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Abstract and Preface.

This paper is the written version of a series of three lectures given in Windsor at the occasion of the Cana-
dian Mathematical Society’s summer school in Lie algebras and related topics in July 1984. They were
antended as in introduction to the subject for an algebraically oriented audience with special emphasis on the
kind of phenomena that appear when dealing with commutative formal groups over rings (rather than fields).
Proofs and more details of most everything can be found in [9]. I am (and was) most grateful for the oppor-
tunity to speak on this topic and heartily thank the organising committee, notably Bob Moody, and the local
organizers, the two friendly giants Dan Britten and Frank Lemire, for the opportunity. The phenomena are
extraordinary rich in the commutative case-privately I suspect (with admittedly little grounds) especially in the
commutative case - and much work remains to be done to get even a first idea of what the noncommutative
theory has in store.

These written notes follow the original lectures in structure but contain rather more. The contents are: 0)
Introduction; 1) Two classes of examples of formal groups from other parts of mathematics; 2) Generalities
and bialgebras; 3) The Lie algebra of a formal group. Characteristic zero formal Lie theory; 4) The commuta-
tivity theorem; 5) Logarithms; 6) The functional equation lemma. Examples of formal groups: 7) Universal
formal groups. Generalities; 8) p-typical formal groups; 9) A universal p-typical formal group and a formal
group universal over Z, -algebras; 10) Construction of a universal formal group; 11) Application to algebraic
topology; 12) Atkin-Swinnerton Dyer congruences for elliptic curves; 13) Witt vectors: 14) Curves, Frobenius
and Verschiebung; 15) Cart(A); 16) Cartier-Dieudonné classification theory: 17) p-typification: 18) Other
classification results; 19) Universality of the formal group of the Witt vectors: 20) U(W); 21) Remarks on
noncommutative formal group theory.

0. Introduction.

Consider a Lie group G over R or C. Let e € G be the identity element and consider coordinates on a
neighborhood U of e, such that the coordinates of e are (0.0....,0). Let x,y € U be such that xy € U. Let the
coordinates of x,y and xy be respectively (x1,....%,):0 1vere ¥ i(Uf10 - - - s f»)- Then because G is analytic the f;
are power series in the x; and y,

S =0 fi = filxienXaiV i)

and this n-tuple of power series f satisfies

f(x, 0 =x, f(Oy) =y 0.1
SU )z = f(xfnz) 0.2)
The first relation comes from xe = x and ey = y; the second one from (xy)z = x(y2).

Now consider f(x,y) simply as an n-tuple of power series (forgetting about convergence). Then we have an
infinitesimal object attached to G that is intermediate between the Lie algebra of G and the group G itself.
Indeed the Lie algebra of G can be recovered from the n-tuple of power series f(x;)) as follows. Let

fxp)y=x + 3y + B(xy) + (terms of degree = 3) (0.3)
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Then by (0.1) B(x,p) is bilinear. The Lie algebra g is now the n-dimensional vector space V' = @] Re; (in the
real case) with the commutator defined by
[ Sae, She 1 = DBlable, — JB(b.a)e; 0.4)
where B(a,b); is the k-th component of B(a,b). The Jacobi identity of course follows from considering (0.2)
mod degree 4. (Non trivial exercise).
For (sufficiently nice) group schemes G over an arbitrary commutative ring with 1 € 4 there exists an

entirely analogous construction: the fornal completion G of G along the identity resulting this time in an n-
tuple of fornal power series over 4 also satisfying (0.1) and (0.2).

It is now easy to abstract from these considerations. Let 4 be any commentative ring, | € 4. Then an a-
dimensional formal group law over A is an n-tuple of power series
F(X,Y) € A[[X .. X3 Y1, Yol = A[IX Y]]
such that
F(X,00=X, FO.Y)=Y (0.5)
F(F(X,Y).Z) = F(X.F(Y,2)). (0.6)
Note that (0.6) makes sense (if n < o0; for n = o F(X,Y) has to satisfy certain support conditions or, more

generally, a topological condition with respect to a topology on A). It follows from (0.5), (0.6) that there exists
an n-tuple of power series «X) such that

F(X, X)) =0 0.7
If the formal group law F(X.Y) satisfies in addition
F(X,Y) = F(Y.X) (0.8)

it is called a commutative formal group law.

Formal group laws over R or C naturally arose from classical Lie theory when BOCHNER [2] in 1946
separated Lie theory into a formal part (constructing the formal group law from the Lie algebra) and an ana-
lytic part (showing convergence to obtain a Lie group germ). The formal part of course amounts to the
Baker-Campbell-Hausdorff formula

exp(Mexp () = exp(z), 2 = x +y +=xy ]+ T‘Z—([x. Loy 1D Dox D+

Over fields of characteristic p the familiar dictionary between Lie-algebras and Lie-groups breaks down
completely as discovered by CHEVALLEY [6] in the early 1950’s and thus the search was on for a suitable
infinitesimal object that could replace the Lie algebra. The latter simply carried not nearly enough informa-
tion. This was the direct inspiration for the researches of Dieudonné in the 1950’s and his long series of papers
on formal groups over fields of characteristic p.

Indeed, to illustrate the point consider the two one dimensional formal groups
G(X.Y)=X+Y (0.9)
G.(X.Y) = X+Y+XY (0.10)

over, say, F,, the field of p-elements. An homomorphism a:F — G between two formal groups of dimensions
n and m respectively would of course be an m-tuple of power series a(X) in X,,.,X, such that
a(F(X,Y)) = G(«(X),(Y)) and an isomorphism is a homomorphism such that a™!(X) exists (where
@™ Ya(X)) = X): then of course we must have m = dimG = dimF = n)

0.11. Exercise. Show that éa and f;,,, are not isomorphic over F, or indeed over any characteristic p field.
But of course f;a and G,, have the same Lie algebra.

As a matter of fact it has turned out that the phenomena are very rich even just for one dimensional com-
mutative formal groups. For example over F, there are uncountably many nonisomorphic formal groups. One
classification result puts them into a bijective correspondence with all maps N — F,; another classification
results sets up a bijective correspondence with Eisenstein polynomials over W,=(F,) = Z,, the p-adic integers.
Still another classification results describes them in terms of conjugacy classes of elements in £, the ring of
integers in D, the division algebra of rank A2 and invariant 4 ™" over Q, (for varying h € N = {1,2,3,..}).

And even over F,« the algebraic closure of F, it turns out that there are countably many nonisomorphic
one dimensional commutative formal groups. (This holds for every algebraically closed field of char p > 0).
Later in these lectures they will all be constructed.
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This enormous richness and the fact that commutative formal group laws occur naturally in several parts
of mathematics certainly has steered the theory of formal group laws away from topics traditionally met in the
neighborhood of Lie groups and Lie algebras such as representation theory. At least for the moment.

Still it seems quite likely that they can play a significant role especially there where the group cannot be
recovered from the algebra (characteristic p) or where the group is difficult (perhaps impossible) to construct
(infinite dimensional Lie algebras). Especially since various applications areas (Kac-Moody Lie algebras in
completely integrable systems, differential galois theory) seem to have a large and growing formal part to
them.

