
HAL Id: inria-00099882
https://inria.hal.science/inria-00099882v1

Submitted on 26 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A High Level Protocol Specification Language for
Industrial Security-Sensitive Protocols

Yannick Chevalier, Luca Compagna, Jorge Cuellar, Paul Hankes Drielsma,
Jacopo Mantovani, Sebastian Moedersheim, Laurent Vigneron

To cite this version:
Yannick Chevalier, Luca Compagna, Jorge Cuellar, Paul Hankes Drielsma, Jacopo Mantovani, et al.. A
High Level Protocol Specification Language for Industrial Security-Sensitive Protocols. Workshop on
Specification and Automated Processing of Security Requirements - SAPS’2004, 2004, Linz, Austria,
13 p. �inria-00099882�

https://inria.hal.science/inria-00099882v1
https://hal.archives-ouvertes.fr


A High-Level Protocol Specification Language for
Industrial Security-Sensitive Protocols∗

Y. Chevalier†, L. Compagna‡, J. Cuellar§,
P. Hankes Drielsma¶,

J. Mantovani‡, S. Mödersheim¶ and L. Vigneron†

Abstract. This paper presents HLPSL, a high-level protocol specification language for the mod-
elling of security-sensitive protocols. This language has a formal semantics based on Lamport’s Tem-
poral Logic of Actions. HLPSL is modular and allows for the specification of control flow patterns,
data-structures, alternative intruder models, and complex security properties. It is sufficiently high-
level to be accessible to protocol engineers (themselves not necessarily formal methods experts), yet
easily translatable into a lower-level term-rewriting based language well-suited to model-checking
tools. The accommodation of these contrasting features makes HLPSL able to easily specify modern,
industrial-scale protocols on which existing specification languages only partially succeed.

1. Introduction

Even assuming “perfect” cryptography, the design of security protocols is notoriously error-prone.
Consumer confidence in Internet security and e-commerce infrastructures is eroding in the wake of
several highly publicised security failures. Breaches in security can be very costly, particularly when
they require the modification of deployed infrastructure. There is therefore a clear case to be made
for the integration of formal methods into the engineering processes at standardisation committees for
Internet protocols such as IETF, ITU, W3C, Oasis, IEEE, 3GPP, and OMA. The benefits of formal
specification and analysis during the software engineering process are well understood: the construc-
tion of formal models serves to eliminate many ambiguities in the design process, and such models
can then be rigorously analysed against formal specifications of their requirements to identify design
flaws.

A variety of languages and tools (e.g. [1, 6, 11, 14, 21, 22, 23, 25, 26]) based on different formal
methods and automated reasoning techniques have been devised and applied to the domain of security
protocols. Unfortunately, few languages exist that are both sufficiently high-level to be accessible to
engineers and protocol designers of standardisation bodies (themselves not necessarily experts in
the area of formal methods) and also expressive enough to specify modern Internet protocols. For
instance, constructs for modularity and flow control are often missing, making it difficult or even

†LORIA, Nancy, France; {Yannick.Chevalier,Laurent.Vigneron}@loria.fr.
‡Artificial Intelligence Lab, DIST, Università di Genova, Italy; {compa,jacopo}@dist.unige.it.
§Siemens AG, CT IC 3, 81730 Munich, Germany; jorge.cuellar@siemens.com.
¶Information Security, ETH, Zurich, Switzerland; {drielsma,moedersheim}@inf.ethz.ch.
∗This work was partially funded by the FET Open Project IST-2001-39252 and the BBW Project 02.0431, “AVISPA:

Automated Validation of Internet Security Protocols and Applications”.



impossible to specify looping sub-protocols and other complex behaviour. Moreover, the model of the
intruder is generally left implicit, thus assuming an intruder with identical capabilities over all parts of
the network. This, however, may not be a faithful representation of modern network infrastructures,
which often employ heterogeneous technologies vulnerable to differing intruder threats.

In this paper, we describe a language that provides all the features mentioned above: the High-Level
Protocol Specification Language (HLPSL). It has a formal semantics based on Lamport’s Temporal
Logic of Actions (TLA, [17]) that makes it easily translatable into a declarative lower-level term
rewriting based language (the Intermediate Format, IF [3]) well-suited to automated analysis tools.
HLPSL thus enjoys significant generality, as other tools can easily be made to employ HLPSL by
simply adapting them to accept IF specifications as input. HLPSL is modular and allows for the
specification of complex control-fl ow patterns, data-structures, and different intruder models. Using
a formal language with a temporal logic semantics to formalise security properties gives us great
generality and expressiveness. Finally, HLPSL is not restricted to logicians, but it is particularly suited
for engineers and protocols designers. Indeed, HLPSL has been devised as part of the AVISPA project
(http://www.avispa-project.org), which aims to develop push-button, industrial-strength
technology — supported by expressive specification languages like HLPSL — for the analysis of
large-scale Internet security-sensitive protocols and applications. In this context, we are working to
introduce the use of HLPSL and public domain tools based on formal methods into the design phase
at the IETF and other standardisation bodies to hopefully accelerate the standardisation of security
protocols and improve their correctness.

