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We describe the input/output automaton model, a model for concurrent and
distributed discrete event systems. We define the model, illustrate the model
with several examples concerning vending machines and a leader election
algorithm, and survey the ways in which the model has been used.

1. INTRODUCTION

The input/output automaton model has recently been defined, in [26,27], as a
tool for modeling concurrent and distributed discrete event systems of the sorts
arising in computer science. Since its introduction, the model has been used for
describing and reasoning about several different types of systems, includin g
network resource allocation algorithms, communication algorithms, concurrent
database systems, shared atomic objects, and dataflow architectures.

This paper is intended to introduce researchers to the model. It is organized
as follows. Section 2 contains an overview of the model. Section 3 defines the
model formally and examines several illustrative examples concerning candy
vending machines. Section 4 contains a second example, a leader election algo-

rithm. Finally, Section 5 contains a survey of some of the uses that have so far
been made of the model.

2. OVERVIEW OF THE MODEL |

I/0 automata provide an appropriate model for discrete event systems consist-
ing of concurrently-operating components. Such systems are often character-
1zed by the fact that, instead of simply computing some function of their input
and halting, they continuously receive input from and react to their
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t The shared-memory model described in [21] has had a strong influence on the present work. In
particular, the inability to block inputs appears as the ‘read-anything’ property in [21].
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imple: essentially, an automaton is said to ° solve’ a problem P provided th
its set of fair behaviors is a subset of P. It migh "
that this definition is nontnvml for exam ple 1f an auto maton had no fair

| N g squcnce of actions is in the proble m set P. That 1s, the automaton is
required to respond appropriately to every possible input pattern.

The model permits description of algorithms and systems at different levels
of abstraction. Abstraction mappings are defined, mapping automata that
include 1.mplementat10n detail to more abstract automata that suppress some of

ul. Such mappings can be used as aids in correctness proofs for algo-
thms: if automaton A4 is an image of B under an appropriate abstraction
mapping and A4 solves problem P, then B also solves P.
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current al gorithms. We have developed a sim ple langua ge for describi
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3.1. Input/output automata
We begin with the definition of an automaton. As previously mentioned, an
automaton’s actions are partitioned into sets of input, output, and internal
actions. This set of actions and its partition determines an interface between
the automaton and its environment. We refer to this interface as the action sig-
nature of the automaton. Formally, an action signature S is a partition of a set
acts(S) of actions into three disjoint sets in(S), out(S), and int(S) of input
actions, oulput actions, and internal actions, respectively. We denote by
ext(S)=in (S)Uout(S) the set of external actions, those actions visible to the
environment of any automaton have S as its action signature. An extemal
action signature 1S an action signature S with no imemal actions; th
int(S)= 3 or acts(S)=ext(S). Given an action signature S, we defin
extsig(S) to be external action signature S’ with in(S)=in(S) and
out (S$')=out (S). We denote by local (S) out (S)Uint(S) the set of locally-
controlled actions, those actions under the local any automaton hav-
ing S as its action signature. Gwen an automaton 4 with action signatus

will frequently abuse notation and denote in (S) by in (A) etc.
An nput/output automaton A (also called Z
automaton) consists of five components:
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a set states (A) of states,

mp ty set smﬂ( 4) Cstates (A) of start states,
ansition tion steps ( ) C states (A ) X acts ( )X states (A) with the
pmperty for every state s’ and in her nsition (s',m,s)

Into at most

Ccom pOﬂeD.t

Each element of
ment (s',7,s) of steps (A) as a step of A. If (.s' 7T s) 1S a step of A,
to be enabled 1n s’. Since every nput actwn 1s enabled
are said to be input-enabled. Thi
its input, which i1s one of the funda
other being that the performance of
tem component).

when an automaton ‘run
the system the automaton models ..
SEqUENCE $0,71,5 1,725+, Tp,Sp OF an 1nfinite seq
ing states and achons of A such that (s,, i +1,5; +1) 1s a step of A for every i.
An execution 1S an execution fra ment beg: ZIinning with art state. We denote
the set of executions of 4 by execs (4), and the set of finite executions of 4 by
Sinexecs(A). We say that a state is reachable if it is the final state of a finite
execuﬂon

