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Abstract

A few issues related to the modeling of size effects in terms of geometrically necessary dislocations (GNDs) are

critically discussed, viz. strain hardening, length scale dependence, types of GND arrays. Consequences are drawn

regarding the continuum modeling of size effects in plasticity.
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1. Introduction

One of the earliest mentions of a hardening ef-

fect due to the plastic accommodation of elastic

strain gradients by dislocations is found in the

book by Friedel [1]. With reference to the bending

of a crystal to curvature c (and with l and b being

respectively the shear modulus and the modulus of

the Burgers vector), Friedel wrote ‘‘. . . the mini-
mum dislocation density necessary to produce the
deformation is given by q ¼ c=b [. . .]. This density
[. . .] introduces short-range stresses on a scale

comparable with the average distance ‘ between

dislocations [. . .]. One expects therefore a para-

bolic law r � r0 þ ðl=2pÞðbcÞ1=2. [. . .] Similar but

more elaborate equations can be given in the same
way for any type of macroscopic distortion which

is not a uniform shear’’. These are of course geo-

metrically necessary dislocations (GNDs) in the

sense of Ashby [2], taken to induce increased

hardening to the crystal in addition to that caused

by statistically stored dislocations.

In pure fcc crystals, the resolved flow stress s is

then given by the well-known relationship:

s ¼ albðqs þ qgÞ
1=2

; ð1Þ

where a is a constant coefficient, qs is the density of

statistically stored dislocations and qg the density

of GNDs. With qg proportional to the strain

gradients, where Eq. (1) applies, GND-governed

scale-dependent hardening is recognizable through

a linear dependence of the square of the flow stress
on the inverse of the distance d characteristic of the
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deformation problem at hand (or, if qs � qg, a

linear dependence of s on 1=
ffiffiffi

d
p

). Such a depen-

dence has indeed been found in several important

cases, including the response to microhardness
indentations of fcc crystals, the large-strain flow

stress of precipitate or dispersion hardened metals,

and the yield and flow stress of particle reinforced

metals [4–6].

GND models have attracted much attention

because, in simple cases, the density of dislocations

needed to relax a given strain gradient can be

calculated assuming essentially static dislocation
arrays dictated by local equilibrium. In a way, this

is reminiscent of the low energy dislocation struc-

ture models [3], or of the models developed to

explain the formation of arrays of misfit disloca-

tions in epitaxial layers.

The resulting possibility of modeling scale ef-

fects in plastic deformation has motivated the

proposal of several continuum plasticity theories
which incorporate a dual dependence of the plastic

flow stress on strain and strain gradients. The as-

sumptions underlying these theories are variably

based on the theory of GNDs, which is used to

propose length scales that serve to quantify in the

continuum the contribution of strain gradients to

hardening. Our purpose in this short contribution

is to discuss, from a materials science perspective,
a few critical issues in connection with the dislo-

cation phenomena that underlie the continuum

strain gradient plasticity (SGP) approach.

2. Hardening by geometrically necessary disloca-

tions

How valid is Eq. (1)? In pure fcc metals, it is

quite robust. The flow stress is then mostly gov-

erned by short-range attractive intersections of
non-coplanar dislocations. As was shown by early

theoretical studies [7,8], and confirmed by experi-

mental investigations [9], this leads to Eq. (1) with

a ¼ 0:3� 0:1. This ‘‘forest’’ hardening should be

distinguished from ‘‘dipolar’’ or Taylor hardening

which stems from long-range dislocation interac-

tions. Then, the same scaling law is recovered but

the corresponding value of the coefficient a criti-
cally depends on specific hypotheses made re-

garding the GND spatial distribution. This

applies to situations where GNDs are assumed to

be stored at an interface, for instance a grain

boundary in a polycrystal or a phase boundary in
a composite material, and cannot play the role of

forest obstacles.

