 500 ≤M ≤ 5000 1
11. Serial 2 < m < [log2 n]− 2 2
12. Approximate Entropy m < [log2 n]− 5 1
13. Cumulative sums n ≥ 100 2
14. Random Excursions n ≥ 106 8
15. Random Excursions Variant n ≥ 106 18

Table 5.3 NIST STS configurations. For every specific test, the suggested size of the
bitstream is denoted as n. Certain tests involve a secondary parameter, indicated as m
or M , depending on the context. The table provides recommended configurations for
this secondary parameter and enumerates the number of sub-tests associated with each
test.

Multiple tests from the NIST STS battery are conducted in various forms, mean-
ing they include multiple sub-tests to assess additional characteristics of sequences
of the same type. For example, the Cumulative Sum test evaluates a sequence using
both forward and backward cumulative sums. Table 5.3 provides a summary of
the number of sub-tests associated with each specific test. The Non-overlapping
template matching test is marked by an asterisk since the number of its sub-tests
is not fixed and depends on the value chosen for the parameter m (the number
148 mentioned in Table 5.3 corresponds to the default value of the parameter m = 9).

(Testing). NIST STS provides the capability to evaluate an input file either as
a singular sequence or by segmenting it into sequences of a predetermined length
n, which is defined via the command line. Users must select parameters that are
presented sequentially in the text-based interface as follows:

1. File for the analysis - the user has the option to select their own file or generate
data using one of the established pseudorandom number generators, such as
Blum-Blum-Shub, various congruential generators, modular exponentiation,
among others.

2. Tests - which statistical test or tests should be utilized for the data.
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3. Values for the second parameter (m or M) for several tests - block frequency
test uses 128 blocks, Non-overlapping and Overlapping template matching
both utilise 9 templates, Approximate entropy takes 10 elements, Serial test
deploys 16 elements, and Linear Complexity evaluates 500 sequences (default
parameters are indicated within brackets following each test name).

4. Number of bitstreams - to be processed.

5. File format - either in ASCII format, where the sequence consists of ASCII 0’s
and 1’s, or in binary format, in which each byte of the file is made up of 8 bits
from the sequence.

The selection of appropriate tests for the analysis of randomness poses a challenging
question. The choice hinges on the generator (data) in question, its specific appli-
cation domain, and unacceptable randomness defects. In the absence of detailed
information about the data under analysis, it is recommended to employ all NIST
STS tests for evaluating randomness: < n (the bitlength of the sequences) must
exceed 100,000 for the complete test application, as detailed in Table 5.3. According
to the NIST STS guidance, a minimum of k = α−1 = 100 sequences is recommended
for testing. This value is suitable for the uniformity test of p-values, with a minimum
of 55 sequences that need to be evaluated. The NIST STS utilises approximations
in p-value processing; therefore, testing a larger number of sequences enhances
the accuracy of the results. NIST recommends conducting tests on 1000 or more
sequences.

5.5 Our construction
We constructed a PRNG by adopting a model outlined in [RBG15], specifically
utilizing the CTR-DRBG configuration. As is known, this mode uses the encryption
of an incrementing counter under a block cipher to generate outputs. The block
cipher may be either 3DES with a 64-bit key or AES with a key of length 128, 192,
or 256 bits. The design mixes in additional data at various stages. A derivation
function (commonly the same block cipher under a different key) can optionally
be used to extract entropy from the additional data. In this instance, we propose
adapting the CTR-DRBG model by merging it with our sequence generation model.

5.5.1 PRNG based on Integer sequences

Following [DPR+13; WS19], a PRNG with input is a triplet of deterministic
polynomial-time algorithms (instantiate, generate, reseed). Utilizing the distinctive
properties of MN

IS , which are comprehensively detailed in Figure 4.1, we capitalize
on its unique features to develop our PRNG. Specifically, we configure MN

IS to
function effectively as a block cipher. The PRNG-MN

IS . is initialised by invoking
the instantiate function with an entropy sample I and a nonce N , producing the
initial state S0. Subsequently, the generate function accepts a state S, the desired
number of output bits nbits, an additional input known as an addin, and yields a
new state S′ alongside the bits R ∈ {0, 1}nbits. Lastly, the reseed function takes a
state S, an entropy sample I, and an extra input addin, resulting in a new state S′.
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We instead assume that the PRNG-MN
IS correctly receives entropy samples drawn

uniformly at random from the entropy space, which better matches our real-world
scenario.
Private State. The private state S of the PRNG-MN

IS is composed of the following:

− A key K ∈ {0, 1}keylen , with bit length keylen that matches that of the
underlying cipher.

