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Abstract

The field of genomics is likely to become the largest producer of data as a consequence of

the large-scale application of next-generation sequencing technology for biological research

and personalized medical treatments. The raw sequence data produced by these methods is

limited in usefulness and requires computational analysis to unlock its potential. Bioinfor-

matics is a field that combines biology, genomics, and computer science to build algorithms

and software to analyze biological data. Some of the current bioinformatics tools are having

difficulty keeping up with the increasing rate of data production. For example, raw sequence

preprocessing, which involves aligning subsequences to a reference genome, sorting, and

other operations, can take many hours. Downstream processing applications also require

computational innovation — protein sequence similarity search, an important tool in protein

function characterization and the study of evolution, can take weeks or months to build

high-quality databases, even relatively small ones composed of just a few thousand genomes.

This thesis shows that these computational challenges can be effectively and efficiently solved

by a combination of fine-grained parallelism and horizontal scaling on highly-parallel compute

clusters and data centers. This is shown through three primary contributions.

First, the preprocessing of whole-genome sequencing reads is addressed with Persona. Persona

is a high performance and scalable bioinformatics system that unifies data, tools, algorithms,

and processes for alignment, sorting, duplicate marking, and other operations in a common

framework that scales linearly. For example, Persona can align 220 million short reads in ~17

seconds using a 32-node cluster. Second, a new technique for measuring and analyzing heap

usage is introduced, which can help bioinformatics and other programs make more efficient

use of memory, leading to performance gains of up to 10%. Finally, to accelerate protein

similarity search, a new clustering algorithm is introduced that exposes parallelism, which,

when combined with dynamic load-balancing, allows for efficient and scalable execution,

leading to speedups of over 1400× over existing methods.

Keywords: bioinformatics, frameworks, big data, data center, scale-out, profiling, parallel

algorithms, clustering, protein similarity search
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Résumé
Le domaine de la génomique est susceptible de devenir le plus grand producteur de données
en raison de l’utilisation à grande échelle des technologies de séquençage de nouvelle généra-
tion pour la recherche biologique et les traitements médicaux personnalisés. Les séquences
brutes produites par ces méthodes sont cependant d’une utilité limitée et nécessitent une
traitement analytique informatique afin d’en exploiter le plein potentiel. La bio-informatique
est un domaine qui combine la biologie, la génomique et l’informatique pour construire des
algorithmes et des logiciels d’analyse de données biologiques. Certains des outils bioinfor-
matiques actuels peinent à s’adapter à la croissance des données à traiter. Par exemple, le
prétraitement des séquences brutes, qui consiste à aligner les sous-séquences sur un génome
de référence, à les trier et à effectuer d’autres opérations, peut prendre de nombreuses heures.
Les applications de traitement en aval nécessitent également des innovations informatiques
— la recherche de similarité de séquences protéiques, un outil important dans la caractéri-
sation de la fonction des protéines et l’étude de l’évolution, peut prendre des semaines ou
des mois pour construire des bases de données de haute qualité, même lorsque celles-ci sont
relativement petites et composées de seulement quelques milliers de génomes.

Cette thèse montre que ces défis informatiques peuvent être résolus de manière efficace et
efficiente par une combinaison de parallélisme minutieusement orchestré et d’évolutivité
horizontale sur des clusters de calcul et des centres de données hautement parallèles. Ceci est
démontré par trois contributions principales.

Tout d’abord, le prétraitement de séquences de génomes entiers est abordé avec Persona. Per-
sona est un système bioinformatique de haute performance et évolutif qui unifie les données,
les outils, les algorithmes et les processus pour l’alignement, le tri, le marquage des doublons
et d’autres opérations dans un cadre commun qui s’adapte linéairement aux ressources dis-
ponibles. Par exemple, Persona peut aligner 220 millions d’échantillons génétiques en 17
secondes en utilisant un cluster de 32 nœuds. Ensuite, une nouvelle technique de mesure
et d’analyse de l’utilisation du tas est introduite. Celle-ci qui permet de faciliter l’analyse
et l’amélioration des programmes, notamment ceux de bioinformatique, afin de les rendre
plus efficaces dans leur utilisation de la mémoire, entraînant ainsi des gains de performance
pouvant aller jusqu’à 10%. Enfin, pour accélérer la recherche de similarité des protéines, un
nouvel algorithme de regroupement (clustering) est introduit. Cet algorithme est hautement
parallélisable et, combiné à un équilibrage dynamique de la charge de travail à effectuer,
permet une exécution efficace et évolutive, conduisant à des accélérations de plus de 1400×
par rapport aux méthodes existantes.
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1 Introduction