A more subtle question concerning Eq. (1) in

fcc metals is that of the distinction between sta-

tistical and geometrically necessary dislocations.

In a recent study of the deformation of bulk alu-

minum polycrystals, Hansen and Huang [10] have

succeeded in estimating the density of GNDs from
TEM measurements. The dislocation microstruc-

tures are made up of subgrains or walls, which

accommodate the misorientations between dislo-

cation-poor areas. From direct measurements of

the local misorientations, the density of disloca-

tions within cell walls was deduced and the coef-

ficient a was estimated from the knowledge of a

Taylor-averaged flow stress. Its value decreases
from 0.28 to 0.2 for strains increasing from 5% to

34%. This agrees relatively well with theoretical

expectations (within a proper treatment of line

tension effects this coefficient decreases slowly with

increasing dislocation density), as well as experi-

mental [9] or simulated [11] values. The interesting

point is that, in this case, the majority of the dis-

locations are in the walls, and hence are GNDs
accommodating naturally occurring spatial strain

variations. As far as the hardening behavior is

concerned they behave in the same manner as

statistically stored dislocations, to which they are

implicitely assimilated in SGP. These GNDs ac-

tually are at the origin of most of the flow stress of

the material at large strains (qg 	 qs), whereas qg

should be negligible with respect to qs at small
strains, since local misorientations are very small.

Unfortunately, very little is know about the strain

dependencies of these two densities when they are

considered separately.

As soon as one leaves pure fcc metals, the va-

lidity of Eq. (1) comes into question. In fcc crys-

tals, if dislocation motion requires overcoming a

friction stress s0 (for example because of solid so-
lution strengthening) it is conventionally accepted

to simply add this stress to the right-hand side of

Eq. (1); SGP equations were recently adapted to

account for this [12]. In materials other than fcc
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crystals, in particular those where the flow stress is

not governed by forest interactions, both Eq. (1)

and its modification with a constant friction stress

can be invalid. This includes for instance bcc
metals or transition hcp metals like Ti or Zr, where

the dislocation mobility is reduced by a strong

lattice friction due to the non-planar configuration

of the screw dislocation cores. In such cases, strain

hardening stems from a complex superposition

between forest hardening and lattice friction [13],

leading to a relation between flow stress and total

density that is more complex than Eq. (1) and no
longer involves a square root relationship. Eq. (1)

then applies only when the lattice friction stress (or

Peierls stress) is significantly smaller than forest

hardening, i.e., when it is reduced by thermal ac-

tivation at high temperatures and low strain rates,

or at large strains and dislocation densities such

that forest hardening prevails. This difficulty is not

recognized in many situations involving bcc crys-
tals. Then, one simply cannot assume additivity of

the lattice friction and of forest hardening, for

instance when modeling the indentation size effect

in tungsten at room temperature [12]. Indeed,

lattice friction governs plastic flow up to about

600 K in this material. For other bcc crystals a

very rough rule of thumb involves scaling this

temperature either by lb3 or by the melting tem-
perature.

3. Length scale dependence

As mentioned in the previous section, the ob-

served dependence of hardening on length scale

predicted by Eq. (1) has, indeed, been observed in

several important cases. This provides strong jus-

tification for the use of GND theory towards

quantification of scale-dependent plasticity; how-
ever, as is well known, this dependence is not

universal. In particular, the initial yield stress of

undeformed materials, which at a fine scale of

structures is also scale-dependent, generally cannot

be explained by GND theory, simply because

generally there is no GND accumulation before

yield (an exception is provided by metal matrix

composites, which are hardened before tensile
yield by GNDs of thermal origin).