− A counter V ∈ {0, 1}≤blocklen that increments after each call to the block
cipher, where blocklen is the output length of the underlying block cipher.

− A reseed counter c that indicates when a reseed is required. The PRNG’s
nonce space N is {0, 1}seedlen and the entropy space is {0, 1}seedlen where the
seedlen = keylen+ blocklen.

Figure 5.3 illustrates the flow chart for the PRNG-MN
IS algorithm. PRNG-MN

IS

functions as a deterministic random number generator, designed to preserve and
verify the integrity of inputs directed to the output-generation function. This function
implements a deterministic algorithm to protect the entropy properties from external
threats. As illustrated in Figure 5.3, the random number generator commences
by establishing the initial internal state, which is then periodically updated, and
this updated state is utilized to produce output (random numbers). The process
of defining the initial internal state is called the instance creation (initialization)
function, whereas the process that modifies the internal state is referred to as the
internal state update function. The process responsible for generating the output is
identified as the output generation function.

Generate
internal

state

Internal state

Setting the initial value
S={K, V, c}

Generate output
(random numbers)

Insertion of new entropy

Update
internal

state

Internal
state

extinction

Figure 5.3 Flowchart of PRNG-MN
IS .

The critical values for the internal state, on which the security of this PRNG-MN
IS

mechanism relies, are represented by V and K. Specifically, V and K are the "secret
values" that constitute the internal state.
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Instantiation. PRNG-MN
IS instantiate function takes as input an entropy sample

I and an arbitrary nonce N chosen by the implementation, of equal length. It
computes a temporary value t as the output for the derivation function applied to
I and N . It then calls a subroutine update, outlined in Algorithm 4, with inputs
K = V = 0 and t as the additional input. The initial state S0 = (K,V, c) consists of
the outputs (K,V ) from update, and reseed counter c = 1.
Update internal state. Each of PRNG-MN

IS ’s functions call a subroutine update,
outlined in Algorithm 4, that updates the internal state. The routine’s input is a
key K, counter V , and additional data addin. In Lines 3-5 the function increments
the counter V and appends the encryption of V under key K to a buffer temp. This
process is repeated until temp contains seedlen bytes. The resulting buffer is then
XORed with addin (Line 7). Finally, in Lines 8-9 the function outputs the new
key K ′ as the leftmost keylen bits of the buffer, and new counter value V ′ as the
rightmost blocklen bits of the buffer, where blocklen is the block length of the cipher.

Algorithm 4: PRNG-MN
IS Update function.

Input: V,K, I
Output: V ′,K ′

1 temp ← null;
2 while len (temp) < seedlen do
3 V ← (V + 1) mod 2blocklen ;
4 outputblock ← encrypt (K,V );
5 temp ← temp ∥ outputblock;
6 end
7 temp ← temp ⊕ addin;
8 K ′ ← leftmost (temp, keylen);
9 V ′ ← rightmost(temp, blocklen);

10 return K ′, V ′

Generate output. A user generates the output of PRNG-MN
IS by calling the

generate function outlined in Algorithm 5. It takes as input the state S, the number
of bits requested nbits, and a string addin, and outputs a string nbits in length and
an updated state S′. According to [RBG15], the addin parameter "may be a means
of providing more entropy for the DRBG internal state". This additional input is
allowed to be public or private and may contain secrets if private. The specification
notes that "if the additional input is kept secret and has sufficient entropy, the input
can provide more assurance when recovering from the compromise of the entropy
input, the seed or one or more DRBG internal states". However, the specification
does not include requirements for secrecy or entropy for addin.
The generate function first checks if a reseed is needed and, if so, throws an error
(Lines 2-4).