In more detail, the AVISPA tool takes as input a HLPSL specification that is translated into a cor-
responding IF specification. This is then analysed by invoking state-of-the-art back-ends (currently
CL-AtSe [27], OFMC [5], and SATMC [2] are supported) which return attacks (if any) to the user in
an intuitive and readable output format.

Structure of the paper. After a brief explanation of notation and conventions, we start in Section 2
by introducing the HLPSL language via a running example. In Section 3, we explain the TLA-based
semantics of HLPSL. Section 4 presents modelling results. We discuss related work in Section 5. We
conclude in Section 6 with some final remarks.

1.1. Basic TLA and HLPSL Conventions

The semantics of our High-Level Protocol Specification Language is based on Lamport’s Temporal
Logic of Actions (TLA, [17]). TLA is an elegant and powerful language which lends itself well to
specifying concurrent systems like the types of protocols we seek to model here. In TLA, system
behaviour is modelled by describing the state and then specifying the ways in which that state may
change. The global state is defined by an assignment of values to all the system variables. Similarly,
the state of a TLA module (or role, as we call them in HLPSL) is defined by an assignment of values
to all the variables of the role, that is, those variables that are visible from within the role. The
description of the transition relation is then given by predicates that relate the values of variables in
one state (the current one) and another (the future, or next state). We refer to the variables in the
next state as primed variables. A state predicate or state formula is a first-order formula on a role’s
state variables and constants. A transition predicate or formula is similar but may include primed
variables.

A basic event is a conjunction of transition predicates, at least one of which is of the form p(V ′) 6=



1. A → S : A.B

2. S → A : {B .KB}inv(KS )

3. A → B : {N A.A}KB

4. B → S : B .A

5. S → B : {A.KA}inv(KS )

6. B → A : {N A.N B}KA

7. A → B : {N B}KB

Figure 1. The NSPK protocol.

p(V ), where V is a tuple of variables and p(V ) is a state predicate. This definition ensures that
events are non-stuttering, i.e. at least one state variable changes. The set of events is the closure
under conjunction and disjunction of basic events.

The usual canonical form of a module in TLA (a safety property) is Init ∧�[Next ]V , where Init is a
predicate describing the initial state, and Next is a predicate describing the transition taken if at least
one variable in V changes. Equivalently, the term [Next ]V may instead be written as a conjunction
of terms of the form event ⇒ Next (without a subscript V ).

2. The High-Level Protocol Specification Language

We introduce HLPSL with the help of a running example, the complete Needham-Schroeder Public
Key protocol (NSPK [24]) including key-server,1 shown in Figure 1.2 While this is a relatively simple
protocol, this example still allows us to illustrate some of the more advanced features of our protocol
specification language. For instance, we add the requirement that each agent maintains a keyring of
public keys (KR in the HLPSL specification given in Fig. 2): that is, a set of the agents and their
respective public keys that the agent has already learned from the trusted key-server S . Moreover, an
agent X should contact S only if X does not yet possess the public key of his communication partner
in his keyring. Such “ if-then-else” style fl ow control is often missing from existing specification
languages; indeed, such control patterns cannot even be adequately described in the simple Alice &
Bob notation (e.g. Fig. 1) that is standard in the literature. Also, the modelling of such a keyring
requires the specification of a set of messages shared between all protocol sessions in which a given
agent participates. This too is a non-trivial challenge that many specification languages cannot meet.

Roles. We model the protocol in a modular fashion, focusing not on the exchange of messages
that takes place as in several existing approaches such as [11], but rather dividing the specification
into several roles. Roles may be parametrised and may also declare local variables. We distinguish
between two different types of roles: basic roles describe the actions of one agent involved in a single
protocol or sub-protocol execution, whereas composed roles instantiate and conjoin one or more other
roles. The specification of the example roles Alice and Server is shown in Figure 2.3 A basic
role may be seen as the analogue to a module in TLA, describing an initial predicate and a next-state
relation. Roles are defined over a set of parameters (which are variables that can be shared between
roles) and a set of local variables, not accessible from outside the role.