However, that is for the future and the lectures shall mainly be about commutative finite dimensional for-
mal groups, and their applications. Indeed apart from technicalities the one dimensional theory is as rich as
the n-dimensional one, so I shall concentrate on that. Although even there it will be necessary to pay attention
to one infinite dimensional formal group, the one of the (generalized) Witt vectors.

1. Two Classes of Examples of Formal Groups from other Parts of Mathematics
1.1. Dirichlet series over Z.
Let

Lis)y= Y an™™ a, €l (1.1.1)

n=l

be a Dirichlet series. Suppose L(s) admits an Euler factorization
L) = (=ap ™ = gpop' ™ = ap3p> ¥ =), (1.1.2)
[I

a €L
where the product is over all prime numbers. (Actually a weaker condition suffices). For example this is the
case for the Artin L-series of an elliptic curve over Q.
Construct (Mellin transform)
FX) = 3 nla, X" FXY)= T FXNO+FY) (1.1.3)

n=l

where f7'(X) is the inverse function power weries to f(X), i.e. f7'(f(X)) = X = f(F~1(X)).

1.1.4. Theorem. F(X,Y) has its coefficients in Z[X,Y) and hence is a one-dimensional commuzrative formal group
over 7.

A proof will be given later (meanwhile it is a nontrivial exercise) as well as an application (Atkin-
Swinnerton Dyer congruences).

1.2. Complex oriented cohomology theories

Let 2" be a complex oriented (generalized) cohomology theory. Here generalized of course means that
h™(pt) is not necessarily concentrated in degree 0. I do not want to define “complex oriented” but basically it
means that there are Euler (characteristic) classes ¢"(E) € h™(M) for complex vector bundles E over M, which
behave suitably.

Being complex oriented has certain (purely formal) consequences. It implies e.g. that

RT(CP*) = R (pn)[iEll. x = €"(®) (1.2.1)
where § is the canonical (classifying) complex line bundle over CP*. Also
R (CP= X CP*) = K™ (pr)[x,y]l, x = e"((®1), y = e"(104). (1.2.2)

Now because £ is classifying for line bundles, there must exist a universal formula which gives e"(L,®L,) in
terms of e”(L ) and e”(L,) with coefficients in 4" (pt). Indeed we must have

E®Y = F ayx'y!, a4, € h(pr) (1.2.3)
i
and hence
ML I®Ly) = Zw ae"(Ly)e"(Ly) (1.2.3)
universally for line bundles L, and L, over a space M. Let

Fr(X,Y) = 21., a4 XY (1.2.4)
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Then because the tensor product of line bundles is associative and commutative and L, ® trivial = L, et
(trivial) = 0 it follows that Fy(X,Y) as defined by (1.2.4) is a commutative one dimensional formal group law
over h'(pt).

Examples of complex oriented cohomology theories are ordinary cohomology H ", complex K-theory K",
complex cobordism MU" and Brown-Peterson cohomology BP".

For generalized cohomology theories the coefficient ring 4 "(pr) carries insufficient information for com-
parison purposes in that it is no longer necessarily true that if a:h] — A3 is a transformation of cohomology
theories and «(pr) is an isomorphism then « is an isomorphism. However if the theories are complex oriented
and a(pt) carries F,, into F,, (ie. Fp (X,Y) = 3 a(pt)(a;) X’ Y/ if Fy (X,Y) = 3 a;X'Y/) then a is an iso-
morphism of cohomology theories.

2. Generalities and Bialgebras

Let F(X,Y) be a formal group law over 4. Then of course the F,(X,Y) define a homomorphism of topolog-
ical algebras

AlX 1 Xl = AlIX 0 X I® A X X X ] @n
Xio Fi(X,81,..X,0110X,...,10X,).
Together with the augmentation
cAlX... 5]l -4 X »0 (2.2)

this makes A [[X]] a Hopf-algebra There is also an antipode X — «(X) which makes 4 [[X]] into a cogroup
object in the category of algebras. This object is denoted R(F) and is called the contra variant bialgebra of the
formal group F.

This also permits to define formal groups in a less pedestrian way as cogroup objects in a suitable category
of algebras over A. There is no particular reason to limit oneself to formal power series algebras only (though
these remain a most important kind). For many purposes the right category of algebras seems to be the
category AlgT, of topological A algebras which are of the form I1;, ; 4;, 4, = A4 as A-modules, topologized by
the product topology (discrete topology on the factors)

Finite etale group schemes and finite infinitesimal group schemes over A of suitable kinds are then also for-
mal groups over A.

Given a formal group over A4 defined by its Bialgebra R(F) one considers
U(F) = ModT4(R(F).A) (2.3)
the continuous linear dual of R(F)

The comultiplication (2.1) and the co-unit (or augmentation) (2.2) define a multiplication and identity cle-
ment on U(F) making U(F) an A-algebra. The original multiplication and unit then make U(F) also a Hopf
algebra with an antipode defined by (the dual of) :R(F) — R(F). The result is more precisely a group object
in the category of co-algebras (but unless F is commutative not a cogroup object in the category of algebras).

U(FY is called the covariant bialgebra of F and group objects in a suitable category of co-algebras provide
another way to define formal groups. This is the approach favoured by Dieudonné [7].

The relation R(F) <— U(F) is of course a kind of duality (between, in the commutative case, very similar
objects) and it can be souped-up and reinterpreted as a Pontryagin-like duality between commutative formal
groups and commutative algebraic groups (Cartier duality [3]).

3. The Lie Algebra of a Formal Group. Characteristic Zero Formal Lie Theory

Let R(F) be the covariant bialgebra of a formal group F over A. Let m(F) be the augmentation ideal; i.e.
r_q(F) = Ker(e), c.. (2.2). Then the Lie algebra L(F) of F can be identified with

L(F) = ModA(r_r_l(F)/Irf(F) — A) CU(F) 3.1)

and it coincides with the Lie-algebra of primitive elements of the Hopf-algebra U(F). (An element ¢ in a co-
algebra p: C — C®C is primitive if p(c) = ¢®1+1®c; these elements form a Lie algebra (under commuta-
tor difference) if C is a Hopf-algebra.

3.2. Exercise.

Check that the Lie-algebra thus defined is the same as the one prosaically defined in section 0 above for F
a "power series formal group” as in section 0.



THREE LECTURES ON FORMAL GROUPS 55

Now consider L(F) C U(F). Because U(F) is an associative algebra there is an induced homomorphism
of associative algebras

UL(F) > U(F) (3.3)
where UL(F) is the universal enveloping algebra of L(F).

3.4. Theorem (Formal Lie theory in char. 0) If 4 is a Q-algebra, then (3.3) is an isomorphism of associative alge-
bras.

In characteristic p however L (F) (usually) generates only a tiny bit of U(F) and this of course is the source
of the break down of Lie-theory in characteristic p as discovered by Chevalley [6].

It is true though that the universal enveloping algebra (in characteristic zero) provided a great deal of
inspiration for the development of bialgebra-type formal group theory.

4. The Commutativity Theorem

There are many nonisomorphic one dimensional formal groups over a ring 4 that is not a Q-algebra. But
one thing goes right

4.1. Theorem (Lazard, [10), [9. §6]). If A has no nilpotents, then every one-dimensional formal group over A is
commutative.