Bioinformatics is an interdisciplinary field that uses algorithms and software to process and

analyze biological data. However, before turning to bioinformatics and its importance, we

must first gain an understanding of the underlying biological systems that are the source of

this data. Therefore, we start with a discussion of genes, genomes, and DNA, before moving

on to sequencing, computation, bioinformatics, and the important problems to be solved.

1.1 Genomes, Genes, and DNA

All living things on earth share at least one thing in common: they are defined by their genome.

The genome of an organism is a complete set of genetic instructions to build the organism,

allowing it to develop, grow, mature, and ultimately reproduce or replicate. These genetic

“instructions” are discrete units called genes, which influence certain features or traits of the

organism. These traits include relatively simple things such as fur color or skin pigmentation.

They also include complex traits, such as susceptibility to heart disease, which could be

influenced by a great many genes. The environment can also affect how genetic traits are

expressed — the classic example is that a child with “tall” genes will not grow to be tall if

malnourished.

Genes are units of inheritance. When organisms reproduce, they pass their genes to their

offspring. Most organisms reproduce sexually, so genes from two parents are combined to

form the genome of the child, with each parent contributing 50% of their genetic material.

Children thus inherit traits from their parents, which is why children typically look like and

take after their parents.

Genetic inheritance forms the basic mechanism of the evolution of life on Earth. Inherited

traits that confer an advantage in a given environment are naturally selected for, as the organ-

ism is more likely to survive, reproduce, and pass on advantageous traits. Disadvantageous

traits likewise lower the probability of survival and therefore reproduction. The combination

of random mutation (which produces new beneficial traits), genetic inheritance, and time

1



Chapter 1. Introduction

explains how life has been able to adapt to and colonize nearly every corner of our planet,

albeit over hundreds of millions of years.

Organisms often have multiple copies of their genes. Humans, for example, have two copies

of each gene, one from each parent. When reproducing, each parent provides one-half of their

copies, so the child will receive one copy of a gene from each parent. Copies of a gene can

differ, however, and these variations of a gene are called alleles. Consider a gene influencing

eye color, and a reproductive situation in which one parent has two alleles for brown eyes,

and the other parent has two alleles for blue eyes. The child will, therefore, have one copy for

brown eyes, and one for blue eyes, but which allele will be expressed? The answer is that one

allele will dominate the other and is referred to as the dominant allele. The other is recessive.

In humans, brown eyes are a dominant trait, so the child would have brown eyes, even though

they also have a blue eye allele. Generally, the genetic pattern is called the genotype (here,

one brown-eye allele, one blue-eye allele), while the physically observed trait is called the

phenotype (the child has brown eyes).

This discussion has been conceptual so far, and the reader may ask: what are genes actually

made of? Remarkably, all organisms on the planet, in all of their diversity, have genes com-

posed of the same underlying physical substrate. That substrate is DNA: Deoxyribonucleic

Acid, a molecular polymer contained in the nucleus of every cell in an organism.1 DNA con-

sists of a molecular scaffold supporting a long sequence made of four different nucleotides,

labeled A, T, C, and G. Each nucleotide, or base, is bound to its complement at each point

in the sequence (forming a base pair). The whole structure physically takes the form of two

bound strands in a double helix. The double stranding of DNA has several benefits. It is more

structurally and thermodynamically stable, preventing a sequence from binding to itself, and

resisting physical damage. Double stranding also facilitates the copying operation that is

necessary when the host cell divides. DNA sequences of complex organisms are extremely

large; the human genome, for example, contains 3.2 billion base pairs, organized into 23 pairs

of discrete DNA molecules, which are called chromosomes.