While an execution represents a system computation, we are often interested
only in the sequence of actions performed during the course of the computa-
tion, and not in th through which the computation passes. The schedu’e
of an execution fragment « is the subsequence of a consisting of the actions
appearing in a, and is denoted by sched(a). We say that B is a schedule of an
automaton A4 if B i1s the schedule of an execution of A. We denote the set of
schedules of 4 by scheds(A), and tl finite schedules of A4 by
finscheds(A). The behavior of an executmn or schedule a of A is the subse-
quence of a consisting of external actions, and is denoted by beh(a). Intui-
tively, beh(a) is the externally observable portion of «, the sequence of actions
the external environment mi ght observe durin g o. We say that ﬁ 1S a behavior
of A if B is the behavior of an execution of 4. We denote the set of behaviors
of A by behs(A) and the set of finite behaviors of A by finbehs(A).

I ince the same action may occur several times in an execu-

tion or a schcdule, it 1S sometimes convenient to distinguish the difl
occurrences. On these occasions we refer to a particular occurrence of an
action as an event.

then 7 1s said
T every state, automata
the automaton is unable to block
umptions made in our model (th
an action 1s controlled
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Output actions:
Internal actions: none

Ve will sometimes abbreviate the two push actions as 1 and 2, an
dispensation actions as S, H and 4. The partition part (CM
output actions S, H, and 4 in the same equivalence class. The state Of C
consists of one vaniable ‘button pushed’, which takes on values O, 1 and 2. In
the initial state, ‘button _pushed’ 1s set to 0. We describe the transition relauon
for CM-1 by giving a precondition and an effect for every action 7: th
(s’,m,s) 1s a step of CM-1 exactly if the precondition of 7 is satisfied by s’ and
s 15 the result of transforming s’ as dcte rmined by the effects of 7. We omit th
precondition for an action when this precondition is true. The transition rela-
tion for CM-1 1s as follows:

button _pushed «— 1

button __pushed «— 2

SKYBAR
Precondition: button _pushed = 1
Effect: button _pushcd « 0

Precondition: button _pushed = 2
Effect: button pushed « O

ALMONDIJOY
Precondition: button . pushed = 2
Effect: button _pushed « 0

When the customer pushes button 1, CM-1 can dispense a SKYB AR.
the customer pushes button 2, CM-1 can dispense either a H FATHB

M-2 is identical to CM-1, except that its HEATHBAR
action has ‘false’ as its precondition. This candy machine never dispenses
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hich takes on values
JST-1’s actions are

[his customer is very patient: after pushin g a button, it waits for a candy bar
before pushing a button a second time. The partition part(CUST-1) of this
customer’s locally-controlled actions puts PUSHI and PUSH?2 together in one
equivalence class.

Customer CUST-2 1s somewhat more selectwe

THBAR, and then
. another vwvariable
Vanablc Lak

pushes button 1 forever. Formall
‘heathbaf received’ i1n 1its state 1n addition to ‘waitin
values ‘yes’ and ‘no’, initially ‘no’. Th :

those of CUST-1 are as follows:
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initially ‘no’. CUST-3 has
> dc [ined as f OLl OWS -

Satiated = O, Waj
satiated <« yes

Also, each of PUSH1 and PUSH?2
no’. A gam part( CU ST--3) puts

ocally-controlled actions
equivalence class.

position is qultc simple whcn we com posc a coﬂecﬂon of automata, we 1den--
tify an output action # of one automaton with the input action 7 of ea
maton having = as an input action. Conscquently, when one automaton hav-
mg 7 as an output action perfo rms 7, all

in th M-1 an d CUST--] we 1den

customer to the dy machine.

