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Assessing the efficiency of resource allocations in
bandwidth-sharing networks

ABSTRACT

Resource allocation in bandwidth-sharing networks is inherently complex: The distributed nature
of resource allocation management prohibits global coordination for efficiency, i.e., aiming at full
resource usage at all times. In addition, it is well recognized that resource efficiency may be
conflicting with other critical performance measures such as flow delay. Without a notion of
optimal (or “near-optimal”) behavior, the performance of resource allocation schemes can not
be assessed properly. In previous work, we showed that optimal workload-based (or queue-
length based) strategies have certain structural properties (they are characterized by so-called
switching curves), but are too complex in general to be determined exactly. In addition,
numerically determining the optimal strategy often requires excessive computational effort. This
raises the need for simpler strategies with “near-optimal” behavior that can serve as a sensible
bench-mark to test resource allocation strategies. We focus on flows traversing the network,
sharing the resources on their common path with (independently generated) cross-traffic.
Assuming exponentially distributed flow sizes, we show that in many scenarios optimizing the
"drain time" under a fluid scaling gives a simple linear switching strategy that accurately
approximates the optimal strategy. When two nodes on the flow path are equally congested,
however, the fluid scaling is not appropriate, and the corresponding strategy may not even
ensure stability. In such cases we show that the appropriate scaling for efficient workload-based
allocations follows a square-root law. Armed with these, we then assess the potential gain that
any sophisticated strategy can achieve over standard alpha-fair strategies, which are
representations of common distributed allocation schemes, and confirm that alpha-fair
strategies perform excellently among non-anticipating policies. In particular, we can
approximate the optimal policy with a weighted alpha-fair strategy.
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Abstract

Resource allocation in bandwidth-sharing networks is inherently complex: The distributed
nature of resource allocation management prohibits global coordination for efficiency, i.e.,
aiming at full resource usage at all times. In addition, it is well recognized that resource
efficiency may be conflicting with other critical performance measures such as flow delay.
Without a notion of optimal (or “near-optimal”) behavior, the performance of resource al-
location schemes can not be assessed properly. In previous work, we showed that optimal
workload-based (or queue-length based) strategies have certain structural properties (they
are characterized by so-called switching curves), but are too complex in general to be deter-
mined exactly. In addition, numerically determining the optimal strategy often requires ex-
cessive computational effort. This raises the need for simpler strategies with “near-optimal”
behavior that can serve as a sensible bench-mark to test resource allocation strategies.

We focus on flows traversing the network, sharing the resources on their common path
with (independently generated) cross-traffic. Assuming exponentially distributed flow sizes,
we show that in many scenarios optimizing the “drain time” under a fluid scaling gives a sim-
ple linear switching strategy that accurately approximates the optimal strategy. When two
nodes on the flow path are equally congested, however, the fluid scaling is not appropriate,
and the corresponding strategy may not even ensure stability. In such cases we show that the
appropriate scaling for efficient workload-based allocations follows a square-root law. Armed
with these, we then assess the potential gain that any sophisticated strategy can achieve
over standard o-fair strategies, which are representations of common distributed allocation
schemes, and confirm that a-fair strategies perform excellently among non-anticipating poli-
cies. In particular, we can approximate the optimal policy with a weighted a-fair strategy.

Key words: network efficiency, fair resource allocation, bandwidth-sharing networks, distributed re-
source management, flow delays, size-based scheduling, switching strategies, linear network, fluid scaling,
square-root scaling, weighted alpha-fair strategies, proportional fair.

1 Introduction

Document transport in the Internet is regulated by distributed packet-based congestion control
mechanisms, usually relying on one of the many incarnations of TCP (Transmission Control
Protocol). By dividing a document into smaller parts (packets) the entire file is not transported
as a single unity. Instead, parts of it reside at different nodes along the transmission path. The
“instantaneous transfer rate” of the entire document can be thought of as being equal to the
minimum transfer rate along the entire path. As TCP is a distributed mechanism, individual
flows dynamically adjust to congestion along the path and the actual transmission rate for any
flow fluctuates over time. Over somewhat longer time scales, these fluctuations average out and
the effective transfer rate may be determined as a time average. The dynamics of the transfer



rates for TCP and similar mechanisms have been extensively studied under various mathematical
approaches. Using a fluid representation for packets flowing from their origins to destinations,
a variety of performance measures such as convergence, fairness and random effects have been
investigated [15, 4, 3]. The class of a-fair allocations were shown to capture a wide range of dis-
tributed allocation mechanisms such as TCP, the proportional fair allocation and the max-min
fair allocation [19]. Overviews of mathematical models for TCP can be found in [14, 26].

A common assumption in the majority of these papers is that the number of active data flows
is fixed. In order to study the dynamics in the number of flows, a common approach is to
assume that TCP dynamics occur on a much faster time scale, so that the rate allocation can be
assumed to adapt instantly after a change in the number of flows. The flow-level performance
of a-fair allocations was first studied in [7] and more recently, including several other allocation
mechanisms, in [8]. A further powerful approach in studying the complex dynamics is by inves-
tigating different asymptotic regimes, see for example the large-network scaling in [13] or the
heavy-traffic scaling in [16].

It is worth emphasizing that all these models essentially differ from traditional queueing net-
works, in that each job (i.e., document transfer) can be seen to claim resources from several
nodes simultaneously instead of "hopping” from node to node. The effect of simultaneous re-
source sharing will be even more pronounced in the future with increasingly popular applications
such as peer-to-peer overlays, which generate extremely long transfers.

Performance analysis of bandwidth-sharing networks is crucially different from and arguably
more difficult than traditional queueing networks developed in the 60s for computer communi-
cation networks. As a consequence, closed-form analysis is (currently) elusive, except in a few
specific cases. This significantly complicates the task of designing efficient allocation mecha-
nisms. As a measure for efficiency we generically choose the (average) number of active flows.
In previous work, it was shown that blindly applying size-based scheduling strategies, which
are known to have certain optimality properties when there is a single resource [25, 22], are
not optimal in general and may not even guarantee maximum stability [30]. Such strategies
can therefore not serve as a sensible benchmark to compare the performance of other — imple-
mentable — scheduling strategies (for example a-fair allocations). For that reason we studied
the structure of optimal (size-oblivious) strategies in a linear network, which can be shown to be
characterized by certain “switching regimes” [31]: as the numbers of flows vary, the optimal allo-
cation dynamically switches between several priority rules. In certain specific cases, the optimal
switching allocation may degenerate to a static priority rule. Optimal policies may in general
not be distributed, or require knowledge of the statistical properties of the flows and, thus, not
be likely to serve for actual implementation. However, as mentioned above, such policies do
provide useful benchmarks to compare against for any implementable strategy and estimate the
scope left for further improvement.

Although this sheds some light on the structure of the optimal policies, an exact characterization
of the switching curves is in general not possible. To gain a better understanding of the func-
tional form of the optimal switching curves, we therefore set out to study these in asymptotic
regimes. In [29] this was done for a highly loaded network. In this paper, we study the under-
loaded case after scaling the state space. The approach is similar to that developed for re-entrant
lines, see for example [17] and [24]. The dynamics of re-entrant lines and bandwidth-sharing
networks as considered here are however somewhat different. For stability considerations under
a unifying framework, see [11].

Using a linear scaling for both the state space and time, leads to simple linear switching curves.
Often this approach indeed finds close approximations to the optimal policies. For some scenar-
ios however, applying a linear scaling may result in a policy that not only is far from optimal,
it may in fact be unstable. In that case the diffusion scaling leads to policies that approximate
the optimal policy.



Through numerical experiments we include comparisons of the optimal policies (when numer-
ically feasible), the class of a-fair allocations (with specific attention to the proportional fair
policy and TCP) and simple strategies characterized by either linear, square-root or constant
switching curves. We then check whether a weighted a-fair allocation can approximate optimal
performance by choosing appropriate weights.