Certain sections of DNA correspond to genes. Specific DNA subsequences indicate the start

and stop positions of a gene within a genome. For a gene to physically influence the organism

and carry out its function, it must be converted into a functional molecule. This is achieved

through a two-step process. First, the section of DNA is “read” and transcribed into a single-

stranded piece of DNA-like material called RNA. This in turn is translated by a structure called

a ribosome into a functional molecule called a protein. Proteins are also polymers but are

made up of amino acids molecules, of which there are 20 types. Each amino acid has a 3 letter

DNA/RNA encoding. After the protein amino acid chain is formed, it folds into a particular

3D shape that influences the function of the protein. Proteins are tiny molecular machines,

performing a specific function within the organism. They can be simple, just having a shape

1Prokaryotes, or single-celled organisms such as bacteria, also have DNA, though it may not necessarily be
located in a nucleus. Viruses often have only RNA. Many scientists argue that viruses are not even “alive” because
they cannot self-replicate without invading other organisms.
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that allows them to bind to other molecules, or they can be large, multi-protein complexes,

such as those that act as valves letting materials in or out of cells.

A good example in humans is found in a subsection of the 16th chromosome. The gene

found here encodes the sequence for the α-subunit of the hemoglobin protein — the complex

responsible for carrying oxygen in our red blood cells, forming the basis of our circulatory

system.

This process of transcription/translation/function is known as the central dogma of molecular

biology [46] and is the fundamental basis of life on Earth. Although many of these processes,

including the structure and function of DNA, were discovered more than 40 years ago, we still

do not have a full understanding of biological dynamics, which are extremely complex.

Measuring, reading, and understanding the biological sequences that encode these com-

plex dynamics is crucial to advancing our understanding of biology, genetics, and evolution.

The potential benefits of understanding DNA and proteins for human well-being cannot be

understated. With this knowledge, viruses and other pathogens can be identified, tracked,

and combatted much more quickly and effectively, and their evolutionary origin pinpointed.

Cancer-causing mutations can be understood and potentially treated on an individual basis.

Medical treatments may be tailored to a person’s specific genetic makeup, which we will

explore in more detail in the following sections. First, however, we will see how new tech-

nology has enabled fast and cost-effective sequencing (reading) of the full genomes of living

organisms.

1.2 Reading Biological Sequences

Genome sequencing is a process by which the individual base pairs of DNA are digitized,

revealing the exact A, C, T, G sequence. Early technologies to achieve this were developed

more than 40 years ago, the most popular method being “Sanger” sequencing [109], created

by Sanger et al. in 1977. This method sequences a small piece of DNA by generating many

copies of the DNA of various lengths and terminating them with a fluorescent nucleotide.

By detecting this special nucleotide with a laser and light sensor, and knowing the length of

the copy, this method can accurately determine the base pairs in the original piece of DNA.

However, the Sanger method is quite slow, requiring many separate repeated reactions to read

only one base at a time.

Modern methods, often collectively referred to as Next-Generation Sequencing (NGS)2, in-

crease sequencing throughput (i.e., base pairs sequenced per second) by massively paralleliz-

ing the whole process. Generally, modern sequencing machines operate by cutting whole-

genome DNA into small fragments and reading them using electrochemical processes, similar

to Sanger sequencing. The crucial difference, however, is that NGS machines can sequence mil-

2Also referred to as High-Throughput Sequencing (HTS)
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lions of these fragments in parallel, leading to large increases in throughput and substantially

reduced overall sequencing costs.

We will focus our discussion on shotgun sequencing and sequencing-by-synthesis (SBS)

techniques, as they are the most common NGS methods and have produces most of the

datasets used in this thesis. In particular, the methods described here are used in sequencing

machines manufactured by Illumina, Inc. [9], one of the leading developers of sequencing

technologies.

The sequencing process begins by taking raw DNA from an organism and using a wet lab

chemical process to chop it into small, single-stranded fragments (recall that normal DNA is

double-stranded). Fragments are then sequenced individually. Sequencing of small fragments

like this is often referred to as shotgun sequencing — the full sequence is fragmented randomly

like a shotgun blast that contains many small projectiles.