If the call included additional data addin, these data are first whitened by running
them through the derivation function, and then used to update K and V through a
call to update (Lines 5-8). Otherwise, addin is set to a string of zeros (Line 9-11).
On each iteration of the loop on Lines 13-17, the counter V is incremented. V is
then encrypted under K and the result is appended to the output buffer. This
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Algorithm 5: PRNG-MN
IS Generate function

Input: S, nbits, addin
Output: S = (K ′, V ′, c′), out

1 parse (K,V, c) from S;
2 if c > reseed-interval then
3 return reseed-required
4 end
5 if addin ̸= Null then
6 addin ← df(addin);
7 (K,V )← update (K,V , addin);
8 end
9 else

10 addin ← 0seedlen ;
11 end
12 temp ← Null;
13 while len (temp) < nbits do
14 V ← (V + 1) mod 2blocklen ;
15 output-block ← encrypt(K,V );
16 temp ← temp ∥ output-block;
17 end
18 out ← leftmost(temp, nbits);
19 (K ′, V ′)← update(addin, K,V );
20 c′ ← c+ 1;
21 return S = (K ′, V ′, c′), out
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process is repeated until enough output has been collected. On Line 19 the function
calls the update with addin to update K and V again before the reseed counter c is
incremented (Line 20). The function returns the new state S and output.

If the attacker compromises the key K and counter V between Lines 13-17 and
is able to guess addin, she can predict the new key K ′ and counter V ′. She can then
predict future PRNG outputs as well as future values of K and V . Note that the
same symmetric key is used to generate all of the requested output, and the key
is only changed at Line 19 after all blocks have been generated. This observation
is a crucial element of our attack, as a long output buffer gives the attacker many
opportunities to extract K via a side channel. In fact, [RBG15] specifies that at
most 65 KB can be requested from the generator in a single call before a key change.
This is presumably intended to limit the exposure of a single state to an attacker.
However, our work demonstrates that state recovery attacks within this limit are
still viable.
Reseeding. The reseed function is intended to ensure that high-quality entropy is
mixed into the state as required. The reseed function takes as input an additional
input addin, an entropy sample I, and a state S consisting of the key K, counter V ,
and the reseed counter c. It calls the update subroutine on a derivation function
taken over I and addin, which updates K and V . Finally, it resets the reseed counter
c to 1 and returns the new key, counter, and reseed counter.

Algorithm 6: PRNG-MN
IS Reseed function.

Input: S = (V,K, c), I
Output: S′ = (V ′,K ′, c′)

1 (K ′, V ′) = PRNG-MN
IS Update (V,K, I);

2 c′ = 1;
3 return (V ′,K ′, c′)

5.5.2 Statistical tests on PRNG-MN
IS

The randomness of the bit sequences produced by the proposed generator has been
evaluated using three different statistical software packages described in Section
5.4.4.
(NIST STS). We provided a dataset comprising 1000 sequences, each consisting of
1,000,000 bits, to evaluate using the NIST statistical tests. The results are detailed
in Table 5.4.
The complete NIST test is successfully passed: all p-values across all 1000 sequences
exhibit a uniform distribution over the 10 subintervals, with the pass rate falling
within an acceptable range. For each statistical test, excluding the random excursion
(variant) test, the minimum pass rate is approximately 980. For the random excursion
(variant) test, the minimum pass rate is roughly 596 based on a sample of 610 binary
sequences.
(Diehard). In the Diehard tests, we produced a file containing 80 million bits. The
outcomes are presented in Table 5.5.
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NIST statistical test P -value Pass rate
Frequency (monobit) 0.078132 986/1000
Block-frequency 0.482232 987/1000
Cumulative sums (Forward) 0.694587 987/1000
Cumulative sums (Reverse) 0.749847 987/1000
Runs 0.799571 990/1000
Longest run of Ones 0.083526 987/1000
Rank 0.894835 990/1000
FFT (Spectral) 0.008598 984/1000
Non-overlapping templates 0.534926 989/1000
Overlapping templates 0.549818 987/1000
Universal 0.603816 986/1000
Approximate entropy 0.492371 989/1000
Random-excursions 0.472934 602/610
Random-excursions Variant 0.548874 604/610
Serial 1 0.177362 991/1000
Serial 2 0.171726 990/1000
Linear complexity 0.468326 992/1000

Table 5.4 NIST Statistical test suite results for 1000 sequences of size 1 million bits each
generated by PRNG-MN

IS .

DIEHARD statistical tests P -value
Birthday spacings 0.493827
Overlapping 5-permutation 0.384735
Binary rank (31× 31) 0.522837
Binary rank (32× 32) 0.883712
Binary rank (6× 8) 0.334985
Bitstream 0.589842
OPSO 0.379583
OQSO 0.534094
DNA 0.493824
Stream count-the-ones 0.370932
Byte count-the-ones 0.572421
Parking lot 0.402842
Minimum distance 0.510924
3D spheres 0.482756
Squeeze 0.462439
Overlapping sums 0.563958
Runs up 0.172834
Runs down 0.845920
Craps 0.593847

Table 5.5 Diehard statistical test results for 80 million bits
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Every p-value falls within the valid interval of [0,1). The suggested PRNG successfully
passed all tests in the Diehard suite.
(ENT). We evaluated an output string consisting of 125,000,000 bytes from PRNG-
MN

IS . The findings are detailed in Table 5.6.