Though not illustrated in this example, roles may declare ownership of parameters, asserting that the

1A detailed description of the protocol goes beyond the scope of this paper. We refer the interested reader to [8].
2We use . to denote the concatenation of messages and inv(K ) to indicate the inverse of public key K .
3Comments in HLPSL begin with the ‘%’ symbol and continue to the end of the line. By HLPSL convention, all

protocol sessions begin with the occurrence of the START signal (see Section 3.).



role Alice(A, B, S: agent, Ka, Ks: public_key;
KR: (agent,public_key) set, SND, RCV: channel (dy)) played_by A def=

local State: nat, Na: text(fresh), Nb: text, Kb: public_key
init State = 0
transition
% Start of the protocol, provided Alice already knows Bob’s public key.
step1a. State =0 /\ START() /\ in((B,Kb’), KR)

=|> State’=2 /\ SND({Na’.A}Kb’) /\ witness(A,B,na,Na’)
% Start of the protocol otherwise.
step1b. State =0 /\ START() /\ not(in((B,Kb’), KR))

=|> State’=1 /\ SND(A.B)
% Receipt of response from server
step2. State =1 /\ RCV({B.Kb’}inv(Ks))

=|> State’=2 /\ KR’ = cons((B,Kb’), KR)
/\ SND({Na’.A}Kb’) /\ witness(A,B,na,Na’)

% Receiving the second message and sending the third.
step3. State =2 /\ RCV({Na.Nb’}Ka)

=|> State’=3 /\ SND({Nb’}Kb) /\ request(A,B,nb,Nb’)
end role

role Server(S: agent, Keys: function;

SND, RCV: channel (dy)) played_by S def=

local A, B: agent

transition

step0. RCV(A’.B’) =|> SND({B’.Keys(B’)}inv(Keys(S)))

end role

Figure 2. Specification of the NSPK protocol (the Bob role is defined analogously to the Alice role).

owned variables may change in only the way described by the owning role despite the fact that they
are visible from outside. A role may also define an acceptance predicate to indicate the conditions
for “ successful” completion. This is needed for sequential composition and looping: if we have two
sequentially composed role instantiations, then the second role begins execution after the first one has
accepted.

Types. In HLPSL, both variables and constants are typed.4 Types are specified using the ‘:’ symbol;
for instance, agent represents the type of agent names, and text(fresh) the type of freshly gen-
erated nonces. Typing is used to exclude implementation-dependent type-fl aw attacks. The AVISPA
tool can, however, employ an untyped model by ignoring all type information.

HLPSL also allows us to declare new function symbols. Such functions assume the properties of
perfect cryptographic hash functions: they are injective and not invertible by the intruder. Moreover,
function symbols are themselves messages like any other. They can therefore be either known or
unknown to the intruder (modelling a publicly known or secret function, respectively) and can be
transmitted within messages (modelling the negotiation of cryptographic algorithms). They can also
be employed to model key-tables. For instance, in the NSPK example, we have used the function
Keys to model the association of agents to their public keys.

Operators. Since many protocols use identical algebraic properties of operators on messages, we
find it convenient to separate their definitions into a so-called prelude file (as in CAPSL [11]). The

4Note that, in HLPSL, variable names begin with a capital letter and constant names with a lower-case letter. We refer
to the intruder by the constant i.



standard prelude includes such operators as exponentiation and XOR and should be sufficient for
many scenarios, but the ability to introduce new operators and specify their algebraic properties gives
the user great fl exibility: for instance, to model the properties of a particular cryptosystem used in a
given protocol.

Transitions. Transitions relate a trigger event on the LHS with an associated action on the RHS,
separated by =|>. We use /\ to denote normal conjunction. Each transition is triggered whenever
its guard event predicate is satisfied and fires immediately; we therefore refer to transitions also as
immediate reactions. For instance, Alice’s last transition (step3 in Fig. 2) states that when she is
in State equal to 2 and she receives a message encrypted with her public key and containing the
already known value of nonce Na (the one she has previously sent) and a new value5 of nonce Nb,
then State is updated, a message encrypted with Bob’s public key is sent and a goal fact is asserted
(see below).

Communication. Communication in HLPSL is synchronous and takes place over channels, them-
selves merely variables with values like any other. By convention, we generally assign channels
convenient names like SND and RCV and then write SND(Msg) and RCV(Msg).

In particular, in the well-known Dolev-Yao (DY, [13]) intruder model, all communication is syn-
chronous with the intruder, i.e. every message received by an honest agent comes from the intruder,
and every message sent by an honest agent goes directly to the intruder and is added to his knowledge.
This is not a restriction, as the DY intruder may intercept any message and replay it to any other agent.
Thus, even though the model is synchronous, a message is not necessarily received by the intended
recipient, but rather by the intruder. We may thus say that we identify the intruder with the network.
Also, in the DY model, we can model every transition of honest agents as an immediate reaction to an
incoming message: this refl ects [12]. Together, the identification of intruder and network combined
with this immediate reaction comprise a technique known as step compression: we need not consider
all interleavings of intermediate transitions of the honest agents. In [5], it is also discussed why this
is equivalent to the DY intruder.