Despite the fact that it displays a linear depen-

dence of flow stress on the inverse square root of

the characteristic distance d, the Hall–Petch yield

stress of annealed metals is thus not GND-gov-
erned. This size effect is traditionally modeled in

terms of dislocation pile-ups at grain boundaries,

whereas a model of GND storage is used to de-

scribe polycristal strain hardening [5]; both lead

to the same scaling. This switching between very

different types of configurations to describe the

same scaling behavior may be found a bit puzzling

in conceptual terms.
Yield stresses also often display different func-

tional dependencies on d, which complicates mod-

eling. For example, with shearable precipitates, the

yield stress increases with d, following a variety of

laws which depend on the specifics of precipitate

shear [14]. Frequently, yield is directly governed

by Orowan bowing to a critical radius that scales

directly with d (yielding between non-shearable
precipitates or dispersoids, narrowly confined plas-

ticity in thin films or between hard second phases,

. . .). As a consequence, the scale-dependent incre-

ment in yield stress depends linearly on (1=d), or
more correctly on (lnðdÞ=d). For instance, in the

deformation of polycrystalline copper thin films on

a substrate [15], the yield stress scales as 1=d due to

confinement, whereas the strain hardening behav-
ior does not andmay be qualitatively understood in

terms of GND storage. Confinement size effects are

also currently observed in lamellar materials and in

superalloys with large volume fractions of the hard

phase, where the width of the ductile channels is

about 0.1 lm. Considering their practical impor-

tance, it is remarkable that confinement effects in

such materials have only very recently been mod-
eled in the continuum [16].

In all these cases, the functional relation be-

tween length scale and flow stress cannot be

modeled from SGP analyses based on parabolic

dislocation hardening according to Eq. (1). Gen-

erally, d-values at which direct Orowan or other

non-GND size-dependencies of the yield stress

become noticeable are roughly at and below 1 lm.
This range overlaps partly with that in which SGP

models are supposed to apply.

GND theory also assumes that dislocation nu-

cleation proceeds unhindered. This is not always
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true, particularly at small length-scales. Precipi-

tates or second phase particles, for example, will

begin to encounter difficulty in nucleating GND

loops when their size falls below a certain value in
the rough vicinity of 0.1 lm: clearly, then, the

theory cannot be applied. Phenomena such that

dislocation nucleation has to occur in small, ini-

tially dislocation-free, volumes place a lower limit

on the range of d values over which GND-based

strain-gradient plasticity theory may be useful. In

some cases, for instance in nanostructured mate-

rials, this may narrow significantly the range of
applicability of the theory.

4. Specific nature of geometrically necessary dislo-

cation patterns

As pointed out by Gil Sevillano: ‘‘GND arrays

are not univocally determined’’ [17]. This is well
illustrated by the variety of dislocation configura-

tions that exist in a system as basic as a crystal

deforming by single slip around a hard spherical

particle [5,18].

As an illustration of the importance of this

point, consider the SGP model proposed by Gao

et al. [19]. A salient feature of this model is its clear

concern for basing the SGP equations on specific
GND arrays, which it describes in four cases. One

is bending: in this case the array of parallel edge

dislocations lends itself as the obvious solution.

The second case is simple torsion of a cylinder: the

authors propose a series of screw dislocations co-

axial with the cylinder as the relevant array of

GNDs. A likely alternative (as in all such simple

models, in a well oriented crystal) is that of a series
of twist subgrain boundaries in the cylinder, con-

taining regularly spaced parallel arrays of screw

dislocations oriented normal to the axis. Assuming

for simplicity that each subboundary contains two

perpendicular arrays of screw dislocations, the

dislocation density required to accommodate a

twist angle j over unit length is easily shown to be

qG ¼ 2j=b; ð2Þ

i.e., twice the density assumed in [19].