ENT statistical tests Results
Entropy 7.999999 bits per byte
Optimum compression OC would reduce the size of this 125000000

byte file by 0%.
χ2 distribution For 125000000 samples is 254.38 , and ran-

domly would exceed this value 49.92% of
the times.

Arithmetic mean value 127.5021(127.5 = random )
Monte Carlo π estimation 3.141740786 (error 0.00% )
Serial correlation coefficient -0.000221 (totally uncorrelated =0.0)

Table 5.6 ENT statistical test results for 125000000 bytes.

The output stream was successfully assessed and passed all rigorous evaluations and
assessments performed using the ENT package.

5.5.3 Performance tests on PRNG-MN
IS

After to conducting a comprehensive statistical examination to ascertain the degree
of stochasticity inherent in PRNG-MN

IS , we advanced to assess various performance
metrics by implementing the tests on a general-use personal computing system. The
computational unit employed in this study is an Intel® Core™ i7-1370PRE Processor,
belonging to the 13th generation, operating at a frequency of 4.80 GHz. The code
compilation was performed using version 13.1 of the GNU Compiler Collection
(GCC). The GNU Compiler Collection (GCC) represents a comprehensive suite of
compiler tools tailored for a multitude of programming languages. This collection
encompasses compilers specifically designed for languages such as C, C++, Fortran,
Ada, among others. Distinguished as an open-source initiative, GCC is widely
adopted in the domain of software development. Its wide usage can be attributed to
its cost-free availability, exceptional portability, and compatibility with an extensive
array of computer architectures.

In order to evaluate performance, we compared our results with the baseline,
specifically focussing on the slowest PRNG available, which is characterised by
the base implementation of the rand function (Figure 5.4). The execution time
measurements were conducted using 108 randomly generated numbers, which were
processed on our Processor (Figure 5.5).

Regarding the experimental evaluations that were carried out, it is pivotal to
delineate the subsequent clarifications:

− The rate of processing can vary significantly between various CPUs and in
various operational contexts.
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Figure 5.4 PRNG-MN
IS performance (%) compared (a high value indicates a better

result).
.

Figure 5.5 PRNG-MN
IS time (s) compared (lower value indicates a better result).

.
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− We abstain from using the -march=native compiler flag, which could poten-
tially enhance the execution time of certain generators through the application
of vectorisation or other architecture-specific instructions. However, we refrain
from this practice because such improvements may not be achievable when the
generator is integrated into the user-level code. The -march=native option is
a flag used in the GCC compiler (and other GCC-based compilers) to optimise
the code for the specific architecture of the machine on which the programme is
being compiled. When using -march=native, GCC automatically detects the
architecture of the CPU on the system where the programme is being compiled
(based on information provided by the operating system) and optimises the
generated code for that specific architecture. This can include using special
instructions, advanced registers, and other processor-specific optimisations to
improve the programme’s performance.

− Instead of being a typical method for employing generators, timing measure-
ments were performed by executing the generator billions of times in a loop.
When such generators are integrated within a software application, the allo-
cation of registers may vary significantly. This may lead to scenarios where
constants need to be reloaded or portions of the state space are written to the
main memory during each iteration. It is crucial to note that these particular
costs are not represented in the following benchmarks.

− The code has been compiled using GCC with the option -fno-unroll-loops.
This particular option is crucial for obtaining meaningful results. When it
is not present, the compiler may apply varying strategies for loop unrolling,
depending on the generator employed. Previously, we also used the flag
-fno-move-loop-invariants as it was crucial in ensuring fairness for gener-
ators that rely on multiple large constants. This flag prevents the compiler
from prematurely loading these constants into registers, thereby avoiding any
potential advantage.
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Chapter 6

Conclusions and problems

The journey undertaken in this doctoral research has been a unique opportunity to
explore and deepen the understanding of the use of integer sequences in cryptography,
with the goal of making a meaningful contribution in this field.