Intruder Models. Security protocols execute on heterogeneous communication channels charac-
terised by different security properties and thus requiring different intruder models. To faithfully
model such settings, each channel is associated with a particular intruder model, and our logic-based
semantics allows us to describe alternative intruder models in a simple axiomatic manner. Intruder
capabilities are described in the prelude file, while, in HLPSL, the channel type takes an attribute
((dy) in our example) which serves as a macro specifying which intruder model should be used.
Each such macro corresponds to a set of intruder axioms in the prelude file, which includes, for in-
stance, axioms describing channels controlled by the DY intruder; axioms describing channels mod-
elling “ location-limited” communication [10] upon which the intruder cannot, in general, prevent
messages from reaching their destinations; axioms describing secure channels to which the intruder
has no access whatsoever; and channels which provide non-repudiation properties. The user can also
define new channel types. In HLPSL, The explicit specification of the intruder’s capabilities allows
us to model modern heterogeneous networks (by equipping roles with multiple channels of different
types) and enables us to easily analyse protocols under alternative intruder models (by simply ex-
perimenting with different channel types). This is particularly important for formalising some of the
protocols currently under discussion at the IETF [4] as well as protocols executing in settings like

5A primed variable in a field of a receiving channel indicates the receipt of a new value for this variable.



role Environment() def=

local Kr_A, Kr_B, Kr_I : (agent,public_key) set

init Kr_A = nil /\ Kr_B = nil /\ Kr_I = nil

const keys : function, na, nb: protocol_id

knowledge(i) = {a,b,i,keys,inv(keys(i))}

composition

Server(s,keys;snd_srv,rcv_srv) /\

% Session 1, between agents a and b

Alice(a,b,s,keys(a),keys(s);Kr_A,s_a,r_a) /\

Bob(a,b,s,keys(b),keys(s);Kr_B,s_b,r_b) /\

% Session 2: agent a talking to the intruder, posing as Bob

Alice(a,i,s,keys(a),keys(s);Kr_A,s_a,r_a)

end role

Figure 3. Instantiation via the Environment role.

those of [10].

Instantiation. Given the basic roles that make up our protocol specification, we can now instantiate
them via composed roles. Composition can be sequential (using the ; operator) or parallel (using
the /\ operator). Using these composition operators, we can model situations such as an agent who
executes several sub-protocols of a particular protocol suite in order, or an agent who is involved in
several protocol sessions at once.

One possible instantiation of our NSPK example protocol is shown in Figure 3. Here, we instantiate
a single trusted server and two sessions of the protocol in parallel: one between agents a and b and
one in which agent a initiates a protocol run with the intruder i. Note that in this latter session,
the intruder need not be explicitly modelled by a call to role Bob, as his DY capabilities subsume
this. Although we give one particular ground instantiation in the example, we can also specify an
instantiation that contains variables for the agent names and thereby symbolically represents a set of
possible instantiations. The given scenario is sufficient to detect, for instance, the man-in-the middle
attack on NSPK described by Lowe in [19].

The instantiation also illustrates another feature of HLPSL: shared knowledge. We can easily asso-
ciate a given variable, in this case the keyrings, to a particular agent, and share that variable across
all protocol sessions in which the agent participates. Here, agent a plays in two parallel instances of
Alice, and any public keys she learns in one will thus be available to her in the other. Such variable
sharing is important for the modelling of group protocols and greatly enhances the expressiveness of
our language.

Goals. We focus on safety temporal properties [4]. To specify goals, we can compose temporal
formulae using the operators � (“ always” ), ♦- (“ sometime in the past” ), and �- (“ one time instant in
the past” ), as well as standard logical connectives such as conjunction and negation. Goal formulae
are defined over so-called goal events: semantically, predicates that are true at the moment they appear
on the RHS of a transition. Note that a rich set of security goals are expressible in this way, including
secrecy, authentication, and a host of others described in [4]. Generality comes at a price, as the user
must manually place the goal facts correctly or risk a false specification. However, standard goals like
authentication and secrecy are well understood and require goal facts in a set of standard situations.
The protocol modeller can thus be greatly helped by complete documentation. Moreover, correct



placement of the goal facts encourages a thorough understand of the protocol and its goals, which one
might consider more of a feature than a bug.

Assume Bob should strongly authenticate Alice on her nonce Na. The user is free to define arbitrary
goal facts and interpret them as is desired. By convention, we call our goal facts for authentication
goals witness and request, whose intuitive meanings are as follows:

• witness(A,B,na,Na) should be read “ agent A wants to execute the protocol with agent B
and use value Na as her nonce.” In order to specify for which variable of the protocol a particular
value was meant (in this case the protocol variable Na), we specify a unique identifier for this
variable (a so-called protocol id), in this case na;

• request(B,A,na,Na) should be read “ agent B accepts the value Na and now relies on the
guarantee that agent A exists and agrees with him on this value for protocol id na.”

