INTRODUCTION

The latest genomic test international evaluation for calving traits took place as scheduled at the Interbull Centre. Data from 18 countries were included in this evaluation.

International genetic evaluations for calving traits of bulls were computed from: AUS BEL CAN CHE DEU DFS FRA GBR HUN IRL ISR ITA NLD NZL USA SVK ESP POL Holstein data were included in this evaluation.

CAN, DEU, DFS, GBR, ITA, NLD, HUN, ESP, POL submitted GEBVs.

dce:	CAN,	DEU,	DFS,	GBR,	ITA,	NLD,	HUN,	ESP,	POL
dsb:	CAN,	DEU,	DFS,	,	ITA,	NLD,			POI
mce:	CAN,	DEU,	DFS,	GBR,	ITA,	NLD,	HUN,		POI
msb:	CAN,	DEU,	DFS,	,	ITA,	NLD,			POI

CHANGES IN NATIONAL PROCEDURES

Changes in the national genetic evaluation of calving traits are as follows:

NLD (HOL) DCE in line with changes introduced in MACE

GBR (HOL) Updates in genotypes and data update

INTERBULL CHANGES COMPARED TO THE DECEMBER ROUTINE RUN

No changes in Interbull procedures

DATA AND METHOD OF ANALYSIS

Thirteen Holstein populations sent GEBV data for up to 38 traits, while classical EBVs for the same traits were used in the analyses. Young bull GEBVs from the GEBV providers have been converted to the scales of all countries participating in classical MACE. A bull will get a MACE EBV or a GMACE EBV but not both.

From those thirteen countries, National GEBVs of bulls less than seven years of age and with no classical MACE proofs were included for the breeding value prediction with a further requirement of either a MACE-PA or a GMACE-PA (for young genomic bulls with young genomic sires) being available.

The parameter-space approach is used for the GMACE genetic evaluations (Sullivan, 2016)

SCIENTIFIC LITERATURE

The international genetic evaluation procedure is based on international work

described in the following scientific publications:

Sullivan, P.G. 2016. Defining a Parameter Space for GMACE. Interbull Bulletin 50, p 85-93.

VanRaden, P.M. and Sullivan, P.G. 2010. International genomic evaluation methods for dairy cattle. Gen. Sel. Evol. 42:7

Sullivan, P.G. and Jakobsen, J.H. 2012. Robust GMACE for young bulls methodology. Interbull Bulletin 45, Article 1.

Sullivan, P.G. 2012a. GMACE reliability approximation. Report to the GMACE working group of Interbull. GMACE_rels 2013

Sullivan, P.G. 2012b. GMACE variance estimation. Report to the GMACE working group of Interbull. GMACE_vce 2013

Sullivan, P.G. 2012c. GMACE Weighting Factors. Report to the GMACE working group of Interbull. GMACE_gedcs 2013

Jakobsen, J.H. and Sullivan, P.G. 2013. Trait specific computation of shared reference population. Reference sharing Nov 2013

NEXT ROUTINE INTERNATIONAL EVALUATION

Dates for next routine run can be found on http://www.interbull.org/ib/servicecalendar

NEXT TEST INTERNATIONAL EVALUATION

Dates for next test run can be found on http://www.interbull.org/ib/servicecalendar

PUBLICATION OF INTERBULL ROUTINE RUN

Country Date

Results were distributed by the Interbull Centre to designated representatives in each country. The international evaluation file comprised international proofs expressed on the base and unit of each country included in the analysis. Such records readily provide more information on bull performance in various countries, thereby minimising the need to resort to conversions.

At the same time, all recipients of Interbull results are expected to honour the agreed code of practice, decided by the Interbull Steering Committee, and only publish international evaluations on their own country scale. Evaluations expressed on another country scale are confidential and may only be used internally for research and review purposes.

Table 1. National evaluation dates in GMACE run December 2022

```
_____
      20221201
DFS
      20221101
ITA
      20221111
NLD
      20221201
GBR
      20221109
HUN
      20211122
DEU
      20221206
BEL
      20201201
ESP
      20221115
POL
      20221017
_____
Table 2.
______
Number of bulls in reference population for
CAN 38647.0
DFS 5459.0 35319.0
ITA 36151.0 4941.0 37547.0
NLD 4069.0 31684.0 3451.0 34097.0
GBR 35575.0 5934.0 35584.0 4427.0 37781.0
HUN 2268.0 7626.0 2252.0 7769.0 2494.0 9032.0
DEU 9885.0 34484.0 9415.0 32458.0 10474.0 8190.0 41151.0
BEL 686.0 628.0 679.0 733.0 664.0 549.0 720.0 1429.0
ESP 6594.0 34538.0 6092.0 32303.0 7168.0 8022.0 35842.0 695.0 36841.0
POL 4592.0 29664.0 4055.0 28267.0 5072.0 7586.0 30090.0 824.0 30308.0 31046.0
Number of bulls in reference population for
_____
CAN 30974.0
DFS 5168.0 35843.0
ITA 29063.0 4699.0 30197.0
NLD 3859.0 32439.0 3292.0 34141.0
GBR 28378.0 5671.0 28362.0 4157.0 29904.0
```

Number of bulls in reference population for dsb

DEU 8741.0 35047.0 8288.0 33151.0 9307.0 7804.0 40749.0

POL 4442.0 29802.0 3948.0 28480.0 4913.0 7229.0 30202.0 31169.0

HUN 2208.0 7263.0 2195.0 7265.0 2363.0 8352.0

CAN 35407.0 DFS 5289.0 33818.0 ITA 33143.0 4766.0 34433.0 NLD 3879.0 30299.0 3296.0 32037.0 DEU 9506.0 33043.0 9037.0 31067.0 39415.0 POL 4431.0 27847.0 3891.0 26532.0 28295.0 29177.0

Number of bu	ılls in ı	reference	e population	for	msb
CAN 28724.0 DFS 5027.0	35042 0				
ITA 26980.0 NLD 3714.0	4552.0		33347.0		

POL 4305.0 28802.0 3804.0 27573.0 29222.0 30116.0

DEU 8378.0 34300.0 7925.0 32479.0 39694.0