nal acUons of 3

automaton B, we cann ot aﬂow A to be composed with B unless the internal
actions of A are disjoint from the actions of B, since otherwise one of A’ S

internal actions could f orce B to take a step Furtherm ore, 1n kee pIin g with our
P h :

osophy that at most one system component controls the performance of
any given action, we cannot allow 4 and B to be composed unl
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. CM-1 and CUST-1, f or example, are strong]

output acnons and all of hich can an in

action of a com ponent) become input actions. For exam ple all actions become
output actions in the composition of CM-1 and CUST-1. NoUce that ths
composition does not h de actions such as PUSHI represcn
ST this demsmn, consmer one
ving 7 as an output action and two automata B, and B, hav-
Ing 7 as an input action. Noticc that « 1s essentially a broadcast from 4 to B,
and B » 1N the compo smon A BB, of the ths ee automata Noﬁce however,

ith B,, and hence = would no lon gcr be a bmadmt to
[his is problcmatlc if we want to reason about the system

acUons expha tly
ecedin g discussion motivates

T Such a collection is said to be compatible if it satisfies the first two of the three properties listed.
Some of the results below follow simply from compatibility, while others require strong compati-
bility. Here, we simplify matters by conszdmng the stronger definition only. The consequences of

the two definitions are described more carefull
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sig (4) =TI, ¢ssig (Ay),
[1,.;states(A;),
start(A)=1

iel starit (A,),
steps (A) is the set of trip les (sy,7,8,) such that, for all

then (s;[i ], m,8,[i ]) Esteps (A;), and if weacts(A;) the

pa rt ( A ) — 1 cl par 4 (A ,)
the finite set {1,...,n}, we often denote 11,

the automata Ag are 1in " d,

el , 1
0 S [l ]: S ) [Z ], and

each COmpo nem beco mes an equivalence class of the composmon) For exam-
t10n has one class {S,H,A} and CUST-1’s partition has

M-1 CU ST-I has two classes {S A}

tive components (e. g., Cl
maton. Again, we ignore thi
next section.

position to those of the composition’s components. The first says, for example,
that an execution of a composition induces executions of the component auto-
mata. Given an execution a= so m 51... of A, let al|A the sequence ob
by deleting 7;s; when «; is not an action of A; and replacing the remaini

by Sj[z]

M-1 and CU ST-1) of the system modeled by at
until we define fair computatmn in the

PROPOSITION 1. Let {A;};c; be a strongly compatible collection of automata and
let A=11;c1A4;. If acexecs(A) then a|ld;execs(A;) for every i €1. Moreover, the

same result holds if execs is replaced by finexecs, scheds, finscheds, behs, or
finbehs.

Certain converses of the preceding proposition are also true. The following
proposition says that executions of component automata can often be pasted
together to form an execution of the composition.

T Here start (A) and states (A) are defined in terms of the ordinary Cartesian product, while sig(4)
is defined in terms of the composition of actions signatures just defined. Also, we use the notation
s{i ] to denote the i-th component of the state vector s.
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mpatible collection of automa

for eve g= I _ th en pe sch eds (A) )
scheds are replaced by ext and behs, respectively.

n automaton
n a hidin g Op Cra tion f Oor

define an operai 10n th hides’ actions of a
rting them to internal actions. We begin wit
action signatures: if § is an action signature and X Cacts(S), then
hides(S)=S’ where in(S)=in(S)—Z2, owt(S’) =out(S)—= and inz(S’)
= int ( S) U 2. We now define a hidin g Opel'ation for automata: if 4 is an auto-
maton and 2 Cacts(A), then hides(A) is ined from A4 by

the automaton A’ obtasi
replacing sig (A) with sig (A") = hide s(sig (A)).

3.3. Fairness

Consider CUST-4, a part cularly gr eed y version of CUST-1 in whi

actions have the precondition ‘true’; that is, the customer does not wait for a
i ain. One behavior of the composition

equence 1111... in which the customer repeated]

27 dy machine a chance to d spense a

pushes button 1 with
candy bar. Clearly the only time the candy machine can do its job 1s when it 1s
treated fairly; that i1s, when it is given a chance to respond to its input. For
this reason, we are in general only interested in the execuhons of a composi-
tion in which all components are treated fairly. Whil it means for a
component to be treated fairly may vary from context to context, it seems that
any reasonable definiti infinitely often the
component 1s given th unity to perform omne of its locally-controlled
actions (cf. [10]). In this section we dc fine such a notion of fairness.
As we have mentioned, the part; an automaton’s locally-controlled
acuons 1S mtend ed to capture some of the structure of the system the automa-
Fach class of actions is intended to represent the set of
y-contm lled actions of some system compone ice that the locally-
controlled actions of CM -1 and CU ST-4 are {S A} and {1 2} resp ectively,
two equ.lvalcnce classes {S H A} and {1,2}. The definition of automaton com-
position guarantees that an equivalence class of a component automaton
becomes an equivalence class of the composition, and hence that composition
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m an action f rom the class C : . i each attemp

