[go: up one dir, main page]

A publishing partnership

Table of contents

Volume 778

Number 1, 2013 November 20

Previous issue Next issue

1

, , , , , and

Using mid-infrared (MIR) images of four photometric bands of the Infrared Camera on board the AKARI satellite, S7 (7 μm), S11 (11 μm), L15 (15 μm), and L24 (24 μm), we investigate the interstellar dust properties of the nearby pair of galaxies M51 with respect to their spiral arm structure. The arm and interarm regions are defined based on a spatially filtered stellar component model image and we measure the arm/interarm contrast for each band. The contrast is lowest in the S11 image, which we interpret as meaning that among the four AKARI MIR bands, the S11 image best correlates with the spatial distribution of dust grains including colder components. On the other hand, the L24 image, with the highest contrast, traces warmer dust heated by star forming activity. The surface brightness ratio between the bands, i.e., color, is measured over the disk of the main galaxy, M51a, at 300 pc resolution. We find that the distribution of S7/S11 is smooth and traces the global spiral arm pattern well while L15/S11 and L24/S11 peak at individual H ii regions. This result indicates that the ionization state of polycyclic aromatic hydrocarbons (PAHs) is related to the spiral structure. Comparison with observational data and dust models also supports the importance of the variation in the PAH ionization state within the M51a disk. However, the mechanism driving this variation is not yet clear from the currently available datasets. Another suggestion from the comparison with the models is that the PAH fraction in the total dust mass is higher than previously estimated.

2

, , , , , , , , , et al

We combine IRAM Plateau de Bure Interferometer and Herschel PACS and SPIRE measurements to study the dust and gas contents of high-redshift star-forming galaxies. We present new observations for a sample of 17 lensed galaxies at z = 1.4–3.1, which allow us to directly probe the cold interstellar medium of normal star-forming galaxies with stellar masses of ∼1010M, a regime otherwise not (yet) accessible by individual detections in Herschel and molecular gas studies. The lensed galaxies are combined with reference samples of submillimeter and normal z ∼ 1–2 star-forming galaxies with similar far-infrared photometry to study the gas and dust properties of galaxies in the SFR–M*–redshift parameter space. The mean gas depletion timescale of main-sequence (MS) galaxies at z > 2 is measured to be only ∼450 Myr, a factor of ∼1.5 (∼5) shorter than at z = 1 (z = 0), in agreement with a (1 + z)−1 scaling. The mean gas mass fraction at z = 2.8 is 40% ± 15% (44% after incompleteness correction), suggesting a flattening or even a reversal of the trend of increasing gas fractions with redshift recently observed up to z ∼ 2. The depletion timescale and gas fractions of the z > 2 normal star-forming galaxies can be explained under the "equilibrium model" for galaxy evolution, in which the gas reservoir of galaxies is the primary driver of the redshift evolution of specific star formation rates. Due to their high star formation efficiencies and low metallicities, the z > 2 lensed galaxies have warm dust despite being located on the star formation MS. At fixed metallicity, they also have a gas-to-dust ratio 1.7 times larger than observed locally when using the same standard techniques, suggesting that applying the local calibration of the δGDR–metallicity relation to infer the molecular gas mass of high-redshift galaxies may lead to systematic differences with CO-based estimates.

3

, , , , , , , , , et al

Curvature effects in gamma-ray bursts (GRBs) have long been a source of considerable interest. In a collimated relativistic GRB jet, photons that are off-axis relative to the observer arrive at later times than on-axis photons and are also expected to be spectrally softer. In this work, we invoke a relatively simple kinematic two-shell collision model for a uniform jet profile and compare its predictions to GRB prompt-emission data for observations that have been attributed to curvature effects such as the peak-flux–peak-frequency relation, i.e., the relation between the νFν flux and the spectral peak, Epk in the decay phase of a GRB pulse, and spectral lags. In addition, we explore the behavior of pulse widths with energy. We present the case of the single-pulse Fermi GRB 110920 as a test for the predictions of the model against observations.

4

and

We study the mode conversion between different radial orders for solar acoustic waves interacting with sunspots. Solar acoustic waves are modified in the presence of sunspots. The modification in the wave can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave inside and around the sunspot. The wavefunction of the acoustic wave on the solar surface is computed from the cross-correlation function. The wavefunction of the scattered wave is obtained by subtracting the wavefunction of the incident wave from that of the total wave. We use the incident waves of radial order n = 0–5 to measure the scattered wavefunctions from n to another radial order n' for NOAAs 11084 and 11092. The strength of scattered waves decreases rapidly with |Δn|, where Δnn' − n. The scattered waves of Δn = ±1 are visible for n ⩽ 1, and significant for n ⩾ 2. For the scattered wave of Δn = ±2, only few cases are visible. None of the scattered waves of Δn = ±3 are visible. The properties of scattered waves for Δn = 0 and Δn ≠ 0 are different. The scattered wave amplitude relative to the incident wave amplitude decreases with n for Δn = 0, while it increases with n for Δn ≠ 0. The scattered wave amplitudes of Δn = 0 are greater for the larger sunspot, while those of Δn ≠ 0 are insensitive to the sunspot size.

5

, , , and

All cataloged stellar moving groups and associations with ages ⩽100 Myr and within 100 pc of Earth have Galactic space motions (UVW) situated in a "good box" with dimensions ∼20 km s−1 on a side. Torres et al. defined the Octans Association as a group of 15 stars with age "20 Myr?" and located ∼140 pc from Earth, but with average V space velocity −3.6 km s−1 that is well outside of the good box. We present a list of 14 Hipparcos star systems within 100 pc of Earth that we call "Octans-Near"; these systems have UVW similar to those of the much more distant Octans Association. The Octans-Near stars have apparent ages between about 30 and 100 Myr and their relationship to the Octans Association stars is unclear. Six additional star systems have UVW similar to those of Octans-Near stars and likely ages ⩽200 Myr. These six systems include the late-type binary star EQ Peg—6.2 pc from Earth with likely age ⩽100 Myr and thus likely to be the nearest known pre-main sequence star system. The UVW of stars in a previously proposed ∼200 Myr old Castor moving group are not too dissimilar from the UVW of Octans-Near stars. However, stars in the Castor group—if it exists at all—are mostly substantially older than 200 Myr and thus generally can readily be distinguished from the much younger Octans-Near stars.

6

, , and

Recent observations have shown that at least some close-in exoplanets maintain eccentric orbits despite tidal circularization timescales that are typically much shorter than stellar ages. We explore gravitational interactions with a more distant planetary companion as a possible cause of these unexpected non-zero eccentricities. For simplicity, we focus on the evolution of a planar two-planet system subject to slow eccentricity damping and provide an intuitive interpretation of the resulting long-term orbital evolution. We show that dissipation shifts the two normal eigenmode frequencies and eccentricity ratios of the standard secular theory slightly, and we confirm that each mode decays at its own rate. Tidal damping of the eccentricities drives orbits to transition relatively quickly between periods of pericenter circulation and libration, and the planetary system settles into a locked state in which the pericenters are nearly aligned or nearly anti-aligned. Once in the locked state, the eccentricities of the two orbits decrease very slowly because of tides rather than at the much more rapid single-planet rate, and thus eccentric orbits, even for close-in planets, can often survive much longer than the age of the system. Assuming that an observed close-in planet on an elliptical orbit is apsidally locked to a more distant, and perhaps unseen companion, we provide a constraint on the mass, semi-major axis, and eccentricity of the companion. We find that the observed two-planet system HAT-P-13 might be in just such an apsidally locked state, with parameters that obey our constraint reasonably well. We also survey close-in single planets, some with and some without an indication of an outer companion. None of the dozen systems that we investigate provides compelling evidence for unseen companions. Instead, we suspect that (1) orbits are in fact circular, (2) tidal damping rates are much slower than we have assumed, or (3) a recent event has excited these eccentricities. Our method should prove useful for interpreting the results of both current and future planet searches.

7

and

The Kepler mission is dramatically increasing the number of planets known in multi-planetary systems. Many adjacent planets have orbital period ratios near resonant values, with a tendency to be larger than required for exact first-order mean-motion resonances. This feature has been shown to be a natural outcome of orbital circularization of resonant planetary pairs due to star–planet tidal interactions. However, this feature holds in multi-planetary systems with periods longer than 10 days, in which tidal circularization is unlikely to provide efficient divergent evolution of the planets' orbits to explain these orbital period ratios. Gravitational interactions between planets and their parent protoplanetary disk may instead provide efficient divergent evolution. For a planet pair embedded in a disk, we show that interactions between a planet and the wake of its companion can reverse convergent migration and significantly increase the period ratio from a near-resonant value. Divergent evolution due to wake-planet interactions is particularly efficient when at least one of the planets opens a partial gap around its orbit. This mechanism could help account for the diversity of period ratios in Kepler's multiple systems from super-Earth to sub-Jovian planets with periods greater than about 10 days. Diversity is also expected for pairs of planets massive enough to merge their gap. The efficiency of wake-planet interactions is then much reduced, but convergent migration may stall with a variety of period ratios depending on the density structure in the common gap. This is illustrated for the Kepler-46 system, for which we reproduce the period ratio of Kepler-46b and c.

8

and

We investigate nucleosynthesis inside the outflows from gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, massive stars undergo core collapse to form a proto-neutron star initially, and a mild supernova (SN) explosion is driven. The SN ejecta lack momentum, and subsequently this newly formed neutron star gets transformed to a stellar mass black hole via massive fallback. The hydrodynamics and the nucleosynthesis in these accretion disks have been studied extensively in the past. Several heavy elements are synthesized in the disk, and much of these heavy elements are ejected from the disk via winds and outflows. We study nucleosynthesis in the outflows launched from these disks by using an adiabatic, spherically expanding outflow model, to understand which of these elements thus synthesized in the disk survive in the outflow. While studying this, we find that many new elements like isotopes of titanium, copper, zinc, etc., are present in the outflows. 56Ni is abundantly synthesized in most of the cases in the outflow, which implies that the outflows from these disks in a majority of cases will lead to an observable SN explosion. It is mainly present when outflow is considered from the He-rich, 56Ni/54Fe-rich zones of the disks. However, outflow from the Si-rich zone of the disk remains rich in silicon. Although emission lines of many of these heavy elements have been observed in the X-ray afterglows of several GRBs by Chandra, BeppoSAX, XMM-Newton, etc., Swift seems to have not yet detected these lines.

9

and

We describe how the nonlinear development of the R-mode instability of neutron stars influences spin up to millisecond periods via accretion. When nearly resonant interactions of the ℓ = m = 2 R-mode with pairs of "daughter modes" are included, the R-mode saturates at the lowest amplitude which leads to significant excitation of a pair of modes. The lower bound for this threshold amplitude is proportional to the damping rate of the particular daughter modes that are excited parametrically. We show that if dissipation occurs in a very thin boundary layer at the crust–core boundary, the R-mode saturation amplitude is too large for angular momentum gain from accretion to overcome loss to gravitational radiation. We find that lower dissipation is required to explain spin up to frequencies much higher than 300 Hz. We conjecture that if the transition from the fluid core to the crystalline crust occurs over a distance much longer than 1 cm, then a sharp viscous boundary layer fails to form. In this case, damping is due to shear viscosity dissipation integrated over the entire star. We estimate the lowest parametric instability threshold from first principles. The resulting saturation amplitude is low enough to permit spin up to higher frequencies. The requirement to allow continued spin up imposes an upper bound to the frequencies attained via accretion that plausibly may be about 750 Hz. Within this framework, the R-mode is unstable for all millisecond pulsars, whether accreting or not.

