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Abstract and Preface. 

This paper is the written version of a series of three lectures given in Windsor at the occasion of the Cana­
dian Mathematical Society's summer school in Lie algebras and related topics in July 1984. They were 
antended as in introduction to the subject for an algebraically oriented audience with special emphasis on the 
kind of phenomena that appear when dealing with commutative formal groups over rings (rather than fields). 
Proofs and more details of most everything can be found in [9]. I am (and was) most grateful for the oppor­
tunity to speak on this topic and heartily thank the organising committee, notably Bob Moody. and the local 
organizers, the two friendly giants Dan Britten and Frank Lemire. for the opportunity. The phenomena are 
extraordinary rich in the commutative case-privately I suspect (with admittedly little grounds) especially in the 
commutative case - and much work remains to be done to get even a first idea of what the noncomrnutative 
theory has in store. 

These written notes follow the original lectures in structure but contain rather more. The contents are: 0) 
Introduction; I) Two classes of examples of formal groups from other parts of mathematics; 2) Generalities 
and bialgebras: 3) The Lie algebra of a formal group. Characteristic zero formal Lie theory: 4) The commuta­
tivity theorem; 5) Logarithms; 6) The functional equation lemma. Examples of formal groups: 7) Universal 
formal groups. Generalities: 8) p-typical formal groups; 9) A universal p-typical formal group and a formal 
group universal over Z1pi-algebras; 10) Construction of a universal formal group; 11) Application to algebraic 
topology; 12) Atkin-Swinnerton Dyer congruences for elliptic curves; 13) Witt vectors: 14) Curves. Frobenius 
and Verschiebung; 15) Cart(A); 16) Cartier-Dieudonne classification theory: 17) p-typification: 18) Other 
classification results; 19) Universality of the formal group of the Witt vectors; 20) U( W); 21) Remarks on 
noncommutative formal group theory. 

0. Introduction. 
Consider a Lie group G over R or C. Let e E G be the identity element and consider coordinates on a 

neighborhood U of e. such that the coordinates of e are (0.0 •... ,0). Let x,y E U be such that -'-:I' E U. Let the 
coordinates of x.y and xv be respectively (x 1, ... ,Xn );(v 1, •. , .• yn );({1 •••• • Jn). Then because G is analytic the J, 
are power series in the xk and y1 

f = (/,), J, = f;(x I •... ,Xn iV I ·····Yn) 

and this n-tuple of power series f satisfies 

f (x, Ol = x. J <O.y l = y 

f(f(x.y),z) = j(x.j(v,z)) 

(0.1) 

(0.2) 

The first relation comes from xe = x and i:v = y; the second one from (xy )z = x (vz ). 
Now consider f (x.y) simply as an n-tuple of power series (forgetting about convergence). Then we have an 

infinitesimal object attached to G that is intermediate between the Lie algebra of G and the group G itself. 
Indeed the Lie algebra of G can be recovered from the n-tuple of power series f (x ir) as follows. Let 

f (x ;y) = x + y + B (x.y) + (terms of degree ;a 3) (0.3) 
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Then by (0. J) B (x,y) is bilinear. The Lie algebra g is now the n-dimensional vector space V 

real case) with the commutator defined by 

[ :z;a,e;.2:b;e;] = 2:B(a,b)kek - 2:B{b,a)kek 

// 

EB Re, (in the 
l""-'"l 

(0.4) 

where B(a,bh is the k-th component of B(a,b). The Jacobi identity of course follows from considering (0.2) 
mod degree 4. (Non trivial exercise). 

For (sufficiently nice) group schemes G over an ari;1itrary commutative ring with I E A there exists an 
entirely analogous construction: the fomal completion G of G along the identity resulting this time in an n­
tuple of fomal power series over A also satisfying (0.1) and (0.2). 

It is now easy to abstract from these considerations. Let A be any commentative ring, I E A. Then an 11-

dimensional formal group law over A is an n-tuple of power series 

such that 

F(X,Y) E A[[Xi, ... ,X,,;Y1, ... ,Y,,]] = A[[X;Y]] 

F(X, 0) = X, F(O, Y) = Y 

F(F(X, Y),Z) = F(X,F( Y,Z)). 

(0.5) 

(0.6) 

Note that (0.6) makes sense (if n < oo; for n oo F(X, Y) has to satisfy certain support conditions or. more 
generally. a topological condition with respect to a topology on A). It follows from (0.5), (0.6) that there exists 
an n-tuple of power series t(X) such that 

F(X, 1(X)) = 0 (0.7) 

If the formal group Jaw F(X. Y) satisfies in addition 

F(X, Y) = F(Y.X) (0.8) 

it is called a commutative formal group law. 

Formal group laws over R or C naturally arose from classical Lie theory when BOCHNER [2] in 1946 
separated Lie theory into a formal part (constructing the formal group Jaw from the Lie algebra) and an ana­
lytic part (showing convergence to obtain a Lie group germ). The formal part of course amounts to the 
Baker-Campbell-Hausdorff formula 

I I 
exp(x)exp(y) = exp(z), z = x+y+-z[x,y]+ l2([x,[x,y]+[y.[y,x]])+ ... 

Over fields of characteristic p the familiar dictionary between Lie-algebras and Lie-groups breaks down 
completely as discovered by CHEVALLEY [6] in the early I 950's and thus the search was on for a suitable 
infinitesimal object that could replace the Lie algebra. The latter simply carried not nearly enough informa­
tion. This was the direct inspiration for the researches of Dieudonne in the l 950's and his long series of papers 
on formal groups over fields of characteristic p. 

Indeed, to illustrate the point consider the two one dimensional formal groups 

Ga(X, Y) = X + Y 

Gm(X, Y) = X + Y + XY 

(0.9) 

(0.10) 

over, say, FP, the field of p-elements. An homomorphism cx:F _.,. G between two formal groups of dimensions 
n and m respectively would of course be an m-tuple of power series a(X) in X 1 , ••• ,X,, such thal 
a(F(X, Y)) = G(a(X),a(Y)) and an isomorphism is a homomorphism such that a- 1(X) exists (where 
a - 1 (a( X)) = X); then of course we must have m = dimG = dimF = n) 

0.11. Exercise. Sh_ow that _G0 and Gm are not isomorphic over FP or indeed over any characteristic p field. 

But of course Ga and Gm have the same Lie algebra. 

As a matter of fact it has turned out that the phenomena are very rich even just for one dimensional com­
mutative formal groups. For example over FP there are uncountably many nonisomorphic formal groups. One 
classification result puts them into a bijective correspondence with all maps N _.,. FP; another classification 
results sets up a bijective correspondence with Eisenstein polynomials over WP· (Fp) = ZP, the p-adic integers. 
Still another classification results describes them in terms of conjugacy classes of elements in Eh, the ring of 
integers in Dh the div~sion algebra of rank h 2 and invariant h - 1 over QP (for varying h E N = { 1,2, 3, ... } ). 

And even over Fp· the algebraic closure of FP it turns out that there are countably many nonisomorphic 
one dimensional commutative formal groups. (This holds for every algebraically closed field of char p > 0). 
Later in these lectures they will all be constructed. 
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This enormous richness and the fact that commutative formal group laws occur naturally in several parts 
of mathematics certainly has steered the theory of formal group laws away from topics traditionally met in the 
neighborhood of Lie groups and Lie algebras such as representation theory. At least for the moment. 

Still it seems quite likely that they can play a significant role especially there where the group cannot be 
recovered from the algebra (characteristic p) or where the group is difficult (perhaps impossible) to construct 
(infinite dimensional Lie algebras). Especially since various applications areas (Kac-Moody Lie algebras in 
completely integrable systems, differential galois theory) seem to have a large and growing formal part to 
them. 