rmed, or no action from C can be performed
since no action from C is enabled. For example, we m ay view a finite fai
cution as an execution at the end of which th epeatedly cycles
through the classes in round-robin order attempting to perfo m an action from
each class, but failing each time since no action is enabled from the final state.
Returning to the composition CM-1-CUST-4, we see that 111... 1s not a fair
behavior since the output action S of CM-1 1
the first) and yet never performed. On the otl is a f air
behavior of the composition since infinitely often an output action of CM-1 i
performed and infinitely often an output action of CUST-4 is performed.
sidering the composition CM-1-CUST-3, notice that any finite execution end-
ing with the action BECOME SATIATED is a fair execution since from th
state following this action no action of the composition is enabled. (In fact,
these are precisely the fair finite executions of this composition.)
We denote the set of fair executions of A by fairexecs(A). We say th
fair schedule of A if B is the schedule of a fair execution of 4, and we denote
the set of fair schedules of A by fairscheds(A). We say that B is a fair behavior
of A if B 1s the behavior of a fair execution of 4, and we denote the set of fair
behaviors of 4 by fairbehs(A). For example, the schedule consisting of the sin-
gle internal action BECOME SATIATED is a fair schedule of CM-1-CUST-3,
and hence the empty schedule consisting of no actions is a fair behavior of thi
composlition.

We can prove the following analogues to Propositions 1-3 in the precedin
section:

T It might be argued that retaining this partition is a bad thing to do since it destroys some as-
pects of abstraction. Notice, however, that any reasonable definition of fairness must lead to some

breakdown of abstraction since being fair means being fair to the primitive components, which
must be modeled somehow.
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be a strongly compatible collection of automa
let A=11;_A;. If aefe mrexecs( 1) then a|A

A; fazrexecs( 4); for every i € I
ds if fairexecs is rep laced by fairscheds or Jairbebhs.

A;) for every i e I then B Ef ai :
acts and fairscheds are replaced

a component automaton dete rmines by itself when one of its locall
actions may be perf ormed.

3.4. Problem .speczﬁca tion
‘Dehaviors’, and th an auto maton solves th pecifi
‘behawors 1S contained [he automaton Solves
xhi bltS 1sa ‘b ehavmr OWed by the problem

th the automaton is
['he appropriate notion of ‘b ehawor’ (e.g., finite behavicr,
air behavior, etc.) used inition depends to some
the nature of th n speci

It 1S often useful if

saUsﬁcd {16]
they sp ecify a property that must hold in

nite computaﬂon satisfies a saf €ty property if and onl
preﬁ_x of the computation does so, the notion of ‘behavi
context seems to be finite behaviors. Liveness properties are informall
terized by the fact that they specify events that must eventually be performed.
A rehable candy machine, for example, should satisfy the liveness condition
that if a button is pushed then a candy bar (of the correct type) is eventually
dispensed. Clearly this is a property of infinite behaviors, and not finite
behaviors. In fact, this is a property that can only be satisfied by fair
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Is(H) 1s a |

' the set of finite sch e -

that B8 1s a behavior of H i
the set of behaviors of H
behawors of H by finbehs(H). We extend th
fair behaviors to schedule modules 1 '
=scheds (H) and fairbehs (H)=behs(H). W
to either an automaton or a schedule module.
[here are several natural schedule modules that we often wish to associate
with an automaton. Th Cy COITCSPOD.d to fini
schedules, fair schedules, behaviors, finite bchawors and fair behavmrs For
each automaton A, let Scheds (A), Fi mscheds (A) and Fairscheds(A) be the
schedule modules having action signature sig(4) and having schedules
scheds (A), finscheds(A) and fairscheds(A), respectively. Also, for each modul
M (either an automaton or schedule module), let Behs (M), Finbehs(M) and
Fairbehs (M) be the schedule modules having the external action signature
extsig (M) and having schedules behs (M), finbehs (M) and fairbehs (M) , TEspec-
tively. (Here and elsewhere, we follow the convention of denoting sets of
schedules with lower case names and corresponding schedule modules with
correspon Ng upper case names.)