Actually it suffices that 4 have no elements which are simultaneously torsion and nilpotent (Connell). If 4
has such elements noncommutative formal groups of dim.1 over 4 exist.

From now on all formal groups will be pedestrian power series groups as in section 0 and all will be com-
mutative (unless it is explicitly stated otherwise).

5. Logarithms.

Theorem 3.4 shows that over a Q-algebra all n-dimensional commutative formal group laws are iso-
morphic.

More precisely it is true that if 4 is a Q-algebra, then for a formal group F over 4 there exists a unique n-
tuple of power series f(x) = X +... such that

FX.Y) = fTU((XD)+f(Y). (5.1
f(X) is called the logarithm of F and is occasionally denoted logr(X). The name derives from the example
Gn(X.Y) = X +Y+XY

Indeed if g(X) = log(1+X), then g(é,,,(X, V)= log(1+X+Y+XY)= log(1+X)+log(l+Y) =
g2(X)+g(Y) so that

logé, (X) = log(1+X).

More generally if 4 is torsion free, so that A => A®Q is injective, the logarithm of a formal group over 4
exists over A ®Q. Thus the study of formal groups over 4 becomes the study of power series f(X) over 4 ®Q
with the peculiar property that

S+ (Y) € A[[X.Y]) f(X) € ARQ[X]] (52)

and the study of “equivalence classes” of such power series under the relation f ~ f if f = f(a(X)).

a(X)y e A[[X]].

As it turns out even for fields of characteristic p and more generally arbitrary rings 4 with torsion much
information can be gained by studying the logarithms of lifts (to torsion free base rings) of formal groups over
A.

Theorem 3.4 (applied to commutative formal groups) does not quite prove the “existence of logarithm
theorem”, but almost. Thus this section mainly serves as motivation only. The existence and uniqueness of
logarithms will be an easy corollary of later results.

6. The Functional Equation Lemma

The main and really only tool for constructing formal groups from scratch is the functional equation
lemma. Honda’s twisted power series method is a special case, and there is (of course) also a step by step
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(never ending) procedure o( writing down the right kind of power series. Other methods to obtain formal
groups are “formal completion along the identity of a group scheme” (cf. §1.1 above) and the construction
which attaches a formal group to a complex oriented cohomology theory (cf. §1.2 above), and that is about all.

The functional equation lemma more or less gives necessary and sufficient conditions on a power series
f(X) € ABQIX]" to satisfy the peculiar integrality property f~'(f(X)+f(Y)) € A[[X.Y]". Here 4 is
assumed to be a torsion free ring so that 4 =» A®Q is injective. In a certain sense to be explained below this
statement holds even for all A.

The functional equation lemma needs the following setting (ingredients) for its statement.

A CK, 0:K—- K, o0 CA4, pqs) s, (6.1)

Here A and K are commutative rings, o is an ideal of A4, ¢ is a ring endomorphism, p is a prime number, ¢ is a

power of p and s5y,5;,... are n X n matrices with coefficients in K,s; = (sx(i,j)). These ingredients are supposed
to satisfy the conditions

o(a) =a¥ mod o for all a € 4 ;0/(s(i,j))o C A4 all Lk.i,. (6.2)

Now let g(x) be an n-tuple of power series in X,...,X,, with coefficients in A and such that g(0) = 0.
Then a new n-tuple of power series f,(X) is constructed by

S0 = g0 + 3 sl f(X9). 6.3)
i=1

Here X¢ is short for (X‘{' ..... X‘,/,;) and o, a(X) for a power series a(X) over K is the result of applying o' to
each of the coefficients of a(X).

64. Exercise. Note that (6.3) in fact gives a recursive formula for the coefficients of Jo(X). Note also that a
power  series f(X) (with  f(0) =0) is of the form j;,(X) for some g(X)e A[[X]}" iff
fO= T so f(X9) e A[X]).

6.5. Example. Z C Q, 0 = id, m =pZ“.p" =¢s5,=p Lsy=s3= - =0n=m=1gXxX) =X
flX) = X+p ' XP +pTIXP +p X 4

Now let 4,K,0,0.p,4,51,5,,... be as above and let g(X),E(}) be two n-tuples of power series in respectively
n variables X|,...X, and m variables X, ..., X,. such that g(0) = 0, g(0) = 0. Suppose moreover that the

Jacobian matrix of g(X) (at 0) is invertible, i.e. g(X) = MX mod(degree 2) with M €GL,(A4). Then one has

6.6. Theorem (The functional equation lemma).

(i) the n-tuple of power series Fy(X.Y) = f;'([;(){) +4(Y) in Xy, X, Y. Y, has dts coefficients in A.
(i) the n-tuple of power series f, '(f,';(;()) in X’., - ,)—(,,, has its coefficients in A.

(iit) let h( X ) be an n-tuple of power series over A with h(0) = 0.

Then fg(lx().())~2 5,07 fo(h ()A(ql)) € A [[,i’]]’, ie. _f;(h()A()) is of the form (6.3) (for some ;z(/i’) instead of g
in (6.3)). l

(iv) A a()} ) B( X ) are n-tuples of power series in X Toe e ,)}, with coefficients in A und K respectively, then
forall 1 = 1,2,3,...

a(X)=BX)mod o ' & f,(a(X)) =f,(BX)mod o .

6.7. Application. Let fy(X) = X+p ' XP' +p 2XP" + .., ¢f. (6.5) above. Then Fy(X.Y) = fi "(/i(X)+fi(Y)
is a formal group over Z.

6.8. Definition. Let F(X,Y),G(X,Y) be two formal groups over A of dimensions n and m respectively. A
homomorphism «:F — G is an m-tuple of power series in n-variables with «(0) = 0 such that
a(F(X,Y))y = G(a(X),a(Y)). A formula which is easy to remember if one writes the “product” F(X,Y) of the
“elements” X,Y as X».Y. This gives o(X*Y) = a(X)*e(Y). The homomorphism « is an isomorphism if « is
invertible ie. if n=m and a(X) = MX mod degree 2 with M € GL,(A). and « is a strict isomorphism if
a(X) = X mod degree 2.
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6.9 Exercise. The one dimensional formal groups £, (X,Y),F, (X.Y) over Z or Z, are isomorphic iff &, = hs.
Hint: let a(X) be the isomorphism. Let h; < h,. Calculate a(F; (X.Y) and Fj («(X).a(Y)) mod degree
(ph ' +1). Alternative: apply part (iii) of the functional equation lemma.

6.10. Exercise (Integrality of the addition polynomials of the big Witt vectors). Define the polynomials w;(X)
in Xy,X2,X3,...over Z, i = 1,2,3,... by the formula
wa(X) = S/(brn dX3N¢ 6.11)
d

Thus wi(X) = X, wa(X) = 4X,+2X3 + X} we(X) = 6Xs+2X3 +3X3 + X5, Let =,,3,,... be the polyno-
mials in X;Y, resp. X, X3;Y,,Y,, resp... defined by

Wn(zlv .. vzn) = W,,(X)"‘W,,( Y) (612)
Then the 2,,3,,... have their coefficients in Z. Hint: consider w, = n ~'w, and w = (w,,w,....), and for each
p the functional equation lemma situation Z, CQ, o =id, g =p, o=pZ,, o =S,
oy =03 = --- =0, where S, is the c0 X oo matrix defined by S,(a,a;.a3,..) = (by.b3,...) with

by =p “lg; and b; = 0 if pij. Now observe that w(X) satisfies (6.3) and apply the functional equation lemma.