However, that is for the future and the lectures shall mainly be about commutative finite dimensional for­
mal groups, and their applications. Indeed apart from technicalities the one dimensional theory is as rich as 
the n-dimensional one, so I shall concentrate on that. Although even there it will be necessary to pay attention 
to one infinite dimensional formal group, the one of the (generalized) Witt vectors. 

I. Two Classes of Examples of Formal Groups from other Parts of Mathematics 

1.1. Dirichlet series over Z. 

Let 

L(s) = ~ ann--'· an E Z 
n;;.I 

be a Dirichlet series. Suppose L(s) admits an Euler factorization 

L(s) =IT (l-ap.1P-s - ap.2P1-2s - ap.3P2-3s_ ... ), 
p 

ap.1 E Z 

(l.1.1) 

( 1.1.2) 

where the product is over all prime numbers. (Actually a weaker condition suffices). For example this is the 
case for the Artin L-series of an elliptic curve over Q. 

Construct (Mellin transform) 

(1.1.3) 

""' 
whereF 1(X) is the inverse function power weries to j(X), i.e. F'(f(X)) = X = f(f- 1()()). 

1.1.4. Theorem. F(X, Y) has its coefficients in Z[X, Y] and hence is a one-dimensional commutative formal group 
over Z. 

A proof will be given later (meanwhile it is a nontrivial exercise) as well as an application (Atkin­
Swinnerton Dyer congruences). 

1.2. Complex oriented cohomology theories 
Let h' be a complex oriented (generalized) cohomology theory. Here generalized of course means that 

h ·(pi) is not necessarily concentrated in degree 0. I do not want to define "complex oriented" but basically it 
means that there are Euler (characteristic) classes eh(E) E h • (M) for complex vector bundles E over M. which 
behave suitably. 

Being complex oriented has certain (purely formal) consequences. It implies e.g. that 

h '(CP"') = h '(pt)[[~]]. x = eha) 

where~ is the canonical (classifying) complex line bundle over CP"'. Also 

h'(CP"'XCP"') = h'(pt)[[x,y]], x = eh(~®l),y = eh(I®~). 

(l.2.1) 

(1.2.2) 

Now because~ is classifying for line bundles, there must exist a universal formula which gives eh(L 1 ®L 2) in 
terms of eh(Li) and eh(L 2) with coefficients in h*(pt). Indeed we must have 

eh(~®~)=~ a;/yl, a,,1 E h'(pt) (l.2.3) 

and hence 

1.j 

e11 (L1 ®L2) = L a,1eh(L 1)eh(Li) 
'·1 

universally for line bundles L 1 and L 2 over a space M. Let 

Fh(X, Y) = "" . a X' y1 ~I.) I.) 

(1.2.3) 

( 1.2.4) 
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Then because the tensor product of line bundles is associative and commutative and Li® trivial~ Li. eh 

(trivial) = O it follows that Fh(X, Y) as defined by (l.2.4) is a commutative one dimensional formal group law 

over h' (pt). 

Examples of complex oriented cohomology theories are ordinary cohomology H', complex K-theory K'. 
complex cobordism MU' and Brown-Peterson cohomology BP'. 

For generalized cohomology theories the coefficient ring h '(pt) carries insufficient information for com­
parison purposes in that it is no longer necessarily true that if a:h; -+ h; is a transformation of cohomology 
theories and a(pt) is an isomorphism then a is an isomorphism. However if the theories are complex oriented 
and a(pt) carries Fh, into Fh, (i.e. Fh,(X, Y) = I a(pt)(aiJ)X; yJ if Fh,(X, Y) = I auX' Y1 ) then a is an iso­

morphism of cohomology theories. 

2. Generalities and Bialgebras 
Let F(X, Y) be a formal group law over A. Then of course the F;(X, Y) define a homomorphism of topolog­

ical algebras 

A [[Xi .... ,X.JJ-+ A [[Xi, ... ,X.]]® A [[X1.X2 •... ,X.J] (2.1) 

X, ,_. F,(Xi ®1, ... ,X,,®1;1®Xi •... ,1®X,,). 

Together with the augmentation 

f:A[[Xi ..... X.]]-+A, X,,...Q (2.2) 

this makes A [[XJ] a Hopf-algebra There is also an antipode X-+ t(X) which makes A [[X]] into a cogroup 
object in the category of algebras. This object is denoted R (F) and is called the contra variant bialgebra of the 
formal group F. 

This also permits to define formal groups in a less pedestrian way as c0group objects in a suitable category 
of algebras over A. There is no particular reason to limit oneself to formal power series algebras only (though 
these remain a most important kind). For many purposes the right category of algebras seems to be the 
category AlgT.~ of topological A algebras which are of the form IT;, 1 A;. A; = A as A-modules, topologized by 
the product topology (discrete topology on the factors) 

Finite etale group schemes and finite infinitesimal group schemes over A of suitable kinds are then also for­
mal groups over A. 

Given a formal group over A defined by its Bialgebra R (F) one considers 

U(F) = ModTA(R(F).A) 

the continuous linear dual of R (F) 

(2.3) 

The comultiplication (2.l) and the co-unit (or augmentation) (2.2) define a multiplication and identity cle­
ment on U(F) making U(F) an A-algebra. The original multiplication and unit then make l.J(F) also a Hopf 
algebra with an antipode defined by (the dual of) i:R (F) _.,. R (F). The result is more precisely a group object 
in the category of co-algebras (but unless Fis commutative not a cogroup object in the category of algebras). 

U(F) is called the covariant bialgebra of F and group objects in a suitable category of co-algebras provide 
another way to define formal groups. This is the approach favoured by Dieudonne [7]. 

The relation R (F) <--> U(F) is of course a kind of duality (between, in the commutative case, very similar 
objects) and it can be souped-up and reinterpreted as a Pontryagin-like duality between commutative formal 
groups and commutative algebraic groups (Cartier duality [3]). 

3. The Lie Algebra of a Formal Group. Characteristic Zero Formal Lie Theory 
Let R (F) be the covariant bialgebra of a formal group F over A. Let m(F) be the augmentation ideal; i.e. 

!!:_(F) = Ker(E), c .. (2.2). Then the Lie algebra L(F) of F can be identifieawith 

L(F) = ModA(!!:_(F)l!!.!_2(F)-->A) CU(F) (3.1) 

and it coincides with the Lie-algebra of primitive elements of the Hopf-algebra U(F). (An element c in a co­
algebra µ: C _.,. C®C is primitive if µ.(c) = c® I+ l ®c; these elements form a Lie algebra (under commuta­
tor difference) if C is a Hopf-algebra. 

3.2. Exercise. 

Check that the Lie-algebra thus defined is the same as the one prosaically defined in section 0 above for F 
a "power series formal group" as in section 0. 
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Now consider L(F) C U(F). Because U(F) is an associative algebra there is an induced homomorphism 

of associative algebras 

UL(F)--> U(F) (3.3) 

where UL(F) is the universal enveloping algebra of L(F). 

3.4. Theorem (Formal Lie theory in char. 0) If A is a Q-algebra, then (3.3) is an isomorphism of associaiive alge­

bras. 

In characteristic p however L(F) (usually) generates only a tiny bit of U(F) and this of course is the source 
of the break down of Lie-theory in characteristic p as discovered by Chevalley [6]. 

It is true though that the universal enveloping algebra (in characteristic zero) provided a great deal of 
inspiration for the development of bialgebra-type formal group theory. 

4. The Commutativity Theorem 

There are many nonisomorphic one dimensional formal groups over a ring A that is not a Q-algebra. But 
one thing goes right 

4.1. Theorem (Lazard, [JO]. [9. §6]). If A has no nilpotents, then eve')' one-dimensional formal group over A is 

commutative. 

Actually it suffices that A have no elements which are simultaneously torsion and nilpotent (Connell). If A 
has such elements noncommutative formal groups of dim.I over A exist. 