We express our desired security property in a goal declaration as follows:

goal
% Strong authentication.
�(request(B,A,na,Na) --> (♦- witness(A,B,na,Na) /\

not(�- ♦- request(B,A,na,Na))))
end goal

Intuitively, it is always true that a request event has been preceded by an accompanying witness
event. Moreover, no agent should accept the same value twice from the same communication partner:
that is, as of one time point before a request event, the same value had never been previously
requested. This definition corresponds to Lowe’s notion of agreement in [20].

3. HLPSL Semantics

The semantics of HLPSL is based on TLA, a powerful logic which is well-suited to the specification
of concurrent systems like security protocols. TLA itself has an intuitive and easily understandable
semantics, making it a formalism that protocol designers and engineers can find accessible.

3.1. Messages, Nonces, and the Intruder Model

We begin by specifying the structure of messages and the properties of the operations on the set
Msg of all messages. For brevity, we focus on those operations needed for our running example:
namely, pairing Pair(M 1,M 2) = M 1.M 2 and asymmetric encryption, ACrypt(K ,M ) = {M }K ;
however, we can easily extend this model of messages to include other operators like symmetric
encryption, exponentiation, and XOR, and their associated properties. As the basic data type we use
the quotient algebra T Σ/ ≈ of the free term algebra T Σ modulo the equations ≈. As an example,
≈ explicitly includes an equation stating that pairing is associative: Pair(Pair(m1,m2),m3) ≈
Pair(m1,Pair(m2,m3)); this property is essential for considering all the possible representations
of the same term (m1.m2.m3 for example).

In HLPSL, variables may be tagged as being fresh, that is, each time that they are up-
dated they take a new unseen and unguessable value. Nonce vars is the collection of



Read
∆

= ∃m ∧ SND(m) ∧ IK ′ = IK ∪ {m}

ASplit
∆

= ∃m1,m2 ∧ Pair(m1,m2) ∈ IK ∧ IK ′ = IK ∪ {m1,m2}

AAdec
∆

= ∃ k ,m ∧ ACrypt(k ,m) ∈ IK ∧ inv(k) ∈ IK ∧ IK ′ = IK ∪ {m}

GPair
∆

= ∃m1,m2 ∧ m1 ∈ IK ∧ m2 ∈ IK ∧ IK ′ = IK ∪ {Pair(m1,m2)}

GAcrypt
∆

= ∃ k ,m ∧ k ∈ IK ∧ m ∈ IK ∧ IK ′ = IK ∪ {ACrypt(k ,m)}

GFresh
∆

= ∃ x ∧ x /∈ Used ∧ IK ′ = IK ∪ {x} ∧ Used ′ = Used ∪ {x}

Figure 4. Dolev-Yao intruder knowledge formulae.

all such variable names. Now we need a means of enforcing freshness of nonces in
TLA. For this, we simply keep track of those nonce values that have already been used:
Nonce Prop

∆

= � ∧ Used ⊂ Used ′

∧ for all variables θ ∈ Nonce vars : θ′ 6= θ ⇒ (θ′ /∈ Used ∧ θ′ ∈ Used ′)

We formalise the capabilities of the intruder as a set of rules the intruder may execute. We focus
here on the well-known Dolev-Yao (DY) intruder model of [13] but note that the definition of alter-
nate intruder models is a simple matter of axiomatically describing their capabilities. In this way, we
can easily model a system in which the intruder has full DY capabilities over certain communication
channels, can only listen on others, and has no access to a third set of channels.

For simplicity, we assume here that there are only two channels, SND and RCV , shared by all honest
agents to send and receive messages, respectively.6 The intruder reads SND (every message that the
agents write), analyses the messages, (i.e. generates terms and messages based on them), and inserts
the composed messages into RCV . The “ knowledge of the intruder” , IK , is the set of all terms that
the intruder may create. The initial value of this variable is explicitly set in HLPSL (and is augmented
by the initial knowledge of any agent roles played by the intruder) and changes according to the
formulae of Figure 4: when the intruder reads new messages, Read , when he analyses his knowledge
(decomposing a pair into its components, ASplit , or decrypting encrypted terms, if he possesses the
appropriate key, AAdec), or when he composes new terms (generating pairs, GPair , encrypting a
message using a known key, GAcrypt , or generating fresh nonces, GFresh). IK may only change
when one of these actions happens, allowing the intruder to introduce his knowledge into the network.
The intruder behaviour is thus formalised by the following formula:

IntruderDY

∆

= � ∧ IK ′ 6= IK ⇒ ∨ Read ∨ ASplit ∨ AAdec

∨ GPair ∨ GAcrypt ∨ GFresh

∧ RCV (msg) ⇒ msg ∈ IK ′

3.2. Translating HLPSL Roles to TLA

In this subsection, we show how HLPSL specifications are mapped into TLA. For simplicity, in this
section we do not distinguish between variables that are local to a role (or module) and variables that
are owned by the role. More precisely, we rename local variables to avoid name clashes with the
environment and later we replace them by owned shared variables. They are in principle visible to
the environment, but due to the renaming have absolutely no effect on it. Thus this transformation
preserves the semantics.

6We also use a “ signal” , syntactically of the same form as a channel, but passing no value, the START signal. Each
occurrence of START represents an independent event. In the translation to TLA, we first rename each occurrence of
START() to a different STARTi , for i = 1, 2, . . .. STARTi is then an event that can happen at any time.



Here is the structure of basic roles and composed roles in HLPSL, where A and B are roles (the
sequential composition, the loop construct and the acceptance conditions are not discussed here for
reasons of space):

role Basic(. . .) ...def=
owns Θ
init Init

transition
event1 =|> action1

event2 =|> action2

. . .

end role

role Par(. . .) def=
owns Θ
init Init

composition
A ∧ B

end role

We will proceed inductively translating to TLA, starting with Basic and then giving the translation of
the composed role Par in terms of the translation of its components, A and B.

Let us first define the TLA translation of a basic role.

TLA(Basic)
∆

= Init(Basic) ∧ �[
∧

i (event i ⇒ action i) ∧ (
∧

θ∈Θ θ′ 6= θ ⇒ Mod(θ,Basic))]

Initially, Init holds, and in every step, if an event is triggered, then the changes specified by the
corresponding action take place. Moreover, if one of the variables owned by the role changes, then
the variable is actually modified by this role. It is our convention that if a role owns a variable then
this variable is never modified by any role “ outside” the current one.

An agent may simultaneously participate both in different roles and in different sessions of the proto-
col. In this case, the two role instances could share some internal variables of the agent. This variable
sharing is not done via some channel.

In order to explain how to construct the predicates Init(Role) and Mod(θ,Role), let us first define
what it means that Transition i (that is, event i ⇒ action i) modifies the variable X . We begin by
syntactically transforming any transitions of the form RCV (. . . ,X ′, . . .) ∧ . . . ⇒ . . . into the equiv-
alent form: RCV (. . . , ξ, . . .) ∧ . . . ⇒ (X ′ = ξ) ∧ . . .. Here, ξ is a fresh variable that is only used
during this transition and is not needed to construct the state space. Our (simplified) convention is that
Transition i modifies X if (after this transformation) X ′ appears free on the RHS of the transition,
but not on the LHS. Given this convention, we can define the required predicates, as well as the set of
variables owned by Role , Θ(Role), as follows:

Θ(Basic)
∆

= Θ

Init(Basic)
∆

= Init

Mod(x ,Basic)
∆

=
∨

i {event i | Transition i modifies x}

Note that a transition that has to refer to the already known value of a variable will use the name of
this variable, without prime, in any side of the transition.
The TLA translation of the parallel composition of A and B is the conjunction of TLA(A), TLA(B)
and some extra terms accounting for extra initial constraints or taking ownership of variables. The
TLA translation of the parallel composition is as follows:

Θ(Par)
∆

= Θ(A) ∪ Θ(B) ∪ Θ

Init(Par)
∆

= Init(A) ∧ Init(B) ∧ Init

Mod(x ,Par)
∆

= Mod(x ,A) ∨ Mod(x ,B)

TLA(Par)
∆

= Init(Par) ∧ TLA(A) ∧ TLA(B) ∧ (
∧

θ∈Θ θ′ 6= θ ⇒ Mod(θ,Par))



The TLA translation of sequentially composed roles, which we omit here for space reasons, is anal-
ogous. One must augment the translation with an auxiliary fl ag recording which of the two roles, A
or B, is executing and take into account the acceptance conditions. Once A has reached an accepting
state, we toggle the fl ag to indicate that B should begin execution.

4. Experimental Modelling Results

HLPSL has already proven itself to be an expressive and versatile language for modelling security
protocols. While we restrict ourselves to the example of NSPK in this paper for brevity’s sake,
HLPSL has been used to formalise protocols that are significantly more complex, both in terms of
agent behaviour and in terms of their intended security goals. All modelled protocols have, in turn,
been analysed with the AVISPA tool.