10

, , , and

In this paper, we present a large catalog of 419 Ultraluminous infrared galaxies (ULIRGs), carefully selected from the Wide-field Infrared Survey Explorer mid-infrared data and the Sloan Digital Sky Survey eighth data release, and classify them into three subsamples, based on their emission line properties: H ii-like ULIRGs, Seyfert 2 ULIRGs, and composite ULIRGs. We apply our new efficient spectral synthesis technique, which is based on mean field approach to Bayesian independent component analysis (MF-ICA) method, to the galaxy integrated spectra. We also analyze the stellar population properties, including percentage contribution, stellar age, and stellar mass, for these three types of ULIRGs, and explore the evolution among them. We find no significant difference between the properties of stellar populations in ULIRGs with or without active galactic nucleus components. Our results suggest that there is no evolutionary link among these three type ULIRGs.

11

, , and

Spherical solar dynamo simulations are performed. A self-consistent, fully compressible magnetohydrodynamic system with a stably stratified layer below the convective envelope is numerically solved with a newly developed simulation code based on the Yin–Yang grid. The effects of penetrative convection are studied by comparing two models with and without the stable layer. The differential rotation profile in both models is reasonably solar-like with equatorial acceleration. When considering the penetrative convection, a tachocline-like shear layer is developed and maintained beneath the convection zone without assuming any forcing. While the turbulent magnetic field becomes predominant in the region where the convective motion is vigorous, mean-field components are preferentially organized in the region where the convective motion is less vigorous. Particularly in the stable layer, the strong, large-scale field with a dipole symmetry is spontaneously built up. The polarity reversal of the mean-field component takes place globally and synchronously throughout the system regardless of the presence of the stable layer. Our results suggest that the stably stratified layer is a key component for organizing the large-scale strong magnetic field, but is not essential for the polarity reversal.

12

, , , , , and

We report two new dramatically dusty main sequence stars: HD 131488 (A1 V) and HD 121191 (A8 V). HD 131488 is found to have substantial amounts of dust in its terrestrial planet zone (LIR/Lbol ≈ 4 × 10−3), cooler dust farther out in its planetary system, and an unusual mid-infrared spectral feature. HD 121191 shows terrestrial planet zone dust (LIR/Lbol ≈ 2.3 × 10−3), hints of cooler dust, and shares the unusual mid-infrared spectral shape identified in HD 131488. These two stars belong to sub-groups of the Scorpius–Centaurus OB association and have ages of ∼10 Myr. HD 131488 and HD 121191 are the dustiest main sequence A-type stars currently known. Early-type stars that host substantial inner planetary system dust are thus far found only within the age range of 5–20 Myr.

13

, , , , , , , , and

To better understand a preferred magnetic field configuration and its evolution during coronal mass ejection (CME) events, we investigated the spatial and temporal evolution of photospheric magnetic fields in the active region NOAA 9236 that produced eight flare-associated CMEs during the time period of 2000 November 23–26. The time variations of the total magnetic helicity injection rate and the total unsigned magnetic flux are determined and examined not only in the entire active region but also in some local regions such as the main sunspots and the CME-associated flaring regions using SOHO/MDI magnetogram data. As a result, we found that (1) in the sunspots, a large amount of positive (right-handed) magnetic helicity was injected during most of the examined time period, (2) in the flare region, there was a continuous injection of negative (left-handed) magnetic helicity during the entire period, accompanied by a large increase of the unsigned magnetic flux, and (3) the flaring regions were mainly composed of emerging bipoles of magnetic fragments in which magnetic field lines have substantially favorable conditions for making reconnection with large-scale, overlying, and oppositely directed magnetic field lines connecting the main sunspots. These observational findings can also be well explained by some MHD numerical simulations for CME initiation (e.g., reconnection-favored emerging flux models). We therefore conclude that reconnection-favored magnetic fields in the flaring emerging flux regions play a crucial role in producing the multiple flare-associated CMEs in NOAA 9236.

14

, , , and

We measure the baryons contained in both the stellar and hot-gas components for 12 galaxy clusters and groups at z ∼ 0.1 with M = 1–5 × 1014M. This paper improves upon our previous work through the addition of XMM-Newton X-ray data, enabling measurements of the total mass and masses of each major baryonic component—intracluster medium, intracluster stars, and stars in galaxies—for each system. We recover a mean relation for the stellar mass versus halo mass, $M_{\star }\propto M_{500}^{-0.52\pm 0.04}$, that is 1σ shallower than in our previous result. We confirm that the partitioning of baryons between the stellar and hot-gas components is a strong function of M500; the fractions of total mass in stars and X-ray gas within a sphere of radius r500 scale as $f_{\star }\propto M_{500}^{-0.45\pm 0.04}$ and $f_{{\rm gas}}\propto M_{500}^{0.26\pm 0.03}$, respectively. We also confirm that the combination of the brightest cluster galaxy and intracluster stars is an increasingly important contributor to the stellar baryon budget in lower halo masses. Studies that fail to fully account for intracluster stars typically underestimate the normalization of the stellar baryon fraction versus M500 relation by ∼25%. Our derived stellar baryon fractions are also higher, and the trend with halo mass weaker, than those derived from recent halo occupation distribution and abundance matching analyses. One difference from our previous work is the weak, but statistically significant, dependence here of the total baryon fraction upon halo mass: $f_{{\rm bary}}\propto M_{500}^{0.16\pm 0.04}$. For M500 ≳ 2 × 1014, the total baryon fractions within r500 are on average 18% below the universal value from the seven year Wilkinson Microwave Anisotropy Probe (WMAP) analysis, or 7% below for the cosmological parameters from the Planck analysis. In the latter case, the difference between the universal value and cluster baryon fractions is less than the systematic uncertainties associated with the M500 determinations. The total baryon fractions exhibit significant scatter, particularly at M500 < 2 × 1014M where they range from 60%–90%, or 65%–100%, of the universal value for WMAP7 and Planck, respectively. The ratio of the stellar-to-gas mass within r500 (M/Mgas), a measure of integrated star-formation efficiency, strongly decreases with increasing M500. This relation is tight, with an implied intrinsic scatter of 12%. The fact that this relation remains tight at low mass implies that the larger scatter in the total baryon fractions at these masses arises from either true scatter in the total baryon content or observational scatter in M500  rather than late-time physical processes such as redistribution of gas to beyond r500. If the scatter in the baryon content at low mass is physical, then our results imply that in this mass range, the integrated star-formation efficiency rather than the baryon fraction that is constant at fixed halo mass.

15

, , , , , , , , , et al

The Spitzer Space Telescope Legacy Program SAGE-SMC allows global studies of resolved stellar populations in the SMC in a different environment than our Galaxy. Using the SAGE-SMC IRAC (3.6–8.0 μm) and MIPS (24 and 70 μm) catalogs and images combined with near-infrared (JHKs) and optical (UBVI) data, we identified a population of ∼1000 intermediate- to high-mass young stellar objects (YSOs) in the SMC (three times more than previously known). Our method of identifying YSO candidates builds on the method developed for the Large Magellanic Cloud by Whitney et al. with improvements based on what we learned from our subsequent studies and techniques described in the literature. We perform (1) color–magnitude cuts based on five color–magnitude diagrams (CMDs), (2) visual inspection of multi-wavelength images, and (3) spectral energy distribution (SED) fitting with YSO models. For each YSO candidate, we use its photometry to calculate a measure of our confidence that the source is not a non-YSO contaminant, but rather a true YSO, based on the source's location in the color–magnitude space with respect to non-YSOs. We use this CMD score and the SED fitting results to define two classes of sources: high-reliability YSO candidates and possible YSO candidates. We found that, due to polycyclic aromatic hydrocarbon emission, about half of our sources have [3.6]–[4.5] and [4.5]–[5.8] colors not predicted by previous YSO models. The YSO candidates are spatially correlated with gas tracers.

16

, , , and

The J = 1 → 0 transition of HCO+ at 89 GHz has been mapped across the Helix Nebula (NGC 7293) with 70'' spatial resolution (1.68 km s−1 velocity resolution) using the Arizona Radio Observatory 12 m telescope. This work is the first large-scale mapping project of a dense gas tracer (n(H2) ∼ 105 cm−3) in old planetary nebulae. Observations of over 200 positions encompassing the classical optical image were conducted with a 3σ noise level of ∼20 mK. HCO+ was detected at most positions, often exhibiting multiple velocity components indicative of complex kinematic structures in dense gas. The HCO+ spectra suggest that the Helix is composed of a bipolar, barrel-like structure with red- and blue-shifted halves, symmetric with respect to the central star and oriented ∼10° east from the line of sight. A second bipolar, higher velocity outflow exists as well, situated along the direction of the Helix "plumes." The column density of HCO+ across the Helix is Ntot ∼ 1.5 × 1010–5.0 × 1011 cm−2, with an average value Nave ∼ 1 × 1011 cm−2, corresponding to an abundance, relative to H2, of f ∼ 1.4 × 10−8. This value is similar to that observed in young PN, and contradicts chemical models, which predict that the abundance of HCO+ decreases with nebular age. This study indicates that polyatomic molecules readily survive the ultraviolet field of the central white dwarf, and can be useful in tracing nebular morphology in the very late stages of stellar evolution.

17

, , , , , , , , and

The existence of supermassive black holes as early as z ∼ 7 is one of the great, unsolved problems in cosmological structure formation. One leading theory argues that they are born during catastrophic baryon collapse in z ∼ 15 protogalaxies that form in strong Lyman–Werner UV backgrounds. Atomic line cooling in such galaxies fragments baryons into massive clumps that are thought to directly collapse to 104–105M black holes. We have now discovered that some of these fragments can instead become supermassive stars that eventually explode as thermonuclear supernovae (SNe) with energies of ∼1055 erg, the most energetic explosions in the universe. We have calculated light curves and spectra for supermassive Pop III SNe with the Los Alamos RAGE and SPECTRUM codes. We find that they will be visible in near-infrared all-sky surveys by Euclid out to z ∼ 10–15 and by WFIRST and WISH out to z ∼ 15–20, perhaps revealing the birthplaces of the first quasars.

18

, , , , , , , , , et al

We present late-time radio and X-ray observations of the nearby sub-energetic gamma-ray burst (GRB)100316D associated with supernova (SN) 2010bh. Our broad-band analysis constrains the explosion properties of GRB 100316D to be intermediate between highly relativistic, collimated GRBs and the spherical, ordinary hydrogen-stripped SNe. We find that ∼1049 erg is coupled to mildly relativistic (Γ = 1.5–2), quasi-spherical ejecta, expanding into a medium previously shaped by the progenitor mass-loss with a rate of $\dot{M}\, {\sim }\, 10^{-5}\,M_{{\rm \odot }}\,{\rm yr}^{-1}$ (for an assumed wind density profile and wind velocity vw = 1000 km s−1). The kinetic energy profile of the ejecta argues for the presence of a central engine and identifies GRB 100316D as one of the weakest central-engine-driven explosions detected to date. Emission from the central engine is responsible for an excess of soft X-ray radiation that dominates over the standard afterglow at late times (t > 10 days). We connect this phenomenology with the birth of the most rapidly rotating magnetars. Alternatively, accretion onto a newly formed black hole might explain the excess of radiation. However, significant departure from the standard fall-back scenario is required.

19

, , , , , , , , , et al

A Jupiter-family comet, 17P/Holmes, underwent outbursts in 1892 and 2007. In particular, the 2007 outburst is known as the greatest outburst over the past century. However, little is known about the activity before the outburst because it was unpredicted. In addition, the time evolution of the nuclear physical status has not been systematically studied. Here, we study the activity of 17P/Holmes before and after the 2007 outburst through optical and mid-infrared observations. We found that the nucleus was highly depleted in its near-surface icy component before the outburst but that it became activated after the 2007 outburst. Assuming a conventional 1 μm sized grain model, we derived a surface fractional active area of 0.58% ± 0.14% before the outburst whereas the area was enlarged by a factor of ∼50 after the 2007 outburst. We also found that large (⩾1 mm) particles could be dominant in the dust tail observed around aphelion. Based on the size of the particles, the dust production rate was ≳170 kg s−1 at a heliocentric distance of rh = 4.1 AU, suggesting that the nucleus was still active around the aphelion passage. The nucleus color was similar to that of the dust particles and average for a Jupiter-family comet but different from that of most Kuiper Belt objects, implying that color may be inherent to icy bodies in the solar system. On the basis of these results, we concluded that more than 76 m of surface material was blown off by the 2007 outburst.