The remainder of our paper is organized as follows. Section 2 describes the model and presents
several preliminary results. We establish cases under which strict priority rules achieve optimal-
ity, describe the general structure of the optimal policy and discuss new stability results that are
useful in the subsequent analysis. In Section 3 we derive optimal strategies under a linear scaling
approach that are close to optimality in many cases. This scaling turns out to be inappropriate
when two nodes along a flow path have the same load. In Section 4 we show that in such cases
a square-root scaling is the right choice and we discuss how this can be understood from the
Central Limit Theorem. Section 5 contains numerical evidence that the scaling approach yields
sensible benchmarks. It also shows that a-fair strategies, and proportional fair allocations in
particular, perform well in general and can even approach the optimal policy when choosing the
best parameters. We conclude the paper with a short summary and ideas for on-going research
in Section 6.

2 Model description and preliminary results

Although our approach is applicable to more general settings, for conciseness we discuss our
ideas in the simplest possible setting of two nodes, see Figure 1.

We consider a linear network with 2 nodes. There are three traffic classes, where class ¢ requires
service at node ¢ only, ¢ = 1,2, while class 0 requires service at both nodes simultaneously. Some
of the results mentioned here translate directly to linear networks with more than 2 nodes. Class-
1 users arrive as a Poisson process of rate );, and have generally distributed service requirements,
B;, with mean 1/u,;. Let the traffic load of class ¢ be p; := NE(B;), thus the load at node ¢
is po + p;. The conditions py + p; < 1, ¢ = 1,2, are necessary but in general not sufficient for
stability [30].

class—0 users
L (N [

node 1 node 2

class—1 users class—2 users

Figure 1: Linear network with 2 nodes.

We denote by II the class of all non-anticipating (possibly preemptive) policies. For a given
policy 7 € II, denote by N7 (t) the number of class-¢ users at time ¢. Define NJ as a random
variable with the corresponding steady-state distribution (when it exists).

The central objective is to minimize the mean total number of users in the system. Because of
Little’s law, this is equivalent to minimizing the mean overall sojourn time.

2.1 Priority rules & optimality

For completeness we first briefly discuss scenarios that lead to optimal strict priority rules. Recall
that in single-server multi-class systems with exponentially distributed service requirements with



mean 1/p;, the p-rule, which amounts to giving priority to the users with the highest service
rate, u;, is known to stochastically minimize the number of users. The rationale behind this
rule is that it maximizes the output rate at all times. In our network context, besides trying
to maximize the total output rate of the system, we must take into account that when serving
class 1 while class 0 is present and class 2 is empty, leaves node 2 under-utilized. In general,
there can be a trade-off between maximizing the output rate and using the full capacity in
every node whenever there is a backlog at that node. When B; is exponentially distributed
such that pg > p;, for both ¢ = 1,2, these two objectives are not conflicting and the policy
that stochastically minimizes the total number of users at every point in time among all non-
anticipating policies degenerates to a static priority rule. This is summarized in the next two
propositions, which extend to linear networks with more than two nodes as well [31]. In [29]
these results are extended to heavy traffic scenarios with general service requirements.

Proposition 2.1 Denote by ©* the policy that gives preemptive priority to class 0 whenever it
is backlogged. Assume B; is exponentially distributed with mean 1/p; and py + p2 < po. Then
7* stochastically minimizes the total number of users among all policies in II.

Proposition 2.2 Denote by ©** the policy that serves classes i = 1,2, whenever they are both
backlogged. Otherwise class 0 is served. When class 0 is non-backlogged, all other classes with a
backlog are served simultaneously. Assume B; is exponentially distributed with mean 1/u; and
w1+ pe > po > maxq{p, pe}. Then m** stochastically minimizes the total number of users among
all policies in II.

If the mean size of class-0 users increases beyond that of at least one of the two other classes,
ie. po < w; for at least one ¢ = 1,2, no strict priority rule is optimal. It may still be better
to sometimes serve class 0 even if that does not maximize the departure rate in the short run.
Doing so, may create the potential to serve classes 1 and 2 simultaneously in the future and
therefore offer a higher degree of parallelism. Hence as the number of users varies, the system
will dynamically switch between several priority rules. The next section provides the general
structure of the optimal policy.

2.2 General structure of the optimal policy

We focus on the uncovered case, that is exponential service requirements with pug < p; for at
least one 7 = 1,2. As may be expected, when there are users of both classes 1 and 2 present,
serving them will be optimal, since puy < p1 + pe [31]. When there are only users of classes 0
and 1 present (no class-2 users) and p; < po, serving class 0 seems appropriate, since it uses
the full capacity in both nodes and it maximizes the total output rate. However, when pg < p1,
there is no obvious choice: Serving class 0 is work-conserving, but the total output rate of the
system is not maximized. In contrast, serving class 1 will maximize the total output rate, but
leaves node 2 unused. It is easy to see that the latter can indeed lead to unnecessary instability.
For example, if p; > po for both ¢ = 1,2, then giving priority to classes 1 and 2 myopically
maximizes the total departure rate, but is unstable when pg > (1 — p1)(1 — p2).

Since a stochastically optimal policy may in general not exist, we focus on the average-optimal
policy instead, i.e., the policy that minimizes E(NJ + NJ + NJ) over all policies 7 € II. The
next proposition states that the optimal policy can be characterized by a switching curve that
determines which class should be served. The proof can be found in [31].

Proposition 2.3 Assume the service requirements are exponentially distributed with i + po >
wo- If both classes 1 and 2 are non-empty, then the expected average-optimal stationary policy
serves these classes simultaneously. When class 3-i is empty, i = 1,2, class 0 is served if po > i,



otherwise the optimal policy is characterized by a switching curve h;(+), i.e. class 0 is served if

and only if N;(t) < hi(No(t)).

Proposition 2.3 determines the structure of the optimal policy, but does not explicitly charac-
terize the optimal switching curve. To gain some further understanding, let us compare two
different switching policies, say with switching curves (hi(Np), ha(No)) and (g1(No), g2(No)),
while h;(Np) < gi(Nop) for all Ny, ¢ = 1,2. Clearly, in the short run, a lower switching curve is
better when pg < 1, since the output rate will increase for some states (and remain the same
for all other states). In the long run, however, a higher switching curve may actually pay off:
when starting in the same state, a higher curve empties the system faster, see Lemma 1 below,
and has therefore less strict stability conditions, see Corollary 2.4.

Lemma 1 For a given switching policy with switching curves hi(ng) and ha(ng), denote by
WJh(t) the workload of class j at time t. Let hi(ng) < gi(no) for all ng, i = 1,2. If W§(0) <
WH(0) and W§(0) + W (0) < WE(0) + W}(0), fori=1,2, then

Wi(t) <« Wo(t) (1)
WE(t) + Wi(t) <s WEE)+WHt), fori=1,2, (2)

for allt > 0. (The symbol <4 denotes the usual stochastic ordering.)
The proof can be found in Appendix A.

Corollary 2.4 Let hi(no) < gi(no) for all ng, i = 1,2. If the system is stable under the policy
with switching curves hi(ng), it is also stable under the policy with switching curves g;(ng).

The switching curve needs to find the right balance between these short and long run effects.
In the remainder of the paper, we try to find the optimal switching curve under an appropriate
scaling of the state space.