From now on all formal groups will be pedestrian power series groups as in section 0 and all will be com­
mutative (unless it is explicitly stated otherwise). 

5. Logarithms. 

Theorem 3.4 shows that over a Q-algebra all n-dimensional commutative formal group laws are iso­
morphic. 

More precisely it is true that if A is a Q-algebra, then for a formal group F over A there exists a unique 11-

tuple of power series f (x) = X + ... such that 

F(X, Y) = F1lf<X)+ f(Y)). (5. l) 

f (X) is called the logarithm of F and is occasionally denoted logF(X). The name derives from the example 

Gm(X,Y) = X+ Y+XY 

Indeed if g(X) =-= log(!+ X), then g(Gm(X, Y)) 
g(X}+g(Y) so that 

log(;.(X) = log(l+X). 

log(l+X+Y+XY) = log(l+X)+log(l+Y) 

More generally if A is torsion free, so that A ~A ®Q is injective, the logarithm of a formal group over A 
exists over A ®Q. Thus the study of formal groups over A becomes the study of power series f (X) over A ©Q 
with the peculiar property that 

F 1(/(X)+ f ( Y)) E A [[X. Y]], f (X) EA ®Q[[X]] (5.2) 

and the study of "equivalence classes" of such power series under the relation f- f if f = f (a(X)). 
a(X) E A [[X]]. 

As it turns out even for fields of characteristic p and more generally arbitrary rings A with torsion much 
information can be gained by studying the logarithms of lifts (to torsion free base rings) of formal groups over 
A. 

Theorem 3.4 (applied to commutative formal groups) does not quite prove the "existence of logarithm 
theorem", but almost. Thus this section mainly serves as motivation only. The existence and uniqueness of 
logarithms will be an easy corollary of later results. 

6. The Functional Equation Lemma 

The main and really only tool for constructing formal groups from scratch is the functional equation 
lemma. Honda's twisted power series method is a special case. and there is (of cour,e) also a step by step 
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(never ending) procedure of writing down the right kind of power series. Other methods to obtain formal 
groups are "formal completion along the identity of a group scheme" (cf. §I. I above) and the construction 
which attaches a formal group to a complex oriented cohomology theory (cf. §1.2 above), and that is about all. 

The functional equation lemma more or less gives necessary and sufficient conditions on a power series 
f(X) E A®Ql(X]]" to satisfy the peculiar integrality property r 1<J(X)+f(''l)) e A([X,YJr. Here A is 
assumed to be a torsion free ring so that A "'A ®Q is injective. In a certain sense to be explained below this 
statement holds even for all A. 

The functional equation lemma needs the following setting (ingredients) for its statement. 

A C K, o:K-+ K, o CA, p,q,s 1,s2, ••• (6.1) 

Here A and K are commutative rings, o is an ideal of A, o is a ring end~morphism, p is a prime number, q is a 
power of p and s 1.si •... are n Xn matrices with coefficients in K,sk = (sk(i,j)). These ingredients are supposed 
to satisfy the conditions 

o(a) =:a'I mod o for all a E A ;cl(sk(i,j))o C A all /,k,i,j. (6.2) 

Now let g(x) be an n-tuple of power series in X ., ... ,Xm with coefficients in A and such that g(O) = 0. 
Then a new n-tuple of power series fg(X) is constructed by 

j~(X) = g(X) t ~ S;o'.fg(X'I' ). (6.3) 
i=I 

Here X'I is short for (Xf , ...• xz;> and o'.a(X) for a power series a(X) over K is the result of applying o' to 
each of the coefficients of a(X). 

6.4. Exercise. Note that (6.3) in fact gives a recursive formula for the coefficients of .!,,(X). Note also that a 
power series f (}0 (with f (0) = 0) is of the form /g(X) for some g(X) E A [(X]]" iff 
f (X)- ~ s;o'.f (X'I) EA [(X]]". 

· · · = 0; n = m 1.g(X) = X. 

Now let A,K, o,o.p,q,s 1,s 2,... be a~ above a~d let g(X),g(X) be two n-tuples of power series in respectively 
n variables X 1, ••• Xn and m variables X 1, ••• ,Xm, such that g(O) = 0, g(O) = 0. Suppose moreover that the 
Jacobian matrix of g(X) (at 0) is invertible, i.e. g(X) = MX mod( degree 2) with M eGL,,(A ). Then one has 

6.6. Theorem (The functional equation lemma). 

(i) the n-tuple of power series Fx(X;Y) = J; 1(J,,(X)+ /g(Y)) in X 1, ••• ,X., Y1, ••• , Yn has its coefficients in A. 

(ii) the n-tuple of power series Ji 1 (h(X)) in X 1, ••• , Xm has its coefficients in A. 

(iii) let h (X) he an n-tuple of power series over A with h (0) = 0. 

Then J;.,<h (X)}-~ s,o; fg(h (Xq')) E A [[X]]', i.e. fg(h (X)) is of the form (6.3) (/iJr some h(X) instead of g 
I 

in (6.3)). 

(iv) I.ff a(X), /3( X) are n-tuples of power series in X 1, ••• , X, with coefficients in A and K respective/}', then 
for all I = 1,2,3, ... 

a(X)=:,B(X)mod o' = fi:(a(X)) =:fg(/3(X))mod o '. 

6.7. Application. Let ji,(X) = X +p- 1 xl +p- 2 XP"' + ... , cf. (6.5) above. Then Fh(X, Y) = //, 1(/h(X)+/j,( Y)) 

is a formal group over Z. 

6.8. Definition. Let F(X, Y),G(X, Y) be two formal groups over A of dimensions n and m respectively. A 
homomorphism a:F ...... G is an m-tuple of power series in n-variables with a(O) = 0 such that 
a(F(X, Y)) = G(a(X),a( Y}). A formula which is easy to remember if one writes the "product" F(X, Y) of the 

"elements" X, Y as X • F Y. This gives a(X• Y) = a(X)•a( Y}. The homomorphism a is an isomorphism if a is 
invertihle i.e. if n =m and a(X) ::= MX mod degree 2 with Me Gln(A). and a is a strict isomorphism if 

a(X) = X mod degree 2. 
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6.9 Exercise. The one dimensional formal groups Fh, (X, Y),Fh,(X, Y) over Z or ZP are isomorphic ilf h 1 = hi. 
Hint: Jet a(X) be the isomorphism. Let h 1 < h 2• Calculate a(Fh,(X, Y) and Fh,(a(X),a(Y)) mod degree 
(ph' +I). Alternative: apply part {iii) of the functional equation lemma. 

6.10. Exercise (Integrality of the addition polynomials of the big Witt vectors). Define the polynomials w;(X) 
in X1,X2,X3, ••• over Z, i = 1,2,3, ... by the formula 

w,,(X) = ~l(brn d)(J\d (6.11) 
d 

Thus w1(X) = Xi. w4(X) = 4X4 +2X~+xt· w 6(X) = 6X6+2X~+3X~+Xji. Let ~ 1 .~2 .... be the polyno­
mials in X1; Y1, resp. X 1,X2 ; Y 1, Y2, resp ... defined by 

w11 (~1 •...• ~11 ) = w11(X)+w11 (Y). (6.12) 

Then the ~ 1 .~2 .... have their coefficients in Z. Hint: consider w11 = n- 1w11 and w = {w 1,w2 , ... ), and for each 
p the functional equation lemma situation Zv>> C Q, a = id, q = p, o = PZv>» a 1 = SP' 
a2 = a3 = · · · = 0. where SP is the oo X oo matrix defined by Sp(a 1,a2,a 3, ... ) = (bi.b2 ,. .. ) with 
hp; = p ·· 1 a; and b1 = 0 if pi). Now observe that w(X) satisfies (6.3) and apply the functional equation lemma. 
In this form this requires an infinite dimensional version of theorem 6.3. Such a version exists provided the 
j~(X) satisfy certain support conditions (which are automatic in the case of finitely many variables and which 
are satisfied for w(X)). In this case because the~" depend only an X 1,. .. ,X11 ;Y1,, •• .,Y11 it suffices to consider 
the n-tuple of power series (w 1 (X), ... , w11 (X)) in n variables for all n. 

