Pitfalls and opportunities of genetic and genomic evaluation in the Buffalo species: experiences from Italy

Stefano Biffani¹, Maria Goméz² and Alberto Cesarani³

¹ Consiglio Nazionale delle Ricerche (CNR), Istituto di biologia e biotecnologia agraria (IBBA) 20133 Milano, Italy

² Italian National Association of Buffalo Breeders, Caserta, Italy

³ Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA

Background

Sir Robert Bakewell

Record Keeping

Controlled mating

modern breeding strategies

Experiences in the domestic river buffalo

Background

- World Buffalo population :
 - > 234 million individuals
 - ~ 15 % of total milk production

• Italy:

- > 90 % of the <u>European</u> population
- Large census increase over the last 10 years (Mozzarella di Bufala Campana cheese)
- ANASB data base (2020):
 - > 35k lactating buffaloes officially registered
 - > 650k lactation records
 - > 10000 type traits evaluations

Background

- Late 1990's:
 - first selection scheme based on a BLUP animal model
 - main breeding objectives = kg of milk and kg of Mozzarella (PKM)
 - Aprox 18 male calves/year
- 2017:
 - New breeding objectives (milk contents, udder morphology and feet and legs)
 - New selection Index (IBMI)
- Artificial Insemination:
 - still moderate (around 30-40%)
 - additional problems in developing an accurate BLUP evaluation

Objective

• The aim of this study was to present:

1. methodological approaches which have been already implemented in the BLUP evaluation of the Italian Mediterranean Buffalo (BMI)

2. results of the application of ssGBLUP in the BMI

- natural mating still common in buffalo
 - Incomplete pedigree information
 - bias in the prediction of both variance component (VC) and EBV
- Westell et al (1988): use genetic groups!

ORIGINAL RESEARCH ARTICLE

Front. Genet., 04 February 2021 | https://doi.org/10.3389/fgene.2021.625335

Accounting for Genetic Differences Among Unknown Parents in *Bubalus bubalis*: A Case Study From the Italian Mediterranean Buffalo

• Data:

- 7,714 buffalo cows (DNA tested) plus a pedigree file including 18,831 individuals
- 5 composite traits + 10 linear traits

Methods:

- Step 1: VC & BV using the official corrected pedigree
- Step 2: VC & BV using 4 "modified" pedigrees
 - 2 different proportion of missing genealogies (30 or 60% of buffalo with records)
 - 2 different grouping strategies, year of birth (Y30/Y60) or genetic clustering (GC30, GC60)

Results:

 VC & h2: largest effect for Udder Teat and Body Depth when 60% pedigree is missing and a genetic clustering based on pedigree is used to set up genetic groups

Buffalo cows with record:

average correlation across traits from different scenarios	Y30	GC30	Y60	CG60
average correlation across traits from unferent scenarios	0.91	0.88	0.84	0.79

Al bulls:

average correlation across traits from different scenarios	Y30	GC30	Y60	CG60
	0.89	0.92	0.76	0.81

Availability of a medium density (90k) SNP chip + Single Step G Blup approach

Italian Journal of Animal Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjas20

Genomic investigation of milk production in Italian buffalo

Alberto Cesarani, Stefano Biffani, Andre Garcia, Daniela Lourenco, Giacomo Bertolini, Gianluca Neglia, Ignacy Misztal & Nicolo Pietro Paolo Macciotta

To cite this article: Alberto Cesarani, Stefano Biffani, Andre Garcia, Daniela Lourenco, Giacomo Bertolini, Gianluca Neglia, Ignacy Misztal & Nicolo Pietro Paolo Macciotta (2021) Genomic investigation of milk production in Italian buffalo, Italian Journal of Animal Science, 20:1, 539-547, DOI: 10.1080/1828051X.2021.1902404

• Data:

- 80.147 test-day (Milk, fat & protein yields)
- 4127 buffalo cows
- 498 genotypes (463 + 35 bulls)
- 7730 individuals in the pedigree

Model:

- 3-trait repeatability animal model
- pedigree-based (BLUP) vs single step genomic BLUP (ssGBLUP)
- 5 scenarios
 - A = genotypes available only for 35 bulls;
 - B = genotypes available only for the 50 candidates;
 - C = genotypes available for 50 candidates + 35 bulls;
 - D = genotypes available for 463 cows
 - E = genotypes available for 463 cows + 35 bulls.
- Validation by LR method

• Results:

• Genetic parameters:

	MY	FY	PY
BLUP	0.25 ± 0.02	0.16 ± 0.01	0.25 ± 0.01
ssGBLUP	0.23 ± 0.01	0.15 ± 0.01	0.23 ± 0.01

Candidate cows: correlations between breeding values

MY	FY	PY
0.96	0.95	0.95

• Results:

Table 3. LR validation results with BLUP and single-step genomic BLUP (ssGBLUP).

	ssGBLUP ^a					
	BLUP	Α	В	C	D	E
N genotypes	-	35	50	85	463	498
Correlation						•
Milk	0.72	0.72	0.75	0.77	0.82	0.83
Fat	0.71	0.70	0.75	0.76	0.81	0.81
Protein	0.69	0.69	0.73	0.75	0.82	0.82
Accuracy						
Milk	0.60	0.60	0.67	0.68	0.77	0.77
Fat	0.55	0.55	0.62	0.63	0.71	0.72
Protein	0.57	0.57	0.65	0.66	0.76	0.76

Final remarks

• well-known methodologies can be inplemented to cope with missing pedigree even in the Buffalo species

• Interesting results from **ssGBLUP** application, especially as regards the inclusion of genotypes for females.

Thank you for the attention