It is convenient to define two operations for schedule modules. Correspond-
Ing to our composition operation for automata, we define the composition of a

countable collection of strongly compatible schedule modules {H;};.; to be the
schedule module H =I1,_;H; where:

Slg(H) HJEISIg(Hz)
scheds (H) is the set of sequences B of actions of H such

schedule of H; for every ie1.

The following proposition shows how composition of schedule modules
corresponds to composition of automata.

oLl SChed e | 217

that ﬁ IH i iS a
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Put-enabl ed ensures f . at f azrbehs (A) contain
snh le sequence of input actions. For analo gOUS reaso
implements P.
stages, 1t is convenient to state the defin tions of ‘solves’ ]
more generally. For exan ple we may wan
a problcm by showine th
urn ‘solves’ another automaton, and so on,
solves the original problem. Th \{ 2
solves " f fairbehs (M) Cf azrbehs(
ﬁnbehs (M) C finbehs (M").
To illustrate these defin
of correct

1tions, let us consider some in
Can dy [Iid C nine bEhaVIOI'

nine can be described by th
] i. SAFE-CM has the same action signature as CM
1, and has as ns set of schedules the set of all fins infinite sequences over
the symbols 1,2,S,H,A satisfying the f oﬂo wing condmon evcry S is imm
ately prece ded by a l and evcry A or H Immed ate]y preced ]

In order to show th M-1 1s a safe candy machine (that is, that it 1mp1e-
ments the problem dembed by SAFE-CM)

- the glven I'equu‘ement we proceed by mductlon on

the length of a behavwr using an inductive hypothesis that characterizes
state of CM-1 in terms of the preceding events: button _pushed = 1 if the last
event 1n the sequence is PUSHI1, button __pushed 2 1if the last event I the
sequence 1s PUSH2, and button _pushed = 0 otherwise (that is, if the sequence
1S empty or the last event 1s a dispensation event). The inductive step considers
cases based on the five possible actions. For instance, if SKYBAR occurs, its
precondition implies that button pushed = 1 just prior to the dispensation;

T This concept is called satisfying in [26).
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( macnin c, H, 1S not a very
pecification below. In order to do this

machine be hawor it 1s helpful to conslder certain
the interaction between the machin d 12 nm 0
may want to restrict attention to mteracﬂons in which push and d: spen satmn
events alternate strictly. Defin sequence of candy machine achons to be
wellfonned if 1t consmts of alternatin and output (push a lispe

rting with an input action. Notice that CM

{-1 has behaviors, in
fact fa beha.wors rmed. For example, 11S118... is a non-
POW@I' to 1n that 1ts environment satisfies the well-formedn

A stron ger set of reqlm‘em ents than SAFE-CM can be descnbed by

odul M. LIVE-CM has the same action mgnature as CM-1.
Its set of scqucnces are those that are safe candy machine sequences and that
in addition satisfy the following condition: ‘If the sequence is well-formed,
then every 1 event is followed by a later S event, and every 2 event is followed
by a later H or A event’. T That is, every request for a candy bar is eventually
satisfied by a candy bar of the correct type.

et us consider Wthh of our candy machines are live candy machines; that
1s, which can [VE-CM. CM-3 is not a live candy machine
because it has fair behaviors, such as the sequence consisting of the single
event I, th this iti [his sequence satisfies the well-
formedness hypothesis, but does not sausfy the liveness conclusion.) On the
other hand, CM-1 i machin ] can prove as follows.
Suppose not; then there is a fair behawor of CM-1 that 1s well-formed an
that contains a push event that is not followed by any later dispensati
of the correct type. By well-formedn M-1 3
machine, the only possibility is that the sequence is finite and ends with th
given push event. Say, for example, that the push event is PUSHI. Tt
the state characterization given above, thc state after the glven schedule has
button pushed =1. Then the SKYB pensation action is enabled 1n th
state. But the definition of a fair execution implies that no action of CM-1 can
be enabled in the final state, which yields a contradiction. CM-2 is also a live
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behavmr 128 12 [12H ..
by § events. H
action f mm

mMan y Way S tO ar guc
urn our attention to two m

reasoning about the behavior of an
which we reason about th i
behavior of tl

It is often th that . 3 the context
of certain restrictions on its mput lhese restrictions may be guaranteed in the
context of the composition with other automata comprising the remainder of
the system, or may be restrictions defined by a problem statement describir g
conditions under which a solution is required to behave correctly. (Recall
example, the well-formedness conditions defined earlier for candy machines.) A
useful notion for discussing such restrictions is that of a module * preserving’ a
property of behaviors: as long as the environment does not violate this pro-
perty, neither does the module.