The third case considered is that of cylindrically
symmetric outward expansion, corresponding to

the growth of a cylindrical void or inclusion in a

crystal. Here the GND array considered by Gao

et al. consists of concentric crowns of edge dislo-

cations having their axis parallel to the void, and
their Burgers vector oriented along the hh direc-

tion (cf. [19, Fig. 3(c)]). A more realistic GND

array is that which is actually observed in thermal

mismatch strain relief by fibers [20]. It consists of

long prismatic loops having their Burgers vector

oriented along slip directions closest to the radial

direction in the problem at hand. Assuming these

long prismatic dislocation loops have a width of
ffiffiffi

2
p

times the void/fiber radius, r0,
ffiffiffi

2
p

pu0=b loops

are required to relieve the mismatch volume cre-

ated by a surface displacement u0 at the surface of
the void/inclusion. The resulting total dislocation

length per unit cylinder length is then:

L ¼ 2
ffiffiffi

2
p

pu0=b; ð3Þ

which is lower by a factor
ffiffiffi

2
p

than the value de-

rived from the configuration assumed in [19].
In the fourth case considered by Gao et al.,

namely spherically symmetric outward expansion

at the surface of a spherical hole or inclusion,

another GND array, similar to the previous one,

can be proposed. Indeed, it is well known that

circular prismatic loops with their Burgers vector

oriented along the radial direction relieve the

mismatch strain in such cases. Here, the total
prismatic dislocation loop length required is

L ¼ 8
ffiffiffi

2
p

pr0u0=b; ð4Þ

which is again lower, by a factor of
ffiffiffi

2
p

=3, than is

assumed in [19].

Assumed GND arrays are used in the theory to

estimate a set of three constants (c1, c2, c3), from
which the strain gradient tensor is defined (cf. [21;

19, Eq. (23)]). With the above distributions, this set
becomes ()11/24, 17/24, )14/24) instead of (0, 1/4,

0) in the original model, assuming the same three

cases and the same strain distributions in the cal-

culation of these constants (this is a simplification

given the more complex local strain distribution

associated with the above GND patterns). Other

permutations of these cases and their chosen GND

arrays could be used to obtain other sets of values.
The implications are (i) that the assumed GND
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configurations matter significantly in defining the

SGP law assumed, and (ii) that, reciprocally, any

given SGP model carries implicitely in it the as-

sumption of a certain rather precisely defined
GND array configuration, which may be at vari-

ance with reality in the different cases where the

model is applied. This is a fundamental limitation

of SGP models, which results from their assump-

tion that one to three scalars can fully render the

influence of relatively complex ‘‘real’’ GND ar-

rays. In reality, GND arrays are governed by a

combination of energetic, crystallographic, and
kinetic phenomena, which often influence signifi-

cantly the final GND distribution and density. The

cases of spherical or cylindrical inclusions consid-

ered above are, again, interesting in this regard. If

prismatic loops do not get entangled near an in-

clusion, they can glide over considerable distances,

creating extended patterns which do not reflect the

symmetry of the inclusion. This is something no
present continuum SGP model can capture.

We now return to Eq. (1), noticing that it is

expressed in terms of spatially averaged disloca-

tion densities and nevertheless yields good results

in the case where the dislocation microstructure is

self-organized (cf. [10] and Section 2). This rather

striking feature is not understood. Tentative ex-

planations have been proposed, for dislocation cell
structures, in terms of Mughrabi�s ‘‘composite

model’’ [22] and in terms of the ‘‘forest model’’ by

Neuhaus and Schwink [23]. Because of this relative

insensitivity to the spatial arrangement of the mi-

crostructure, size effects induced by externally

imposed strain gradients, e.g., in bending or tor-

sion, can effectively be modelled in terms of a

known total density of GNDs. It is not so, how-
ever, for patterned dislocation structures that

spontaneously form in conditions where no strain

gradient is imposed. In monotonic deformation,

these microstructures can schematically be de-

scribed as containing subgrains of micrometer di-

mensions, with small alternating misorientations,

and larger subgrains or cell-blocks accommodat-

ing large misorientations (cf. e.g., [24]). Our pre-
sent level of understanding does not allow to

predict the two corresponding characteristic scales

for these ‘‘natural’’ strain gradients, nor how the

misorientations grow with increasing strain. Fur-

ther, the average strain gradient inside a single cell

block is close to zero, due to the alternance of

misorientations at smaller scale. In short, it is not

presently possible to propose convincing models,
either discrete or continuum, of dislocation pat-

terning in terms of GNDs.