2.3 Preliminary stability results

Later in the paper it will be convenient to obtain the stability condition for the policy 7w***. It
is defined as the policy that gives preemptive priority to class 2. When class 2 is empty, class 0
receives preemptive priority. Class 1 is only served whenever there is capacity left unused. This
strict priority rule has switching curves hi(ng) = oo and ha(ng) = 0. Stability is still ensured
for general service requirements, as is stated in the following lemma. In fact, it states stability
for more general strategies that are work conserving in node 2. The proof is in Appendix B.
It essentially uses that the behavior of classes 0 and 2 are autonomously determined by the
dynamics within node 2. In order for class 1 to be unstable two things are necessary: the work
of class 1 must grow unboundedly and for a non-negligible portion of time, class 2 is served while
class 1 is not present. Obviously, these two things can not both be true.

Lemma 2 Any non-idling policy which gives strict priority to class 0 over class 1 when class 2
is empty, is stable under the standard conditions: pg + p; < 1, 1 = 1,2. In particular this holds
for policy 7***.

Let us denote the workloads and queue lengths under 7#*** by W** and N;**. For general
distributions, we can determine the mean workload for class 2 from the Pollaczek-Khintchine

formula: E(W5**) = )‘22(]%(5)222)). Class 0 sees its service being interrupted by busy periods of class 2
so that [27]:
ey _ ME(Bo?) + ME(B2%)  ME(B»?)
E(Wg™) = -

2(1 = po — p2) 2(1—p2)

5



For exponential service requirements, the mean queue length is obtained from E(N;**) =
p E(W;**). For class 1 there are no expressions available for the mean workload and the mean
queue length. Determining these requires solving a boundary value problem [10], as is the case
for policy 7** as well.

3 Linear scaling

In Section 2.2 we established the existence of a switching curve for exponential service require-
ments, however a parametric characterization of the curve could not be given. In this section
we will scale the system linearly and derive for the so obtained fluid model the optimal policy
and, in contrast to the stochastic model, obtain an exact expression for the optimal switching
curve.

We consider a sequence of systems indexed by a superscript n. The workload and the number
of class-i users in the n-th system at time ¢ are denoted by W/ (t) and N;*(t) respectively. The
initial queue length depends on n such that lim, %Nl"(()) = a;. We will be interested in the
fluid limits, where time is also scaled linearly:

N['(nt) W (nt)

lim ———= =:n;(¢t) and lm —————= =:w;(t).
n—o00 n n—00 n

Note that w;(t) = "L(it), as explained in Remark 4.1. We refer to [9, 23] for further details on
fluid limits.

Denote by S;(n(t — A),nt) > 0 the total capacity that is allocated to class ¢ during the time
interval (n(t — A),nt). Restricting to strategies that have proper limits lim, o0 1S;(n(t —
A),nt) = si(t— A, t) is reasonable from practical considerations since it only excludes hysteretic
control strategies. Similarly, we may assume that s;(¢) := lima_0 %si (t — A,t) is well defined
as well (with probability 1). Naturally, So(n(t — A),nt) + S;(n(t — A),nt) < nA, hence so(t) +
si(t) < 1. From W (nt) = W(n(t — A)) + Ai(n(t — A),nt) — Si(n(t — A),nt), we obtain:
w;i(t) —wi(t — A) = piA — s;(t — A, t). After dividing by A and letting A — 0 we conclude that
the fluid processes w; are described by the following differential equations:

d;zi (t) = pi—si(t), fori=0,1,2,
wi(t) > 0, fori=0,1,2,
so(t) +si(t) < 1, fori=1,2,
si(t) > 0, fori=0,1,2.

In principle, s;(t) may be a random process. However, since the input processes have been
replaced by their averages, there is no gain in considering stochastic allocations s;(t). Therefore,
the evolution of the fluid model involves no randomness, which renders it more tractable. We
now proceed to derive the optimal clearing policy for the fluid model, starting from any initial
state. Let II be the set of all policies that satisfy so(t) + s;(t) < 1, for i = 1,2, s;(t) < p; when
n;j(t) = 0 and s;(t) > 0 for j = 0,1, 2. We use the following two definitions for an optimal policy.

e Policy 7 is called path-wise optimal if Z?:o nr(t) < Z?:o nr(t) for all t > 0, m € IL.
Path-wise optimal policies do not necessarily exist, in which case we use the following criterion.

e Policy 7 is called average-optimal if fOT Z?:O nT(t)dt < foT Z?:o nl(t)dt for all = € II,
with 7" such that the system is empty at time 7.

We see that a path-wise optimal policy, if it exists, is automatically average-optimal.



Remark 3.1 Note that the fluid model retains the non-work-conserving property of the original
model. In node i, exactly 1 — s;(t) is left for class 0, so that so(t) < 1 — s;(t) for i =1,2. For
an optimal strategy, we have so(t) =1 — s;(t) for at least one i, but not necessarily for both. It
is therefore possible that capacity is lost in one of the nodes.

We now set out to determine the optimal policies for the fluid model, distinguishing between
path-wise and average optimality. Without loss of generality we will assume that p; < p2 and
po+ p2 < 1. The latter condition is needed for stability and guarantees that the fluid model will
empty (and then remains empty if controlled optimally).

3.1 Path-wise optimal policies

Whenever the stochastic model allowed for stochastic optimization, i.e., in the cases that there
was no conflict between maximizing the output rate and fully using all resources, one would
expect that the fluid model allows for a path-wise optimal policy, which is confirmed by the
next proposition.

Proposition 3.2 Assume p1 < ps and pg + p2 < 1. A path-wise optimal policy for the fluid
model can be found in the following scenarios. In all cases s; = 1 — sy if n; > 0 and s; =
min(p;, 1 — so) if n; =0, fori=1,2.

If p1 4 po < po then the optimal policy is:

so =1 1fng >0,
and sy = po if ng = 0.

If p1 4 po > po > i, po, then the optimal policy is:

so =0 if ny,ng > 0,

so=1—p2 ian > 0,n1 > 0,n9 =0,
so=1—p1 ifng >0 and n; =0,
and sg = pg otherwise.

If o > pg > w1, then the optimal policy is:

so =0 1fny >0,
so=1—p2 if ng >0 and ny =0,
and so = po otherwise.

The first two policies correspond to policies 7* and 7** respectively, which were optimal in the
stochastic model (Propositions 2.1 and 2.2). The third case corresponds to strategy =***. Recall
from Lemma 2 that 7*** is stable in the stochastic model under the standard conditions.

3.2 Average-optimal policies

With the exception of the third case in Proposition 3.2, all cases for which we only determined
a characterization of average-optimal policies in the stochastic model, lead to average-optimal
policies in the fluid model, as is confirmed by the next proposition.

Proposition 3.3 Assume p1 < p2 and pp + p2 < 1. An average-optimal (but not path-wise
optimal) policy for the fluid model can be found in the following situations. In all cases s; = 1—s
if ni >0 and s; = min(p;,1 — sp) if n; =0, fori=1,2.

If 1 > pg > pe, then the optimal policy is:



_ . > 1o ©1 p2—p1 :

so=0 zfnl 2 e X o X Toegsp 10 or ifny >0 and ng > 0,
so = po if no =n1 =0,

so=1—p1 ifng >0 and n; =0,

and so = 1 — py otherwise.

If p1, po > po, then the optimal policy is:

so =0 if ng > 1f2pgf1pgn0 or if ng > 0,
and so = 1 — p2 otherwise.

For illustration, these strategies are depicted in Figures 2 and 3 (the case when both n; > 0 and
ng > 0 is not shown since then sp = 0). If u3 > po > pe, there is a linear switching curve in
the left plane of Figure 2 (ng = 0) above which class 1 must be served with full capacity. Below
that curve, class 0 receives the fraction 1 — po that is left from keeping class 2 empty. On the
horizontal axis, class 0 would receive 1 — p1, which forces class 2 to increase. The plane on the
right shows that when class 1 is empty, it receives exactly its average and remains empty. Class
2 increases while class 0 is emptied.

ng
_ so=1—p1
S0 = pPo .
7
0 i no

Figure 2: Optimal capacity allocation when ng = 0 (left) and n; = 0 (right); if g1 > po > pe.