20

, , , and

We report on a numerical investigation of two coronal mass ejections (CMEs) that interact as they propagate in the inner heliosphere. We focus on the effect of the orientation of the CMEs relative to each other by performing four different simulations with the axis of the second CME rotated by 90° from one simulation to the next. Each magnetohydrodynamic simulation is performed in three dimensions with the Space Weather Modeling Framework in an idealized setting reminiscent of solar minimum conditions. We extract synthetic satellite measurements during and after the interaction and compare the different cases. We also analyze the kinematics of the two CMEs, including the evolution of their widths and aspect ratios. We find that the first CME contracts radially as a result of the interaction in all cases, but the amount of subsequent radial expansion depends on the relative orientation of the two CMEs. Reconnection between the two ejecta and between the ejecta and the interplanetary magnetic field determines the type of structure resulting from the interaction. When a CME with a high inclination with respect to the ecliptic overtakes one with a low inclination, it is possible to create a compound event with a smooth rotation in the magnetic field vector over more than 180°. Due to reconnection, the second CME only appears as an extended "tail," and the event may be mistaken for a glancing encounter with an isolated CME. This configuration differs significantly from the one usually studied of a multiple-magnetic-cloud event, which we found to be associated with the interaction of two CMEs with the same orientation.

21

and

The inverse cascade of magnetic helicity in three-dimensional magnetohydrodynamic (3D-MHD) turbulence is believed to be one of the processes responsible for large-scale magnetic structure formation in astrophysical systems. In this work, we present an exhaustive set of high-resolution direct numerical simulations of both forced and decaying 3D-MHD turbulence, to understand this structure formation process. It is first shown that an inverse cascade of magnetic helicity in small-scale driven turbulence does not necessarily generate coherent large-scale magnetic structures. The observed large-scale magnetic field, in this case, is severely perturbed by magnetic fluctuations generated by the small-scale forcing. In the decaying case, coherent large-scale structures form similarly to those observed astronomically. Based on the numerical results, the formation of large-scale magnetic structures in some astrophysical systems is suggested to be the consequence of an initial forcing that imparts the necessary turbulent energy into the system, which, after the forcing shuts off, decays to form the large-scale structures. This idea is supported by representative examples, e.g., clusters of galaxies.

22

, , and

Detailed radiative transfer modeling has been carried out for SO2 and SO originating in the envelope of the O-rich supergiant star VY Canis Majoris (VY CMa). A total of 27 transitions of SO2 and 7 transitions of SO lying in the energy range 3.0–138.2 cm−1 were analyzed using a new non-LTE radiative transfer code that incorporates non-spherical geometries. The spectra were primarily obtained from the Arizona Radio Observatory (ARO) 1 mm spectral survey of VY CMa, conducted with the Submillimeter Telescope; additional lines were measured with the ARO 12 m antenna at 2 and 3 mm. SO2 and SO were found to arise from five distinct outflows within the envelope, four which are asymmetric with respect to the star. Three flows arise from high-velocity red-shifted material, one from a blue-shifted wind, and the final from a classic "spherical" expansion. In the spherical component, the peak fractional abundance, relative to H2, of both molecules is f ∼ 2.5 × 10−7 at r ∼ 25 R*, and steadily decreases outward. SO2 appears to be a "parent" molecule, formed near the stellar photosphere. In the asymmetric outflows, both SO and SO2 are more prominent at large stellar radii in dense (106–107 cm−3), clumpy material, achieving their maximum abundance between 200 and 600 R* with f ∼ 3.0 × 10−8–1.5 × 10−7. These results suggest that in the collimated outflows, both species are either produced by shock chemistry or are remnant inner shell material swept up in the high-velocity winds.

23

, , and

A sample of 12,614 star-forming galaxies (SFGs) with stellar mass >109.5M between 0.6 < z < 0.8 from COSMOS is selected to study the intrinsic scatter of the correlation between star formation rate (SFR) and stellar mass. We derive SFR from ultraviolet (UV) and infrared (IR) luminosities. A stacking technique is adopted to measure IR emission for galaxies undetected at 24 μm. We confirm that the slope of the mass–SFR relation is close to unity. We examine the distributions of specific SFRs (SSFRs) in four equally spaced mass bins from 109.5M to 1011.5M. Different models are used to constrain the scatter of SSFR for lower mass galaxies that are mostly undetected at 24 μm. The SFR scatter is dominated by the scatter of UV luminosity and gradually that of IR luminosity at increasing stellar mass. We derive SSFR dispersions of 0.18, 0.21, 0.26, and 0.31 dex with a typical measurement uncertainty of ≲ 0.01 dex for the four mass bins. Interestingly, the scatter of the mass–SFR relation seems not constant in the sense that the scatter in SSFR is smaller for SFGs of stellar mass <1010.5M. If confirmed, this suggests that the physical processes governing star formation become systematically less violent for less massive galaxies. The SSFR distribution for SFGs with intermediate mass 1010–1010.5 M is characterized by a prominent excess of intense starbursts in comparison with other mass bins. We argue that this feature reflects that both violent (e.g., major/minor mergers) and quiescent processes are important in regulating star formation in this intermediate-mass regime.

24

and

We examine properties of the population of SOHO/STEREO (dwarf) Kreutz sungrazing comets from 2004 to 2013, including the arrival rates, peculiar gaps, and a potential relationship to the spectacular comet C/2011 W3 (Lovejoy). Selection effects, influencing the observed distribution, are largely absent among bright dwarf sungrazers, whose temporal sequence implies the presence of a swarm, with objects brighter at maximum than an apparent magnitude of 3 arriving at a peak rate of ∼4.6 yr−1 in late 2010, while those brighter than magnitude 2 arrived at a peak rate of ∼4.3 yr−1 in early 2011, both a few times the pre-swarm rate. The entire population of SOHO/STEREO Kreutz sungrazers also peaked about one year before the appearance of C/2011 W3. Orbital data show, however, that a great majority of bright dwarf sungrazers moved in paths similar to that of comet C/1843 D1, deviating 10° or more from the orbit of C/2011 W3 in the angular elements. The evidence from the swarm and the overall elevated arrival rates suggests the existence of a fragmented sizable sungrazer that shortly preceded C/2011 W3 but was independent of it. On the other hand, these findings represent another warning signal that the expected 21st century cluster of spectacular Kreutz comets is on its way to perihelion, to arrive during the coming decades. It is only in this sense that we find a parallel link between C/2011 W3 and the spikes in the population of SOHO/STEREO Kreutz sungrazers.

25

, , , , , , , and

Abrupt changes of the relative He abundance in the solar wind are usually attributed to encounters with boundaries dividing solar wind streams from different sources in the solar corona. This paper presents a systematic study of fast variations of the He abundance that supports the idea that a majority of these variations on short timescales (3–30 s) are generated by in-transit turbulence that is probably driven by the speed difference between the ion species. This turbulence contributes to the solar wind heating and leads to a correlation of the temperature with He abundance.

26

, , , and

A set of co-aligned high-resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling a quantitative description of subvisual coronal motions with low signal-to-noise ratios of the order of 0.1%. The technique operates with a set of one-dimensional "surfing" signals extracted from position–time plots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency–velocity space that exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the coronal plasma following the square-root dependence predicted for slow mode magneto-acoustic waves which seem to be the dominating wave mode in the loop structures studied. This result extends recent observations by Kiddie et al. to a more general class of fan loop system not associated with sunspots and demonstrating consistent slow mode activity in up to four AIA channels.

27

Recent observations have shown that the photometric and dynamic properties of granulation and small-scale magnetic features depend on the amount of magnetic flux of the region they are embedded in. We analyze results from numerical hydrodynamic and magnetohydrodynamic simulations characterized by different amounts of average magnetic flux and find qualitatively the same differences as those reported from observations. We show that these different physical properties result from the inhibition of convection induced by the presence of the magnetic field, which changes the temperature stratification of both quiet and magnetic regions. Our results are relevant for solar irradiance variations studies, as such differences are still not properly taken into account in irradiance reconstruction models.

28

, , and

We have studied the time series of full disk integrated soft and hard X-ray emission from the solar corona during 2004 January to 2008 December, covering the entire descending phase of solar cycle 23 from a global point of view. We employ the daily X-ray index derived from 1 s cadence X-ray observations from the Si and CZT detectors of the "Solar X-ray Spectrometer" mission in seven different energy bands ranging between 6 and 56 keV. X-ray data in the energy bands 6–7, 7–10, 10–20, and 4–25 keV from the Si detector are considered, while 10–20, 20–30, and 30–56 keV high energy observations are taken from the CZT detector. The daily time series is subjected to power spectrum analysis after appropriate correction for noise. The Lomb–Scargle periodogram technique has shown prominent periods of ∼13.5 days, ∼27 days, and a near-Rieger period of ∼181 days and ∼1.24 yr in all energy bands. In addition to this, other periods like ∼31, ∼48, ∼57, ∼76, ∼96, ∼130, ∼227, and ∼303 days are also detected in different energy bands. We discuss our results in light of previous observations and existing numerical models.

29

, , , and

We analyze coordinated observations from the EUV Imaging Spectrometer (EIS) and X-Ray Telescope (XRT) on board Hinode of an X-ray Plasma Ejection (XPE) that occurred during the coronal mass ejection (CME) event of 2008 April 9. The XPE was trailing the CME core from behind, following the same trajectory, and could be identified both in EIS and XRT observations. Using the EIS spectrometer, we have determined the XPE plasma parameters, measuring the electron density, thermal distribution, and elemental composition. We have found that the XPE composition and electron density were very similar to those of the pre-event active region plasma. The XPE temperature was higher, and its thermal distribution peaked at around 3 MK; also, typical flare lines were absent from EIS spectra, indicating that any XPE component with temperatures in excess of 5 MK was likely either faint or absent. We used XRT data to investigate the presence of hotter plasma components in the XPE that could have gone undetected by EIS and found that—if at all present—these components have small emission measure values and their temperature is in the 8–12.5 MK range. The very hot plasma found in earlier XPE observations obtained by Yohkoh seems to be largely absent in this CME, although plasma ionization timescales may lead to non-equilibrium ionization effects that could make bright lines from ions formed in a 10 MK plasma not detectable by EIS. Our results supersede the XPE findings of Landi et al., who studied the same event with older response functions for the XRT Al-poly filter; the differences in the results stress the importance of using accurate filter response functions.

30

, , , , , and

Low-frequency (80 MHz) imaging and spectral (≈85–20 MHz) observations of moving type IV radio bursts associated with coronal mass ejections (CMEs) from the Sun on three different days are reported. The estimated drift speed of the bursts is in the range ≈150–500 km s−1. We find that all three bursts are most likely due to second harmonic plasma emission from the enhanced electron density in the associated white-light CMEs. The derived maximum magnetic field strength of the latter is B ≈ 4 G at a radial distance of r ≈ 1.6 R.