The infinite dimensional formal group defined by the power serie~ ~ 1 (X; Y).~2(X; Y),... in 
X 1.X2 .... ; Y 1, Y2.... is called the formal group of the big Will vectors and denoted W. 

7. Universal formal groups. Generaties 
An n-dimensional formal group law F(X, Y) over a ring L is universal (resp. a universal abelian formal 

group law) if for every n-dimensional formal group (resp. abelian formal group) G(X, Y) over a ring A there is 
a unique homomorphism of rings .p:L -+A, such that 

</>.F(X, Y) = G(X, Y). (7.1) 

Here. as usual, .p. means "apply <P to the coefficients of the power series involved". 

_ It is easy to see that universal formal group laws exist. To this end for the case n = 1 consider the ring 
L = Z[c,1], where the c;1 are indeterminates and i,j = 1,2,, .... Write F(X,Y) = X+Y+:S;.J>I cuX'Yl. In 
order for the associativity relation F(F(X, Y),Z) = F(X,F( Y.?ll to_ hold certain relations must hold between 
t_he c,,. Let I be the ideal generated by these relations and 'TT:L-+ L /I the projection. Then 'TT,F(X, Y) over 
L / 1 is a universal formal group law. Clearly for n > 1 a similar construction works. For abelian universal 
group laws one adds of course the relations cu = cfl. 

It is also easy to see that the underlying ring L is unique (up to isomorphism). Exercise: show that this 
follows directly from the definition of universality. It is a totally different matter to calculate L. This was first 
done for abe!ian group laws by Lazard (whence the letter L to denote it). The result is that L is a ring of 
polynomials. 

Lazard's proof of this fact is an ingenious step by step argument, requires lots of hard calculations and 
gives little insight in the nature of the universal formal group itself. 

8. p-typical formal groups 
First Jet us deal with the case that there is so to speak only are prime number involved. A commutative 

formal group F(X, Y) over a torsion free ring A is called p-typical if it is of the form 
F(X, Y) = F 1(j(X)+ j( Y)) with 

(8.1) 

where as usual Xl is short for (X{ ,. ... X1,). A formal group F(X, Y) over an arbitrary ring A is p-typical iff there 
exists a torsion free ring A' with a homomorphism 'TT:A' ...... A and a p-typical formal group P(X, Y) over A' 
such that 'Tr. F(X, Y) = F(X, Y). There exists a better, more intrinsic definition. What a universal p-typical 
commutative formal group would be is clear. Though now is not obvious that such animals exist. They do. 
however. 

The following fact sort of shows that one can deal with formal groups "one prime at a time" so to speak. 
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8.2. Theorem. [9, Thm 20.5.1] Let A be a torsion free ring and let Zip 1 be the ring of integers locali::ed al the 
prime p. Then two commutative formal groups F(X, Y), G (X, Y) over A are strictly isomorphic iff thq are strictlr 
isomorphic isomorphic over A ®Z1p 1 for all p. Also if for each p there is given an n-dimensional commutative for­
mal group F 1p 1( X. Y) over A ©Z1p 1 then there exist a unique (up to strict isomorphism) formal group law F( X, Y) 
over A which for each p is s1rictly isomorphic to F 1p 1(X, Y) over A ®Z1pi· 

Also over Zep 1-algebras A (where therefore all primes except possibly p are invertible) every commutative 
formal group law is strictly isomorphism to a p-typical one. Proof later. 

9. A universal p-typical formal group and a formal group universal over Z(p 1-algebras 
For simplicity let the dimension n of the formal groups in this section be n = 1. Consider 

Z[V 1, V2 , V3 , ••• ] = Z[V] C Q[V]. Let p =q. s1 = p 1 V1, and o:Q[V]-> Q[V] be given by o(V) = VP, and 
let o = pZ[V]. Then we are in a functional equation type situation, cf. §6 above. Now let G(X) = X so that 
.fdX) = /g(X) is given by 

where 

'° v, ' 
fv(X) =- X + 2:; --;;- o•'fv(XP) = X + a 1 XP + a1XP + ... 

i~l p 

The general formula for the a, is 

llm == 
1 1 •... ,i,· N .,. 

v M'" · · · vp"' 
11 I! /1 

p' 

and it is also not hard to prove the recursion formula 

pam == vl(' I am···\+ ~"' ~ Um-2 + ... + Vm.-\a~ + Vm 

which will be useful later. 

By the functional equation lemma 

Fv(X, Y) = F 1 (jv(X) + fv( Y)) 

v_, 
+ 

p 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

is a formal group law over Z[V]. It is certainly p-typical and in fact it is a universal p-typical formal group 
law. 

Now consider Z[T2 ,T3, ... ] = Z[T]C Q[T], p =q, V, = Tp'• s, = p- 1 V,. o(T1) =TI;. o = pZ[T], which 
is again a functional equation type situation. Also Z[V] above is a subring of Z[T] and this embeddir,g is com­
patible with everything in sight. Now take 

G(X) 
x V; . , 

2:; T1Xi, fT(X) = /g(X) = g(X) + 1~1 p o-'fT(XP) 
j not ~r riwer 

(9.5) 

Let 

Fr(X, Y) =ff 1(/r(X)+ /r( Y)). (9.6) 

Then. hy the functional equation lemma Fr(X, Y) is a formal group over Z[T]. 

9.7. Theorem_ Fr(X, Y) is universal for formal groups over Zi,p 1-algebras. I.e. if F(X, Y) is a on<' dimensional com­
rnuta1ive formal group over a Z1P1-a!gebra A, then there is a unique homomorphism of rings cp:Z[T] ___.A such that 
cp.F1 (X. Y) = F(X, Y). 

Also the functional equation lemma (part (ii)) says that Fv(X, Y) and Fr(X, Y) are strictly isomorphic over 
Z[T] and combined with theorem 9.7 this shows that over Z1p1-algebras every formal group is isomorphic to a 
p-typical one (as promised). 

10. Construction of a universal formal group law 
Again let us take n =I. Theorem (8.2), so far unproved, suggest that to find a universal formal group over 

a ring L one should look for a power series fu(X) which is like ./7-(X) for every prime p simultaneously. This 
turns out to be possible basically as a result of the Chinese remainder theorem. Explicitly one can proceed as 
follows. 
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JO. I. For each sequence (i 1 , ..• J,) with i1 E N \ { 1} choose an integer n (i 1, •.. , i,) such that the following 

conditions are satisfied 

( 10.2) n (i J , •••• i,) = l if S = l 
(10.3) n (i 1, ••• ,is) = l mod p' if i 1,, •• .,i, are powers of the prime p and i, + 1 is not a power of p(r ,,;;;;s). 

(10.4) n(ii. ... ,is) = O modp'- 1 if i 2 , ... ,i, are powers of the primep and i 1 and i,+ 1 are not powers of the 

primep. 

Now definefu(X) E Q[U2.U3 .... ] [[X]) by 

"' fc(X) = L mn(U)X", m1(U) = I, ( 10.5) 
n =I 

mn(U) = L ·1,-1 

(ii···· .i,) 

where v(j) = p if j is a power of the prime p and v(j) = 1 otherwise, and where the sum is over all factoriza­

tions (ii. ... ,i,), i1 EN\ {1}, i 1 • • • i, = n. 