In this form this requires an infinite dimensional version of theorem 6.3. Such a version exists provided the
Jo(X) satisfy certain support conditions (which are automatic in the case of finitely many variables and which
are satistied for w(X)). In this case because the X, depend only an X,...,X,:Y,..., Y, it suffices to consider
the n-tuple of power series (W) (X),...,w,(X)) in n variables for all n.

The infinite dimensional formal group defined by the power series Z(X:¥).Zy(X:Y)... in
X1,X2,..5Y1,Ya,... is called the formal group of the big Wirt vectors and denoted W.

7. Universal formal groups. Generaties

An n-dimensional formal group law F(X,Y) over a ring L is universal (resp. a universal abelian formal
group law) if for every n-dimensional formal group (resp. abelian formal group) G(X.Y) over a ring 4 there is
a unique homomorphism of rings ¢:L — A4, such that

& F(X.Y) = G(X, Y. (1.0
Here. as usual, ¢, means "apply ¢ to the coefficients of the power series involved”.

_ It is easy to see that universal formal group laws exist. To this end for the case n =1 consider the ring
L = Zfc,], where the ¢, are indeterminates and i,j = 1.2,,... Write F(X.Y) = X+ Y+35,,5 ¢ X'Y. In
order for the associativity relation F(F(X,Y),Z) = F(X,F(Y,Z)) to_hold certain relations must hold between
the ¢;,. Let I be the ideal generated by these relations and 7:L — L /I the projection. Then 7, F(X,Y) over
L /1is a universal formal group law. Clearly for n>1 a similar construction works. For abelian universal
group laws one adds of course the relations ¢;; = ¢,,.

It is also easy to see that the underlying ring L is unique (up to isomorphism). Exercise: show that this
follows directly from the definition of universality. It is a totally different matter to calculate L. This was first
done for abelian group laws by Lazard (whence the letter L to denote it). The result is that L is a ring of
polynomials.

Lazard’s proof of this fact is an ingenious step by step argument, requires lots of hard calculations and
gives little insight in the nature of the universal formal group itself.

8. p-typical formal groups

First let us deal with the case that there is so to speak only are prime number involved. A commutative
formal group F(X.Y) over a torsion free ring A is called p-typical if it is of the form
F(X,Y) = f~'(f(X)+f(Y)) with

FX) = X+a XP+ar X" +... a; € (A®QY™ " 8.1
where as usual X/ is short for (X{.....X7). A formal group F(X,Y) over an arbitrary ring 4 is p-typical iff there
exists a torsion free ring A’ with a homomorphism 7.4’ — A4 and a p-typical formal group F(X,Y) over 4’
such that 7, F(X,Y) = F(X,Y). There exists a better, more intrinsic definition. What a universal p-typical

commutative formal group would be is clear. Though now is nor obvious that such animals exist. They do.
however.

The following fact sort of shows that one can deal with formal groups “one prime at a time” so to speak.
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8.2. Theorem. [9, Thm 20.5.1] Let A be a torsion free ring and let Z,) be the ring of integers localized at the
prime p. Then two commutative formal groups F(X.Y), G(X,Y) over A are strictly isomorphic iff they are strictly
isomorphic isomorphic over AQZ,,, for all p. Also if for each p there is given an n-dimensional commutative for-
mal group F,,(X,Y) over A®Z, then there exist a unique (up to sirict isomorphism) formal group law F(X,Y)
over A which for each p is strictly isomorphic to F()(X,Y) over A ®Z,,).

Also over Z,-algebras 4 (where therefore all primes except possibly p are invertible) every commutative
formal group law is strictly isomorphism to a p-typical one. Proof later.

9. A universal p-typical formal group and a formal group universal over Z,)-algebras

For simplicity let the dimension n of the formal groups in this section be n=1. Consider
ZIV\. Vo, V5,. 1 = V] C QV] Let p=¢, s, = p 'V, and a:Q[V] — Q[V] be given by o(}) = V] and
let o = pZ[V’). Then we are in a functional equation type situation, cf. §6 above. Now let G(X) = X so that
Jr(X) = f(X) is given by

x V, il 2
X=X+ 3 —o'fiX0) = X + a1 X + ayXP +... 4.1
i=1 P
where
1 AL VIR VR Vs
a = —, 4 =5t — = 3 ot T
P P P P P P
The general formula for the g; is
V,‘Vi,’f o Vi,’,"' e
a,, = E ——-————-——r————— (92)
Ty e N P
and it is also not hard to prove the recursion formula
Plm = V’l‘m I (2 + Vg’.z Upy -2 ot Vm ~]a’l7 + Vm (93)

which will be useful later.
By the functional equation lemma

FU(X.Y) = fi'(flX) + filY)) (9.4)

is a formal group law over Z[V]. It is certainly p-typical and in fact it is a universal p-typical formal group
law.

Now consider Z[T,.T;...] = TIC Q[T p=¢q, V; = Ty, s = PV o(T;) = 15, v = pZ[T], which
is again a functional equation type situation. Also Z[V'] above is a subring of Z[T'] and this embedding is com-
patible with everything in sight. Now take

, =V .
GX)= 3 TX,fi(X)=fX)=gX)+ 3 > o' fr(X7) (9.5)
jnot 4 power i=1
Let
FrX.Y) = fri(r0+ /1Y), (9.6)

Then, by the functional equation lemma Fr(X,Y) is a formal group over Z[T].

9.7. Theorem. Fr(X.Y) is universal for formal groups over Zy,)-algebras. l.e. if F(X,Y) is a one dimensional com-
mutative formal group over u Zy,-algebra A, then there is a unique homomorphism of rings ¢:Z[T]| — A such that
e Fr(X.Y) = F(X,Y).

Also the functional equation lemma (part (ii)) says that Fi(X,Y) and Fy(X,Y) are strictly isomorphic over

Z[T] and combined with theorem 9.7 this shows that over Z,)-algebras every formal group is isomorphic to a
p-typical one (as promised).

10. Construction of a universal formal group law

Again let us take n =1. Theorem (8.2), so far unproved, suggest that to find a universal formal group over
a ring L one should look for a power series f,(X) which is like fr(X) for every prime p simultaneously. This
turns out to be possible basically as a result of the Chinese remainder theorem. Explicitly one can proceed as
follows.
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10.1.  For each sequence (fy,...,is) with i; € N \ {1} choose an integer n(iy,....i;) such that the following
conditions are satisfied

(10.2) n(iys...d) = 1ifs=1

(10.3)  n(iyyi) = 1 mod p” if iy,.,....i, are powers of the prime p and i, ;. is not a power of p(r=<s).
(104) n(iy,....is) = 0 mod p”‘ if iy,....i, are powers of the prime p and 7, and i, 4+, are not powers of the
prime p.
Now define fy(X) € Q[U,.U;....] [[X]] by
0
JuX)y =3 m,(U)X", m(U) = 1, (10.5)
n=1
niy, ... dg) n(ize,ig) n(is) e
"U: - - - U’Uil[j:x (-1
0 u.?.“. ) (i) w(iy) pi) " i

where »(j) = p if j is a power of the prime p and »(j) = 1 otherwise, and where the sum is over all factoriza-
tions (iy,....ig), i; € N\ {1}, iy -+~ iy = n.
Note the family relationship with formula (9.2)