In practice, this notion is of most interest when the property is prefix-closed,
and when the property does not concern the module’s internal actions. A set of
sequences & 1s said to be prefix-closed if B€¥ whenever both B is a prefix of «
and ae?¥. For example, the set of well-formed sequences defined for candy
machines is prefix-closed. A module M (either an automaton or schedule
module) is said to be prefix-closed provided that finbehs(M) is prefix-closed.
For example the schedule module SAFE-CM is prefix-closed, and every auto-
maton 1s prefix-closed. Let M be a prefix-closed module and let ¥ be a
nonempty, prefix-closed set of sequences of actions from a set ® satisfying
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he cumulative behavior satisfies &, the modul
he cumulative behavior satisfies ¥. Tht

pmriM e ﬁnbe}zs (M ) This 1 plics that we consider onl y sequences f
that contain no internal actions of M. Second, notice that we requir
B to satisfy only S8|® the stronger property B€<. Suppose, for
example, that ¥ is a property of the actions ® at one of two interfaces to the
module M. In this case, it may be that for no €9 and weout (M) is it the
that Bw|M € finbehs (M), since all finite behaviors of M containin g outputs
include activi ty at both interfaces to M. B y considerin g B satisfvin g Ollly
be?, we consider all sequences determining finite behaviors of M that, at
the interface concerning ¥, do not violate the property .
One can prove that a composition preserves a property by showin g that each
of the component automata preserves the property:

PROPOSITION 8. Let {A;};; be a strongly compatible collection of automata and
let A=11;c1A4;. If A; preserves @ for every i €l, then A preserves .

For example, since CM-1 and CUST-1 both preserve well-formedness, the
composition CM-1-CUST-1 does so as well.

In fact, we can prove a slightly stronger result. An automaton is said to be
closed 1f 1t has no input actions. In other words, it models a closed system that
does not interact with its environment.

PROPOSITION 9. Let A be a closed automaton. Let @ be a set of sequences over
©. If A preserves 9, then finbehs (A)|® C 9.

In the special case that ® is the set of external actions of A, the conclusion of
this proposition reduces to the fact that Jinbehs (A) C®. The proof of the pro-
position depends on the fact that ® does not contain any of A’s input actions,
and hence that if the property & is violated then it is not an input action of A
committing the violation. In fact, this proposition follows as a corollary from
the following slightly more general statement: If 4 preserves 9 and
in(A)N®= & then Jinbehs (4)|® C 9.

Combining Propositions 8 and 9, we have the followin g techniq
ing that an automaton implements a problem:
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ierA; IS a dose | automa

ipatible automata
4; sobves P; for every i, then

. Let {A;}ic1 be a collection of strongly con
and let {P;};c; be a collection of problems. I

the automata {A4;};; Solvcs a
mponent A4; solves a problem P; and th

-CU ST be
. the customer 1S not the ﬁrst to vmlate
equence 1S weﬂ-fo rmed, th Lh

that every bchawor
nfinite well-formed

MpOSILION. A second common tech-
Ing { l at an automaton solves a problem 1s hierarchical decompo-
sition 1n Wthh we prove that the gwen automaton solves a second, that the
Second SOlVCS a this d and SO Oon unti the fin al automaton SO]VCS (the given
problem. One way of proving that one automaton A4 solves another automaton
B 1s to establish a relationship between the states of A and B and use this rela-
tionship to argue that the fair behaviors of 4 are fair behaviors of B. One
helpful such relationship is a possibilities mapping, which we now define.