Similarly, if w1, 2 > po, there is a linear switching strategy in the left plane of Figure 3. The
plane on the right shows that when class 1 is empty, it will remain empty. Class 0 receives no
capacity unless class 2 is empty as well.

n2

C

so=1—p2

Figure 3: Optimal capacity allocation when ny = 0 (left) and n; = 0 (right); if pq, 2 > po.

The above two policies may be translated to the stochastic model as strategies with switching

i = C; . > > — M2 K1 _P2—pP1
curves h;(Ng) = ¢;Ng. For the case p; > po > pe, we have ¢; prrErramr i S S ey and

c2 = 0o. Note that ¢; depends on the traffic loads as well as the service rates. When uy, 2 > po,
we have ¢; = lfzgflz and ca = 0. Now c; only depends on the traffic loads. This can be
explained from the fact that the optimal fluid trajectory does not leave the no = 0 plane when
p1 > po > pe. It is evident that the minimization of fOT(no(t)—i—nl(t))dt = o fg(wo(t)+%W1(t))
can only depend on pg and pg through their ratio. Combining this with a linear switching curve
and the fact that n;(t) = p;w;(t), it must be that the optimal switching curve in terms of the

(ng,n1) process is independent of up and 1.
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Figure 4: a) and b) Switching curves under the optimal policy in the stochastic model and the
fluid approximation, when p; < p2, ¢) Trajectory in the stochastic model with a linear switching
curve.

The optimal switching curves for the stochastic model can be computed numerically by solving
the dynamic programming equations. When p; # po, the optimal switching curves in the fluid
model give a good approximation for the optimal switching curves in the stochastic model, see
Figure 4 a) and b). However, this is not the case when p; = p2, as will be explained in Section 4.
In Figure 4 c) a trajectory of the stochastic model is plotted. We chose pg = 0.4, p1 = 0.1, p2 =
0.3 and pg = 2, u1 = pe = 5. The switching curve is chosen as in Proposition 3.3, hence
hi1(No) = 122 No and ha(No) = 0. The starting state is No = 5000, Ny = 13333 and N3 = 0.
We see that the number of class-1 users decreases and the number of class-0 users increases until
the trajectory hits the linear switching curve. From that moment on, both class 1 and class 0
decrease linearly in time. At the same time the number of class-2 users remains close to zero.
This coincides with the dynamics of the fluid model.

3.3 Proofs of Propositions 3.2 and 3.3

In this section we present the proofs of Propositions 3.2 and 3.3. For the original model it was
proved that it is optimal to serve classes 1 and 2 simultaneously, whenever both are present [31].
The fluid model inherits this property.

Observation 1 (Class 1 or 2 backlogged) Assume p; + p2 > po. Suppose at time t the
state is w(t) = w. When wi,wy > 0, then si(t) = sa(t) = 1.

Furthermore, when there is no backlog of either class 1 or class 2, an optimal policy always keeps
at least one of these classes empty. Hence, if w; =0 and wj > 0, 1,5 = 1,2, then s;(t) = p; and
si(t) > pi. If w; = w; =0 and p; < pj, then s;(t) = p; and s;(t) > p;.

Observation 1 fully characterizes the optimal policy in states where both classes 1 and 2 are
backlogged. We therefore only need to consider the following two cases: no backlog of class 1
and no backlog of class 2.

No backlog of class 1: Suppose the system is in state w(t) = w, with w; = 0. Observation 1
implies that in the w; = 0-plane we have s1(t) = p1, so class 2 receives at least capacity p;.
Since p; < p2, once the optimal trajectory has entered the w; = O-plane, it will stay in this
plane from then on, and the time until reaching the origin is the same for every non-idling policy.
Therefore, the optimal way to allocate the remaining 1 — p; capacity between classes 0 and 2
is as follows: when pg < pg it is optimal to fully prioritize class 2, but when pg > w2 it is
optimal to prioritize class 0 over class 2 (see Figures 5 a) and b) for the corresponding optimal
trajectories).

No backlog of class 2: Suppose the system is in state w(t) = w, with wy = 0 and w; > 0.
Observation 1 implies that in the wy = 0-plane we have s2(t) = p2 as long as w; > 0. We are



now left with finding the optimal way to allocate the remaining 1 — p2 capacity between classes
0 and 1.

When po > p1, allocating the remaining capacity fully to class 0 is work-conserving in both
nodes and maximizes the departure rate. It can be proved that this is indeed optimal.

When po < p1, giving full priority to class 1 maximizes the departure rate. This however leaves
1 — s9(t) = 1 — p2 capacity in node 2 unutilized. As soon as w; = 0 we go to the w; = 0-plane
and are faced with an unnecessarily high workload in node 2. As in the stochastic model, the
trade-off between serving class 0 or 1 arises and it turns out to be optimal to give first priority
to class 1 and then to switch to class 0. Let the switching point be denoted by b = (bo, b1),
see Figure 5 c). In order to obtain the average-optimal policy, we only need to determine the
optimal switching point. We do this by calculating the costs belonging to the trajectory that
turns at b. The time it takes to move from w to b is equal to T'(w, b) = bo -~ during which the
w0+b0 w1+b1

length of the queue is on average
equal to T'(b,w) = p -

with wg = bg — ﬁbl The costs for switching point b can now be written as:

o + wp1. The time it takes to move from b to w is

during Wthh the length of the queue is on average b°+w° Lo + b 5 11,

bo + w b
= no+ 5 m) + K(@,0),  (3)

wo + bo +w1+bl

K(w,0) = T(w, b)( 9 Ho 2

p) + T(b, w)(
with by € [wo, wo + w1 722~ £o-], b1 = wi — T(w, b)(1 — p1) and K(w,0) the costs belonging to the
optimal trajectory that moves from w to 0. The term K (w,0) depends on the values of pp and
H2.

When g < pg2, it takes T'(w,0) = 1— po o5 1o reach the origin. Under the optimal policy there
is no backlog of class 2. The average queue length of class 0 is wy/2, hence

wo

K(w,0) = T(w,0)n0~-

When 19 > p2 an optimal trajectory will look like the path in Figure 5 b). It starts in w and it
hits the vertical axis in the point d = (0,0,d2). The time it takes to empty the system of class
0 is equal to T'(w, d) = 17;’){{)1. At that time the total work of class 2 has increased from 0 to
dy and after that it decreases again to 0. Note that ds is equal to dp = T'(w, d)(p2 — p1). We
can conclude that

_ _ W _ d
K(w,0) = T(w,d)u070+T(w,0)p2?2.