Fragments are sequenced using a process called sequencing-by-synthesis (SBS). First, special

adapter molecules are added to the ends of the fragments. This allows them to bind to the

surface of a flow cell. Then, a process called bridge amplification (or clonal amplification)

duplicates (clones) fragments attached to the flow cell many times over so that tight clusters of

many duplicates form for each fragment. Sequencing then proceeds by building a complement

strand on each single-stranded fragment, one base at a time.

Bases are added to the complementary strands using special terminator molecules, of which

there are four types, one for each nucleotide (A, T, C, G). Sequencing proceeds in cycles, where

one base is added to the complement strand each cycle in the form of a terminator, with the

type (A, T, C, or G) determined by the current base of the template fragment. The terminator

has two functions. First, it contains a base-unique fluorescent marker that is detected by a

camera, allowing the machine to determine which base was added to which strand in this

cycle — the key to “reading” the sequence. Second, the terminator molecule prevents others

from binding below it, so as not to add more than one base per cycle, which would confuse

the camera. After a cycle completes, the terminators are chemically cleaved, leaving the new

base on the complement strand, ready for the next cycle. This continues for a given number

of cycles, fixing the length of the output sequences. Accuracy of this process degrades with

length, so output sequences are typically 100-150 bases long. The throughput, however, is

extremely high because millions of fragments are sequenced simultaneously with this process.

Software on the machine performs base calling, translating the fluorescent signals into a

digitized sequence, called a read, and estimating a quality score for each base in the read.

Quality scores Q are defined as Q =−10log10(e) where e is an estimated probability that the

base was called incorrectly. A high score, therefore, indicates a smaller probability of error. For

example, a score of 20 means an error of 1 in 100, an accuracy of 99%. The machine may be

unsure which base a given signal should translate to. In this case, “N” is used to refer to the

ambiguous base.
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Often, a variation of this process is used, called Paired-end Sequencing. Paired-end sequencing

is the same up to the amplification stage. However, in this case, each fragment is anchored

to the flow cell at both ends of the strand. Then, the complementary strand is built and

sequenced from one end, and then the other end, producing two reads (a read pair) for each

fragment. Depending on the length of the original fragment, the paired reads may or may not

overlap. The degree of overlap is called the insert size and is measured in base pairs. Paired-

end sequencing is advantageous because it can help to produce a higher quality reassembled

genome.

The output of either single or paired-end sequencing is then a large set of digitized snippets

corresponding to the original DNA fragments. Again, these snippets are referred to as reads. In

addition to being in an indeterminate order, sequenced bases are also read imperfectly, hence

the reads have a relatively large number of errors (0.1-1% [88]). Reassembling these reads into

full sequences and analyzing this raw data, therefore, requires algorithms and computation.

1.3 Bioinformatics

The field of bioinformatics is broadly concerned with the algorithms and processes underlying

this reassembling of reads, as well as the myriad downstream applications of the processed

data.

There is a strong belief that genomic sequencing and bioinformatics will enable powerful

new medical treatments that are tailored to individuals’ genetic makeup. Genetics affects

our health, both directly and indirectly. We might have the misfortune to inherit a genetic

mutation that causes disease directly. The hemoglobinβ-subunit, for example, can be afflicted

by a single DNA nucleotide mutation3 that causes the hemoglobin protein to polymerize under

certain conditions, forming structures that deform red blood cells, often into sickle-like shapes

— hence the name of the disease, sickle cell anemia. Random genetic mutations may also

cause a cell to grow and divide uncontrollably, causing tumors or cancer. Typically, multiple

mutations are required to cause cancer, compromising both cell repair mechanisms and

self-destruct mechanisms. Bioinformatics can aid in our understanding of the root causes of

cancers or genetic diseases, and do so at an individual patient level.