Note the family relationship with formula (9.2) 

Now consider for each prime number p the functional equation situation ZV' 1[U] C QIU]. 

o = pZV' 1[U], p =q, s, = p -i Up'• a(Lf;) = uy. It is not hard to check that 

00 u' . ' 
fu(X) - L ;::.p_ a•'fu(XP) "'° ~1[ U] [[X]] ( 10.7) 

,~1 p 

and it follows that if 

FuiX,Y) = f(/<fu(X) + fu(Y)) (10.8) 

then Fu(X. Y) e: ZV'J[U] [[X, YJ]. This holds for all p. so that Fu(X. Y) has in fact its coefficients in Z[U]. An 
elegant argument due to Buhstaber and Novikov now permits to conclude that Fu(X, Y) is universal as fol­
lows. Let 

Fu(X,Y) = X+ Y+2: e;,1 X'YJ, e;.1 E Z[U]. 

For each n choose integers.\\">. ... • >-~"L 1 such that 1-\" 1 l';] + ... + 1-g; 1_ 11 [ 11 ~ 1 ] = v(n). Define 

n -I 

Yn = L 1-\"lei.n-J 
I =l 

(10.9) 

(10.10) 

Observe thaty11 =Un mod(U2 , ... ,U11 _i) so that they 2.y 3 •.. form a free polynomial basis of Z[U]. Now let 
G (X, Y) over A be any one-dimensional commutative formal group. 

G(X,Y) = X+Y+L auX'Y'. (10.11) 

Define cj>:Z[U] --->A by requiring that 
n ~I 

<f>(yn) = L A\" 1a1.n-l· (10.12) 
l =1 

This is well defined because the y 2 ,y 3 ,... form a free polynomial basis for Z[U]. We now claim that 

</>(e1.J) = a,,1 for all i,j ;;;. 1. This is proved by induction starting with the case i = j-= l which is trivial because 

Y2 = e1.1. Now suppose that </>(e,,1 ) = a,.J for all i.j ;;;. 1,i + j < n. Now because F(X, Y).G(X, Y) are com­

mutative formal group laws the coefficients e1.1 and a1.1 must satisfy certain conditions. viz. 

(10.13) 

(10.14) 

where the p,1, are certain universal polynomials expressing associativity. There is one such polynomial for each 
triple (i,j,k), i,j,k E N. And of course p,1, = 0 expresses the equality of the coefficients of X' Y1 z' on both 

sides of the identity F(F(X, Y),Z) = F(X,F( Y,Z)). It follows that these polynomials (in the indeterminates 

C1.m) are of the form 

li + 1l r1 +kl i C, +1.A - l j C,.J H - %dC1.m) (10.15) 

with %A a polynomial involving only Ci.m with I +m < i + j +k. We now need the nontrivial 
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10.16 Binomial coefficient lemma Each C., 
the expressions 

c.,,,. r +s = n can be written as an integral linear combination cif 

f..\" 1C1,n-1 + ... +f..~~1Cn-1.1 

li+j1 lk+jl i C,+J.k- j Ck+J.i· i,j,k ;;;;, 1, i + j + k = n. 

Now by induction </>(.Q,1k(e1.nil)== Ouda1.ml· Also <j>(;\\"1e1.,,··1+ ... +r..~:' 1 1e,,_u)= 
f..Y' 1a,_,,. 1 + ... +;\~" 1 . 1 an-l,l by definition. Thus by (10.14) and 10.16 <P{e,,1) == a1,1 for all 1 +j = n. This con­
c!ud<'.S the proof of the universality of F u(X. Y). 

This is quite considerably easier than Lazard's original arguments. Especially in the more dimensional case 
where in this approach the generalizations are easy while Lazard's method becomes almost impossible to han­
dle (11]. On the other hand I think it quite unlikely that I would have been able to guess at the form of 
Fu(X, Y) without Lazard's original work. And of course it is crucial to this approach to have a (reasonably 
explicit) candidate universal formal group law available. 

As constructed the universal formal group law Fu(X, Y) has a logarithm, viz fu(X). It follows, because 
Fv(X. Y) is universal, that logarithms exist for all formal groups defined over torsion free rings. 

Also fu(X) is of functional equation type. Thus every logarithm has this sort of structure. Thal is it looks 
as if it were constructed by means of a functional equation type recursion scheme. Though, of course, the con­
struction itself often does not apply simply because, e.g .. there may very well be no endomorphism a safofying 
a(a) =.aq mod a suitable ideal. 

11. Applications to algebraic topology 
Let Mu· be the generalized co homology theory defined by the complex cobordism spectrum MU. This 

theory is complex oriented (i.e. has Chern classes) and hence gives rise to a formal group over MU 0 (pt). 

11.1. Theorem (Quillen). The formal group law F Mu(X, Y) of complex cohordism is universal. 

11.2. Theorem (Miscenko ). The logarirhm, cf §5. of the formal group law of complex cohordism is equal w 

"' [CP") logFMi(X) = ~ Xn+I (11.3) 
n ~on+ I 

where [CP"] is the complex cobordism class of complex projective n-space. 

We now have two universal formal groups laws, F Mu(X, Y) and the one just constructed above. It follows 
that there are mutually inverse ring isomorphisms <j>:Z[U]-> MU 0 (pt),if:MU 0 (pt), -> Z[U] taking these for­
mal group laws into each other. In particular the <l>(U 2),<l>(U3 ), ... form a polynomial basis of MU'<pr) which 
can be calculated in terms of the [CP"] because we know logFMu(X) and the relations between the U2,Ll 3 .... 

and the coefficients off u(X). 

The resulting formulas become especially nice is we concentrate on one prime only (because lhe structure 
of the particular p-typical universal group Fv(X, Y) is so especially pleasant). Topologically this is done as fol­
lows. By smashing the spectrum MU with a suitable Moore space all primes except pare inverted yielding the 
cohomology theory MU.®Z1p). The spectrum MU®Ztpl splits as a wedge sum of suspensions of the socalle<l 
Brown-Peter.son spectrum BP. This one, "therefore". defines a complex oriented cohomology theory BP" 
whose associated formal group is the p-typification of F~w(X, Y) which means that the logarithm of FIJp(X. Y) 
is obtained from logFMu(X) by simply removing all terms not involving X to the power a power of p. (The 
functional equation lemma says that this procedure again yields a formal group). Also it follows that F8 p( X, Y) 
must bt: a universal p-typical formal group. 

Thus 

"" " " logF8p(X) = 2; m.XP , mn == p-n[CP' - 11. (l 1.4) 
n :;:;:Q 

Both 1:nP and. Fv of §10 above are p-typically universal. So, again, there is a ring isomorphism <j>:Z[V] 
->BP (pi) .takmg.fv(X) mto logF8 p(X). And, again there result formulas :or a set of free polynomial genera­
tors for BP (pc), the</>( V,) == v,, rn terms of the known elements m1 E BP (pt). The result is that 

BP 0 (pt) = ~1 [v1,V2, ... ],pm11 = vf 'm,,-1 + vf 'mn-2 + ... +v,,_ 1m1 + v11 (ll.5) 

cf. formula (9.3). Because Fv(X. Y) is in fact defined over Z[V], not just Zv>>fV] (though the p-typification iso­
morphism Fu "'=' F1 1s of course only defined over Zv>>f U], V, =Up') there is the added bonus that the 1•, arc in 
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fact integral, i.e. in MU. (pt). i.e. real cobordism classes of manifolds (not just element of Mu· <pt)®Z(!' 1). 

The generators v 1, v2, .•. of BP. (pt) have found numerous applications in algebraic topology in the hands of 
S. Araki, W. Steven Wilson. Douglas Ravenel, Haynes Miller. P. Landweber. J. Morava. D.C. Johnson. Larry 
Smith. R. Zahler, z. Yoshimura, M. Kamata, K. Shimakawa, N. Yagita, H. Yasumasa. K. Shibata, N. Shi­
mada, P.B. Shay. U. Wurgler a.o.; they permit one, so to speak. to calculate with BP-cohomologY. 