The key outcomes of this study are:

1. For the first time, a systematic literature study has been conducted that
highlighted the importance of using integer sequences in cryptography. The
sequences that have made the most substantial impact on various cryptographic
sub-domains have been determined. This enabled the establishment of a
structured framework for collecting individual contributions. By applying
this framework, it became possible to ascertain which specific sub-domains
within cryptography have most extensively utilized integer sequences for their
applications.

2. The discovery of a Model capable of identifying a new family of integer
sequences, most of which are unknown in the On-Line Encyclopedia of Integer
Sequences (OEIS). This family apparently is capable of also encompassing
every sequence of prime numbers and can represent a significant result in the
field of Number Theory. Furthermore, as hypothesized, the Model can be
further developed by highlighting new mathematical properties that are not
yet documented in the literature.

3. The application of the aforementioned Model in the field of cryptography. In
particular, for defining a Pseudo-Random Number Generator (PRNG) with
good randomness properties that emerged from statistical tests and endowed
with adequate performance compared to the most common PRNGs.

Although this research has achieved its main objectives, it also opens the door
to future work. It is my belief that the outcomes of this research, coupled with
continued investigation, will lead to further progress and understanding in use of
integer sequences in cryptography. Finally, it has been a privilege to contribute to
this field, and we look forward to seeing how future scholars and practitioners build
upon the work presented here.



110

Appendix - Examples of
generable integer sequences

n Fn F
ST [w]
n Sm Sm ⊂ P OEIS

check
OEIS Info

500 [1, 2, 0, -2, 0,
2, 0, -2, 0, 2,
0, -2, 0, 1, 0, -
2, 0, 1, 0, -2, 0,
1, 0, -2, 0, . . . ]

[0, 0, 0, 2, 0,
2, 0, 6, 0, 2, 0,
10, 0, 1, 0, 14,
0, 1, 0, 18, 0, 1,
0, 22, 0, . . . ]

[3, 5, 7, 11, 13,
17, 31, 41, 47,
59, 61, 83, 97,
103, 137, 149,
151, 173, 193,
227, 229, 233,
241, 283, 293,
311, 373, 389,
401, 409, 457,
...]

Yes Unknow

500 [1, 4, 0, -4, 0,
4, 0, -4, 0, 4,
0, -4, 0, 3, 0, -
4, 0, 3, 0, -4, 0,
3, 0, -4, 0, . . . ]

[0, 0, 0, 0, 0, 4,
0, 4, 0, 4, 0, 8,
0, 3, 0, 12, 0,
3, 0, 16, 0, 3,
0, 20, 0, . . . ]

[3, 5, 7, 11, 13,
19, 23, 37, 41,
43, 61, 67, 71,
79, 83, 89, 97,
103, 127, 131,
137, 149, 151,
163, 167, 173,
191, 233, 239,
251, 271, 281,
307, 313, 331,
337, 347, 401,
439, 449, 463,
499, ...]

Yes Unknow

500 [1, 6, 0, -6, 0,
6, 0, -6, 0, 6,
0, -6, 0, 5, 0, -
6, 0, 5, 0, -6, 0,
5, 0, -6, 0, . . . ]

[0, 0, 0, 2, 0, 0,
0, 2, 0, 6, 0, 6,
0, 5, 0, 10, 0,
5, 0, 14, 0, 5,
0, 18, 0, . . . ]

[3, 5, 7, 11,
13, 17, 29, 31,
37, 43, 67, 73,
79, 83, 97, 109,
151, 157, 179,
191, 193, 197,
199, 223, 233,
241, 263, 307,
337, 359, 367,
373, 389, 409,
433, 457, 463,
487, ...]

Yes Unknow

Continued on next page
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Table A1 – continued from previous page
n Fn F

ST [w]
n Sm Sm ⊂ P OEIS

check
OEIS Info

500 [3, 0, -3, -6, -1,
-4, -7, -10, -5,
-8, -11, -14, -9,
-12, -15, -18, -
13, -16, . . . ]

[0, 0, 0, 2, 4,
2, 0, 6, 4, 2, 0,
10, 4, 2, 0, 14,
4, 2, 0, 18, 4, 2,
0, 22, 4, . . . ]

[3, 5, 7, 11, 23,
47, 71, 83, 107,
131, 167, 227,
311, 383, 443,
467, 491, ...]

Yes Unknow

500 [3, 2, -3, -4, -1,
-2, -7, -8, -5, -
6, -11, -12, -9,
-10, -15, -16, -
13, -14, . . . ]

[0, 0, 0, 0, 4, 4,
0, 0, 4, 4, 0, 0,
4, 4, 0, 0, 4, 4,
0, 0, 4, 4, 0, 0,
4, 4, 0, . . . ]

[3, 5, 7, 11, 23,
47, 71, 83, 107,
131, 167, 227,
311, 383, 443,
467, 491, ...]