Other times, our genetics affects our health more indirectly. For example, individuals and

populations differ genetically in how fast they metabolize drugs [35]. Some people may require

higher doses for a drug to take effect, even levels that may be harmful to others. A example is

the anticoagulant drug warfarin, which has highly variable patient dose responses, due in part

to genetic variations [120]. Genome sequencing is becoming an important tool in integrating

genetic concerns into practical therapies [91]. Bioinformatics is a crucial component of this

rapidly expanding field of personalized medicine or precision medicine, where a person’s

unique genetic makeup is used to decide upon and tailor treatments.

3Usually referred to as a Single Nucleotide Polymorphism or SNP
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Unknown pathogens can also be sequenced and identified quickly by comparing them to

known viruses and bacteria using bioinformatics software. By analyzing differences in the

sequences, researchers can also understand the evolutionary path of pathogens and pinpoint

where they arose, which may help in developing effective treatments. For example, during

the SARS (Severe Acute Respiratory Syndrome, caused by a type of coronavirus) outbreak in

2002, researchers were able to sequence the entire viral genome and determine that it was not

closely related to any known groups of similar viruses while providing crucial information to

aid in diagnosis and the development of antiviral treatments [86].

Bioinformatics can also help us understand evolutionary relationships between species. Pro-

tein sequences can be seen as proxies of genes — the units of evolutionary inheritance. Finding

similar proteins in different species can help identify evolutionary relationships among differ-

ent organisms and further our understanding of how life evolved on earth. Moreover, since

similar proteins often perform the same biological function, protein similarity can also help

categorize newly sequenced proteins as well. As a simple example, one can recognize that

humans, chimpanzees, and gorillas are all closely related via their similar hemoglobin protein

sequences, which evolved previously in a common ancestor. Similar methods are used in

identifying and classifying pathogens like the SARS virus, which was eventually traced to its

likely origin in 2017 — a species of bats in China [69].

Personalized health and proteomics are two important examples of the many possible ap-

plications of genomic sequence data. They are most relevant to this thesis as they provide

the application domain and test cases for the computer science that is the focus of this work.

Although the two applications make quite different uses of sequence data, they share a need

common to many bioinformatics applications: complex, expensive computations across large

quantities of data.

“Large quantities” of data may be an understatement, as sequencing technology has been

advancing quickly in recent years. Next-Generation Sequencing (NGS) technologies can

sequence millions of DNA fragments simultaneously, vastly increasing sequencing throughput

while greatly reducing costs. The Human Genome Project (1990-2003) cost over $3 billion

and took over ten years to sequence a human genome [8, 14]. Today, NGS technologies can

sequence entire genomes in hours, at costs in the thousands of dollars. Newer iterations of the

technology have projected sequencing costs in the hundreds of dollars [17]. Each machine

can output petabytes of data per year, with the global amount of biological data set to surpass

that of astronomy, YouTube, and Twitter [118]. This growth has placed immense pressure on

the bioinformatics field — software tools must continually process more and more data.

1.3.1 Dealing with the Data Deluge

This pressure on bioinformatics software tools is compounded by the fact that sequencing

technology and data production rates have increased faster than Moore’s Law of scaling for

microprocessors. Moore’s Law, observed by Gordon Moore in 1965 [92], states that the number
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of transistors in a microprocessor doubles every two years, allowing microprocessors to

improve their capabilities quickly, year after year. Moreover, in 1974, Dennard et al. predicted

that the power used by a transistor would remain proportional to its size, a trend referred to as

Dennard Scaling [47]. These two scaling laws allowed chipmakers to continually increase the

clock frequency and the sophistication of their processors without consuming more power,

leading to each computer generation to be significantly more powerful than the previous in

terms of CPU operations per second. Unfortunately, Dennard scaling ended around 2005,

mostly due to leakage current in extremely small transistors. They can be made smaller, but

they will require the same amount of power. Because of this, microprocessor manufacturers

can no longer increase clock frequency as they did before, and they cannot even activate all

transistors on a device simultaneously. As a result, bioinformatics (and other software tools)

cannot rely on increasing single-core processor performance to meet their computational

demands.