We define an extended step of an automaton A4 to be a triple of the form
(s’,B,s), where s’ and s are states of A, B is a finite sequence of actions of A4,
and there is an execution fragment of A having s’ as its first state, s as its last
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to Ef (50)-
2. f s’ 18 a reachable state of A t'e f (s) 1s a rcacha
A at
a. ylext(B) = wlext(A4), a
b. tef (s).
It 1s easy to show, for example, th
CUST-2 to CU ST-1 that maps eac -
[he existence of a p0331b ities ma ppm g from A to B together witl
tional results relating tl sed to prove that
A solves B. Some such addmonal results are gwen 1n [26} and [33]. For exam-
ple using our possibilities mapping from CUST-2 to CUST-1 we can prove
hat CUST-2 actually solves CUST-1. A straightforward proof can be based
directly on the definition of fair execution and the fact that for every state s of
CUST-2, some output action 1s enabled in s for CUST-2 exactly if some out-
put action is enabled in the single state in £ (s) for CUST-1.
In cases in which we are only interested in finite behaviors and not fair
behaviors, the following simple result is often useful.

CROPOSITION 12. Suppose that A and B are automata with the same external

action signature. If there is a possibilities mapping from A to B, then A imple-
ments B.

So, for example, the existence of the possibilities mapping f from CUST-2 to
CUST-1 implies that CUST-2 implements CUST-1.

machines studied in the previous section, the election of a leader in a ring of
processors. This example exhibits much more interesting concurrent activity
than the candy machine example. It shows how one can use the model to rea-
son about interesting concurrent algorithms, and suggests how the mod

be used to carry out complexity analysis and prove lower boun
bility results.

We assume a ring of n processors, each startin
chosen from a universal totall . Each processor can
communicate with each of its neighbours in the ring, using a pair of one-way
channels. The processors do not know the size of the rin g, nor the specif
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ulvalence cls

to be delivered, then some message 1s evemu ally dels
E&Ch pI OCCSSOI iS also moda e]ﬁd as an

action by which it can announ
sor. It may als
A collection of chann
system automaton, an
tem automaton in whi
problc m to be solved b y 1
whose external action signature |

. out-

aul the set of Sequences of
In a correct behavior, exactly one LEADER

tifier is Eess than i
If it 1S greater than i
. If 1t 18 e |

the state of a processor with j

mg ' Wthh hold a subset of 7, in {z} It also has a vanablc ‘leadcr-
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safety Proof (that is, tha EADER event ever occuIS)

ving an mvanam assertion relatlng the identifiers that appeas
dif aces 1 ring, both as processor id’s and in messages. M
y, 1t must be shown that 1f i< ], then a prmsor W1th 1dentif;

[n order to prove hvencss FA] tuall
OCCurs), anothcr used, expressing conservation of the message
di aximum 1dent1ﬁer ‘Then a “variant function’ is defined,
descnbmg the progress tha - made toward election of a leader: for
each state, the value of the variant function in that state is the sum of the dis-
tances of all id’s back to their originating processors, measured in a clockwise
dlrectlon At every point thre the value of the variant function is nonzero,
tha EADER action) can be shown to
urthermore, at every point where the value of the variant
function is nonzero, some action is enabled Thus, the function value eventu-
ally reaches zero, and hence a LEADER tually occurs.

The model can be used to carry out complemty analysis. For any execution
of the algorithm, the number of SEND or RECEIVE events can be used as a
measure of the amount of communication; it is not hard to prove that 2n2 is a
worst-case upper bound on this number. Also, for any execution, time can be
measured as follows. Assign a ‘real time’ to each event, as large as possible,
subject to the requirement that for each class of the partition, the time between
successive ‘turns’ for that class is at most 1. Then the difference between the
real time assigned to the LEADER event and the start time can be taken as a
time measure for the entire execution. Since 2n2 is a worst-case upper bound
on the number of SEND and RECEIVE events, it is not hard to see that
2n*+1 is a worst-case upper bound for this time measure.! The given

T The standard analysis of this algorithm attains an O (n) upper bound, by assuming all messages
are delivered within time 1 regardless of the congestion of the message channels. We do not as-
sume this, and so obtain a quadratic bound.
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5.1. Network resource allocation
Our first use of - e model was for describin g network resource allocati
ithm. [26} presents a network arbiter and proves its correctn