Yes Unknow

500 [4, 2, -6, -
26, -56, -118,
-210, -338, -
500, -718, -
990, -1322, -
1712, ...]

[0, 0, 0, 2, 4,
2, 0, 6, 4, 2, 0,
10, 4, 2, 0, 14,
4, 2, 0, 18, 4,
2, 0, 22, 4, ...]

[3, 5, 7, 11, 23,
47, 71, 83, 107,
131, 167, 227,
311, 383, 443,
467, 491, ...]

Yes Unknow

500 [4, 6, 6, 12, 24,
34, 42, 56, 76,
94, 110, 132,
160, 186, 210,
240, . . . ]

[0, 0, 0, 0, 4, 4,
0, 0, 4, 4, 0, 0,
4, 4, 0, 0, 4, 4,
0, 0, 4, 4, 0, 0,
4, 4, 0, ...]

[3, 5, 7, 11, 23,
47, 71, 83, 107,
131, 167, 227,
311, 383, 443,
467, 491, ...]

Yes Unknow

500 [4, 2, 0, -2, 4,
2, 0, -2, 4, 2,
0, -2, 4, 2, 0, -
2, 4, 2, 0, -2, 4,
2, 0, -2, 4, . . . ]

[0, 0, 0, 2, 4,
2, 0, 6, 4, 2, 0,
10, 4, 2, 0, 14,
4, 2, 0, 18, 4, 2,
0, 22, 4, . . . ]

[3, 5, 7, 11, 23,
47, 71, 83, 107,
131, 167, 227,
311, 383, 443,
467, 491, ...]

Yes Unknow

500 [8, 4, 0, -4, 8,
4, 0, -4, 8, 4,
0, -4, 8, 4, 0, -
4, 8, 4, 0, -4, 8,
4, 0, -4, 8, . . . ]

[0, 0, 0, 0, 3, 4,
0, 4, 8, 4, 0, 8,
8, 4, 0, 12, 8,
4, 0, 16, 8, 4,
0, 20, 8, . . . ]

[3, 5, 7, 11, 19,
31, 67, 79, 139,
199, 271, 367,
439, 487, 499,
...]

Yes Unknow

500 [12, 6, 0, -6,
12, 6, 0, -6, 12,
6, 0, -6, 12, 6,
0, -6, 12, 6, 0, -
6, 12, 6, 0, . . . ]

[0, 0, 0, 2, 2, 0,
0, 2, 3, 6, 0, 6,
12, 6, 0, 10, 12,
6, 0, 14, 12, 6,
0, 18, . . . ]

[3, 5, 11, 13,
19, 23, 31, 43,
59, 71, 79, 83,
139, 151, 163,
179, 191, 211,
223, 239, 251,
263, 283, 359,
379, 431, 443,
479, 491, 499,
...]

Yes Unknow

500 [16, 8, 0, -8,
16, 8, 0, -8, 16,
8, 0, -8, 16, 8,
0, -8, 16, 8, 0, -
8, 16, 8, 0, . . . ]

[0, 0, 0, 0, 1, 2,
0, 0, 7, 8, 0, 4,
3, 8, 0, 8, 16,
8, 0, 12, 16, 8,
0, 16, . . . ]

[3, 5, 7, 13, 17,
19, 23, 47, 59,
83, 167, 179,
227, 239, 347,
383, 479, ...]

Yes Unknow

Continued on next page
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Table A1 – continued from previous page
n Fn F

ST [w]
n Sm Sm ⊂ P OEIS

check
OEIS Info

500 [20, 10, 0, -10,
20, 10, 0, -10,
20, 10, 0, -10,
20, 10, 0, -10,
20, 10, 0, . . . ]

[0, 0, 0, 2, 0,
4, 0, 6, 2, 0, 0,
2, 7, 10, 0, 6,
3, 10, 0, 10, 20,
10, 0, 14, . . . ]

[3, 5, 7, 13,
17, 19, 23, 31,
43, 67, 79, 103,
127, 151, 199,
211, 271, 283,
331, 367, 379,
439, 463, 487,
499, ...]