Now consider for each prime number p the functional equation situation Z,)[U] C QU]
0 = pZy)|UL p=gq, 5, = p"UP', o(U;) = UF. ltis not hard to check that

= Uy ’
JuX) = X —’F ox' fu(XP) € Z,)[UT[X]] (10.7)
=1
and it follows that if
Fu(X.Y) = fu'(fu(X) + fu(Y)) (10.8)

then Fy(X.Y) & Z,[U][[X,Y]]. This holds for all p, so that Fy(X.Y) has in fact its coefficients in Z[U]. An
elegant argument due to Buhstaber and Novikov now permits to conclude that Fy(X.Y) is universal as fol-
lows. Let

FyX.Y) = X+Y+3 e, X'V, ¢ € ZIU] (10.9)
n n
For each n choose integers A{”, . . ., AU, such that AP | et Ay {n _ ll = p(n). Define
n—1
= 2 M, (10.10)

=1
Observe that y,=U, mod(U,....,U, —) so that the y5.);... form a free polynomial basis of Z[U]. Now let
G(X.Y) over A be any one-dimensional commutative formal group.
GX,Y)=X+Y+3 ayX'Y. (10.11)

Define ¢:Z[U] — A4 by requiring that

n—1
My, = D A, . (10.12)

i=1

This is well defined because the y;,ys.. form a free polynomial basis for Z[U]. We now claim that
ole, ;) = a,, for all ,j = 1. This is proved by induction starting with the case i =/ =1 which is trivial because
y2 = ey1. Now suppose that (e, ;) = a;; for all i,j = 1,i+j < n. Now because F(X.Y).G(X,Y) are com-
mutative formal group laws the coefficients ¢;; and g;, must satisfy certain conditions, viz.

a, = a, ey = e (10.13)

pilk(e/.m) =0 P:/k(a/.m) =0 (1014)
where the p;; are certain universal polynomials expressing associativity. There is one such polynomial for each
triple (i,j.k), i,j.k € N. And of course p;; = 0 expresses the equality of the coefficients of X' Y/Z* on both

sides of the identity F(F(X,Y),Z) = F(X,F(Y.Z)). It follows that these polynomials (in the indeterminates
Cim) are of the form

j+k
Cl+j.k - [ j

i+j
Coy+r — 4ip(Crm) (10.15)

i

with gy a polynomial involving only C,,, with {+m < i+j+k. We now need the nontrivial
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10.16 Binomial coefficient lemma Each C,, = C,,, r +s = n can be written as an integral linear combination of
the expressions

AS’”CL" —I +... +A£'"l‘ Cn'l,l
i+ k+j

Ptk j
Now by induction AHQiulem)) = Qijilarm)- Also dAe -1 + -~-f>\£:"~)~ 1en-11) =
Aas, o+ A g, | by definition. Thus by (10.14) and 10.16 ¢e,;) = a;; for all i +j = n. This con-
cludes the proof of the universality of Fy(X,Y).

Chsjir ik =1, i+j+k =n

This is quite considerably easier than Lazard’s original arguments. Especially in the more dimepsional case
where in this approach the generalizations are easy while Lazard’s method becomes almost impossible to han-
dle [11]. On the other hand 1 think it quite unlikely that I would have been able to guess at the form of
Fu(X,Y) without Lazard’s original work. And of course it is crucial to this approach to have a (reasonably
explicit) candidate universal formal group law available.

As constructed the universal formal group law Fy(X,Y) has a logarithm, viz fi(X). It follows, because
Fy(X.Y) is universal, that logarithms exist for all formal groups defined over torsion free rings.

Also fy(X) is of functional equation type. Thus every logarithm has this sort of structure. That is it looks
as if it were constructed by means of a functional equation type recursion scheme. Though. of course, the con-
struction itself often does not apply simply because, e.g.. there may very well be no endomorphism o satisfying
o(a) =a? mod a suitable ideal.

11. Applications to algebraic topology

Let MU be the generalized cohomology theory defined by the complex cobordism spectrum MU. This
theory is complex oriented (i.e. has Chern classes) and hence gives rise to a formal group over MU (pt).

11.1. Theorem (Quillen). The formal group law Fyy(X,Y) of complex cobordism is universal.

11.2. Theorem (Miscenko). The logarithm, cf. §5, of the formal group law of complex cobordism is equal to
x<
togFu(x) = 3 LEL e (113
n=0

where [CP"] is the complex cobordism class of complex projective n-space.

We now have two universal formal groups laws, Fy(X,Y) and the one just constructed above. It follows
that there are mutually inverse ring isomorphisms ¢:Z[U] — MU (p1),y:MU" (pt), — Z{U] taking these for-
mal group laws into each other. In particular the ¢(U;),¢(Us).... form a polynomial basis of MU (pr) which
can be calculated in terms of the [CP"] because we know logFu(X) and the relations between the U,,Us,...
and the coefficients of fy(X).

The resulting formulas become especially nice is we concentrate on one prime only (because the structure
of the particular p-typical universal group F,(X,Y) is so especially pleasant). Topologically this is done as fol-
lows. By smashing the spectrum MU with a suitable Moore space all primes except p are inverted yielding the
cohomology theory MU"®Z,,, . The spectrum MU ®Z, splits as a wedge sum of suspensions of the socalled
Brown-Peterson spectrum BP. This one, “therefore”, defines a complex oriented cohomology theory BP’
whose associated formal group is the p-typification of Fyy(X,Y) which means that the logarithm of Fyp(X.Y)
is obtained from logFy{(X) by simply removing all terms not involving X to the power a power of p. (The
functional equation lemma says that this procedure again yields a formal group). Also it follows that Fyp(X,Y)
must be a universal p-typical formal group.

Thus
10gFgp(X) = 3 m,XF', m, = p "[CPF' '], (11.4)
n=0

Both Fgp and Fy of §10 above are p-typically universal. So, again, there is a ring isomorphism ¢:Z[V]
— BP (pr) 'taking Sv(X) into logFgp(X). And, again there result formulas for a set of free polynomial genera-
tors for BP " (pr), the ¢(V;) = v,, in terms of the known elements m; BP”(pt). The result is that

BP (pt) = Z[vi vy pmy =8 "my_y 8 Tmy s v, ml + o, (11.5)

cf. formula (9.3). Because F(X,Y) is in fact defined over Z[V'], not Just Z,)[V] (though the p-typification iso-
morphism Fy; =2 Fy- is of course only defined over Z,,[U], V;= U,) there is the added bonus that the v, are in
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fact integral, i.e. in MU (pt). i.e. real cobordism classes of manifolds (not just element of MU H®Z,).

The generators v,.v,.... of BP (pt) have found numerous applications in algebraic topology in the hands of
S. Araki, W. Steven Wilson, Douglas Ravenel, Haynes Miller, P. Landweber, J. Morava, D.C. Johnson. Larry
Smith. R. Zahler, Z. Yoshimura, M. Kamata, K. Shimakawa, N. Yagita, H. Yasumasa, K. Shibata, N. Shi-
mada, P.B. Shay, U. Wiirgler a.0.; they permit one, so to speak, to calculate with BP-cohomologY.