New approaches have emerged to continue improving microprocessor performance. Manu-

facturers have started using these “extra” transistors to construct additional CPU cores. Typical

modern CPU devices now consist of multiple CPU cores on a single chip, even up to tens

of cores on high-end processors. Exploiting parallelism is one of the primary ways to make

programs run faster. Solving large computational problems today requires programmers to

develop software that can run in parallel on CPUs, as well as distribute work across separate

computers. This has led to the development of computing clusters and data centers — large

collections of commodity computers in central locations, tightly connected by high-speed

networks. Software running on these systems must be scalable, that is, it must increase its

performance proportionally for each additional computer it runs on. In particular, scaling

software to run on distributed computers in a cluster or data center is referred to as horizontal

scaling or scaling out.

Typical bioinformatics applications and formats are not ready for the era of sequence “big

data” [94, 110], nor are they set to take advantage of the parallelism offered by modern proces-

sors and clusters. Many bioinformatics data file formats and application software packages

came from the earlier age of sequencing, which produced far less data at a slower rate. In this

world, single-threaded or brute-force methods were viable. Today with NGS, we routinely see

analysis times measured in hours or even days.

Typical processing “pipelines” in bioinformatics are often just serially executed applications,

each reading and writing large amounts of intermediate data to and from mass storage. The

disparate file formats that these disparate applications use are monolithic and row-oriented,

and thus unwieldy and unsuitable for scale-out processing. Some newer bioinformatics

programs are multi-threaded, but many still only run on a single thread, and the vast majority

are not engineered to scale on clusters. Bioinformatics, and software in general, can also be

difficult to get right — there are many ways a program can suffer performance degradations.

When a program is slow and inefficient, it is often challenging to discover the source of

inefficiencies, and still more difficult to fix the problems.
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The bioinformatics field must prioritize performance to keep pace with the rapid advance of

sequencer technology. Given the current trends in computing systems, this means reorienting

around performance through parallelism and horizontal scaling.

This thesis states that many important bioinformatics processes can be effectively parallelized,

optimized, and efficiently scaled using ubiquitous commodity server clusters. First, we show

that many bioinformatics applications used for preprocessing raw reads in whole-genome

sequencing can be unified under a common, parallel, and scalable framework called Persona.

Persona relies on the Aggregate Genomic Data format, a new file format that unifies bioin-

formatics data and facilitates scale-out processing. Persona can accelerate existing solutions

on multicore servers, and it scales linearly on a commodity cluster. Second, we introduce a

technique called detailed heap profiling for understanding how efficiently a program uses

the memory heap4, after finding that a particular bioinformatics program was slow due to

inefficient heap usage patterns. A tool, Memoro, uses new techniques to expose opportunities

for heap usage optimization in programs. Finally, we show that the typical brute-force or

single-threaded methods for finding similar proteins can be accelerated via a new clustering

approach amenable to parallelization on a commodity cluster.

1.4 Challenges

This section provides some additional detail on the challenges in bioinformatics addressed by

this thesis and explains the context for the statement and contributions of this work.

1.4.1 WGS Preprocessing

NGS technologies have enabled the sequencing of entire genomes in hours. As mentioned

earlier, NGS sequencers accomplish this by massively parallelizing the sequencing process,

reading millions of DNA fragments at the same time.

Figure 1.1 shows an overview of an NGS sequencing and data processing, starting from raw

input DNA. First, a DNA sample is cut into many small fragments in a wet lab and duplicated

many times over. This mixture of fragments then fed into a sequencing machine, which

produces fragment reads as described in Section 1.2. Each read is a string of A, T, C, G, or N (an

ambiguous base). Quality scores generally decrease towards the end of a read, as the process

accuracy degrades.

An NGS sequencer will output millions to billions of reads for a sample genome, all in an

indeterminate order. Due to this lack of ordering, reads must be reassembled into a complete,

coherent genome before further analysis can take place. This preprocessing generally involves

several steps, also shown in Figure 1.1.

4The “heap” refers to dynamically allocated memory that a software program uses to perform its function.
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Figure 1.1 – Short-read whole genome sequencing using NGS technology.