There are also other ways (than constructing an explicit universal formal group law) to obtain the genera­
tors due to S. Araki and J. Kozma. The first one to guess at a formula like (11.5) for the generators (but 
different) for the prime 2 was A. Liulevicius. Formal groups are now a most useful and well-established tool in 
algebraic topology. The papers of the authors already quoted and the lecture notes by Adams or Araki and the 
Helsinki lecture of D.C. Ravenel are good starting points. 

12. Atkin-Swinnerton Dyer congruences 

Let E be an elliptic curve over Q. There then exist an essentially unique minimal model of E over Z (i.e. 
an equation with coefficients in Z defining£) of the form Y2+c 1 XY +c3 Y = X 3 +c 2 X 2 +c4X +c0. For this 
model one can reduce modulo p to obtain curves over FP for each p. One defines the global Artin L-series of 
E by the formula 

L(s.E) = I1Lp(s) = ~cnn-·' (12.1) 
p " 

where 

(i) If E®FP is nonsingular, Lp(s) = (l-app-'+p 1- 2') • 1 where I-aPX+pX2 is the numerator of the 
zeta function of £0FP. 

(ii) If E®FP has an ordinary double point, Lp(s) = (l-€Pp-')- 1 with €p =+I or -I depending on 
whether the tangent at the double point are rational over FP or not. 

(iii) If E®FP has a cusp. Lp(s) = I. 

To E one now associates a commutative one-dimensional formal group FE with logarithm 

j~(X) = ~ n 1c,,X". ( 12.2) 
n "- ! 

It is an immediate consequence of the functional equation lemma that FE has its coefficients in Z. 

There is a second formal group attached to E viz. the formal completion along the identity (cf. §0 above) 
of its minimal model over Z. This one can be explicity described as follows. Lert = = X / Y be a local 
parameter at the zero element. Now w = dY /2Y+c 1X+c 3 is the invariant differential on E. Develop w 
locally around the zero element in powers of;; to find an expression 

x; 

w = ~ /3nz" 1dz, /31 = I. 
n-=::J 

The logarithm of the formal completion GE along the identity of Eis now equal to 

GE(X) = ± n -I {3,,X" 

" I 

12.5. Theorem (Honda). The Ji)rmal groups FE(X, Y) and Gio(X, Y) over Z are stricrlr isomorphic over Z. 

(12.3) 

( 12.4) 

However FE(X, Y) is a functional equation type formal group. Any strictly isomorphic formal group must 
therefore, according to part (iii) of the functional equation lemma. satisfy the same functional equation type 
in tegrali ty relations. This yields 

/3,,P - apf311 + phl'/3,, ilp := 0 mod p' if /1 := 0 mod p' - 1 ( 12.6) 

where /3,, lip -= 0 if (p.n) = I and f3n lip = {3,, 1 P if p In, and where ap.hp are defined by 
1-app -'+hpp 1 ·?.s = LP(s)- 1, cf. just helow (12.1) and above. These are the Atkin-Swinnerton Dyer 
congruences (originally the Atkin- Swinnterton Dyer conjectures) which were originally discovered numeri­
cally. 

13. The Witt vectors 

For each n = 1,2, ... let w,,(X 1 • •• ,X,,) be the polynomial 

Wn(X) = ~ dX'./ id 

J In 
( 13.1) 
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13.2. Theorem. There is a unique functor W :Ring -> Ring which saTisjies the following properties: 
(i) As a functor Ring_, Set, W(A) = {(a 1,a 2,a 3, ... ):a; E A} and W(<j>)(a 1,a 2, ... ) = (<l>(a 1 ),<l>(a 2), ... ) for 

<j>:A -> B in Ring. 

(ii) wn.A: W(A)-> A, w,,,A(a i,az, ... ,) = w.(a 1,. •• ,an) is a functorial ring homomorphism for eve!)' 
n = 1,2,. ... 

Moreover 

(iii) The functor W admits functorial ring homomorphisms f.: W(A) ...... W(A) which are uniquely character· 
ized by Wmfn = Wnm• n,m E N 

(iv) There is a functdorial homomorphism of rings ~: W(-) _, W( W(-)) characterized uniquely ~)' 
w •. W<A )D.A = fn,A for all n and A E Ring 

(v) There are functorial endomorphisms of abelian groups Vn:W(-)-> W(-) characterized ~y 
Wn vm = Wn Im if m In and Wn Vm = 0 if m+n. 

This is probably the most efficient way to introduce the Witt vectors, especially if the proofs of these state­
ments are omitted. As a matter of fact the first thing to prove is that the polynomials defining the addition in 
W(A):(ai.a2 .... )+(h 1,b2,. .. ) = (:£1(a,b),~2 (a,b), ... ) which means W.(~ 1 .D.2 , ... ) = w,,(X)+w,,(Y) (by (iii)). 
have coefficients in Z. This we have already done in §6 above. The other statements of 13.2 above (which basi­
cally are all integrality statements concerning various polynomials) can also be dealt with using various func­
tional equation lemma tricks (cf. [9,Ch.III]. 

Anotherd good way (and more "classical") to get at W is as follows. Define A(A) = 
(! +a 1t+a 2t 2 + ... :a; EA}. Multiplication of these formal power series with constant term 1 defines a func­
torial abelian group structure on A(A). Now write formally a(t) = l+a 1t+ ... = I1, (l-~1 1). A multiplica­
tion on A(A) is now defined by a(t)*b(t) = IT,,1 (l-~;1J/) if h(1) = 111 (1-11/). When this product is writ­
ten out the coefficients of the t" are symmetric in the ~s and 11's and therefore can be written as polynomials 
in the a; and hJ' This defines a functorial ring structure on A(A ). The endomorphisms f,, and V,, are defined 
by 

f.([I(l-~1 /) = fl(l-~;'t). V.a(t) = a(I"). ( 13.3) 
I I 

Define s,,: A(A) -> A by the formula 

00 d 
n~1 s.(a(l))t" = -1 dt log a(I) ( 13.4) 

so that e.g .. 1·,,([I(l-~;I)) = L~f. It is now easy to check that the functor A: Ring-> Ring together with the 
I 

I 

functor morphisms s,, :A(A)-> A satisfies properties completely analogous to those claimed for ( W, w 1• w2 .... ) 
in Theorem 13.2 parts (i),(ii),(iii),(v). (Part (iv), (souped-up Hasse-Witt exponential) is more difficult to get at). 

The connection between A and W is given by the functorial isomorphism 
£: W(A)-.. A(A),(a 1,a 2,. •. ) ..... 11(1-a;t') 

Indeed, 
I 

d . d . 
-1 dt logI}(l-a;t') = -1 dt Llog(l-a;t') = 

-ia Ii~ I 
= -1 L , i 

; 1-a;I 
= ~ia;ii(l+a;t;+aft 2;+ ... ) = Lia{1Ji 

1.j 

= L Lia~ /11n = L wn(a)t" 
n 1 In 

13.5. Exercise. Check everything that needs checking to prove theorem 13.2 minus part (iv). 

14_ Curves, Frobenius and Verschiebung 
Now let again F(X, Y) be an n-dimensional commutative formal group over a ring A. By definition the 

group of curves C(F) of Fis as a set equal to the set of all n-tuples of power series A(t) with coefficients in A 
with zero constant term. Two curves are added by the formula 

y(t)+rli(/) = F(y(l),8(1)) (14.1) 
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which makes perfect sense. This turns C(F) into a group. There is a topology of C (F) defined by the sub­
groups Cm(F) consisting of all curves y(t) = (y1(t), ... ,y.(t)) such that the first m coefficients of each of the 
y/t) are zero. With this topology C(F) is a complete topological group. 