There are also other ways (than constructing an explicit universal formal group law) to obtain the genera-
tors due 1o S. Araki and J. Kozma. The first one to guess at a formula like (11.5) for the generators (but
different) for the prime 2 was A. Liulevicius. Formal groups are now a most useful and well-established tool in
algebraic topology. The papers of the authors already quoted and the lecture notes by Adams or Araki and the
Helsinki lecture of D.C. Ravenel are good starting points.

12. Atkin-Swinnerton Dyer congruences

Let E be an elliptic curve over Q. There then exist an essentially unique minimal model of E over Z (i.¢.
an equation with coefficients in Z defining E) of the form Y +c, XY +c3Y = X +c, X +cy X +¢,. For this
model one can reduce modulo p to obtain curves over F, for each p. One defines the global Artin L-series of
E by the formula

L(E)y =11 Ly(s) = Fcon ™" (12.1)
[7 n

where

(1) If E®F,, is nonsingular, Lp(s) = (l—a,,p“"‘+p"’—')"‘ where 1—a,,X—+~pX2 is the numerator of the
zeta function of E®F,.

(i) If E®F, has an ordinary double point, L,(s) = (l—c,,p‘s)'l with ¢, = +1 or —1 depending on
whether the tangent at the double point are rational over F, or not.

(1if) If E®F/, has a cusp, L,(s) = 1.

To E one now associates a commutative one-dimensional formal group Fp with logarithm
k]
JeX) = 2n e, X" (12.2)
n=1

It is an immediate consequence of the functional equation lemma that Fy has its coefficients in Z.

There is a second formal group attached to E viz. the formal completion along the identity (cf. §0 above)
of its minimal model over Z. This one can be explicity described as follows. Lert - = X /Y be a local
parameter at the zero element. Now w = dY /2Y +¢ X +c¢; is the invariant differential on E. Develop w
locally around the zero element in powers of z to find an expression

w= 3 B" Ydz, B = L. (12.3)
n=1
The logarithm of the formal completion G along the identity of E is now equal to

Ge(X) = i n B X (12.4)

n=1

12.5. Theorem (Honda). The formal groups Fe(X.Y) and Gg(X.Y) over Z are strictly isomorphic over Z.

However F(X.Y) is a functional equation type formal group. Any strictly isomorphic formal group must
therefore, according to part (iii) of the functional equation lemma, satisfy the same functional equation type
integrality relations. This yields

Bup =By +pbpBayy, =0 mod p* if n =0 mod p* -1 (12.6)

where  B,,, =0 if (pn) =1 and B, = B,,, if p|n and where ua,h, are defined by
l=a,p > +bp' "® = L(s)"', cf. just below (12.1) and above. These are the Atkin-Swinnerton Dyer
congruences (originally the Atkin- Swinnterton Dyer conjectures) which were originally discovered numeri-
cally.

13. The Witt vectors
For each n = 1.2,... let w,(X).....X,) be the polynomial

wa(X) = 3 dXxy 4. (13.1)
din
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13.2. Theorem. There is a unique functor W:Ring — Ring which satisfies the following properties:
) As a functor Ring — Set, W(4) = {(a\,a;3.a;,..):q; € A} and W(¢)ay.az...) = ($la).az)....) for
¢:4A — B in Ring,

i) wo W) > A w4ar,a2,..) = welay,....a,) is a functorial ring homomorphism for every
n=12,..

Moreover

(iii) The functor W admits functorial ring homomorphisms 1,:W(4) — W(A) which are uniquely character-
ized by wp,f, = Wy, nm € N

(iv) There is a functdorial homomorphism of rings A:W(—) — W(W(—)) characterized uniquely by
Wo wyBa = f.4 for alln and 4 € Ring

) There are functorial endomorphisms of abelian groups V,:W(—)— W(—) characterized by
Wo Vi = Wo|m if m |nand w,V,, = 0 if min.

This is probably the most efficient way to introduce the Witt vectors, especially if the proofs of these state-
ments are omitted. As a matter of fact the first thing to prove is that the polynomials defining the addition in
W(A )Z(Ll[,02,...)+(bl,b2,-.~) = (21(&,[)),22(0,[7),...) which means W,,(AhAz,...) = w,,(X)‘f-w”( Y) (b)’ (lll)).
have coefficients in Z. This we have already done in §6 above. The other statements of 13.2 above (which basi-

cally are all integrality statements concerning various polynomials) can also be dealt with using various func-
tional equation lemma tricks (cf. [9,Ch.I1I].

Anotherd good way (and more “classical”) to get at W is as follows. Define A(4) =
{1 +ajttayi’+.a €A }. Multiplication of these formal power series with constant term 1 defines a func-
torial abelian group structure on A(4). Now write formally a(t) = 1+a r+.. = I, (1—£r). A multiplica-
tion on A(A) is now defined by a (1)*b(z) = H:,j (I=&mn) if () =TI, (1 —mn;t). When this product is writ-
ten out the coefficients of the 1" are symmetric in the £s and 7’s and therefore can be written as polynomials
in the ¢; and b;. This defines a functorial ring structure on A(A4). The endomorphisms f, and V, are defined
by

f,([I(1—-&1) = II(1=¢&'1), V,a(t) = a(i"). (13.3)
Define s,:A(4) — A by the formula

i spla(oyt” = —t f; log a(r) (13.4)

n=1

1t

so that e.g. s,(II(1—§¢)) = 37, It is now easy to check that the functor A:Ring — Ring together with the

functor morphisms s,:A(A) — A satisfies properties completely analogous to those claimed for (W,w ,w;,...)
in Theorem 13.2 parts (i),(ii).(iii).(v). (Part (iv), (souped-up Hasse-Witt exponential) is more difficult to get at).

The  connection  between A and W is given by the functorial isomorphism
E: W) - MA)ay,az,...) - TI(1—a;t")

Indeed,
d Iy = — i —atr) =
rd' log[ll(l a;t') = tdIEIOg(l a;it')
—igit' !

t , . o
= —t 2——:‘—7 = 2 ia,t‘(1+a,-t'+a,-212’+...) = 2 ialt)
T l—at 7 i)

=3 it = wolant

not|n n
13.5. Exercise. Check everything that needs checking to prove theorem 13.2 minus part (iv).

14. Curves, Frobenius and Verschiebung

Now let again F(X,Y) be an n-dimensional commutative formal group over a ring A. By definition the
group of curves C(F) of F is as a set equal to the set of all n-tuples of power series A(r) with coefficients in A
with zero constant term. Two curves are added by the formula

Y()+p 8(t) = F(¥(1),8(1)) (14.1)
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which makes perfect sense. This turns C(F) into a group. There is a topology of C(F) defined by the sub-
groups C,,(F) consisting of all curves y(r) = (yi(2),-...,Y,(?)) such that the first m coefficients of each of the
v,(1) are zero. With this topology C(F) is a complete topological group.