Alignment

The initial assembly can be done via reference-guided alignment, where individual reads are

aligned against a previously constructed reference genome, or via de novo assembly, where the

reads are assembled without a reference. This thesis will focus on reference-guided alignment,

which is more common in Whole Genome Sequencing (WGS) workflows. Since genomes

of the same species are typically more than 99% the same, an algorithm can usually find a

location in the reference for each read, at which the read aligns with few mismatches, inserts,

or deletes. The earlier duplication of the input DNA serves to ensure that each location in

the reference is covered by many reads. Alignment often involves computationally expensive
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string matching comparisons, which can be done many times per read, making it an expensive

step in genomic analysis.

The most common solutions for alignment use a two-step process to align reads to the refer-

ence. First, an index structure is used to efficiently map small portions of the read to exact

matches in the reference, a process called seeding. Then, an extension process is applied to

each seed, which uses an exact string matching algorithm to evaluate how well the remainder

of the read aligns at each seed location. The best aligned extended seed is taken as the final

result. Commonly used software includes BWA-MEM [78], which uses a suffix tree index, and

SNAP [132], which uses a hash table index, while both use a similar extension method. Both of

these tools are studied in this thesis.

Sorting

Aligned reads are sorted, usually by order of their aligned location in the reference. This step

facilitates efficient algorithms and implementations for downstream analysis steps. Sorting is

not computationally intense, but often requires “external” implementations that merge sorted

subsets from disk because the entire dataset does not fit in memory. This makes sorting I/O

intensive. Datasets are also often indexed after sorting, requiring a second traversal.

Post-Processing

Finally, many alignment post-processing steps may be performed. One example is duplicate

marking, where a read is removed if there is another identical read aligned to the same location.

Duplicate reads are artifacts of the DNA duplication process done before sequencing. Another

post-processing step is Base Quality Score Recalibration (BQSR), which adjusts read quality

scores to account for systematic technical errors due to sequencing chemistry or sequencer

manufacturing flaws. These applications are typically not computationally intense, but they

do traverse the entire dataset and thus generate a significant amount of disk I/O.

The aligned, sorted, and filtered dataset is then ready for further analyses. Typically, this

involves variant calling, another expensive process that attempts to identify mutations or

variations between the reference and the sample, or against other samples as well.

Challenges

There are several challenges to parallelizing and scaling out WGS preprocessing, which current

applications, formats, and systems fail to address. First, there is a large number of different

applications used for each step, most of which are standalone and perform only a single

computation. For short read alignment alone, one source lists over 65 different tools [23].

Sub-computations are normally run one after the other, precluding overlapped execution of

independent computations and forcing out-of-core and out-of-memory data transfer through
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disk I/O. Although NGS technologies can produce massive datasets, bioinformatics appli-

cations are typically designed to be run in isolation on a single machine, possibly making

use of multiple threads running on multiple cores, but rarely being designed with scale-out,

distributed computation in mind. Making these applications scale requires completely re-

designing them.

These standard bioinformatics formats are also sources of inefficiency. Raw reads, aligned

reads, variant calls, sorted indexes, and other metadata all have different file formats, all

of which are text-based, row-oriented formats. Some of these formats also duplicate data,

such as the Sequence Alignment Map (SAM) format that unnecessarily includes all original

input reads. Row-orientation requires reading an entire file even if only a subset of the data is

required. Textual formats increase the amount of I/O (though some formats have analogous

block compressed versions). However, the primary drawback of these formats is that they are

monolithic and designed to be processed by a single application on one machine. They were

created in an era before the deluge of NGS data and were not designed to support distributed

computation.

1.4.2 Heap Usage Efficiency

Software is complex, and programmers need tools to understand and improve it. Modern soft-

ware uses the memory heap heavily. Even small applications can make millions of allocations

at many different locations in the code. Inefficient use of this memory, however, can lead to

increased runtimes and increased peak memory usage.

Bioinformatics software is no exception to this. In fact, in our experience, we have found

certain bioinformatics programs suffer from extremely inefficient heap usage. In one case, a

widely used variant calling program spent nearly 30% of its runtime allocating and deallocating

memory. As systems like this grow larger and more complex, understanding how to fix these

problems becomes challenging. Libraries, frameworks, and packages hide internal allocations

inside abstraction boundaries, and as a result, it is easy for inefficient heap usage patterns and

performance-adverse allocations to go unnoticed. Even when a developer is looking for these

issues, they can be hard to find.