31

and

We study the pulsar timing properties and the data analysis methods of glitch recoveries. In some cases one first fits the times of arrival (TOAs) to obtain the "time-averaged" frequency ν and its first derivative $\dot{\nu }$, and then fits models to them. However, our simulations show that ν and $\dot{\nu }$ obtained in this way are systematically biased unless the time intervals between the nearby data points of TOAs are smaller than about 104 s, which is much shorter than typical observation intervals. Alternatively, glitch parameters can be obtained by fitting the phases directly with relatively smaller biases, but the initial recovery time scale is usually chosen by eye, which may introduce a strong bias. We also construct a phenomenological model by assuming a pulsar spin-down law of $\dot{\nu }\nu ^{-3} =-H_0 G(t)$ with G(t) = 1 + κet for a glitch recovery, where H0 is a constant and κ and τ are the glitch parameters to be found. This model can reproduce the observed data of slow glitches from B1822−09 and the giant classical glitch of B2334+61, with κ < 0 or κ > 0, respectively. We then use this model to simulate TOA data and test several fitting procedures for a glitch recovery. The best procedure is (1) to use a very high order polynomial (e.g., to 50th order) to precisely describe the phase, (2) obtain ν(t) and $\dot{\nu }(t)$ from the polynomial, then (3) obtain the glitch parameters from ν(t) or $\dot{\nu }(t)$. Finally, the uncertainty in the starting time t0 of a classical glitch causes uncertainties in some glitch parameters, but less so for a slow glitch, t0, of which can be determined from data.

32

, , and

We use the star count model of Ortiz & Lépine to perform an unprecedented exploration of the most important Galactic parameters comparing the predicted counts with the Two Micron All Sky Survey observed star counts in the J, H, and KS bands for a grid of positions covering the whole sky. The comparison is made using a grid of lines of sight given by the HEALPix pixelization scheme. The resulting best-fit values for the parameters are: 2120 ± 200 pc for the radial scale length and 205 ± 40 pc for the scale height of the thin disk, with a central hole of 2070$_{-800}^{+2000}$ pc for the same disk, 3050 ± 500 pc for the radial scale length and 640 ± 70 pc for the scale height of the thick disk, 400 ± 100 pc for the central dimension of the spheroid, 0.0082 ± 0.0030 for the spheroid to disk density ratio, and 0.57 ± 0.05 for the oblate spheroid parameter.

33

, , , , , and

We report the Suzaku/XIS and HXD and Chandra/ACIS-I results on the X-ray spectra of the Phoenix cluster at the redshift z = 0.596. The spectrum of the intracluster medium (ICM) is well reproduced with the emissions from low-temperature (∼3.0 keV and ∼0.76 solar) and high-temperature (∼11 keV and ∼0.33 solar) plasmas; the former is localized at the cluster core, while the latter distributes over the cluster. In addition to these ICM emissions, a strongly absorbed power-law component is found, which is due to an active galactic nucleus (AGN) in the cluster center. The absorption column density and unobscured luminosity of the AGN are ∼3.2 × 1023 cm−2 and ∼4.7 × 1045 erg s−1 (2–10 keV), respectively. Furthermore, a neutral iron (Fe i) K-shell line is discovered for the first time with the equivalent width (EW) of ∼150 eV at the rest frame. The column density and the EW of the Fe i line are exceptionally large for such a high-luminosity AGN, and hence the AGN is classified as a type 2 quasi-stellar object (QSO). We speculate that a significant fraction of the ICM cooled gas would be consumed to maintain the torus and to activate the type 2 QSO. The Phoenix cluster has a massive starburst in the central galaxy, indicating that suppression in the cooling flow is less effective. This may be because the onset of the latest AGN feedback has occurred recently and has not yet been effective. Alternatively, the AGN feedback is predominantly in radiative mode, not in kinetic mode, and the torus may work as a shield to reduce its effect.

34

, , , , , , , , and

We present the results of N2H+ (J = 1–0) observations toward Serpens South, the nearest cluster-forming, infrared dark cloud. The physical quantities are derived by fitting the hyperfine structure of N2H+. The Herschel and 1.1 mm continuum maps show that a parsec-scale filament fragments into three clumps with radii of 0.1–0.2 pc and masses of 40–230 M. We find that the clumps contain smaller-scale (∼0.04 pc) structures, i.e., dense cores. We identify 70 cores by applying CLUMPFIND to the N2H+ data cube. In the central cluster-forming clump, the excitation temperature and line-width tend to be large, presumably due to protostellar outflow feedback and stellar radiation. However, for all the clumps, the virial ratios are evaluated to be 0.1–0.3, indicating that the internal motions play only a minor role in the clump support. The clumps exhibit no free fall but exhibit low-velocity infall, and thus the clumps should be supported by additional forces. The most promising force is the globally ordered magnetic field observed toward this region. We propose that the Serpens South filament was close to magnetically critical and ambipolar diffusion triggered the cluster formation. We find that the northern clump, which shows no active star formation, has a mass and radius comparable to the central cluster-forming clump and is therefore a likely candidate of a pre-protocluster clump. The initial condition for cluster formation is likely to be a magnetically supported clump of cold, quiescent gas. This appears to contradict the accretion-driven turbulence scenario, for which the turbulence in the clumps is maintained by the accretion flow.

35

and

In this paper, we present a general scenario for nondiffusive transport and we investigate the influence of anomalous, superdiffusive transport on Fermi acceleration processes at shocks. We explain why energetic particle superdiffusion can be described within the Lévy walk framework, which is based on a power-law distribution of free path lengths and on a coupling between free path length and free path duration. A self-contained derivation of the particle mean square displacement, which grows as 〈Δx2〉 = 2Dαtα with α > 1, and the particle propagator, is presented for Lévy walks, making use of a generalized version of the Montroll–Weiss equation. We also derive for the first time an explicit expression for the anomalous diffusion coefficient Dα and we discuss how to obtain these quantities from energetic particle observations in space. The results are applied to the case of particle acceleration at an infinite planar shock front. Using the scaling properties of the Lévy walk propagator, the energy spectral indices are found to have values smaller than the ones predicted by the diffusive shock acceleration theory. Furthermore, when applying the results to ions with energies of a few MeV accelerated at the solar wind termination shock, the estimation of the anomalous diffusion coefficient associated with the superdiffusive motion gives acceleration times much smaller than the ones related to normal diffusion.

36

, , , , , and

We present new high contrast imaging of eight L/T transition brown dwarfs (BDs) using the NIRC2 camera on the Keck II telescope. One of our targets, the T3.5 dwarf 2MASS J08381155+1511155, was resolved into a hierarchal triple with projected separations of 2.5 ± 0.5 AU and 27 ± 5 AU for the BC and A(BC) components, respectively. Resolved OSIRIS spectroscopy of the A(BC) components confirms that all system members are T dwarfs. The system therefore constitutes the first triple T-dwarf system ever reported. Using resolved photometry to model the integrated-light spectrum, we infer spectral types of T3 ± 1, T3 ± 1, and T4.5 ± 1 for the A, B, and C components, respectively. The uniformly brighter primary has a bluer JKs color than the next faintest component, which may reflect a sensitive dependence of the L/T transition temperature on gravity, or alternatively divergent cloud properties among components. Relying on empirical trends and evolutionary models we infer a total system mass of 0.034–0.104 M for the BC components at ages of 0.3–3 Gyr, which would imply a period of 12–21 yr assuming the system semimajor axis to be similar to its projection. We also infer differences in effective temperatures and surface gravities between components of no more than ∼150 K and ∼0.1 dex. Given the similar physical properties of the components, the 2M0838+15 system provides a controlled sample for constraining the relative roles of effective temperature, surface gravity, and dust clouds in the poorly understood L/T transition regime. For an age of 3 Gyr we estimate a binding energy of ∼20 × 1041 erg for the wide A(BC) pair, which falls above the empirical minimum found for typical BD binaries, and suggests that the system may have been able to survive a dynamical ejection during formation. Combining our imaging survey results with previous work we find an observed binary fraction of 4/18 or $22_{-8}^{+10}$% for unresolved spectral types of L9–T4 at separations ≳ 0farcs1. This translates into a volume-corrected frequency of $13^{+7}_{-6}$%, which is similar to values of ∼9%–12% reported outside the transition. Our reported L/T transition binary fraction is roughly twice as large as the binary fraction of an equivalent L9–T4 sample selected from primary rather than unresolved spectral types ($6^{+6}_{-4}$%); however, this increase is not yet statistically significant and a larger sample is required to settle the issue.

37

, , , and

The majority of heavy noble gases (Ar, Kr, and Xe) in primitive meteorites are stored in a poorly understood phase called Q. Although Q is thought to be carbonaceous, the full identity of the phase has remained elusive for almost four decades. In order to better characterize phase Q and, in turn, the early solar nebula, we separated carbon-rich fractions from the Saratov (L4) meteorite. We chose this meteorite because Q is most resistant in thermal alteration among carbonaceous noble gas carriers in meteorites and we hoped that, in this highly metamorphosed meteorite, Q would be present but not diamond: these two phases are very difficult to separate from each other. One of the fractions, AJ, has the highest 132Xe concentration of 2.1 × 10−6 cm3 STP g−1, exceeding any Q-rich fractions that have yet been analyzed. Transmission electron microscopy studies of the fraction AJ and a less Q-rich fraction AI indicate that they both are primarily porous carbon that consists of domains with short-range graphene orders, with variable packing in three dimensions, but no long-range graphitic order. The relative abundance of Xe and C atoms (6:109) in the separates indicates that individual noble gas atoms are associated with only a minor component of the porous carbon, possibly one or more specific arrangements of the nanoparticulate graphene.

38

, , , , , , , , , et al

Observations of accretion disks around young brown dwarfs (BDs) have led to the speculation that they may form planetary systems similar to normal stars. While there have been several detections of planetary-mass objects around BDs (2MASS 1207-3932 and 2MASS 0441-2301), these companions have relatively large mass ratios and projected separations, suggesting that they formed in a manner analogous to stellar binaries. We present the discovery of a planetary-mass object orbiting a field BD via gravitational microlensing, OGLE-2012-BLG-0358Lb. The system is a low secondary/primary mass ratio (0.080 ± 0.001), relatively tightly separated (∼0.87 AU) binary composed of a planetary-mass object with 1.9 ± 0.2 Jupiter masses orbiting a BD with a mass 0.022 M. The relatively small mass ratio and separation suggest that the companion may have formed in a protoplanetary disk around the BD host in a manner analogous to planets.

39

and

Nonmagnetized, fully ionized plasmas spontaneously emit aperiodic turbulent magnetic field fluctuations. Its fluctuation intensities are dominated by the contribution from a recently discovered collective, damped mode, which modifies the earlier estimate of the total magnetic field strength in a thermal nonrelativistic electron-proton plasma to $|\delta B|=24\beta _e^{1/4}(gn_em_ec^2)^{1/2}$ G, where g denotes the plasma parameter and βe the thermal electron velocity in units of the speed of light, in the case of no collisional damping. Accounting for simultaneous viscous damping reduces the estimate to |δB|eq = 2305g(nemec2)1/2 G, depending only on the plasma parameter g and the electron density ne. For the unmagnetized intergalactic medium, immediately after the reionization onset the field strengths from this mechanism are about 6.8 × 10−13 G for no collisional damping and 1.5 × 10−16 G for viscous damping. Maximum spatial scales of 1015 cm of the emitted aperiodic fluctuations in cosmic voids are possible.

40

, , , , and

In the present study, we use all-sky energy-resolved energetic neutral atom (ENA) maps obtained by the Ion and Neutral CAmera (INCA) instrument on board Cassini that correspond to the time period from 2003 to 2009, in four discrete energy passbands (∼5.4 to ∼55 keV), to investigate the geometrical characteristics of the belt (a broad band of emission in the sky). The heliospheric ENA emissions are mapped in three different coordinate systems (ecliptic, Galactic, and interstellar magnetic field (ISMF)), and spectral analyses are performed to further examine the belt's possible energy dependence. Our conclusions are summarized as follows: (1) the high flux ENA belt identified in the energy range of 8–42 keV is moderately well organized in Galactic coordinates, as the ENA minima appear in the vicinity of the north and south Galactic poles; (2) using minimization criteria (B · R ∼ 0), the deviation of the ENA emissions from the equator is effectively minimized in a rotated frame, which we interpret as ISMF, where its north pole points toward 190° ecliptic longitude and 15° ecliptic latitude; (3) ENA spectra show a power-law form in energy that can be fitted with a single function presenting higher spectral slopes in the belt region and lower outside (3.4 < γ < 4.4); (4) the spectra are almost indistinguishable between the tail and the nose regions, i.e., no noticeable asymmetry is observed; (5) the consistency of the ENA distributions as a function of latitude among the different INCA channels indicates that the morphology of the belt (peak, width, and structure) is nearly energy independent from 8 keV to 30 keV (minor deviations start to appear at >35 keV); and (6) in the low count rate regions, the long-term ENA count rate profiles do not match the measured cosmic ray profiles, indicating that even the minimum ENA emissions detected by INCA are foreground ENAs.