5. Gradient plasticity and size effects

Several difficulties arise when formulating con-
tinuum models for the evolution of dislocation

densities inside a crystal. We discuss here the

homogenization process that transforms a discrete

dislocation density into a continuum one, within

a purely dislocational framework and without

making reference to GNDs. In addition we show

that the modeling of size effects of dislocational

origin does not necessarily involves the consider-
ation of GNDs.

Models describing the coupled evolution of

dislocation populations in time (t) and space have

been initiated by Walgraef and Aifantis [25] and

were further developed in the past years in the

context of dislocation patterning. A balance equa-

tion is written within a small homogenization

volume of linear dimension ‘. In scalar terms and
for each population, we have:

oq=ot þ divðqvÞ ¼ reactions; ð5Þ

where v is a dislocation velocity and qv a disloca-

tion flux. The reaction side may include a number

of dislocation mechanisms (multiplication, anni-

hilation, blocking, etc.).

An example of an annihilation mechanism is

shown in Fig. 1, namely the annihilation by cross-

slip of two screw dislocations of opposite sign.

Under the effect of their mutual attraction, the two
segments can move out of their slip plane and

annihilate provided that the distance between their

slip planes is smaller than a critical, stress-depen-

dent, value hc. We see from Fig. 1 that if ‘ is taken
smaller than hc, cross-slip enters the transport term

at the left-hand side of Eq. (1), leading to a gra-

dient form once the flux term is expanded. Con-

versely, if hc < ‘, the annihilation process is a
reaction term and its spatial aspects are averaged
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out. More generally, a length scale can be attached

to each dislocation mechanism, thus defining a

hierarchy of length scales. The related mechanisms

are for instance the annihilation of edge dipoles,

the average distance between dislocations or be-

tween other obstacles, the typical width of cell

walls, cell diameters and the grain size in a poly-
crystal. The related length scales may, in addition,

depend on stress (cf. Section 3). If ‘ increases,

mechanisms are progressively shifted from the

transport-side to the reaction-side of Eq. (1), until

‘ becomes of the order of the specimen size. Then,

the whole dislocation density is spatially averaged.

When ‘ decreases, more mechanisms appear on the

transport side of Eq. (1), until the homogenization
volume contains either zero or one dislocation. At

this point, the model becomes discrete.

In fact, the dimension of the homogenization

volume cannot be fixed by a physical argument. It

is somewhat arbitrary and depends upon the na-

ture of the mechanisms and length scales that one

wishes to account for in a given model. Thus, there

are many possible models and the homogeniza-
tion length scale ‘ governs their spatial resolution,
although it never appears explicitly in Eq. (5). It

seems that the occurrence of this spatial dividing

line is the price to pay for integrating the inher-

ently discrete character of dislocation mechanisms

into a continuum description.

6. Concluding remarks

GND models can efficiently be used to describe

size effects in plasticity, but within some limits,
however. These limits are set by the static and

equilibrium characters of the GND framework, by

kinetic effects such as lattice friction and by yield

phenomena also, which may exhibit different, non-

GND related, scaling properties at micron-scale
distances. Other limitations stem from the impor-

tance of GND array specifics or, in other words,

by the potential lack of universality of character-

istic lengths used for comparison with strain gra-

dients. We believe these limitations will cause

continuum SGP models to face, in the near future,

a serious challenge from truly multiscale ap-

proaches, which combine an atomic-scale treat-
ment of nanosized configurations with simulation

methods for dislocation effects at the meso-scale,

together with a capacity to tackle sophisticated

boundary value problems (e.g., via phase field

methods or coupled finite elements and dislocation

dynamics simulations).
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