It can now be checked that when minimizing the costs given by (3) over b, the optimal b lies on
the linear switching curve as stated in Proposition 3.3. See [28, Section 5] for more details.

w9y Po wy

L= I B
1—po—p1 w
\ dz\ switching curve
\ \'&7 /
wo w Wo

Figure 5: Optimal trajectories in the fluid model for a) py < p2 in the w; = 0-plane, b) po > ua
in the w; = 0-plane, c¢) pp < p1 in the we = O-plane.
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4 Central Limit Theorem scaling for p; = p

In Section 3 we determined the optimal policy for the fluid model. When p; # ps, the policy
suggested by the fluid analysis approximates the optimal switching curve very well (Figure 4).
However, when p; = p2 the suggested policy might not even be stable: Consider for example
the situation that ui,pus > po. For the fluid model, the switching curves are both equal to
zero, i.e. it is optimal to serve class 0 only if there is work of neither class 1 nor class 2.
However, in the stochastic model, giving classes 1 and 2 preemptive priority, leads unnecessarily
to an unstable system if 1 — p; > po > (1 — p1)(1 — p2), ¢ = 1,2. Evidently, this policy is
then far from optimal. In the fluid model we have no instability since we can keep classes 1
and 2 simultaneously empty, while in the stochastic model there can be stochastic fluctuations
that cause the instability effects. We can conclude that the straightforward translation of the
optimal fluid policy does not give an asymptotically optimal policy for the stochastic model.
In this section we will investigate the correct scaling to find the shape of the optimal switching
curves when p; = po.

pg=0.4, p,=0.2, p,=0.2, R;=2, n,=5, U,=5 Po=03, p,=03, p,=0.3, 1;=2, 1, =5, 1,=5

20 ot 20 —— switching gurve
== _ N =L5N]

15 -~ 15

= i —+— switching curve =z
o NELNG?
10 10

0 50 100 150 200 250 300 50 100 1,5:0 200 250 300
o

No

pg=04, p,=0.2, p,=02, H=2, 1,=3, 1,5 pg=04, p,=0.2, p,=02, H=2, 1,=3, 1,5
30 20

25

20 -

—+— switching curve
—+—switching curve :—1+1.2ND
Z'15 __N=1ALENY? =

-2

[ 50 100 150 200 250 300 [ 50 100 150 200 250 300

Figure 6: Optimal switching curves and square-root approximations for various parameters.

In Figure 6 we plotted the optimal switching curve for various parameters together with a
function that provides a good approximation of the curve. The curves indicate that the switching
curve has a sub-linear shape, and in fact is close to the square-root function.

To obtain the fluid model we scaled Ny and N identically. Due to its sub-linear shape, the
switching curve collapses on the horizontal axis after taking the symmetric linear (fluid) scaling.
Interpreting this as giving strict priority to class 1 can result in an unstable system. This
illustrates the choice for a different scaling when p; = p2: We need to scale the system such that
the switching curve remains observable.

In the discussion below we do not consider the case where both N;(0) and N2(0) are positive.
In that case we know it is optimal to serve both classes 1 and 2 until one of them empties. This
is not different than in the fluid model. Without loss of generality we can therefore concentrate
on initial points with N2(0) = 0.

We generically denote the switching curves by N; = ¢;f(Np), for ¢ = 1,2. The function f is
not specified for now (but we know that it will be close to the square-root function). Again we
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consider the sequence of systems indexed by a superscript n, where the workload and number
of users in the n-th system are denoted by W/ (t) and N*(t) respectively. The initial queue
lengths depend on n and are chosen in accordance with the above observations: ng(0) = ag > 0,

n1(0) = 0, limy_0o N\{;@) = by and NJ(0) = 0. We are interested in the limit of the scaled

n
processes: lim, Niisnt) :=n;(t) and lim,_, W[;z(nt) = w;(t). We will see that n;(t) = w;(t) =
0 for ¢ = 1,2. Therefore, for classes ¢ = 1,2 we are also interested in the limit of the diffusion

scaled processes:

lim N(nt) — ni(t)n and lim W (nt) —w;(t)n

n—00 \/ﬁ n—00 \/ﬁ ’

see [9, 23]
Remark 4.1 The workload and number of users present in the system under the fluid and
diffusion scaling can be related in the following way: n;(t) = piw;(t) and lim, Ni\/(gt) =

limy, 00 4 W{L/(;t) , respectively. This follows from the fact that we have exponentially distributed

St ™ Bap,(u)
Ni*(nt)
kE=1,2,..., are i.i.d. exponential random variables with mean 1/p;. When lim,_,o, N*(nt) =
Wi(nt) 1

Nn) = i WP 1.

service requirements. Hence we may write W (nt) 4 N!*(nt) , where Expy(wi),

o0, we have that lim,_,

So as to study the typical trajectories of the process above and below the switching curves, we
will first describe the trajectories of the corresponding free processes.

4.1 Free process above the switching curve

Above the switching curve, class 1 is given preemptive priority. Hence, the free process that
corresponds to the behavior above the switching curve is the process that gives class 1 priority,
regardless of the number of class-0 users present. This means that, as in Section 3, the free
process tends to move right and down, just as in Figure 5 a). Notice however that the initial
point has an Nj-coordinate of the order /n, so that on the linear time scale, the process moves
instantly in vertical direction downward until it hits the switching curve.

4.2 Free process below the switching curves

We now consider the free processes that correspond to the behavior of the stochastic process
below the switching curve. In the free process class 0 receives priority and classes 1 and 2 are
only served during (short) excursions when both of them are positive. The trajectories of the
original model below the switching curve are therefore identical to those of the free process.
We reflect the fact that we look at the free process by adding the symbol ~ to the notation. In
the following proposition it is stated that the free process has two different types of components:
The component corresponding to class 0 behaves as a deterministic fluid component, just as in
Section 3, while classes 1 and 2 show random fluctuations of the order y/n in a time span n, i.e.
their workloads remain of the order /n with probability 1.

Proposition 4.2 Consider the free process that gives class 0 priority, and classes 1 and 2 are
served only when both of them are positive. When p1 = p2, we obtain the following limits:

wo(t) = wo(0)— (L —po—p1)t,
fig(t) = 70(0) — po(l — po — p1)t,

12



and w;(t) = ni(t) =0 for i = 1,2. In addition,

W (nt) Wi (nt) — Wy (nt) 4 BM(t) + by

A T T i v )2 ) n (BM(1)+21>0) ( ™ ) @

-

o =WP(nt) WP (nt) — Wi(nt) a by

R N R U A LU R NG L pargys oy (BMO)+ 1),
()

and hence are well defined. Here BM (t) is a Brownian motion with variance 6% := \10% + 203

and 0J2- = Var(Bj).

Proof: Denote by A;(0,t) the amount of class-i work that arrived in the interval (0,¢) and by

B;(0,t) the cumulative capacity that is given to class ¢ in the interval (0,¢). We can write for
i=1,2

Wat) = WE(0)+ Ai0,8) — Bi(0,1 (©)
Bl(oﬂt) = 32(07t)7 (7)

where the last equality holds since classes 1 and 2 are served only when both of them are positive.
Using (6) and (7), we obtain

W (nt) — Wi(nt) = WP(0) — W(0) 4+ A1(0,nt) — A (0, nt).

From Remark 4.1, the FCLT (Functional Central Limit Theorem) and the fact that we have
Poisson arrivals, we conclude that

lim in(ﬁ/l"(nt) ~Wint) = lm in(Al(o,m) — A5(0,nt) + T7(0) — T3(0))
d b
4 BM(t)—l—ul, (8)

where BM (t) is a Brownian motion with variance 2. Now note that the smallest of the work-
loads of classes 1 and 2 is always served at rate 1 whenever it is positive:

Wonin(t) = min{ W (), W3'(t)} = sup{Auin(s,t) — (t — 8)} <sup{A(s,t) = (t = )}.  (9)

s<t s<t

Here, Amin is the arrival process of the workload in the queue with the smallest workload,

A

A(s,t) = max{Ai(s,t), Aa(s,t)} and in Appendix C it is proved that

Since A(s,t)/(t —s) — p1 = pa < 1 as t — s — 00, we may interpret the right hand side of (9)
as the workload in a stable queue. Consequently, lim,,_,, W . (nt), is bounded from above by
a non-defective variable, which implies lim,, o %ﬁ = 0. Together with (8) and

VNVl"(nt) = (Wzn(nt) - W:?fi(”t) + W:'Lin(nt))l(Wi”(nt)ZWg[i(nt)) + Wr?zm(nt)1(Win(nt)<vi/§gi(nt))v

we then obtain (4) and (5).
Let us now turn the attention to class 0 for the free process. As long as class 0 is not empty,
both nodes are work-conserving, so that

Vi (nt) + Wi (nt) = WZH(0) + W(0) + Ag(0,nt) + A1(0,nt) — nt.