I'he al gon thm is b ased on a resource p ;i

_ ed include safety pro-
an d hvencss prope rties (no lock out)

| for a parti . Th
intermediate levcl 1S a dcscnp tion of the al gon thm 1n terms of graph th eory ;
1zed as an automaton to gether mth a restnct ed set of executmns

it, and thus that the distributed algon thm solves the arbiter problem.

viost of the mtercstmg reasoning about the algOn thm 1s done at the inter-
medlate level, in terms of graphs. This reasoning is close to the intuitive rea-
soning one would normally use to understand and explain the al gorithm. Th
interesting work involves showing that the intermediate level solves the high-
level problem statement. Showing that

the lowest level solves the intermediate
level is a long but straightforward case analysis.

[26] also contains an analysis of the time complexity of the algorithro
demonstrating an O(n) worst-case upper bound, where n is the number of
nodes in the network, and an O(d) worst-case upper bound when requests do
not overlap, where d is the diameter of the network. The time analysis proof
follows the proof of ‘no lockout’ very closely, suggesting that there may be a
more general correspondence between liveness proofs and proofs of upper
bounds on time.

We have also used the model to study other network resource allocation

algorithms. For exam ple, in [28], we give an algorithm for the ‘Drinking Philo-
sophers’ problem: in this problem, users request sets of resources by name,
with the same user possibly requesting different sets of resources each time it
: tains an algorithm for this problem, constructed by
O /110 all Cu_lal' Dinin g Ph]losophers al gon thin . Ul a]_ gon thm.
on thc one 1n [5], 1s described as a composition of automata that solve th

Dining Philosophers problem and automata that carry out additional
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a proof for Awerbuch’s algorl hm. thm
separate autom ata for intercluster and intracluster synchroniza ]
Chl ster sync Nronize urther dccompo sed 11“.0 a plece CXEeCUulln g at each node..
In fact, Awerbuch’s actual program for each node is described as the composi-
tion of two automata, one participating in intercluster a

nd one in intracluster

3.3. Communication

In [33], we present a correctness proof for th
spanning tree algorithm of [11]. Th hniques used are based on
ical structure used in [26]. However, instead of a linear hierarchy of algorithms,
we use a lattice of algorithms. The complete algorithm has several different
projections onto higher level ‘subalgorithms’, where each subalgorithm
represents one task performed by the main algorithm. The proof involves
showing that the subalgorithms all solve the minimum spanning tree problem
and that the full al gOI'l thm ‘solves’ all of the subal gon thms. wing th

latter, we make use of many properties of the separate subalgorithms.
develop the basic theory needed for lattice-structured proofs; some work on a
similar theory appears in [18].

Another proof of the correctness of the algorithm of [11] appears in [7]. Thi

proof uses techniques closely related to the notion of communication-closed
layers [8], and is based on a model which is essentially the same as th G
automaton model.

More recently, we have used 1/0O automata to characterize correct behavior
for physical channels and data links [23]. We prove that certain types of data
ink behavior can be implemented in terms of certain types of physical chan-

hile other types cann iminary results show that interesting data

behavmr seems to require at least some stable storage (whereas previous

work shows that a single stable bit at each end suffices). Also, under certain

hnical assumptions, th ink protocol must use unboun ded size headers

to achieve reasonable behavior, in case the underlying physical channels are
not FIFO.

the hier arch-
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finite cxecution have so far been considered, and only
been proved.

3.9. Shared atomic objects
. AD Obj ect 1s said to be atomic, E' oughi y speak
invocations of ope mnons as
l-write re; ..- sters for use by

.. write re gasters for d
ter n-reader registers from
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in dataflow com putauon
ult about datafl

Oour ()pcratlona] semant: | n’s ﬁxed—pomt semantics. In

of [25] generalizes Kahn Ince the detc rminate I/0 automa ta used in
[25] to model processes compute all continuous stream fu
ahn’s PTOCESSCS COIDPUIC a more restricted class of fun

nctions whereas

5.7. Real-time computing
Finally, some recent work [29] suggests some ways in which time can be intro-
duced into the 170 automaton model. Based on these definitions, Lynch has
suggested [20] some preliminary ideas on how the I/ O automaton model can
be used to model and reason about real-tim '
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