There are a number of operators defined on C(F). The first two kinds are
(homotheties) <a >y(t) = y(ar) (14.2)
(Verschiebung) V,y(1) = y(r"). (14.3)

The group C(F) also has a sort of topological freeness property. The precise statement is that there are ele-
ments €(t),....€,(t) e C(F), e.g. (t) = (1,0,..,0),...€,(t) = (0,...,0,¢) such that each element of C(F) can be
uniquely written as a convergent series

> Vi<a;>¢).

iy
Such a basis €(z),....,(r) is called a Vbasis. All this is perfectly simple and uses little more than that
F(X,Y) = X+ Y+ (higher degree) (and the group property).

The third kind of operator is
(Frobenius) f,y(t) = y(§,t'/ ")+ 5 - +rv(e' /") (14.4)

where {, is a primitive n-th root of unity. This is then (symmetric functions!) a power series in  (not just one
in +'/™). A little care must be taken in interpreting this formula as roots of unity do not always make sense in
the right way over all rings 4. But things can be made precise fairly simply (in various ways).

Of course the V,, f, are rather different things then the V,,.f, of §13 just above. However

14.5. Exercise. Show that the abelian groups with operators (W(A).V,, 1,) and C(G,,),F,.f,) are isomorphic,
where G, is the one-dimensional formal group X +Y + XY over A.

Still, it would have been better, logically speaking, not to use the same symbols, and machines would cer-
tainly object. Humans however are able to live with such ambiguities and seem even to thrive on them.

There are a rather large number of relations between the various operators on C(F):

<a><ad'> = <ad'> (14.6)
<I>=V, =f =id (14.7)
V,V, =V, (14.8)
fuf, = L (14.9)
<a>V, =V, <a"> (14.10)
,<a> = <a”>f, (14.11)
it (nm) = 1, ,V,, = V,f, (14.12)
f,V, = [n] (14.13)
<a>+<bhb> = é V, <r.(a,b)>f,. (14.14)

n=1

Here [n] stands for the operator y(r) = Y(1)+ gy(t)+ ... + py(1) (n summands) and the r,(Z,,Z;) are cer-
tain universal polynomials in two variables Z),Z, defined by

Z7 + Z5 = 3 drfZ,.Z,0 (14.15)
din
(Note that the right hand side of (14.15) is equal to Wu(ri,....7). Now w(Zp, ..., Z,) = wo(X) + w,(Y)
where  the X,,...,E, are the addition polynomials of the Witt vectors; thus
rfZ\,Z,y) = y24Z,.0...,0;Z,,0,...,0) and hence has integral coefficients).
15. Cart(A)

Basically the Cartier-Dieudonné classification theorem for commutative formal groups laws over a ring 4
states that F — C(F) is an equivalence of categories between formal groups over 4 and filtered complete topo-
logical groups with operators <a>,V,.f, satisfying all the relations (14.6)-(14.14) and such that C(F) is
“topologically free” in the sense that it admits a V-basis in the sense of §14 above. This theorem extends to
include infinite dimensional commutative formal groups.
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It is more elegant to collect all the operators in one ring, first described by LAzZARD [12] and called Cary(A)
by him after Cartier. This is the ring of all formal expressions of the form

0

> Vu<am>f, ann. €A (15.1)
man =1

with the support condition: for all m €N there are only finitely a,,,540. The “calculation rules” (14.6)-(14.14)

now describe Cart (A) completely as a topological ring with the topology defined by the ideals M, consisting
of all expressions (15.1) for with @, , = 0 forall m < L

16. Cartier-Dieudonné classification theory

The topological group of curves C(F) of a formal group over A4 can now by means of the operations

<a>.1,.V, be seen as a topological module over the (noncommutative topological ring Carz(A). They have
special properties as Cart(A) modules, viz. the following

(16.1)  If (X;);, s is a set of elements in Cart(A) converging to zero for the filter of finite subsets of / and
(v;); €1 is any set of elements of the Cart(A)-module C then (X,y,);. ; converges in C.

(16.2) For each n € N let C" be the closure of the sum of all subgroups V,C for i = n. Then the C" define
the topology of C.

(16.3) V,:C = C' - C™ induces a bijection C' / C* 5 ¢” /¢m !
(16.4) ¢! / C? is a free A-module (for the operators induced by the <a >)

Let us call such Cart(A)-modules reduced. The Cartier-Dieudonné classification theory as formulated by
Lazard now is summed up in

16.5. Theorem. The functor F — C(F) of commutative formal groups over A to reduced Cari(A) modules (with
continuous Cart(A)-module morphisms as morphisms), is an equivalence of categories.

17. p-typification

The ring Cart(A) is a complicated object and so is a reduced Carr(A)-module. So there is lots of room for
special cases and easier to use classification results. A first substantial simplification occurs if one limits oneself
to “one prime at a time”, i.e. formal groups over rings A which are Z,)-algebras. Then C(F) splits as a direct
sum of copies of the group of socalled p-typical curves C,(F). For a torsion free Z)-algebra A these are the
curves such that logp(y(r)) is of the form ¥ ¢,¢” : for arbitrary Z,,-algebras A a definition similar to the one
used in §8 works. The topological group C,(F) is a module over a ring Curt,(4) which is just like Cari(A)
except that only the V,’," =V, and f;;' = f,~ occur. Cart(A) is a ring of infinite matrices over Cariy(A) in this
case. The rules of calculation of Cart,(A) are obtained from those of Cart(A) by setting V, = f, = 0 il nis
not a power of p.

Now let 4 =k be an algebraically closed field of characteristic p >0. Let R = W,<(k) be the unramified
discrete valuation ring with residue field k. The ring W,-(k) is the quotient of W(k) by the ideal of all
(by.by.by,..) € W(k) such that b, =0 if i is not a power of p. It follows that as a set
W,«(k) = {{ag.a,...):a,€k} (with so to speak ¢, = b,') and its ring structure is given by the polynomials
Won = Wy in X,,-',X,,' ..... X, in the same way as the ring structure of W(—) is determined by the w,. The
quotient W,<(—) admits the endomorphisms f, and V, here denoted ¢ and p in order not to confuse them
with the operators f,, and V,, on C,(F). (The other Frobenius and Verschiebung morphisms of W(—) do not
descend).

The map
(al,,u].uz,...)»zv;, <a,>f, (17.1)
defines an embedding (of topological rings), W« (k) => Cariy(k). Now define the Dieudonné ring D (k) as the
ring W,,‘(k)[f,V] of twisted polynomials in f and V over W,,w (k) subject to the relations
fV=Vf=p xV=Vx° fx =xf (17.2)
where o is the Frobenius endomorphism of W« (k). Under the identification fw f, and V=V, D(k)
becomes a dense subring of Cart/,(k) and in this way one recovers a version (a covariant one) of Dieudonnés

original classification of commutative formal groups over algebraically closed fields of characteristic p >0. by
means of certain modules over D (k).

Localization with respect to V turns D(k) into a ring of twisted Laurent series in V with coefficients in
W, (k) and isomorphism classes of finitely generated torsion modules over this ring turn out to correspond to
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isogeny classes of formal groups over k. These torsion modules can be classified and there results the
classification theorem that every formal group over k is isogeneous to an up to isogeny unique direct sum of
explicitly given formal groups G,m(X.,Y), l <n < 0, 0 <m < co,(n,m) = 1. (A homorphism «:F — G
between formal groups over k of the same dimension with finite kernel is called an isogeny. And isogeny is the
weakest equivalent relation with identifies F and G in such a case).