Candidate protocols for formalisation were selected in collaboration with representatives from the
IETF (see [4]). Although, in this paper, we focus on HLPSL itself and not on analysis results, we note
that our experimentation with the AVISPA tool has also discovered both new and previously known
attacks on some of the candidate protocols.

The industrial protocols we have modelled in HLPSL include TLS, Kerberos, various versions of
EKE, UMTS-AKA, IKEv2 and AAA for Mobile IP. Such protocols have been studied with respect to
a variety of security properties (described in more detail in [4]) such as entity and message authenti-
cation, replay protection, authorisation (by a trusted third party), key authentication and confirmation,
and confidentiality. In addition to the protocols mentioned above, we have also modelled a range
of different EAP protocols (see http://www.ietf.org/html.charters/eap-charter.
html). We note that each of the goals shown is expressible as a safety temporal property like those
already discussed.

Industrial-scale protocol suites are composed of smaller sub-protocols whose interaction should al-
low for the achievement of a variety of complex security goals. The modelling of such protocols is
considerably simplified by HLPSL’s modularity. Depending on the current state of the protocol, one
sub-protocol can be executed either in place of another or loop until a particular condition is satis-
fied. Here, the fl ow control and composition constructs of HLPSL are most useful when modelling
protocols like, for instance, Kerberos [16].

Other protocols modelled, in particular those intended to be executed in a mobile setting like those
of the Mobile IP suite [7], can greatly benefit from the fl exible way in which HLPSL allows one
to change the channel and intruder models for the analysis of the protocol in a variety of different
settings.

5. Related Work

Several specification languages have been used for protocol analysis. They include domain-specific
languages specifically designed for protocols analysis (like HLPSL itself) as well as more generic
modelling languages (e.g. LOTOS [18] or PROMELA, the input language to the SPIN [15] model
checker). An exhaustive survey is beyond the scope of this paper, but we present a brief comparison
of HLPSL to a selection of the most closely related work.

A powerful protocol specification language must fulfil several requirements. Among them we count



the ability to explicitly specify different channel types (i.e. different intruder models). CASPER [14],
CAPSL [11], and MuCAPSL [23] (an extension of CAPSL based on strand spaces and particularly
suited for group protocols) leave the intruder model implicit, while in HLPSL the intruder model can
be specified as a parameter of the channel type (where each intruder model corresponds to a set of
axioms that define its behaviour), allowing the modeller to describe heterogeneous network settings.

Another important issue in protocol design is the capability to model a wide range of goals. The
aforementioned languages restrict themselves to secrecy and authentication goals, whereas HLPSL’s
underlying logic enables us to model very general security goals in a fl exible way using temporal
logic formulae.

Moreover, the possibility to specify compound keys allows the protocol designer to model a wide
range of protocols, for example those based on the Diffie-Hellman exponentiation. Like CASPER,
Winskel’s SPL [9], a language based on Petri nets semantics, provides neither this feature nor the
possibility to employ control-fl ow patterns.

6. Conclusion

The decision to base HLPSL on TLA affords us a “ best of both worlds” situation in which we can
take advantage of an existing language with a rich semantics while also augmenting it with constructs
specific to protocol modelling that make it a convenient language in practice.

As indicated in Section 4., the HLPSL language has already proven itself to be an effective language
for modelling security protocols: many protocols of varying levels of complexity – from the NSPK
example presented here to more complex industrial-scale protocols such as IKE and TLS – have al-
ready been formalised in HLPSL. Features like modularity, control fl ow patterns, the specification of
alternative intruder models, and the generality of temporal-logic based goals give the protocol spec-
ifier great fl exibility both to construct faithful models and to experiment with different assumptions
about the environment in which the protocol should be executed.

In our experience, we have found that HLPSL is powerful yet readable and intuitive to work with. The
fact that users from varied backgrounds, including students, have found HLPSL easy to use testifies
to the language’s accessibility, which was one of our primary design objectives from the outset.

Acknowledgements. We would like to express sincere thanks to Luca Viganò, Daniel Plasto, and
David von Oheimb for their helpful feedback and assistance during the preparation of this paper.

References

[1] A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L. Compagna, S. Mödersheim, M. Rusi-
nowitch, M. Turuani, L. Viganò, and L. Vigneron. The AVISS Security Protocol Analysis Tool.
In E. Brinksma and K. G. Larsen, editors, Computer-Aided Verification CAV’02, LNCS 2404,
pages 349–354. Springer-Verlag, Heidelberg, 2002. URL of the AVISS and AVISPA projects:
www.avispa-project.org.

[2] A. Armando, L. Compagna, and P. Ganty. SAT-based Model-Checking of Security Protocols
using Planning Graph Analysis. In K. Araki, S. Gnesi, and D. Mandrioli, editors, Proceedings



of the 12th International Symposium of Formal Methods Europe (FME), LNCS 2805, pages
875–893. Springer-Verlag, 2003. www.avispa-project.org/publications.html.