Yes Unknow

500 [3, 0, 0, 1, 1, 0,
0, 1, 1, 0, 0, 1,
1, 0, 0, 1, 1, 0,
0, 1, 1, 0, 0, 1,
1, 0, 0, . . . ]

[0, 0, 0, 1, 1, 0,
0, 1, 1, 0, 0, 1,
1, 0, 0, 1, 1, 0,
0, 1, 1, 0, 0, 1,
1, 0, 0, . . . ]

[3, 7, 23, 47,
167, 263, 359,
383, 479, ...]

Yes A158035 2 * A158034
+ 1, prime
numbers p
for which
f = (2p −
2(p−1)/2 +
1) + 4p2 −
8p)/(2p2 − 2p)
is an integer

600 [0, 0, 1, 1, 0, 0,
1, 1, 0, 0, 1, 1,
0, 0, 1, 1, 0, 0,
1, 1, 0, 0, 1, 1,
0, 0, 1, . . . ]

[0, 0, 1, 1, 0, 0,
1, 1, 0, 0, 1, 1,
0, 0, 1, 1, 0, 0,
1, 1, 0, 0, 1, 1,
0, 0, 1, . . . ]

[3, 11, 59, 83,
107, 131, 179,
227, 251, 347,
443, 467, ...]

Yes A199854 Primes of the
form 1 + m2

+ n2 with
gcd(m,n)=1.

1000 [1, 0, 0, 0, 0, 1,
1, 1, 1, 0, 0, 0,
0, 1, 1, 1, 1, 0,
0, 0, 0, 1, 1, 1,
1, 0, 0, . . . ]

[0, 0, 0, 0, 0, 1,
1, 1, 1, 0, 0, 0,
0, 1, 1, 1, 1, 0,
0, 0, 0, 1, 1, 1,
1, 0, 0, . . . ]

[3, 5, 11, 53,
59, 107, 149,
347, 587, ...]

Yes Unknow

500 [0, 0, 0, 1, 1, 1,
0, 0, 0, 0, 0, 1,
1, 1, 0, 0, 0, 0,
0, 1, 1, 1, 0, 0,
0, 0, 0, . . . ]

[0, 0, 0, 1, 1, 1,
0, 0, 0, 0, 0, 1,
1, 1, 0, 0, 0, 0,
0, 1, 1, 1, 0, 0,
0, 0, 0, . . . ]

[3, 83, 179,
227, 467, ...]

Yes Unknow

500 [0, 1, 0, -1, 0,
1, 0, -1, 0, 1,
0, -1, 0, 1, 0, -
1, 0, 1, 0, -1, 0,
1, 0, -1, 0, . . . ]

[0, 1, 0, 3, 0,
1, 0, 7, 0, 1, 0,
11, 0, 1, 0, 15,
0, 1, 0, 19, 0, 1,
0, 23, 0, . . . ]

[4, 8, 16, 32,
64, 128, 256,
...]

No A000079 Powers of 2:
a(n) = 2n.

500 [1, 0, -1, 0, 1,
0, -1, 0, 1, 0, -
1, 0, 1, 0, -1, 0,
1, 0, -1, 0, 1, 0,
-1, 0, 1, . . . ]

[0, 0, 2, 0, 1, 0,
6, 0, 1, 0, 10, 0,
1, 0, 14, 0, 1, 0,
18, 0, 1, 0, 22,
0, 1, . . . ]

[3, 7, 9, 15, 25,
33, 39, 49, 57,
63, 129, 135,
159, 177, 193,
207, 225, 249,
255, 327, 345,
369, 385, 399,
423, ...]

No Unknow

Continued on next page
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Table A1 – continued from previous page
n Fn F

ST [w]
n Sm Sm ⊂ P OEIS

check
OEIS Info

500 [1, 0, 0, -1, 0,
0, 1, 0, 0, -1, 0,
0, 1, 0, 0, -1, 0,
0, 1, 0, 0, -1, 0,
0, 1, 0 . . . ]

[0, 0, 0, 3, 0, 0,
1, 0, 0, 9, 0, 0,
1, 0, 0, 15, 0,
0, 1, 0, 0, 21,
0, 0, 1, 0, . . . ]

[3, 5, 13, 17,
37, 41, 61, 73,
97, 133, 181,
193, 217, 233,
257, 277, 361,
397, 433, 481,
...]