Since limy, 00 2WT(nt) = 0, this gives o (t) = 100(0) + (po + p1 — 1)t. O
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4.3 Discussion: shape of switching curve

From the above we can intuitively explain the square-root shape of the optimal switching curve.
From the fluid scaling, we learned that optimality requires the process to stay close to the
horizontal axis (the switching curve in fact coincides with the horizontal axis in the fluid scaling).
Letting the switching curve be too close to the horizontal axis, however, poses the risk of
significant capacity loss: Capacity is lost in node 2 if we are above the switching curve in the
plane N2 = 0 and, vice versa, capacity is lost in node 1 if we are above the switching curve in
the plane N7 = 0. The switching curve must therefore be high enough to make it sufficiently
unlikely for the process to reach it from below. But it need not be impossible to reach the
switching curve, because above the switching curve the departure rate is higher.

Since the free process has zero drift for the components N; and N» and fluctuations in linear time
O(n) are of the order O(y/n), the CLT (Central Limit Theorem) indicates that a square-root
switching curve is able to strike the right balance between short and long term optimality. For
comparison: a linear switching curve would be impossible to reach, therefore the strategy would
not profit from serving the fast class 1 or 2 even if there is a lot of work from it. On the other
hand, a threshold strategy (a constant switching curve) can quickly give instability problems
as at large states, it is too easy to move up to the switching curve, thus risking considerable
capacity loss.

Hence we may conclude that switching curves are of the shape N; = ¢;v/Ny. To find the best
coefficient ¢; is not straightforward and involves calculating the exact first passage probabilities
for the switching curves. In the next section the impact of the ¢; is further described.

4.4 Illustration

Determining the optimal coefficient ¢; is not straightforward and involves calculating the exact
first passage probabilities for the switching curve. In this section we numerically illustrate the
impact the choice for ¢; has. The parameters are chosen as pg = 0.4,p1 = p2 = 0.2 and
o = 2,1 = p2 = 5.

In the first set of simulations we chose the switching curves N; = ¢;+/Ngy with ¢; = 6/5, for
1 = 1,2. In Figure 7 we see that the number of class-0 users indeed decreases linearly in time
(left graph), while the minimum of the number of class-1 and class-2 users is typically very small
(middle graph). The most right graph shows the trajectory of the difference between the number
of class-1 and class-2 users. Recall from Proposition 4.2 that in the limit the process W; — Wy
represents Wi when it is positive, and —W5 when it is negative. We see that as the number
of class-0 users decreases, the trajectory stays mostly below the switching curves, making some
excursions between the switching curves in both planes.

4
x 10 300,

300

5 250 200
4 200 100

=3 =" 150 T 0

2 100 -100

1 50| -200

GD 1 2 3 4 5 6 7 00 50 100 1,\?0 200 250 300 73000 1 2 3 4 5 6

x10* 1 o x10°

Figure 7: Trajectories of Ny, N1, N2 and N1 — Na under a policy with switching curve 6/5+/Np.

Taking ¢; larger implies that for points that just lie under the switching curve in the Ny = 0
plane, the probability of emptying the work in class 1 before hitting the switching curve again,
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Figure 8: Trajectory of N — N2 under the policy with switching curve: a) 104/Np and b)
1/4+/Ny.

becomes almost zero, and the number of class-2 users is zero or very small, see Figure 8 a)
where ¢; = 10. Therefore, if ¢; is too large, the policy will probably focus too much on being
work-conserving. Since p1 > po, we could better serve more class-1 users when there are many
of them. On the other hand, taking ¢; too small, we see that we switch too often between the
two planes and we loose too much capacity, see Figure 8 b) where ¢; = 1/4.

5 Numerical comparisons of a-fair allocations

In this section we numerically compare a-fair allocations with (asymptotically) optimal switching
curve policies. Determining the true optimal policy is extremely time consuming (the typical
computation time of a single scenario is in the order of a week, versus a few hours for the
asymptotically optimal strategies) and could therefore not be reported in all cases.

5.1 Switching curve policies

We have conducted a large set of simulation experiments to assess the effectiveness of different
switching curve policies. Class ¢ has switching curve N; = ¢;f(No), where f(Np) is either
a square-root, linear or constant (threshold policy). The value of ¢; is varied to assess its
impact. We let o = 2, 1 = p2 = 5. We simulate 3 - 10 busy periods and the obtained
mean total numbers of users under the different policies are compared with the proportional
fair policy (PF). This policy falls within the class of so-called a-fair allocations [19] (a=1),
which are of practical interest as a convenient modeling approach for (distributed) allocation
mechanisms. Other special cases are @ = 0 (maximizing total throughput), & = 2 (mimics
TCP) and a@ = oo (max-min fairness). For proportional fairness the joint distribution of the
numbers of users of the various classes in the linear network is known, see [18]. In particular,

ol NPF) _ ljpo (po + Z?:1 %). In Figures 9 and 10 we plot the relative improvement of
switching policies over the mean number of users under proportional fair scheduling. On the
horizontal axis we vary the value of the pre-constant.

In Figure 9 a) we considered p; # p2 and chose c2 = 0 and let ¢; vary. From the figure we
observe that the linear policy indeed attains the value of the optimal policy given that the best
coefficient c¢; is chosen. This is in accordance with Proposition 3.3 which stated that when
Wi, p2 > o the optimal fluid policy has a linear switching curve for class 1 and gives preemptive
priority to class 2. Suprisingly the square-root policy performs very well as well.

When ¢; grows large, the behavior of the system converges to that of policy 7***. We observe
that policy 7*** is already close to optimal. This is not surprising since policy 7*** is optimal
in heavy traffic: suppose that only node 2 is heavily loaded while node 1 is not (pg + p2 ~ 1 and
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Figure 9: Relative improvement over proportional fair policy for the optimal policy and the
switching curve policies: a) pg = 0.4, p1 = 0.1,p2 = 0.3, b) po = p1 = p2 = 0.3, ¢) po = 0.6, p1 =
p2 = 0.3.

po + p1 < 1). To minimize the mean of the scaled total number of users present in the system,
only what happens in node 2 matters. Since u2 > g, in node 2 it is optimal to give preemptive
priority to class 2 over class 0 and this is exactly what 7#*** does.

In Figures 9 b) and ¢) we considered p; = p2 and chose ¢; = cg, i.e. the switching curves for both
classes are identical. We observe that for p; = ps the square-root policy attains the value of the
optimal policy given that the best coefficient ¢; is chosen. This coincides with the discussion of
the shape of the switching curve in Section 4.3. Also note that Figure 9 b) corresponds to the
graph in Figure 6. The approximation we found there for the switching curve was 1.51/Ng which
indeed is close to optimal. When ¢; grows large, the behavior of the system converges to that of
policy 7** (defined in Proposition 2.2), which is work-conserving. The fastest convergence takes
place for the linear policy.

In Figure 10 we test the effect the preconstant ¢; has on the square-root, threshold and linear
policies for several combinations of the loads with p; = p2. We see that the square-root policy
performs the best, given that the value of ¢; is chosen optimally. The linear strategies perform
surprisingly well, although they are less efficient than the square-root strategies. The square-
root and linear policies are not that sensitive to the actual value of ¢;, as long as its value is not
too small. The threshold strategies are more sensitive to the choice of the pre-constant and run
a higher risk of being unstable. Overall we observe that the best choice among these strategies
only gives a modest improvement over proportional fair.
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o
o

.
)

'

a

g
a
]

5
3

100 | -100|

-+ -PgP; 7,702
- = Pg=P,7p,=0.3

-+ =P=P,=P,=0.2
- = Pg=P,=P,=0.3
—— PP, =P,=04 H =
—o—PG=0.4,p,=p,=0.2 ! o P04, p,7p,=0.2 —o—P=0-4, p;=p,=0.2
- - -Pg=0.6,p,7p,=03 ' - - 294=0.6,p,=p,=03 - - -Pg=06,p,%p,=0.3

100%(E(NP)-E(N*") / E(NP
\
00-EN"F)-ENTE) | £
100%(E(NPF)-E(N'™2) / E(NPF)
|

-150| ~150| —— PP, =P,=04

N
@
8

0 2 4 6 8 10 ) 5 10 15 0 2 4 6 8 10
c,=c,

Figure 10: Relative improvement over proportional fair policy for a) square-root b) threshold
and c) linear.