[3] AVISPA. Deliverable 2.3: The Intermediate Format. www.avispa-project.org/
delivs/2.3, 2003.

[4] AVISPA. Deliverable 6.1: List of selected problems. www.avispa-project.org/
delivs/6.1, 2003.

[5] D. Basin, S. Mödersheim, and L. Viganò. An On-The-Fly Model-Checker for Security Protocol
Analysis. In E. Snekkenes and D. Gollmann, editors, Proceedings of ESORICS’03, LNCS 2808,
pages 253–270. Springer-Verlag, 2003. www.avispa-project.org.

[6] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM Transactions on
Computer Systems, 8(1):18–36, 1990.

[7] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko. RFC 3588: Diameter Base Proto-
col, Sept. 2003. Status: Proposed Standard.

[8] J. Clark and J. Jacob. A Survey of Authentication Protocol Literature: Version 1.0. www.cs.
york.ac.uk/˜jac/papers/drareview.ps.gz, 1997.

[9] F. Crazzolara and G. Winskel. Events in security protocols. In Proceedings of the 8th ACM
conference on Computer and Communications Security, pages 96–105. ACM Press, 2001.

[10] S. Creese, M. Goldsmith, B. Roscoe, and I. Zakiuddin. The attacker in ubiquitous computing
environments: Formalising the threat model. In Proc. of the 1st Intl Workshop on Formal Aspects
in Security and Trust, pages 83–97, Italy, 2003.

[11] G. Denker and J. Millen. CAPSL integrated protocol environment. In DARPA Information
Survivability Conference (DISCEX 2000), pages 207–221. IEEE Computer Society, 2000.

[12] G. Denker, J. Millen, A. Grau, and J. Filipe. Optimizing protocol rewrite rules of CIL specifica-
tions. In Proceedings of the 13th IEEE Computer Security Foundations Workshop (CSFW ’00),
pages 52–63. IEEE, July 2000.

[13] D. Dolev and A. Yao. On the Security of Public-Key Protocols. IEEE Transactions on Informa-
tion Theory, 2(29), 1983.

[14] B. Donovan, P. Norris, and G. Lowe. Analyzing a Library of Security Protocols using Casper
and FDR. In Proceedings of the Workshop on Formal Methods and Security Protocols, 1999.

[15] G. J. Holzmann. The Spin Model Checker. IEEE Transactions on Software Engineering,
23(5):279–295, May 1997.

[16] J. Kohl and C. Neuman. RFC 1510: The Kerberos Network Authentication Service (V5), Sept.
1993. Status: Proposed Standard.

[17] L. Lamport. The temporal logic of actions. ACM Transactions on Programming Languages and
Systems, 16(3):872–923, May 1994.



[18] G. Leduc and F. Germeau. Verification of Security Protocols using LOTOS – Method and
Application. Computer Communications, special issue on ”Formal Description Techniques in
Practice, 23(12):1089–1103, 2000.

[19] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR. In
T. Margaria and B. Steffen, editors, Proceedings of TACAS’96, LNCS 1055, pages 147–166.
Springer-Verlag, 1996.

[20] G. Lowe. A hierarchy of authentication specifications. In Proceedings of the 10th IEEE Com-
puter Security Foundations Workshop (CSFW’97), pages 31–43. IEEE Computer Society Press,
1997.

[21] G. Lowe. Casper: a Compiler for the Analysis of Security Protocols. Journal of Computer
Security, 6(1):53–84, 1998.

[22] C. Meadows. The NRL Protocol Analyzer: An Overview. Journal of Logic Programming,
26(2):113–131, 1996.

[23] J. Millen and G. Denker. MuCAPSL. In DISCEX III, DARPA Information Survivability Confer-
ence and Exposition, pages 238–249. IEEE Computer Society, 2003.

[24] R. M. Needham and M. D. Schroeder. Using Encryption for Authentication in Large Networks
of Computers. Technical Report CSL-78-4, Xerox Palo Alto Research Center, Palo Alto, CA,
USA, 1978. Reprinted June 1982.

[25] L. C. Paulson. The Inductive Approach to Verifying Cryptographic Protocols. Journal of Com-
puter Security, 6(1):85–128, 1998.

[26] D. Song. Athena: A new efficient automatic checker for security protocol analysis. In Proceed-
ings of the 12th IEEE Computer Security Foundations Workshop (CSFW ’99), pages 192–202.
IEEE Computer Society Press, 1999.

[27] M. Turuani. Sécurité des Protocoles Cryptographiques: Décidabilité et Complexité. Phd, Uni-
versité Henri Poincaré, Nancy, December 2003.