41

, , , , and

We present results from simulations of rotating magnetized turbulent convection in spherical wedge geometry representing parts of the latitudinal and longitudinal extents of a star. Here we consider a set of runs for which the density stratification is varied, keeping the Reynolds and Coriolis numbers at similar values. In the case of weak stratification, we find quasi-steady dynamo solutions for moderate rotation and oscillatory ones with poleward migration of activity belts for more rapid rotation. For stronger stratification, the growth rate tends to become smaller. Furthermore, a transition from quasi-steady to oscillatory dynamos is found as the Coriolis number is increased, but now there is an equatorward migrating branch near the equator. The breakpoint where this happens corresponds to a rotation rate that is about three to seven times the solar value. The phase relation of the magnetic field is such that the toroidal field lags behind the radial field by about π/2, which can be explained by an oscillatory α2 dynamo caused by the sign change of the α-effect about the equator. We test the domain size dependence of our results for a rapidly rotating run with equatorward migration by varying the longitudinal extent of our wedge. The energy of the axisymmetric mean magnetic field decreases as the domain size increases and we find that an m = 1 mode is excited for a full 2π azimuthal extent, reminiscent of the field configurations deduced from observations of rapidly rotating late-type stars.

42

, , and

We have studied the emergence of a weakly twisted magnetic flux tube from the upper convection zone into the solar atmosphere. It is found that the rising magnetized plasma does not undergo the classical, single Ω-shaped loop emergence, but it becomes unstable in two places, forming two magnetic lobes that are anchored in small-scale bipolar structures at the photosphere, between the two main flux concentrations. The two magnetic lobes rise and expand into the corona, forming an overall undulating magnetic flux system. The dynamical interaction of the lobes results in the triggering of high-speed and hot jets and the formation of successive cool and hot loops that coexist in the emerging flux region. Although the initial emerging field is weakly twisted, a highly twisted magnetic flux rope is formed at the low atmosphere, due to shearing and reconnection. The new flux rope (hereafter post-emergence flux rope) does not erupt. It remains confined by the overlying field. Although there is no ejective eruption of the post-emergence rope, it is found that a considerable amount of axial and azimuthal flux is transferred into the solar atmosphere during the emergence of the magnetic field.

43

, , , , , , and

The acceleration of protons and electrons to high (sometimes GeV/nucleon) energies by solar phenomena is a key component of space weather. These solar energetic particle (SEP) events can damage spacecraft and communications, as well as present radiation hazards to humans. In-depth particle acceleration simulations have been performed for idealized magnetic fields for diffusive acceleration and particle propagation, and at the same time the quality of MHD simulations of coronal mass ejections (CMEs) has improved significantly. However, to date these two pieces of the same puzzle have remained largely decoupled. Such structures may contain not just a shock but also sizable sheath and pileup compression regions behind it, and may vary considerably with longitude and latitude based on the underlying coronal conditions. In this work, we have coupled results from a detailed global three-dimensional MHD time-dependent CME simulation to a global proton acceleration and transport model, in order to study time-dependent effects of SEP acceleration between 1.8 and 8 solar radii in the 2005 May 13 CME. We find that the source population is accelerated to at least 100 MeV, with distributions enhanced up to six orders of magnitude. Acceleration efficiency varies strongly along field lines probing different regions of the dynamically evolving CME, whose dynamics is influenced by the large-scale coronal magnetic field structure. We observe strong acceleration in sheath regions immediately behind the shock.

44

, , , and

This analysis offers evidence of characteristic scale sizes in solar wind charge state data measured in situ for 13 quiet-Sun Carrington rotations in 2008. Using a previously established novel methodology, we analyze the wavelet power spectrum of the charge state ratio C6 +/C4 + measured in situ by ACE/SWICS for 2 hr and 12 minute cadence. We construct a statistical significance level in the wavelet power spectrum to quantify the interference effects arising from filling missing data in the time series, allowing extraction of significant power from the measured data to a resolution of 24 minutes. We analyze each wavelet power spectrum for transient coherency and global periodicities resulting from the superposition of repeating coherent structures. From the significant wavelet power spectra, we find evidence for a general upper limit on individual transient coherency of ∼10 days. We find evidence for a set of global periodicities between 4–5 hr and 35–45 days. We find evidence for the distribution of individual transient coherency scales consisting of two distinct populations. Below the ∼2 day timescale, the distribution is reasonably approximated by an inverse power law, whereas for scales ≳2 days, the distribution levels off, showing discrete peaks at common coherency scales. In addition, by organizing the transient coherency scale distributions by wind type, we find that these larger, common coherency scales are more prevalent and well defined in coronal hole wind. Finally, we discuss the implications of our results for current theories of solar wind generation and describe future work for determining the relationship between the coherent structures in our ionic composition data and the structure of the coronal magnetic field.

45

and

We report the discovery using data from the Swift-Burst Alert Telescope (BAT) of superorbital modulation in the wind-accretion supergiant high-mass X-ray binaries 4U 1909+07 (= X 1908+075), IGR J16418−4532, and IGR J16479−4514. Together with already known superorbital periodicities in 2S 0114+650 and IGR J16493−4348, the systems exhibit a monotonic relationship between superorbital and orbital periods. These systems include both supergiant fast X-ray transients and classical supergiant systems, and have a range of inclination angles. This suggests an underlying physical mechanism which is connected to the orbital period. In addition to these sources with clear detections of superorbital periods, IGR J16393−4643 (= AX J16390.4−4642) is identified as a system that may have superorbital modulation due to the coincidence of low-amplitude peaks in power spectra derived from BAT, Rossi X-Ray Timing Explorer Proportional Counter Array, and International Gamma-Ray Astrophysics Laboratory light curves. 1E 1145.1−6141 may also be worthy of further attention due to the amount of low-frequency modulation of its light curve. However, we find that the presence of superorbital modulation is not a universal feature of wind-accretion supergiant X-ray binaries.

46

, , , , , and

We report a comprehensive study on spectral and timing properties of hard X-ray dips uniquely observed in some so-called variability classes of the micro-quasars GRS 1915+105 and IGR J17091−3624. These dips are characterized by a sudden decline in the 2.0–60.0 keV X-ray intensity by a factor of 4–12 simultaneous with the increase in hardness ratio by a factor of 2–4. Using 31 observations of GRS 1915+105 with RXTE/PCA, we show that different behaviors are observed in different types of variability classes, and we find that a dichotomy is observed between classes with abrupt transitions versus those with smoother evolution. For example, both energy-lag spectra and frequency-lag spectra of hard X-ray dips in classes with abrupt transitions and shorter dip intervals show hard-lag (hard photons lag soft photons), while both lag spectra during hard dips in classes with smoother evolution and longer dip intervals show soft-lag. Both lag time-scales are of the order of 100–600 mS. We also show that timing and spectral properties of hard X-ray dips observed in light curves of IGR J17091−3624 during its 2011 outburst are consistent with the properties of the abrupt transitions in GRS 1915+105 rather than smooth evolutions. A global correlation between the X-ray intensity cycle time and hard dip time is observed for both abrupt and smooth transition which may be due to two distinct physical processes whose time-scales are eventually correlated. We discuss implications of our results in the light of some generic models.

47

, , , , , and

Black-hole–galaxy scaling relations provide information about the coevolution of supermassive black holes and their host galaxies. We compare the black-hole mass–circular-velocity (MBHVc) relation with the black-hole-mass–bulge-stellar-velocity-dispersion (MBH–σ*) relation to see whether the scaling relations can passively emerge from a large number of mergers or require a physical mechanism, such as feedback from an active nucleus. We present Very Large Array H i observations of five galaxies, including three water megamaser galaxies, to measure the circular velocity. Using 22 galaxies with dynamical MBH measurements and Vc measurements extending to large radius, our best-fit MBHVc relation, $\log M_\mathrm{{\rm BH}}= \alpha + \beta \log (V_\mathrm{c}/ 200 \ {\rm km\ s^{-1}})$, yields $\alpha = 7.43^{+0.13}_{-0.13}$, $\beta = 3.68^{+1.23}_{-1.20}$, and an intrinsic scatter $\epsilon _{{\rm int}}=0.51^{+0.11}_{-0.09}$. The intrinsic scatter may well be higher than 0.51, as we take great care to ascribe conservatively large observational errors. We find comparable scatter in the MBH–σ* relations, $\epsilon _{{\rm int}} =0.48^{+0.10}_{-0.08}$, while pure merging scenarios would likely result in a tighter scaling with the dark halo (as traced by Vc) properties rather than the baryonic (σ*) properties. Instead, feedback from the active nucleus may act on bulge scales to tighten the MBH–σ* relation with respect to the MBHVc relation, as observed.

48

, , , and

We investigated four major solar flare events that occurred in active regions NOAA 10930 (2006 December 13 and 14) and NOAA 11158 (2011 February 13 and 15) by using data observed by the Solar Optical Telescope on board the Hinode satellite. To reveal the trigger mechanism of solar flares, we analyzed the spatio-temporal correlation between the detailed magnetic field structure and the emission image of the Ca ii H line at the central part of flaring regions for several hours prior to the onset of the flares. In all the flare events, we observed that the magnetic shear angle in the flaring regions exceeded 70°, as well as that characteristic magnetic disturbances developed at the centers of flaring regions in the pre-flare phase. These magnetic disturbances can be classified into two groups depending on the structure of their magnetic polarity inversion lines; the so-called opposite-polarity and reversed-shear magnetic field recently proposed by our group, although the magnetic disturbance in one event of the four samples is too subtle to clearly recognize the detailed structure. The result suggests that some major solar flares are triggered by rather small magnetic disturbances. We also show that the critical size of the flare-trigger field varies among flare events and briefly discuss how the flare-trigger process depends on the evolution of active regions.

49

, , , , and

Solar prominence models used so far in the analysis of MHD waves in two-dimensional structures are quite elementary. In this work, we calculate numerically magnetohydrostatic models in two-dimensional configurations under the presence of gravity. Our interest is in models that connect the magnetic field to the photosphere and include an overlying arcade. The method used here is based on a relaxation process and requires solving the time-dependent nonlinear ideal MHD equations. Once a prominence model is obtained, we investigate the properties of MHD waves superimposed on the structure. We concentrate on motions purely two-dimensional, neglecting propagation in the ignorable direction. We demonstrate how, by using different numerical tools, we can determine the period of oscillation of stable waves. We find that vertical oscillations, linked to fast MHD waves, are always stable and have periods in the 4–10 minute range. Longitudinal oscillations, related to slow magnetoacoustic-gravity waves, have longer periods in the range of 28–40 minutes. These longitudinal oscillations are strongly influenced by the gravity force and become unstable for short magnetic arcades.