18. Other classification results

Classification by means of Cart,(4) modules still leaves plenty of room for interesting and useful special
cases, and so does classification by means of D (k) modules (i.e. Dieudonné modules) for k an algebraically
closed field of characteristic p >0.

Let k be a field of characteristic p >0, and F a commutative formal group over k. Consider the ring
homomorphism [pp:k[[X]] = £[[X]l, X - [plr(X), where [1]+(X) = X, [n]g(X) = F(X,[n = 1]g(X)). The
formal group F is said to be a finite height if [p]r makes k[[X]] a finite rank module over itself. This rank is
then necessarily a power p” of the prime p and 4 is called the height of F.

18.1. Exercise. If F is one dimensional the height of F is equal to 4 iff F(X,Y) = X +Y +aCy(X,Y) mod
degree p" +1 for some a = 0 in k. Thus the formal groups F,(X <Y) over F, described in §6 above are of
height A.

18.2. Theorem. (LAzARD [10]). Let k be an algebraically closed field of characteristic p >0. Then the one dimen-
sional formal groups laws over k are classified by their heights h, | < h < oo (h = o0 corresponds to F = G,).

Now let k be a finite field, say F,. The first result is that over k= F,=, the algebraic closure of k = F,
the ring of endomorphisms is E, the ring of integers of the division algebra D, over Q, of rank h? and invari-
anth™ !,

A very special endomorphism of each F over F, is {r(X) = X¢, the “Frobenius endomorphism”. End,(F)
consists of those elements in E, which commute with £ and it results that End,(F) is the ring of integers of a
central division algebra of rank h? / m? and invariant m /h over Q,(¢r) with m = [Qy(¢F):Q,]. The "Fro-
benius endomorphism” £r satisfies an equation over the maximal unramified extension of Q, contained in
Qp(ﬁp) and this gives a polynomial over Wpt(k)

Vekr) = 0, Ve(X) = X + b X7 ..+, (18.3)
with the properties
(18.4)  ¥g(X) is a polynomial over W,=(F,) which is irreducible over the quotient field W,=(F,)®Q, = X,
(18.5) 1If §is a root of ¥p(X), then Q,(£) / K, is totally ramified
(18.6)  [Q,(b1.....5,):Q, I, (b,) divides r where g = p” and v, is the normalized exponential valuation on K.

Y e(X) is called the characteristic polynomial of the one dimensional formal group F. It now turns out
(Honda) that these polynomials classify finite height one dimensional formal groups over finite fields.

The classification results of this section can be deduced from the general theory described in §17 above but
can in fact be easier handled by various other more direct means (often involving the functional equation
lemma).

19. Cartier’s first theorem

The infinite dimensional formal group law W(X, Y) plays a very special role in formal group theory. Part
of the reason is

19.1. Cartier’s first theorem. Ler vyy(7) € C(l:V) over a ring A be the curve (1,0,0,....0). Then for each curve ¥(1)
of a commutative formal group F over A there exists a unique homomorphism of formal groups a,:W — F such
that C(ay)vo(1)) = (1),

Thus the functor F w C(F) of formal groups over 4 to Cart(A) modules is represented by the formal
group W.

20. U(W)

As befits such an important and special object as the formal group of Witt vectors its covariant bialgebra
is very nice



66 MICHIEL HAZEWINKEL

21.1. Theorem. U (W) = 2|Z\,2,,...] as a Z-algebra and the comultiplication is given by Z, v ;. j=n Zi ®Z
withZ, =

On the other hand W, as the notation suggests, is the formal completion of the group valued functor
A = W(A) of the big Witt vectors and via the isomorphism W(4) SA(4) = {1 +attasr+.ca €4) is
represented by the algebra R(W) = Z[X|.X,...]. The addition is gwen by the polynomials

S(XY) = ~,+, -n X;i¥;, Xo = Yo = 1. That is by the comultiplication X, H.,,ﬂ " Xi®X;, on R(W)
Thxs is the “same” ObJCCt as U(W)

This “accident” is in fact an autoduality which can be understood in terms of the representation property
19.1 of W and Cartier-duality.

All this makes U =U (Vh~R(W)~ -+ a remarkable object which certainly deserves deeper study‘ espe-
cially because it also occurs in still other guises in various parts of algebra such as the universal A-ring in one
generator, the ring of representations GB R(S,), where is S, the symmetric group on n-letters, and the coho-

mology ring H (BU;Z), where BU is the classifying space for complex vector bundles. The study and under-

standmg of U in its various guises is (and has been for a number of years) a (slowly evolving) research project
of mine.

21. Remarks on noncommutative formal group theory

So far I have talked almost exclusively about commutative formal groups and moreover have concentrated
on the phenomena which occur away from these objects over (algebraically closed) fields of characteristic zero.
Naturally, because over a field of characteristic zero commutative formal groups are not interesting. That
changes of course if one admits noncommutative formal groups and one subject one could pursue is to
develop for say, noncommutative formal groups over algebraically closed fields (of any characteristic), all the

possible analogues of (ordinary) (algebraic) Lie group and group theory. Much can be done and substantial
amounts have been done, cf. [7].

Very little on the other hand is really known about noncommutative formal groups in terms of the kind of
questions discussed in these lectures. E.g. about universal noncommutative formal groups of various kinds. We
have of course the formal Lie theorem (over a Q-algebra Lie algebras and formal groups are equivalent
categories) and there are Lazard’s cohomological results on the extension (prolongation) of noncommutative
formal group chunks [11]. (A polynomial F(X,Y) of total degree n in 2m variables is a formal Lie group
chunk of degree n if the conditions F(X,F(Y,Z)) = F(F(X,Y),Z).F(X,0) = X,F(0,Y) = Y hold mod degree
n+1; a prolongation of F, is an F, y, which is an n + 1-chunk such that F, ., =F, mod(degree n + 1)). For
commutative chunks F, extensions always exist and this is the original basis of Lazard’s step by step power
series approach; for noncommutauve chunks this is not necessarily true (except over Q-algebras as LAZARD
proves [11]). E.g. the p> +p chunk X +Y +X7¥?" does not prolong to a l-dimensional noncommutative for-
mal group over any field of characteristic p. It seems to me that a judicious mix of the Campbell- Hausdorff-
Baker formula with the functional equation formulas could give interesting results (using of course that there
are also logarithms in the noncommutative case because of formal Lie theory, cf. §3 above)

A totally different approach is based on the following idea. Because of theorems 21.1 and 19.1 the classify-
ing object C(F) of curves in a commutative formal group can be obtained as the bialgebra homomorphisms
U — U(F), where U = U(W).

Now there is a very natural noncommutative generalization of the object U/ namely the noncommutative
but cocommutative algebra
U,,, = Z<Z|.22,...>, Z,, > 2 Z,®Zj, Z() =1
i+)=n
of all associative polynomials in Z,,Z,,... with the same comultiplication as U.

One can now study the functor F + Bidlg(U,.,U(F)) and the object U, itself and try to find suitable
noncommutative analogous of p-typification, Frobenius and Verschiebung operators, Cartier-Dieudonné
modules,... . Substantial progress in this direction has been made by DITTERS [8].
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