5.2 Weighted a-fair policies

For completeness, in Figure 11 (left) we test the efficiency of a-fair policies, against proportional
fair and notice that a-fair policies seem to be rather insensitive to the value of a, as long as «
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is not too small.
We next test the scope for improvement of a-fair allocations by adding weights to the various
classes. With weighted a-fair policies [7], the capacity for class-0 users is given by

(woNo(t)*)M/®
(woNo(t)*)Y/® + (w1 Ny (t)™ 4 waNa(t)*)L/e”

So =

The remaining capacity in node ¢ is allocated to class 7. (The standard a-fair allocation has unit
weights.) There are very few results on how to set the weights in these algorithms. Recently,
explicit results were obtained in [12] under an overload regime. In this section we will investigate
what the effect is of changing the weights and whether we can approximate the optimal policy
with a weighted a-fair strategy. Without loss of generality we fix wg = 1.

For pp > p1 + pa the optimal policy is 7* (Proposition 2.1), i.e. preemptive priority to class 0.
This policy can be approximated by the weighted a-fair policy by setting the weights w; and
wo approximately equal to zero.

In the numerical examples we choose pg = 2 and p; = pe = 5. However, the observations hold
for po < p1, 2. In Figures 11 b) and ¢) (o = 1, i.e. proportional fair) and Figures 12 a) and b)
(a = 2, corresponding to TCP) we compare weighted a-fair policies with the optimal policy.
From Figures 11 b) and 12 a) we observe that when p; < p2, choosing w; = 0 and wy = o0
approximates the optimal policy very well. In fact, when choosing these weights we obtain policy
7***, which, as observed in Section 5.1, is close to optimal.

From Figures 11 ¢) and 12 ¢) we observe that when p; = pa, one of the two weights is oo and
the other weight is strictly positive. For proportional fair the optimal weights are w; = 1/2,
w3—; = 00, i = 1,2 and for TCP the optimal weights are w; = 1/8,w3_; = 0o, ¢ = 1,2. This
can be explained as follows. From Proposition 2.3 we know that when both class-1 and class-2
users are present, the optimal allocation gives the full capacity to classes 1 and 2. Having one
of the weights equal to co, say wsy, guarantees that the weighted a-fair policy does this as well.
Now when there are no class-2 users present, there exists a switching curve that determines
the optimal trade-off between serving class 0 or class 1, see Proposition 2.3. In the case of
weighted a-fair (It))olicy, when there are no class-2 users present the allocated capacity to class 0

No—l/a, which coincides with Discriminatory Processor Sharing. Here as well,
No(t)+wl/* Ny (t)
there exists a 0 < w; < oo that finds the best way to share the capacity between class 0 and
class 1 (note that wy = 0 (w; = oo) implies that class 0 (class 1) is given strict priority).
Similarly, the optimal weights for the remaining cases can be found. When ps < pp < g1 and
p2 < p1, the optimal weights will be w; = oo and we = 0. This coincides with the optimal fluid
policy 7*** (Proposition 3.2). However, when p; < po, the optimal fluid policy has a switching
curve in the ny = 0 plane (Proposition 3.3). So then the optimal w; is non-degenerate and
wo = 0.

When p1, p2 < po < p1 + po, the weights wy and wy that approximate the optimal policy 7**
will be strictly positive and small compared to wg = 1.

1s S0 =

6 Conclusion and future work

Using appropriate scaling approaches, we determined accurate approximations to optimal al-
location strategies in a linear bandwidth-sharing network. The (theoretical) asymptotically
optimal policies obtained after scaling were shown to provide sensible benchmarks for assessing
the performance of any allocation strategy. Doing so, a-fair allocations were shown to perform
quite well in general, and are practically insensitive to the value of «, as long as this value is
not too small. For « | 0, the performance can either be very good or quite bad, depending
on the specific choice of arrival rates, service requirements, etc. Specifically, we showed that
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Figure 11: Left: Relative improvement over proportional fair policy for a-fair policies. Right:
Comparison of the optimal policy with the Proportional Fair policy (a=1) for different choices
of the weights: b) pp =0.4,p; =0.1,p3 = 0.3, ¢) po = p1 = p2 = 0.3.
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Figure 12: Comparison of the optimal policy with TCP (a=2) for different choices of the weights:
a) po =04,p1 =0.1,p2 =0.3, b) pp = p1 = p2 = 0.3.

the (weighted) proportional fair allocation (o = 1) performed well in all our experiments and is
usually only a few percent away from the theoretical optimum.

We allowed the optimal allocations to use global information about the numbers of flows travers-
ing all nodes in the network. In practice, such global information is usually not available. The
fact that (weighted) a-fair strategies in general, and the proportional fair allocation in partic-
ular, achieve close-to-optimal behavior is therefore extremely encouraging since these can be
implemented in a distributed fashion.

The main motivation for this work is the inappropriateness of size-based scheduling across
classes, as discussed in the introduction. It is important to note that applying size-based schedul-
ing among flows within a class (i.e., flows that traverse the same path through the network) is,
in general, advantageous [1] and therefore offers potential for further improvement of any of the
allocations discussed here. Assessing the scope of these mechanisms is an interesting avenue
for further investigation. One practical complication in this respect could however be how to
identify whether flows share (large parts of) the same path.

As a final remark, we note that the optimal multiplicative prefactor in the square-root rule (for
the case p; = p2), has so far been determined numerically. We saw in all our experiments, that
the optimum can indeed be attained for a specific choice of the multiplier. The computation
time of this procedure is virtually negligible compared to numerically determining the true
optimal strategy. In order to analytically characterize the optimal value for the limit process,
further investigation of the reflection of that process on the switching curve is required. In a
different context, it is known that the reflection can have a decisive effect on the global behavior
of the system, see [21]. Finding the appropriate constant requires calculation of first-entrance
probabilities at the switching curve, as for example in [2, 6, 20]. Investigating these matters is
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the subject of on-going research.
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Appendix A: Proof of Lemma 1

We couple the systems that arise under the two switching strategies by taking the same arrival
and service requirement sequences. We will show that (1) and (2) hold on each sample path.
Since the service requirements are exponentially distributed, the scheduling within classes does
not influence the stochastic behavior of the system (recall that we restrict to size-oblivious
strategies). For our coupling arguments it is convenient to assume that FCFS (First-Come
First-Served) is applied within each class. As a consequence, (1) and (2) which hold in terms of
workloads, immediately translate to the same inequalities in terms of the numbers of users. Let
s be the first time instant that one of the three inequalities is violated. We will show that such
an s does not exist.