50

, , , , and

Estimating the mass of a supermassive black hole in an active galactic nucleus usually relies on the assumption that the broad line region (BLR) is virialized. However, this assumption seems to be invalid in BLR models that consist of an accretion disk and its wind. The disk is likely Keplerian and therefore virialized. However, beyond a certain point, the wind material must be dominated by an outward force that is stronger than gravity. Here, we analyze hydrodynamic simulations of four different disk winds: an isothermal wind, a thermal wind from an X-ray-heated disk, and two line-driven winds, one with and the other without X-ray heating and cooling. For each model, we determine whether gravity governs the flow properties by computing and analyzing the volume-integrated quantities that appear in the virial theorem: internal, kinetic, and gravitational energies. We find that in the first two models, the winds are non-virialized, whereas the two line-driven disk winds are virialized up to a relatively large distance. The line-driven winds are virialized because they accelerate slowly so that the rotational velocity is dominant and the wind base is very dense. For the two virialized winds, the so-called projected virial factor scales with inclination angle as 1/sin 2i. Finally, we demonstrate that an outflow from a Keplerian disk becomes unvirialized more slowly when it conserves the gas specific angular momentum, as in the models considered here, than when it conserves the angular velocity, as in the so-called magneto-centrifugal winds.

51

, , , , , , , , , et al

Submillimeter excess emission has been reported at 500 μm in a handful of local galaxies, and previous studies suggest that it could be correlated with metal abundance. We investigate the presence of an excess submillimeter emission at 500 μm for a sample of 20 galaxies from the Key Insights on Nearby Galaxies: a Far Infrared Survey with Herschel (KINGFISH) that span a range of morphologies and metallicities (12 + log (O/H) = 7.8–8.7). We probe the far-infrared (IR) emission using images from the SpitzerSpace Telescope and HerschelSpace Observatory in the wavelength range 24–500 μm. We model the far-IR peak of the dust emission with a two-temperature modified blackbody and measure excess of the 500 μm photometry relative to that predicted by our model. We compare the submillimeter excess, where present, with global galaxy metallicity and, where available, resolved metallicity measurements. We do not find any correlation between the 500 μm excess and metallicity. A few individual sources do show excess (10%–20%) at 500 μm; conversely, for other sources, the model overpredicts the measured 500 μm flux density by as much as 20%, creating a 500 μm "deficit." None of our sources has an excess larger than the calculated 1σ uncertainty, leading us to conclude that there is no substantial excess at submillimeter wavelengths at or shorter than 500 μm in our sample. Our results differ from previous studies detecting 500 μm excess in KINGFISH galaxies largely due to new, improved photometry used in this study.

52

, , , , , , , , , et al

We report our analysis of MACS J0717.5+3745 using 140 and 268 GHz Bolocam data collected at the Caltech Submillimeter Observatory. We detect extended Sunyaev–Zel'dovich (SZ) effect signal at high significance in both Bolocam bands, and we employ Herschel-SPIRE observations to subtract the signal from dusty background galaxies in the 268 GHz data. We constrain the two-band SZ surface brightness toward two of the sub-clusters of MACS J0717.5+3745: the main sub-cluster (named C), and a sub-cluster identified in spectroscopic optical data to have a line-of-sight velocity of +3200 km s−1 (named B). We determine the surface brightness in two separate ways: via fits of parametric models and via direct integration of the images. For both sub-clusters, we find consistent surface brightnesses from both analysis methods. We constrain spectral templates consisting of relativistically corrected thermal and kinetic SZ signals, using a jointly-derived electron temperature from Chandra and XMM-Newton under the assumption that each sub-cluster is isothermal. The data show no evidence for a kinetic SZ signal toward sub-cluster C, but they do indicate a significant kinetic SZ signal toward sub-cluster B. The model-derived surface brightnesses for sub-cluster B yield a best-fit, line-of-sight velocity of vz = +3450 ± 900 km s−1, with (1 − Prob[vz ⩾ 0]) = 1.3 × 10−5 (4.2σ away from 0 for a Gaussian distribution). The directly integrated sub-cluster B SZ surface brightnesses provide a best-fit vz = +2550 ± 1050 km s−1, with (1 − Prob[vz ⩾ 0]) = 2.2 × 10−3 (2.9σ).

53

and

We infer the period (P) and size (Rp) distribution of Kepler transiting planet candidates with Rp ⩾ 1 R and P < 250 days hosted by solar-type stars. The planet detection efficiency is computed by using measured noise and the observed time spans of the light curves for ∼120,000 Kepler target stars. We focus on deriving the shape of planet periods and radius distribution functions. We find that for orbital periods P > 10 days, the planet frequency dNp/dlog P for "Neptune-size" planets (Rp = 4–8 R) increases with period as ∝P0.7 ± 0.1. In contrast, dNp/dlog P for "super-Earth-size" (2–4 R) as well as "Earth-size" (1–2 R) planets are consistent with a nearly flat distribution as a function of period (∝P0.11 ± 0.05 and ∝P−0.10 ± 0.12, respectively), and the normalizations are remarkably similar (within a factor of ∼1.5 at 50 days). Planet size distribution evolves with period, and generally the relative fractions for big planets (∼3–10 R) increase with period. The shape of the distribution function is not sensitive to changes in the selection criteria of the sample. The implied nearly flat or rising planet frequency at long periods appears to be in disagreement with the sharp decline at ∼100 days in planet frequency for low-mass planets (planet mass mp < 30 M) recently suggested by the HARPS survey. Within 250 days, the cumulative frequencies for Earth-size and super-Earth-size planets are remarkably similar (∼28% and 25%), while Neptune-size and Jupiter-size planets are ∼7% and ∼3%, respectively. A major potential uncertainty arises from the unphysical impact parameter distribution of the candidates.

54

, , , , , , , , , et al

We present a broadband study of gamma-ray burst (GRB) 091024A within the context of other ultra-long-duration GRBs. An unusually long burst detected by Konus–Wind (KW), Swift, and Fermi, GRB 091024A has prompt emission episodes covering ∼1300 s, accompanied by bright and highly structured optical emission captured by various rapid-response facilities, including the 2 m autonomous robotic Faulkes North and Liverpool Telescopes, KAIT, S-LOTIS, and the Sonoita Research Observatory. We also observed the burst with 8 and 10 m class telescopes and determine the redshift to be z = 1.0924 ± 0.0004. We find no correlation between the optical and γ-ray peaks and interpret the optical light curve as being of external origin, caused by the reverse and forward shock of a highly magnetized jet (RB ≈ 100–200). Low-level emission is detected throughout the near-background quiescent period between the first two emission episodes of the KW data, suggesting continued central-engine activity; we discuss the implications of this ongoing emission and its impact on the afterglow evolution and predictions. We summarize the varied sample of historical GRBs with exceptionally long durations in gamma-rays (≳1000 s) and discuss the likelihood of these events being from a separate population; we suggest ultra-long GRBs represent the tail of the duration distribution of the long GRB population.

55

, , , , , , , , , et al

A planetary microlensing signal is generally characterized by a short-term perturbation to the standard single lensing light curve. A subset of binary-source events can produce perturbations that mimic planetary signals, thereby introducing an ambiguity between the planetary and binary-source interpretations. In this paper, we present the analysis of the microlensing event MOA-2012-BLG-486, for which the light curve exhibits a short-lived perturbation. Routine modeling not considering data taken in different passbands yields a best-fit planetary model that is slightly preferred over the best-fit binary-source model. However, when allowed for a change in the color during the perturbation, we find that the binary-source model yields a significantly better fit and thus the degeneracy is clearly resolved. This event not only signifies the importance of considering various interpretations of short-term anomalies, but also demonstrates the importance of multi-band data for checking the possibility of false-positive planetary signals.

56

, , , , , , , and

From detailed abundance analysis of >100 Hamburg/ESO candidate extremely metal-poor (EMP) stars we find 45 with [Fe/H] < −3.0 dex. We identify a heretofore unidentified group: Ca-deficient stars with sub-solar [Ca/Fe] ratios and the lowest neutron-capture abundances; the Ca-deficient group comprises ∼10% of the sample, excluding Carbon stars. Our radial velocity distribution shows that the carbon-enhanced stars with no s-process enhancements, CEMP-no, and which do not show C2 bands are not preferentially binary systems. Ignoring Carbon stars, approximately 15% of our sample are strong (⩾5σ) outliers in one or more elements between Mg and Ni; this rises to ∼19% if very strong (⩾10σ) outliers for Sr and Ba are included. Examples include: HE0305−0554 with the lowest [Ba/H] known; HE1012−1540 and HE2323−0256, two (non-velocity variable) C-rich stars with very strong [Mg,Al/Fe] enhancements; and HE1226−1149, an extremely r-process rich star.

57

, , and

We present core radii for 54 Milky Way globular clusters determined by fitting King–Michie models to cumulative projected star count distributions. We find that fitting star counts rather than surface brightness profiles produces results that differ significantly due to the presence of mass segregation. The sample in each cluster is further broken down into various mass groups, each of which is fit independently, allowing us to determine how the concentration of each cluster varies with mass. The majority of the clusters in our sample show general agreement with the standard picture that more massive stars will be more centrally concentrated. We find that core radius versus stellar mass can be fit with a two-parameter power law. The slope of this power law is a value that describes the amount of mass segregation present in the cluster, and is measured independently of our distance from the cluster. This value correlates strongly with the core relaxation time and physical size of each cluster. Supplementary figures are also included showing the best fits and likelihood contours of fit parameters for all 54 clusters.

58

, , , and

The Fermi satellite discovery of the gamma-ray emitting bubbles extending 50° (10 kpc) from the Galactic center has revitalized earlier claims that our Galaxy has undergone an explosive episode in the recent past. We now explore a new constraint on such activity. The Magellanic Stream is a clumpy gaseous structure free of stars trailing behind the Magellanic Clouds, passing over the south Galactic pole (SGP) at a distance of at least 50–100 kpc from the Galactic center. Several groups have detected faint Hα emission along the Magellanic Stream (1.1 ± 0.3 × 10−18 erg cm−2 s−1 arcsec−2) which is a factor of five too bright to have been produced by the Galactic stellar population. The brightest emission is confined to a cone with half angle θ1/2 ≈ 25° roughly centered on the SGP. Time-dependent models of Stream clouds exposed to a flare in ionizing photon flux show that the ionized gas must recombine and cool for a time interval To = 0.6 − 2.9 Myr for the emitted Hα surface brightness to drop to the observed level. A nuclear starburst is ruled out by the low star formation rates across the inner Galaxy, and the non-existence of starburst ionization cones in external galaxies extending more than a few kiloparsecs. Sgr A is a more likely candidate because it is two orders of magnitude more efficient at converting gas to UV radiation. The central black hole (M ≈ 4 × 106M) can supply the required ionizing luminosity with a fraction of the Eddington accretion rate (fE ∼ 0.03–0.3, depending on uncertain factors, e.g., Stream distance) typical of Seyfert galaxies. In support of nuclear activity, the Hα emission along the Stream has a polar angle dependence peaking close to the SGP. Moreover, it is now generally accepted that the Stream over the SGP must be farther than the Magellanic Clouds. At the lower halo gas densities, shocks become too ineffective and are unlikely to give rise to a polar angle dependence in the Hα emission. Thus it is plausible that the Stream Hα emission arose from a "Seyfert flare" that was active 1–3 Myr ago, consistent with the cosmic ray lifetime in the Fermi bubbles. Sgr A activity today is greatly suppressed (70–80 dB) relative to the Seyfert outburst. The rapid change over a huge dynamic range in ionizing luminosity argues for a compact UV source with an extremely efficient (presumably magneto-hydrodynamic) "drip line" onto the accretion disk.

59

, , , , , , , , , et al

RX J1713.7−3946 is the most remarkable very high energy γ-ray supernova remnant that emits synchrotron X-rays without thermal features. We made a comparative study of CO, H i, and X-rays in order to better understand the relationship between the X-rays, and the molecular and atomic gas. The results indicate that the X-rays are enhanced around the CO and H i clumps on a pc scale, but are decreased inside the clumps on a 0.1 pc scale. Magnetohydrodynamic numerical simulations of the shock interaction with molecular and atomic gas indicate that the interaction between the shock waves and the clumps excite turbulence, which amplifies the magnetic field around the clumps. We suggest that the amplified magnetic field around the CO and H i clumps enhances the synchrotron X-rays and possibly the acceleration of cosmic-ray electrons.