No Unknow

500 [-1, 0, 1, 0, -1,
0, 1, 0, -1, 0, 1,
0, -1, 0, 1, 0, -
1, 0, 1, 0, -1, 0,
1, 0, -1, . . . ]

[0, 0, 1, 0, 4, 0,
1, 0, 8, 0, 1, 0,
12, 0, 1, 0, 16,
0, 1, 0, 20, 0,
1, 0, 24, . . . ]

[3, 5, 11, 21,
27, 75, 117,
123, 165, 171,
213, 261, 315,
357, 411, 453,
...]

No Unknow

500 [1, 3, 0, -3, 0,
3, 0, -3, 0, 3,
0, -3, 0, 2, 0,
-3, 0, 2, 0, -3,
0, 2, 0, -3, 0,
. . . .]

[0, 1, 0, 1, 0, 3,
0, 5, 0, 3, 0, 9,
0, 2, 0, 13, 0,
2, 0, 17, 0, 2,
0, 21, 0, . . . ]

[4, 8, 32, 64,
172, 424, ...]

No Unknow

1000 [1, 5, 0, -5, 0,
5, 0, -5, 0, 5,
0, -5, 0, 4, 0, -
5, 0, 4, 0, -5, 0,
4, 0, -5, 0, . . . ]

[0, 1, 0, 3, 0, 5,
0, 3, 0, 5, 0, 7,
0, 4, 0, 11, 0,
4, 0, 15, 0, 4,
0, 19, 0, . . . ]

[4, 8, 16, 64,
548, ...]

No Unknow

500 [2, 3, 0, 1, 6, 7,
4, 5, 10, 11, 8,
9, 14, 15, 12,
13, 18, 19, 16,
17, 22, . . . ]

[0, 1, 0, 1, 1, 1,
4, 5, 1, 1, 8, 9,
1, 1, 12, 13, 1,
1, 16, 17, 1, 1,
20, 21, . . . ]

[4, 8, 20, 44,
68, 80, 104,
128, 164, 224,
308, 380, 440,
464, 488, ...]

No Unknow

500 [3, 2, 1, 0, 7, 6,
5, 4, 11, 10, 9,
8, 15, 14, 13,
12, 19, 18, 17,
16, 23, . . . ]

[0, 0, 1, 0, 2, 0,
5, 4, 2, 0, 9, 8,
2, 0, 13, 12, 2,
0, 17, 16, 2, 0,
21, 20, . . . ]

[3, 5, 9, 21,
45, 69, 81, 105,
129, 165, 225,
309, 381, 441,
465, 489, ...]

No Unknow

1200 [1, 3, 1, 1, 2, 2,
1, 1, 2, 2, 1, 1,
2, 2, 1, 1, 2, 2,
1, 1, 2, 2, 1, 1,
2, 2, 1, . . . ]

[0, 1, 1, 1, 2, 2,
1, 1, 2, 2, 1, 1,
2, 2, 1, 1, 2, 2,
1, 1, 2, 2, 1, 1,
2, 2, 1, . . . ]

[6, 18, 66, 258,
1026, ...]

No A178789 4(n−1) + 2:
Number of
acute angles
after n it-
erations of
the Koch
snowflake
construction.

Table A1 Several instances of sequences produced by the model MN
IS

https://oeis.org/A178789
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n F
ST [w]
n Sm Sm ⊂ P OEIS

check
OEIS Info

44 [0, 0, 0, 2, 0, 2,
4, 4, 6, 7, 3, 6,
2, 9, 3, 0, 15,
10, 18, 15, 11,
12, 21, 6, 24,
20, 2, 12, 13, 4,
21, 14, 30, 12,
22, 12, 2, 11,
31, 9, 29, 33,
25, 32]

[3, 5, 7, 13, 19,
31, 43, ...]

Yes A006512 Greater of
twin primes.

42 [0, 0, 1, 0, 3, 3,
0, 2, 0, 5, 5, 3,
1, 10, 1, 7, 13,
7, 15, 8, 18, 4,
9, 22, 8, 2, 24,
18, 11, 17, 16,
0, 9, 24, 3, 1,
26, 31, 33, 17,
22, 37]

[3, 5, 11, 17,
29, 41...]

Yes A077800 List of twin
primes p,
p+2.

54 [0, 0, 0, 0, 2, 1,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0]

[3, 5, 11, 23,
29, 41, 53...]

Yes A005384 Sophie Ger-
main primes
p: 2p+1 is
also prime.

Table A2 Examples of well-known Prime number sequences extracted from the model
MN

IS

https://oeis.org/A006512 
https://oeis.org/A077800
https://oeis.org/A005384
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