There are a number of operators defined on C(F). The first two kinds are 

(homotheties) <a >y(t) = y(at) (14.2) 

(Verschiebung) V.y(t) = y(t"). (14.3) 

The group C(F) also has a sort of topological freeness property. The precise statement is that there are ele­
ments e1(t}, .. .,e.(t) eC(F), e.g. (1(t) = (t, 0,. .. ,0), .. .,e.(t) = (0,. . .,0,t) such that each element of C(F) can be 
uniquely written as a convergent series 

~ V;<aij>(/t). 
i.J 

Such a basis (1 (t),. . .,(.(t) is called a Vbasis. All this is perfectly simple and uses little more than that 
F(X, Y) = X + Y + (higher degree) (and the group property). 

The third kind of operator is 

(14.4) 

where~. is a primitive n-th root of unity. This is then (symmetric functions!) a power series in t (not just one 
in t 1 I"). A little care must be taken in interpreting this formula as roots of unity do not always make sense in 
the right way over all rings A. But things can be made precise fairly simply (in various ways). 

Of course the V m.fn are rather different things then the Ym,fn of §13 just above. However 

14.5. Exercise. Show that the abelian groups with operators (W(A),Vm,fn) and C(Gm),Fm.f,,) are isomorphic, 
where Gm is the one-dimensional formal group X + Y + XY over A. 

Still, it would have been better, logically speaking, not to use the same symbols, and machines would cer­
tainly object. Humans however are able to live with such ambiguities and seem even to thrive on them. 

There are a rather large number of relations between the various operators on C(F): 

<a><a'> = <aa'> 

YmYn=Ymn 

fmfn = fmn 

<a>Vm = Ym<a"'> 

fm<a > = <a"'>fm 

if(n,m) =I, f.Vm = Vmfn 

r.v. = [n] 

"' <a>+<b> ~ V,,<r,,(a,b)>f •. 
n ~I 

(14.6) 

(14.7) 

(14.8) 

(14.9) 

(14.10) 

(14.11) 

(14.12) 

(14.13) 

(14.14) 

Here [n) stands for the operator y(t) >-+ y(t)+ FY(I)+ F ... + FY(t) (n summands) and the r,,(Z 1,22) are cer­
tain universal polynomials in two variables Z 1, Z 2 defined by 

27 + Z~ = ~ drd(Z i.2 2 )" /d. (14.15) 
d I• 

(Note that the right hand side of (14.15) is equal to w.(r 1,. • .,r.). Now w.(~i. _ ..• ~.) = w.(X) + w.(Y) 
where the ~ 1 •••• , ~. are the addition polynomials of the Witt vectors; thus 
rd(Z i.Z2) = Y~J(Z 1,0,. ... 0;22,0, ... ,0) and hence has integral coefficients). 

15. Cart(A) 

Basically the Cartier-Dieudonne classification theorem for commutative formal groups laws over a ring A 
states that F >-+ C(F) is an equivalence of categories between formal groups over A and filtered complete topo­
logical groups with operators <a >,V,,,f,, satisfying all the relations (14.6)-(14.14) and such that C(F) is 
"topologically free" in the sense that it admits a V-basis in the sense of §14 above. This theorem extends to 
include infinite dimensional commutative formal groups. 
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It is more elegant to collect all the operators in one ring, first described by LAZARD (12] and called Cart(A) 
by him after Cartier. This is the ring of all formal expressions of the form 

00 

~ Vm<a ... >fn, am,n EA 
m.n '==I 

(15.1) 

with the support condition: for all m EN there are only finitely am,,,'1:0. The "calculation rules" ( 14.6)-(14. 14) 
now describe Cart (A) completely as a topological ring with the topology defined by the ideals M1 consisting 
of all expressions (15.1) for with am.n = 0 for all m .;;; /. 

16. Cartier-Dieudonne classification theory 
The topological group of curves C(F) of a formal group over A can now by means of the operations 

<a >,f11 ,V m be seen as a topological module over the (noncommutative topological ring Cart(A). They have 
special properties as Cart(A) modules, viz. the following 

(16.1) If (X;);, / is a set of elements in Cart(A) converging to zero for the filter of finite subsets of I and 
(y;), El is any set of elements of the Cart(A)-module C then (X,y1)1, 1 converges in C. 

(16.2) For each n E N let C" be the closure of the sum of all subgroups V1C for i ;;;., n. Then the C" define 
the topology of C. 

(16.3) Vm:C = et ~ C"' induces a bijection et I c 2 ...:. cm I cm+ I 
( 16.4) et I C 2 is a free A-module (for the operators induced by the <a>) 

Let us call such eart(A)-modules reduced. The Cartier-Dieudonne classification theory as formulated by 
Lazard now is summed up in 

16.5. Theorem. The functor F ,_. C(F) of commutative formal groups over A to reduced Cart( A) modules (with 
continuous eart(A)-modu/e morphisms as morphisms), is an equivalence of categories. 

17. p-typification 
The ring Cart(A) is a complicated object and so is a reduced Cart(A)-module. So there is lots of room for 

special cases and easier to use classification results. A first substantial simplification occurs if one limits oneself 
to "one prime at a time", i.e. formal groups over rings A which are Zv>1·algebras. Then C(F) splits as a direct 
sum of copies of the group of socalled p-typical ,curves Cp(F). For a torsion free Zip>·algebra A these are the 
curves such that logf'ly(I)) is of the form ~ c,tP ; for arbitrary Zipl·algebras A a definition similar to the one: 
used in §8 works. The topological group ep(F) is a module over a ring Cartp(A) which is just like Curt(A) 
except that only the V'; = VP· and f,;' = fp· occur. Cart(A) is a ring of infinite matrices over Cartp(A) in this 
case. The rules of calculation of Cartp(A) are obtained from those of Cart(A) by setting V,, = f,, = 0 if 11 is 
not a power of p. 

Now let A = k be an algebraically closed field of characteristic p >0. Let R = WP • (k) be the unramified 
discrete valuation ring with residue field k. The ring WP<(k) is the quotient of W(k) by the ideal of all 
(h 1,h 2,h.i .... ) E W(k) such that h, = 0 if i is not a power of p. It follows that as a set 
WP<(k) = ((au.a 1,. .. ):a,Ek} (with so to speak a, = bp·) and its ring structure is given by the polynomials 
"'P·" = wp" in Xp" ,Xp' , .... Xp· in the same way as the ring structure of W(-) is determined by the ""•· The 
quotient WP • ( -- ) admits the endomorphisms fp and VP here denoted 11 and p in order not to confuse them 
with the operators fp and VP on Cp(F). (The other Frobenius and Verschiebung morphisms of W( - ) do not 
descend). 

The map 

(17.1) 

define> an embedding(of topological rings), Wp·(k) c.+ Cartp(k). Now define the Dieudonne ring D(k) as the 
ring Wr«k)[f, VI of twisted polynomials in f and V over WP<(k) subject to the relations 

fV = Vf = p. xV = vx•, fx = x 0 f ( 17.2) 

where 11 is the Frobenius endomorphism of WP<(k ). Under the identification f >-> fp and V >-> Vp. D(k) 
becomes a dense subring of Cartp(k) and in this way one recovers a version (a covariant one) of Dieudonnes 
original classification of commutative formal groups over algebraically closed fields of characteristic p >0. by 
means of certain modules over D (k ). 

Localization with respect to V turns D(k) into a ring of twisted Laurent series in V with coefficients in 
WP o(k) and isomorphism classes of finitely generated torsion modules over this ring turn out to correspond to 
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isogeny classes of formal groups over k. These torsion modules can be classified and there results the 
classification theorem that every formal group over k is isogeneous to an up to isogeny unique direct sum of 
explicitly given formal groups Gn.m(X, Y), 1 ;;;; n ;;;; oo, 0 ;;;;m ;;;; oo,(n,m) = I. (A homorphism a:F-" G 
between formal groups over k of the same dimension with finite kernel is called an isogeny. And isogeny is the 
weakest equivalent relation with identifies F and Gin such a case). 