60

, , , , , , , and

The existence of silica within several debris disks has been suggested. Data on both the spectroscopy and annealing conditions of the various polymorphs of silica need to be investigated, as these data are lacking and incomplete in the literature. We investigate the annealing conditions of silica and prepare various types of silica, including α-cristobalite, α-quartz, coesite, stishovite, and fused quartz, which are natural, synthetic, or commercial samples. This paper presents a new study of both the spectroscopy of relevant silica polymorphs and the conditions under which they form. We compare the results to previous studies and find that there are discrepancies. The interesting result of features similar to those of forsterite should be highlighted, where α-cristobalite and coesite showed similar peaks at 16, 33, and 69 μm as forsterite. The 69 μm band for α-cristobalite is especially very broad and strong and shifts largely to a shorter wavelengths under cooling to low temperatures. The band for coesite, however, is very sharp and shifts only a small amount to longer wavelengths under cooling to low temperatures. We discuss the possibility of silica detection around debris disks.

61

, , and

We present collisionless simulations of dry mergers in groups of 3 to 25 galaxies to test the hypothesis that elliptical galaxies form at the centers of such groups. Mock observations of the central remnants confirm their similarity to ellipticals, despite having no dissipational component. We vary the profile of the original spiral's bulge and find that ellipticals formed from spirals with exponential bulges have too low Sersic indices. Mergers of spirals with de Vaucouleurs (classical) bulges produce remnants with larger Sersic indices correlated with luminosity, as with Sloan Digital Sky Survey ellipticals. Exponential bulge mergers are better fits to faint ellipticals, whereas classical bulge mergers better match luminous ellipticals. Similarly, luminous ellipticals are better reproduced by remnants undergoing many (>5) mergers, and fainter ellipticals by those with fewer mergers. The remnants follow tight size–luminosity and velocity dispersion–luminosity (Faber–Jackson) relations (<0.12 dex scatter), demonstrating that stochastic merging can produce tight scaling relations if the merging galaxies also follow tight scaling relations. The slopes of the size–luminosity and Faber–Jackson relations are close to observations but slightly shallower in the former case. Both relations' intercepts are offset—remnants are too large but have too low dispersions at fixed luminosity. Some remnants show substantial (v/σ > 0.1) rotational support, although most are slow rotators and few are very fast rotators (v/σ > 0.5). These findings contrast with previous studies concluding that dissipation is necessary to produce ellipticals from binary mergers of spirals. Multiple, mostly minor and dry mergers can produce bright ellipticals, whereas significant dissipation could be required to produce faint, rapidly rotating ellipticals.

62

, , , , , , , , , et al

We present a detailed spectral analysis of new XMM-Newton data of the source CXOC J100043.1+020637, also known as CID-42, detected in the COSMOS survey at z = 0.359. Previous works suggested that CID-42 is a candidate recoiling supermassive black hole (SMBH) showing also an inverted P-Cygni profile in the X-ray spectra at ∼6 keV (rest) with an iron emission line plus a redshifted absorption line (detected at 3σ in previous XMM-Newton and Chandra observations). Detailed analysis of the absorption line suggested the presence of ionized material flowing into the black hole at high velocity. In the new long XMM-Newton observation, while the overall spectral shape remains constant, the continuum 2–10 keV flux decrease of ∼20% with respect to previous observation and the absorption line is undetected. The upper limit on the intensity of the absorption line is EW < 162 eV. Extensive Monte Carlo simulations show that the nondetection of the line is solely due to variation in the properties of the inflowing material, in agreement with the transient nature of these features, and that the intensity of the line is lower than the previously measured with a probability of 98.8%. In the scenario of CID-42 as a recoiling SMBH, the absorption line can be interpreted as being due to an inflow of gas with variable density that is located in the proximity of the SMBH and recoiling with it. New monitoring observations will be requested to further characterize this line.

63

, , , , , , , , , et al

Only a few cases of Type Ic supernovae (SNe) with high-velocity ejecta (⩾0.2 c) have been discovered and studied. Here, we present our analysis of radio and X-ray observations of the Type Ic SN PTF 12gzk. The radio emission declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (∼0.3 c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ∼10 than the CSM around normal Type Ic SNe. PTF 12gzk may therefore be an intermediate event between a "normal" SN Ic and a gamma-ray-burst–SN-like event. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the Very Large Array (improved sensitivity and dynamic scheduling), which are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions as well as strong clues about the nature of their progenitor stars.

64

, , , , and

We used high-resolution spectra acquired with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to investigate the chemical and kinematical properties of a sample of 22 blue straggler stars (BSSs) and 26 red giant branch stars in the nearby globular cluster NGC 6752. We measured radial and rotational velocities and Fe, O, and C abundances. According to radial velocities, metallicity, and proper motions, we identified 18 BSSs as likely cluster members. We found that all the BSSs rotate slowly (less than 40 km s−1), similar to the findings in 47 Tucanae, NGC 6397, and M30. The Fe abundance analysis reveals the presence of three BSSs affected by radiative levitation (showing [Fe/H] significantly higher than that measured in "normal" cluster stars), confirming that element transport mechanisms occur in the photosphere of BSSs hotter than ≃8000 K. Finally, BSS C and O abundances are consistent with those measured in dwarf stars. No C and O depletion ascribable to mass transfer processes has been found on the atmospheres of the studied BSSs (at odds with previous results for 47 Tucanae and M30), suggesting the collisional origin for BSSs in NGC 6752 or that the CO depletion is a transient phenomenon.

65

, , and

We study the long-term thermal stability of radiation-dominated disks in which the vertical structure is determined self-consistently by the balance of heating due to the dissipation of MHD turbulence driven by magneto-rotational instability (MRI) and cooling due to radiation emitted at the photosphere. The calculations adopt the local shearing box approximation and utilize the recently developed radiation transfer module in the Athena MHD code based on a variable Eddington tensor rather than an assumed local closure. After saturation of the MRI, in many cases the disk maintains a steady vertical structure for many thermal times. However, in every case in which the box size in the horizontal directions are at least one pressure scale height, fluctuations associated with MRI turbulence and dynamo action in the disk eventually trigger a thermal runaway that causes the disk to either expand or contract until the calculation must be terminated. During runaway, the dependence of the heating and cooling rates on total pressure satisfy the simplest criterion for classical thermal instability. We identify several physical reasons why the thermal runaway observed in our simulations differ from the standard α disk model; for example, the advection of radiation contributes a non-negligible fraction to the vertical energy flux at the largest radiation pressure, most of the dissipation does not happen in the disk mid-plane, and the change of dissipation scale height with mid-plane pressure is slower than the change of density scale height. We discuss how and why our results differ from those published previously. Such thermal runaway behavior might have important implications for interpreting temporal variability in observed systems, but fully global simulations are required to study the saturated state before detailed predictions can be made.

66

, , , and

In recent years, the number of pulsars with secure mass measurements has increased to a level that allows us to probe the underlying neutron star (NS) mass distribution in detail. We critically review the radio pulsar mass measurements. For the first time, we are able to analyze a sizable population of NSs with a flexible modeling approach that can effectively accommodate a skewed underlying distribution and asymmetric measurement errors. We find that NSs that have evolved through different evolutionary paths reflect distinctive signatures through dissimilar distribution peak and mass cutoff values. NSs in double NS and NS–white dwarf (WD) systems show consistent respective peaks at 1.33 M and 1.55 M, suggesting significant mass accretion (Δm ≈ 0.22 M) has occurred during the spin-up phase. The width of the mass distribution implied by double NS systems is indicative of a tight initial mass function while the inferred mass range is significantly wider for NSs that have gone through recycling. We find a mass cutoff at ∼2.1 M for NSs with WD companions, which establishes a firm lower bound for the maximum NS mass. This rules out the majority of strange quark and soft equation of state models as viable configurations for NS matter. The lack of truncation close to the maximum mass cutoff along with the skewed nature of the inferred mass distribution both enforce the suggestion that the 2.1 M limit is set by evolutionary constraints rather than nuclear physics or general relativity, and the existence of rare supermassive NSs is possible.

67

, , , and

Long gamma-ray bursts (LGRBs) have a typical duration of ∼30 s, and some of them are associated with hypernovae, such as Type Ic SN 1998bw. Wolf–Rayet stars are the most plausible LGRB progenitors, since the free fall time of the envelope is consistent with the duration, and the natural outcome of the progenitor is a Type Ic SN. While a new population of ultra-long GRBs (ULGRBs), GRB 111209A, GRB 101225A, and GRB 121027A, has a duration of ∼104 s, two of them are accompanied by superluminous-supernova-like (SLSN-like) bumps, which are ≲ 10 times brighter than typical hypernovae. Wolf–Rayet progenitors cannot explain ULGRBs because of durations that are too long and SN-like bumps that are too bright. A blue supergiant (BSG) progenitor model, however, can explain the duration of ULGRBs. Moreover, SLSN-like bumps can be attributed to the so-called cocoon fireball photospheric emissions (CFPEs). Since a large cocoon is inevitably produced during the relativistic jet piercing though the BSG envelope, this component can be smoking gun evidence of the BSG model for ULGRBs. In this paper, we examine u-, g-, r-, i-, and J-band light curves of three ULGRBs and demonstrate that they can be fitted quite well by our BSG model with the appropriate choices of the jet opening angle and the number density of the ambient gas. In addition, we predict that for 121027A, SLSN-like bump could have been observed for ∼20–80 days after the burst. We also propose that some SLSNe might be CFPEs of off-axis ULGRBs without visible prompt emissions.

68

, , , and

In this paper, the cooling of 72 M- and X-class flares is examined using GOES/XRS and SDO/EVE. The observed cooling rates are quantified and the observed total cooling times are compared with the predictions of an analytical zero-dimensional hydrodynamic model. We find that the model does not fit the observations well, but does provide a well-defined lower limit on a flare's total cooling time. The discrepancy between observations and the model is then assumed to be primarily due to heating during the decay phase. The decay-phase heating necessary to account for the discrepancy is quantified and found be ∼50% of the total thermally radiated energy, as calculated with GOES. This decay-phase heating is found to scale with the observed peak thermal energy. It is predicted that approximating the total thermal energy from the peak is minimally affected by the decay-phase heating in small flares. However, in the most energetic flares the decay-phase heating inferred from the model can be several times greater than the peak thermal energy.

69

, , , , , , and

Using spectra obtained by the EUV Imaging Spectrometer (EIS) instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)–coronal hole (CH) complex that covers an area of 359'' × 485''. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2–3. This modest FIP bias is a consequence of the age of the AR, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line, where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configuration.

70

, , and

Using the multi-wavelength data from the Atmospheric Imaging Assembly/Solar Dynamic Observatory (AIA/SDO) and the Sun Earth Connection Coronal and Heliospheric Investigation/Solar Terrestrial Relations Observatory (SECCHI/STEREO), we report a failed filament eruption in NOAA AR 11339 on 2011 November 3. The eruption was associated with an X1.9 flare, but without any coronal mass ejection (CME), coronal dimming, or extreme ultraviolet (EUV) waves. Some magnetic arcades above the filament were observed distinctly in EUV channels, especially in the AIA 94 Å and 131 Å wavebands, before and during the filament eruption process. Our results show that the overlying arcades expanded along with the ascent of the filament at first until they reached a projected height of about 49 Mm above the Sun's surface, where they stopped. The following filament material was observed to be confined by the stopped EUV arcades and not to escape from the Sun. After the flare, a new filament formed at the low corona where part of the former filament remained before its eruption. These results support that the overlying arcades play an important role in preventing the filament from successfully erupting outward. We also discuss in this paper the EUV emission of the overlying arcades during the flare. It is rare for a failed filament eruption to be associated with an X1.9 class flare, but not with a CME or EUV waves. Therefore, this study also provides valuable insight into the triggering mechanism of the initiation of CMEs and EUV waves.