First assume that at time s, equation (1) is violated, that is W (s*) > W (s) while W(s) =
Wh(s). From (2) we have W7(s) < W/ (s), i = 1,2. To ensure that W§(s*) > Wl (s™), policy
g must serve classes 1 and/or 2 while policy h serves class 0 at time s. Since W/ (s) < W} (s),
i = 1,2, serving classes 1 and/or 2 under policy g, implies that also under policy h classes 1
and/or 2 are served (since h;(ng) < gi(no) and N§(s) = N[(s)), which yields a contradiction.
Now assume equation (2) for ¢ = 2 is the first to be violated at time s. Hence W§(s) + W3 (s) =
W (s) + Wh(s), W{(st) + W (st) > Wl(sT) + Wh(sT), Wi(t) < Wl(t), for t < sT, and at
time s, policy g serves class 1 and there is no work of class 2 present (W3 (s) = 0). We can
conclude from the above that Wy (s) > Wh(s). But Wj(s) = 0, so that W2Z(s) = 0 as well.
Since W (sT) < Wi (s™), we now obtain that W§(s) + Wi (sT) < Wlh(sT) + Wh(s*), which
contradicts the initial assumption. O
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Appendix B: Proof of Lemma (2)

In node 2 the policy is work-conserving, hence class 0 and class 2 are stable if and only if
po + p2 < 1.
Define s; = sup{u < t: Wj(u) =0} and s = sup{u < s; : Wp(u) + Wa(u) = 0}. Then

Wolt) + Wi(t) = Wolt)+ A(s1,) — Bi(s1,t) = Wo(t) + Ai(s1,8) — (¢ — s1) + Bo(s1,¢)
= Wo(t) + Al(sl,t) — (t — 81) + Wo(sl) — Wo(t) + Ao(sl,t)
< Ag(s1,t) — (t—s1) + Wo(s1) + Wa(s1) + Ao(s1,1)
= 141(81, ) (t-— 81) %—140(81, ) %—140(8,81) %-142(8,81) —-(81 —-S)
= 141(81, ) %—140(8,t) %-142(8 t) 142(81,t) —-(t-— S)
= Ais1,8) = (o1 + )t — 1) + Ao(5,8) — (po+ )t — 8) + Az(s,8) — (p2 + )t — 5)

+(p2 — €)(t — s1) — Aa(s1,t) + R,

with € = 17p0+ax(pl’p2) and R = (p1+e€)(t—s1)+ (po+e)(t—s)+ (p2+e)(t —s) — (p2 —
€)(t — s1) — (t — s). The fourth equation follows from the fact that node 2 is work-conserving,
i.e. when node 2 is backlogged, the work is served at full rate.

For p2 > p1, we can bound R from above as follows:

R < (p2+e)(t—s1)+(pote)t—s)+(p2+e)(t—s5)—(p2—¢€)(t—s1)—(t—5)
= (po+p2—1)(t—s)+e(dt—2s1 —2s) < (po+ p2+4e—1)(t—s)=0.
For p2 < p1, we have p; — pa + 2¢ > 0 and we bound R from above as follows:

R = t(po+p1+4e—1)—s(po+ p2+2€—1) —s2(p1 — p2 + 2e)
< tlpo+p1+4e—1)—s(po+p2+2e—1)—s(p1 —p2+2€)=(po+ p1+4e—1)(t—s) =0.

Denote by Wf(t) the workload at time ¢ in a reference system with class-¢ traffic only, service
rate ¢, and with W£(0) = 0. Define Ujd(t) := supg<s<41d(t —s) — A;(s,t)}. Since R < 0, we have

Wo(t) + Wilt) < sup (Ax(s.t) = (o1 + )t = 5)} + sup {Ao(s.1) = (o +€)(t — )

0<s<t
+ sup {Aa(s,) = (p2+€)(t — 5)} + sup {(p2 — €)(t — 5) — As(s,1)}
0<s<t 0<s<t
= W) + W) + W) + URPE(1). (11)

The first three terms in (11) are now the workloads in stable queues since the service rate is
larger than the offered loads. The last term can be replaced by the supremum of a random walk
with drift po — € — p2 < 0. Since the drift is negative, U§> “(t) < oo almost surely, [5]. Hence
the workload in node 1 can be bounded from above by four terms that are almost surely finite,
which implies stability of classes 0 and 1. U

Appendix C: Proof of relation (10)

Consigler thefree process below the switchjng curve as described in Section 4.2. Define W, (t) =
min(W1(t), Wa(t)) and Winez(t) = max(Wi(t), Wa(t)). In the proof of Proposition 4.2 we relied
on equation (10), which follows from the following lemma.

Lemma 3 Fori=1,2 we have Amin(s,t) = Ai(s,t)+(Wi(s) = Ws_i(s))t — (Wi(t)—Ws_(t)) T,
hence Apmin(s,t) < ma,x(Al(s t), Aa(s,t)) = A(s, t).
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Proof: Let 7;; be the k-th time in the interval (s, t), that a class-i user arrives in the system and
let B;j be the corresponding service requirement. Let N;(s,t) be the number of class-i users
that arrive in the system during (s,t). We define for i = 1,2 and k = 1,2,..., N;(s, t):

Xig = min(Ws—i(1,) = Wi(r; )", Bi),
Yir = Bir— Xk

Obviously
N;(s,t

)
Ai(s,t) = D (Xip + Yig). (12)
k=1

The processes Wl and Wg decrease either both at con-
stant rate 1, or stay both constant (this happens when
W; = 0 for an i). W; increases with Bir=Xir+Yik
when an arrival of class ¢ occurs. From the figure on
the right we see that the term X; ; corresponds to the
arrival of work in the process Wiy, (t). Hence

Nl(St N2 St

mant Z X1k+ Z X2k: (13)

t
Assume for the moment that we can prove for i = 1, 2:
Nis,t) Na—i(s,t)
(Wi(s)-Wsi(s) ™+ Y. Y Z X3 i+ (Wi(t)—Wa_i(t)) ™.
k=1

(14)
Together with (12) and (13) we then obtain the desired result: Amin(s,t) = Ai(s,t) + (Wi(s) —

Ws—i(s))" = (Wi(t) — Wa—i(t)™.
We prove equation (14) by induction. Assume it holds at time u, that is for ¢ = 1,2:

=
=
w

) Ns_i(s,u)
(Wi(s) — Ws_i(s))" + Yir = X3 i+ (Wi(u) — Ws_i(u))",
1 =1

=
Il
e

and the next arrival occurs at time v. Assume it is an arrival of class 1.
First assume that Wi(u) > Wa(u). At time v, we still have Wy (v) > Wa(v). Now X n,(s,0) = 0
and Y] Ny (sw) = Bini(s,v) and (14) immediately holds for i = 2 at time v. Furthermore,
(Wi(v) = Wa(v))" — (Wi(u) — Wa(u))" = By n,(s,w) = Y1,N1(s,), hence for i = 2 it holds as well.
Now assume that Wi(u) < Wa(u) and By n,(s0) < Wa(u) — Wi(u). At time v we still have
Wi(v) < Wa(v). Now Xy n,(s, v) = B, Ni(s,0) and Y] n,(s,») = 0 and (14) immediately holds for
i = 1 at time v. Furthermore, (Wa(v)—Wi(v))*t—(Wa(u)—Wi(u))t = =B Ny (sp) = —X1,N1(s,)5
hence for ¢ = 2 it holds as well. . .
Finally, assume that Wi (u) < Wa(u) and By p,(s,5) > W2(u) — Wi(u). Hence at time v we have
Wi(v) > Wa(v). Now X1 N (s0) = Wo(u) — Wi (u) and Y1, Ny (s0) = BNy (s,0) — (Wa(u) — Wi(w)).
Then (Wi(v) = Wa(0)) " = (Wi(u) = Wa(u)) " = Wi(v) = Wa(v)+0 = Wi(u) ~ Wa(u) + B1,ny (s.0) =
Y1 N, v) Hence for i = 1, equation (14) holds. Furthermore, (W(v) — Wi(v))*t — (Wa(u) —
Wi(u))t = —Wa(u) — Wi(u) = =X Ny (s,), hence (14) holds for i = 2 as well. O
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