Curated Archiving of Research Software Artifacts:

lessons learned from the French open archive (HAL)

Roberto Di Cosmo, **Morane Gruenpeter**, Bruno Marmol, Alain Monteil, Laurent Romary, Jozefina Sadowska

February 18th, 2020

- Introduction Software source code
- The software deposit a first class research output
- 3 Keeping the human in the loop metadata moderation
- Conclusion

Source Code: executable and human readable knowledge

"The source code for a work means the preferred form of the work for making modifications to it."

GPL Licence

Hello World

Program (excerpt of binary) 4004e6: 55 4004e7: 48 89 e5 4004ea: bf 84 05 40 00 4004ef: b8 00 00 00 00 4004f4: e8 c7 fe ff ff 4004f9: 90 4004fa: 5d 4004fb: c3

Program (source code)

```
/* Hello World program */
#include<stdio.h>

void main()
{
    printf("Hello World");
}
```

Software is a forgotten pillar of Open Science

Lack of recognition

not (yet) a first class citizen

- in the EOSC plan
- in the scholarly world

Sometimes, if you don't have the software, you don't have the data Christine Borgman, Paris, 2018

Reproducibility is the key

non-reproducible single occurrences are of no significance to science

Karl Popper, The Logic of Scientific Discovery, 1934

in increasing order of difficulty

Archival

Research software artifacts must be properly archived

make it sure we can retrieve them (reproducibility)

Identification

Research software artifacts must be properly referenced make it sure we can *identify* them (*reproducibility*)

Metadata

Research software artifacts must be properly described

make it easy to *discover* them (*visibility*)

Citation

Research software artifacts must be properly cited (not the same as referenced!)

to give credit to authors (evaluation!)

- Introduction Software source code
- 2 The software deposit a first class research output
- 3 Keeping the human in the loop metadata moderation
- Conclusion

Making software a first class research output

Center for Direct Scientific Communication - behind the HAL platform

Hyper articles en ligne

IES-Inria

Scientific information & publishing service @Inria

 Institut National de Recherche en Informatique et en Automatique

Software Heritage

Building the SWH universal archive for all *software source* code

With the support of UNESCO

Goals

- archive software source code on HAL and on SWH
- **1** identify all the contained artifacts in a deposit with the SWH-ID
- describe with reviewed metadata by an IES-Inria moderator
- cite the deposit with a complete citation

The research software (deposit) use case

Deposit software in HAL

oster

Generic mechanism:

- SWORD based
- review process
- versioning

How to do it:

(guide)

deposit .zip or .tar.gz file with metadata

Timeline:

- March 2018: test phase on HAL-Inria
- September 2018: open to all HAL
- December 2019:
 - 80 complete source code deposits
 - 98 software records

Submit your source code

The deposit view

Reference vs. citation

Credit & Attribution

- a metadata record
- all authors & contributors

Reuse & Reproducibility

- a specific artifact
- with complementary information (docs)

Archive & Index

- metadata record (HAL)
- artifact itself (SWH)

connect the dots...

- Introduction Software source code
- The software deposit a first class research output
- 3 Keeping the human in the loop metadata moderation
- Conclusion

Software deposit moderation

we need

- quality metadata to describe research software
- correct credit to all authors of the software

Main actions the digital archivist performs:

- detecting extraneous or abusive content (illegal or harassing),
- verifying consistency between the metadata and the software source code itself,
- completing or correcting the deposit metadata if needed.

Out of scope

- review source code functionality
- compile & run software
- assess reproducibility & accuracy

The people behind the scenes

Publishing vs Sharing

Publishing

- a research result that has been qualified through peer review
- software review examples:
 - AEC,
 - IPOL Journal · Image Processing On Line IPOL,
 - JOSS- the Journal of Open Source Software
- still new in the scholarly ecosystem for software

Sharing

- vast majority developed outside of academia
- on fashionable code hosting platforms with no long-term guarantees (Github, Gitlab, Gitorious...)
- research software preservation with institutional repositories or archives (HAL, Zenodo, SWH, etc..)
- don't require review process

Sharing is crucial for Open Science

- 4 Conclusion

Lessons learned

The importance of a software license

• can software be deposited without a license?

became a mandatory field on HAL

Collective authorship

• can the X project team be the author of software?

authorship can be established only with a clear link between a person and a deposit

Legacy software

- should be archived in its original state
- where to put additional information?

create source code container to capture both *original* and *added information* as detailed in the legacy software acquisition process (SWHAP)

Lessons learned (continued..)

research experiments

• deposit on HAL or just archive repository on SWH?

depends on the life span of the experiment

software with large datasets

• include in software deposit or separate?

depends on dataset nature and reuse possibilities

Software collections

- Research Software does not exist in isolation
- large web of dependencies on non-research software
- single or multiple deposits?

depends on reuse possibilities

Next steps

Export formats

- improve BibTex export (contribute to the @software bibtex proposal)
- improve other existing formats (TEI, endnote, DC, DCterms)
- create CodeMeta and CFF exports of metadata

Create deposit from existing repository

- using an existing SWH-ID
- using a repository url (on GitHub, GitLab, etc..)-> Save Code Now

Integrate software into HAL Data

- on https://data.archives-ouvertes.fr/
- a SPARQL endpoint, using RDF

Come in, we're open!

This work is partially supported by the FAIRsFAIR European project.

Questions?

R. Di Cosmo, M. Gruenpeter, S. Zacchiroli

Referencing Source Code Artifacts: a Separate Concern in Software Citation, CiSE, IEEE, pp.1-9. 2020. (10.1109/MCSE.2019.2963148) (hal-02446202)

R. Cosmo, M. Gruenpeter, B. Marmol, A. Monteil, L. Romary, J. Sadowska

Curated Archiving of Research Software Artifacts: lessons learned from the French open archive, submitted to IJDC. December 2019. (hal-02475835)

P. Alliez, R. Di Cosmo, B. Guedj, A. Girault, M.-S. Hacid, A. Legrand, N. Rougier

Attributing and Referencing (Research) Software: Best Practices and Outlook From Inria Journal Article, Computing in Science Engineering, 22 (1), pp. 39-52, 2020, ISSN: 1558-366X. (10.1109/MCSE.2019.294941) (hal-02135891)