71

, , , , , , , , and

We investigate the diagnostic capabilities of iron lines for tracing the physical conditions of shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 3000–25000 Å, X-shooter spectra of two jets driven by the pre-main sequence stars ESO-Hα 574 and Par-Lup 3-4. Both spectra are very rich in [Fe ii] lines over the whole spectral range; in addition, lines from [Fe iii] are detected in the ESO-Hα 574 spectrum. Non-local thermal equilibrium codes solving the equations of the statistical equilibrium along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density and fractional ionization. An estimate of the iron gas-phase abundance is provided by comparing the iron lines emissivity with that of neutral oxygen at 6300 Å. The [Fe ii] line analysis indicates that the jet driven by ESO-Hα 574 is, on average, colder (Te ∼ 9000 K), less dense (ne ∼ 2 × 104 cm−3), and more ionized (xe ∼ 0.7) than the Par-Lup 3-4 jet (Te ∼ 13,000 K, ne ∼ 6 × 104 cm−3, xe < 0.4), even if the existence of a higher density component (ne ∼ 2 × 105 cm−3) is probed by the [Fe iii] and [Fe ii] ultra-violet lines. The physical conditions derived from the iron lines are compared with shock models suggesting that the shock at work in ESO-Hα 574 is faster and likely more energetic than the Par-Lup 3-4 shock. This latter feature is confirmed by the high percentage of gas-phase iron measured in ESO-Hα 574 (50%–60% of its solar abundance in comparison with less than 30% in Par-Lup 3-4), which testifies that the ESO-Hα 574 shock is powerful enough to partially destroy the dust present inside the jet. This work demonstrates that a multiline Fe analysis can be effectively used to probe the excitation and ionization conditions of the gas in a jet without any assumption on ionic abundances. The main limitation on the diagnostics resides in the large uncertainties of the atomic data, which, however, can be overcome through a statistical approach involving many lines.

72

, , , , , and

In this article, we present Combined Array for Research in Millimeter-wave Astronomy (CARMA) 3.5 mm observations and SubMillimeter Array (SMA) 870 μm observations toward the high-mass star-forming region IRAS 18162–2048, which is the core of the HH 80/81/80N system. Molecular emission from HCN, HCO+, and SiO traces two molecular outflows (the so-called northeast and northwest outflows). These outflows have their origin in a region close to the position of MM2, a millimeter source known to harbor two protostars. For the first time we estimate the physical characteristics of these molecular outflows, which are similar to those of 103–5 × 103L protostars, and suggest that MM2 harbors high-mass protostars. High-angular resolution CO observations show an additional outflow due southeast. Also for the first time, we identify its driving source, MM2(E), and see evidence of precession. All three outflows have a monopolar appearance, but we link the NW and SE lobes, and explain their asymmetric shape as being a consequence of possible deflection.

73

, , and

The "missing baryons" of the near universe are believed to be principally in a partially ionized state. Although passing electromagnetic waves are dispersed by the plasma, the effect has hitherto not been utilized as a means of detection because it is generally believed that a successful observation requires the background source to be highly variable, i.e., the class of sources that could potentially deliver a verdict is limited. We argue in two stages that this condition is not necessary. First, by modeling the fluctuations on macroscopic scales as interference between wave packets, we show that, in accordance with the ideas advanced by Einstein in 1917, both the behavior of photons as bosons (i.e., the intensity variance has contributions from Poisson and phase noise) and the van-Cittert-Zernike theorem are a consequence of wave-particle duality. Nevertheless, we then point out that, in general, the variance on some macroscopic timescale τ consists of (1) a main contributing term ∝1/τ, plus (2) a small negative term ∝1/τ2 due to the finite size of the wave packets. If the radiation passes through a dispersive medium, this size will be enlarged well beyond its vacuum minimum value of Δt ≈ 1/Δν, leading to a more negative (2) term (while (1) remains unchanged), and hence a suppression of the variance wrt the vacuum scenario. The phenomenon, which is typically at a few parts in 105 level, enables one to measure cosmological dispersion in principle. Signal-to-noise estimates, along with systematic issues and how to overcome them, will be presented.

74

, , , , , , , , , et al

The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute2, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated MT relation an order of magnitude lower than any previous study, resulting in a power-law slope of $1.48^{+0.13}_{-0.09}$. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%–50% at 1 keV.

75

and

We describe a global parametric model for the observed power spectra of solar oscillations of intermediate and low degree. A physically motivated parameterization is used as a substitute for a direct description of mode excitation and damping as these mechanisms remain poorly understood. The model is targeted at the accurate fitting of power spectra coming from Doppler-velocity measurements and uses an adaptive response function that accounts for both the vertical and horizontal components of the velocity field on the solar surface and for possible instrumental and observational distortions. The model is continuous in frequency, can easily be adapted to intensity measurements, and extends naturally to the analysis of high-frequency pseudomodes (interference peaks at frequencies above the atmospheric acoustic cutoff).

76

, , and

The collisional thick-target model, wherein a large number of electrons are accelerated down a flaring loop, can be used to explain many observed properties of solar flares. In this study, we focus on the sensitivity of (GOES) flare classification to the properties of the thick-target model. Using a hydrodynamic model with RHESSI-derived electron beam parameters, we explore the effects of the beam energy flux (or total non-thermal energy), the cut-off energy, and the spectral index of the electron distribution on the soft X-rays observed by GOES. We conclude that (1) the GOES class is proportional to the non-thermal energy Eα for α ≈ 1.7 in the low-energy passband (1–8 Å) and ≈1.6 in the high-energy passband (0.5–4 Å); (2) the GOES class is only weakly dependent on the spectral index in both passbands; (3) increases in the cut-off will increase the flux in the 0.5–4 Å passband but decrease the flux in the 1–8 Å passband, while decreases in the cut-off will cause a decrease in the 0.5–4 Å passband and a slight increase in the 1–8 Å passband.

77

and

We perform global three-dimensional (3D) radiation-hydrodynamics calculations of the envelopes surrounding young planetary cores of 5, 10, and 15 Earth masses, located in a protoplanetary disk at 5 and 10 AU from a solar-mass star. We apply a nested-grid technique to resolve the thermodynamics of the disk at the orbital-radius length scale and that of the envelope at the core-radius length scale. The gas is modeled as a solar mixture of molecular and atomic hydrogen, helium, and their ions. The equation of state accounts for both gas and radiation, and gas energy includes contributions from rotational and vibrational states of molecular hydrogen and from ionization of atomic species. Dust opacities are computed from first principles, applying the full Mie theory. One-dimensional (1D) calculations of planet formation are used to supplement the 3D calculations by providing energy deposition rates in the envelope due to solids accretion. We compare 1D and 3D envelopes and find that masses and gas accretion rates agree within factors of 2, and so do envelope temperatures. The trajectories of passive tracers are used to define the size of 3D envelopes, resulting in radii much smaller than the Hill radius and smaller than the Bondi radius. The moments of inertia and angular momentum of the envelopes are determined and the rotation rates are derived from the rigid-body approximation, resulting in slow bulk rotation. We find that the polar flattening is ≲ 0.05. The dynamics of the accretion flow are examined by tracking the motion of tracers that move into the envelope. The anisotropy of this flow is characterized in terms of both its origin and impact site at the envelope surface. Gas merges with the envelope preferentially at mid- to high latitudes.

78

and

The rapid growth of observed exoplanets has revealed the existence of several distinct planetary populations in the mass–period diagram. Two of the most surprising are (1) the concentration of gas giants around 1 AU and (2) the accumulation of a large number of low-mass planets with tight orbits, also known as super-Earths and hot Neptunes. We have recently shown that protoplanetary disks have multiple planet traps that are characterized by orbital radii in the disks and halt rapid type I planetary migration. By coupling planet traps with the standard core accretion scenario, we showed that one can account for the positions of planets in the mass–period diagram. In this paper, we demonstrate quantitatively that most gas giants formed at planet traps tend to end up around 1 AU, with most of these being contributed by dead zones and ice lines. We also show that a large fraction of super-Earths and hot Neptunes are formed as "failed" cores of gas giants—this population being constituted by comparable contributions from dead zone and heat transition traps. Our results are based on the evolution of forming planets in an ensemble of disks where we vary only the lifetimes of disks and their mass accretion rates onto the host star. We show that a statistical treatment of the evolution of a large population of planetary cores caught in planet traps accounts for the existence of three distinct exoplanetary populations—the hot Jupiters, the more massive planets around r = 1 AU, and the short-period super-Earths and hot Neptunes. There are very few populations that feed into the large orbital radii characteristic of the imaged Jovian planet, which agrees with recent surveys. Finally, we find that low-mass planets in tight orbits become the dominant planetary population for low-mass stars (M* ⩽ 0.7 M).

79

, , and

Radiation pressure on dust grains may be an important physical mechanism driving galaxy-wide superwinds in rapidly star-forming galaxies. We calculate the combined dust and gas Eddington ratio (Γ) for the archetypal superwind of M82. By combining archival Galaxy Evolution Explorer data, a standard dust model, Monte Carlo dust scattering calculations, and the Herschel map of the dust surface density distribution, the observed far-UV/near-UV surface brightness in the outflow constrains both the total UV luminosity escaping from the starburst along its minor axis (L⋆, UV) and the flux-mean opacity, thus allowing a calculation of Γ. We find that L⋆, UV ≈ (1–6) × 1042 erg s−1, ∼2–12 times greater than the UV luminosity observed from our line of sight. On a scale of 1–3 kpc above the plane of M82, we find that Γ ∼ 0.01–0.06. On smaller scales (∼0.25–0.5 kpc), where the enclosed mass decreases, our calculation of L⋆, UV implies that Γ ∼ 0.1 with factor of few uncertainties. Within the starburst itself, we estimate the single-scattering Eddington ratio to be of order unity. Thus, although radiation pressure is weak compared to gravity on kpc scales above the plane of M82, it may yet be important in launching the observed outflow. We discuss the primary uncertainties in our calculation, the sensitivity of Γ to the dust grain size distribution, and the time evolution of the wind following M82's recent starburst episodes.

80

, , and

The early universe hosted a large population of small dark matter "minihalos" that were too small to cool and form stars on their own. These existed as static objects around larger galaxies until acted upon by some outside influence. Outflows, which have been observed around a variety of galaxies, can provide this influence in such a way as to collapse, rather than disperse, the minihalo gas. Gray & Scannapieco performed an investigation in which idealized spherically symmetric minihalos were struck by enriched outflows. Here we perform high-resolution cosmological simulations that form realistic minihalos, which we then extract to perform a large suite of simulations of outflow–minihalo interactions including non-equilibrium chemical reactions. In all models, the shocked minihalo forms molecules through non-equilibrium reaction, and then cools to form dense, chemically homogenous clumps of star-forming gas. The formation of these high-redshift clusters may be observable with the next generation of telescopes and the largest of them should survive to the present-day, having properties similar to halo globular clusters.

81

, , and

Neutrinos and gravitational waves are the only direct probes of the inner dynamics of a stellar core collapse. They are also the first signals to arrive from a supernova (SN) and, if detected, establish the moment when the shock wave is formed that unbinds the stellar envelope and later initiates the optical display upon reaching the stellar surface with a burst of UV and X-ray photons, the shock breakout (SBO). We discuss how neutrino observations can be used to trigger searches to detect the elusive SBO event. Observation of the SBO would provide several important constraints on progenitor structure and the explosion, including the shock propagation time (the duration between the neutrino burst and SBO), an observable that is important in distinguishing progenitor types. Our estimates suggest that next-generation neutrino detectors could exploit the overdensity of nearby SNe to provide several such triggers per decade, more than an order-of-magnitude improvement over the present.