18. Other classification results 
Classification by means of Cartp(A) modules still leaves plenty of room for interesting and useful special 

cases, and so does classification by means of D(k) modules (i.e. Dieudonne modules) for k an algebraically 
closed field of characteristic p >0. 

Let k be a field of characteristic p >0, and F a commutative formal group over k. Consider the ring 
homomorphism [p ]F:k[[X]J -" k[[X]], X 1-> fp ]F(.X), where (l]r(Xl = X, [n Jr(X) = F(X, [n - l]r(X)). The 
formal group Fis said to be a finite height if fp lr makes k[[X]] a finite rank module over itself. This rank is 
then necessarily a power ph of the prime p and h is called the height of F. 

18.l. Exercise. If Fis one dimensional the height of Fis equal to h iff F(X, Y) =: X + Y +aCp•(X, Y) mod 
degree ph + 1 for some a =fa 0 in k. Thus the formal groups Fh(X < Y) over FP described in §6 above are of 
height h. 

18.2. Theorem. (LAZARD (10]). Let k be an algebraically closed field of characteristic p >0. Then the one dimen­
sional formal groups laws over k are classified by their heights h, 1 ;;;; h ;;;; oo (h = oo corresponds to F ~ G0 ). 

Now let k be a finite field, say Fq. The first result is that over k = Fp•, the algebraic closure of k = Fq 
the ring of endomorphisms is Eh the ring of integers of the division algebra Dh over Qp of rank h 2 and invari­
ant h- 1 • 

A very special endomorphism of each F over Fq is ~r(X) = Xq, the "Frobenius endomorphism". Endk(F) 
consists of those elements in Eh which commute with fr and it results that Endk(F) is the ring of integers of a 
central division algebra of rank h 2 / m2 and invariant m /hover Qp(~r) with m = (Qp(~r):Qpl· The "Fro­
henius endomorphism" ~F satisfies an equation over the maximal unramified extension of QP contained in 
Qp(~F) and this gives a polynomial over WP"(k) 

'i'F{fr) = 0, 'i'F(X) = X' + b 1X'- 1 + ... +b, (18.3) 

with the properties 

(18.4) 'i'F(X) is a polynomial over Wp•(Fq) which is irreducible over the quotient field Wp•(Fq)®QP = Kq 

( 18.5 l If~ is a root of 'I' F(X), then Qp(~) / Kq is totally ramified 

(18.6) [Qp(b 1,. • .,b,):Qp]vp(b,) divides r where q = p' and vp is the normalized exponential valuation on Kq. 

'I' ,-(X) is called the characteristic polynomial of the one dimensional formal group F. It now turns out 
(Honda) that these polynomials classify finite height one dimensional formal groups over finite fields. 

The classification results of this section can be deduced from the general theory described in § 17 above but 
can in fact he easier handled by various other more direct means (often involving the functional equation 
lemma). 

19. Cartier's first theorem 

The infinite dimensional formal group law W(X, Y) plays a very special role in formal group theory. Part 
of the reason is 

19.1. Cartier's first theorem. Let y0(t) E C(W) over a ring A be che curve (t,0,0, ... ,0). Thenforea~h curve y(t) 
of a commutarive formal group F over A there exists a unique homomorphism of formal groups ay: W -> F such 
that C(ay)(y0 (1)) = y(I). 

Thu~ the functor F ... C(F) of formal groups over A to Cart(A) modules is represented by the formal 
group W. 

20. U( W) 

As befits such an important and special object as the formal group of Witt vectors its covariant bialgebra 
is very nice 



66 MICHIEL HAZEWINKEL 

21.1. Theorem. U(W) = Z[Z1,Z2,. .. ] as a Z-algebra and the comultiplication is given br Zn ,_. 2-,+ 1 ~,, Z,0Z1 
with Z 0 c= l. 

On the other hand W, as the notation suggests, is the formal completion of the group valued functor 
A ,_, W (A) of the big Witt vectors and via the isomorphism W(A) -=.!\(A) = { l +a 1 t +a 2r2 + ... :a, EA } is 
represented . by the algebra R(W) = Z[X1,X2, ... ]. The addition is given by the polynomials 
:::i:n(X,Y) = :::i:,+F- 17 X,Y1, Xo =,Yo= I. That is by the comultiplication X,, ,_. -:E,+ 1 ~,, X,0X1 on R(W). 
This is the "same" object as U(W). 

This :'accident" is in fact an autoduality which can be understood in terms of the representation property 
19. l of Wand Cartier-duality. 

All this makes U :=::::U(W)"""R(W)""" · · · a remarkable object which certainly deserves deeper study, espe­
cially because it also occurs in still other guises in various parts of algebra such as the universal A-ring in one 
generator, the ring of representations EB R (S,,), where is Sn the symmetric group on n-letters, and the coho-

mology ring Jl*(BU;Z), where BU is the classifying space for complex vector bundles. The study and under­
standing of U in its various guises is (and has been for a number of years) a (slowly evolving) research project 
of mine. 

21. Remarks on noncommutative formal group theory 

So far I have talked almost exclusively about commutative formal groups and moreover have concentrated 
on the phenomena which occur away from these objects over (algebraically closed) fields of characteristic zero. 
Naturally, because over a field of characteristic zero commutative formal groups are not interesting. That 
changes of course if one admits noncommutative formal groups and one subject L)ne could pursue is to 
develop for say, noncommutative formal groups over algebraically closed fields (of any characteristic), all the 
possible analogues of (ordinary) (algebraic) Lie group and group theory. Much can be done and substantial 
amounts have been done, cf. [7]. 

Very little on the other hand is really known about noncommutative formal groups in terms of the kind of 
questions discussed in these lectures. E.g. about universal noncommutative formal groups of various kinds. We 
have of course the formal Lie theorem (over a Q-algebra Lie algebras and formal groups are equivalent 
categories) and there are Lazard's cohomological results on the extension (prolongation) of noncommutative 
formal group chunks [I I]. (A polynomial F(X, Y) of total degree n in 2m variables is a formal Lie group 
chunk of degree n if the conditions F(X,F( Y,Z)) = F(F(X, Y),Z).F(X, 0) = X,F(O. Y) = Y hold mod degree 
n +I: a prolongation of Fn is an Fn + 1 which is an /1 +I-chunk such that F,, + 1 =Fn mod( degree n + 1 )). For 
commutative chunks F,, extensions always exist and this is the original basis of Lazard's step by step power 
series approach; for noncommutative chunks this, is not necessarily true (except over Q-algebras as LAZARD 
proves [11]). E.g. the p 2 + p chunk X + Y + XP yp· does not prolong to a I-dimensional noncommutative for­
mal group over any field of characteristic p. It seems to me that a judicious mix of the Campbell- Hausdorff­
Baker formula with the functional equation formulas could give interesting results (using of course that there 
are also logarithms in the noncommutative case because of formal Lie theory, cf. §3 above) 

A totally different approach is based on the following idea. Because of theorems 21.1 and 19.1 the classify­
ing object C(F) of curves il), a commutative formal group can be obtained as the bialgebra homomorphisms 
U -+ U(F), where U = U( W). 

Now there is a very natural noncommutative generalization of the object U namely the noncommutative 
but cocommutative algebra 

U,,,. "'Z<Z1.Z2, ... >, Z 11 ,... L Z,021, Zo = I 
I+ j :::;on 

of all associative polynomials in Z 1,Z 2, ... with the same comultiplication as U. 

One can now study the functor F ..... BiAl;;(Um,U(F)) and the object U"' itself and try to find suitable 
noncommutative analogous of p-typification, Frobenius and Verschiebung operators, Cartier-Dieudonne 
modules, .... Substantial progress in this direction has been made by DITTERS [8]. 
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