Finding problems like these in bioinformatics software is crucial to improving its performance

and capability of dealing with the ever-increasing amount of sequencing data. Most existing

tools for heap profiling provide only a simple view of heap usage. They typically report

bytes allocated/deallocated at each allocation location in the code, and record aggregated

allocations up a dynamic call graph. This data is useful, but other methods may offer deeper

insight into program behavior. It is valuable to understand exactly how efficiently a program

uses its heap memory, for example:

• Was a given block of heap memory read or written (i.e. was this allocation necessary?)
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• How much of an allocated memory block was accessed? Is it possible for the program to

use a smaller block and use less memory?

• Was a memory block write-only or read-only? Write-only memory may be useless, while

read-only heap memory may be indicative of a bug (reading uninitialized memory).

• Was the memory block accessed by multiple threads? This can aid in debugging shared

memory bugs.

There are also heap usage patterns that are indicative of performance issues. Freeing an object

long after its final use unnecessarily increases peak memory use. Conversely, allocating an ob-

ject long before its first use has a similar effect. Allocating insufficiently large memory regions

and growing them leads to unnecessary copying, which degrades performance. Similarly,

repeatedly allocating and deallocating temporary memory can also affect performance. These

patterns and heap usage inefficiencies can slow programs but are difficult or impossible to

detect with current heap profilers, which do not record program accesses to heap memories.

Finding inefficient usage patterns and eliminating their root causes can improve memory use

and efficiency, leading to performance gains of up to 10%, and allowing bioinformatics and

other programs to make better use of commodity hardware.

1.4.3 Protein Similarity Search

Finding similar proteins is another important problem in bioinformatics. Since protein

sequences are transcribed from genes, similarities between proteins can be used as proxies

to infer similarities between genes. These similarities can be used to detect homologous

sequences or genes, which are descended from a common ancestral sequence. Homologs allow

the transfer of knowledge from well-studied genes to newly sequenced ones since homologs

often continue to perform the same biological function, even after accumulating differences

during evolution. Figure 1.2 shows an example of this in the similarity between human and

bonobo hemoglobin α-subunits. Most of today’s molecular-level biological knowledge comes

from studying a handful of model organisms, and then extrapolating to other organisms

through homology detection. Sequence homology techniques are among the 100 most-cited

papers of all time [125]. Finding similar or homologous protein sequences is a powerful way

to understand newly sequenced data, or finding evolutionary relations between different

organisms.

Human (Homo Sapiens)

Bonobo (Pan Paniscus)

Figure 1.2 – Different proteins, same function – Alignment showing protein similarity be-
tween hemoglobin α-subunits from human and bonobo proteins. Extracted from the OMA
Browser [28]

12



1.5. Thesis Statement

Proteins can be sequenced by finding coding regions in sequenced and preprocessed DNA

reads. Proteins can also be sequenced directly using RNA-Seq [126], which uses NGS tech-

niques to directly sequence transcribed RNA molecules in a sample. NGS techniques though

still require a similar form of preprocessing as WGS, including alignment.

Current methods of finding similar proteins are computationally expensive. For a database of

proteins, each is compared against all others in an exhaustive, “all-against-all” comparison,

which is O(n2) in complexity. Sequences are compared using Smith-Waterman [115], a simi-

larly expensive (O(n2)) optimal string matching algorithm. This simple approach can find all

similar pairs of proteins, however, it scales poorly with the number of sequences.

Large databases of proteins produced in recent years require new methods for similar pair

detection. Even the Quest for Orthologs consortium [11], a collection of cross-species ho-

mology database projects, states “[C]omputing orthologs between all complete proteomes has

recently gone from typically a matter of CPU weeks to hundreds of CPU years, and new, faster

algorithms and methods are called for” [116]. New solutions must be parallel and scalable

to take advantage of clusters and data centers, and will ideally be less than O(n2) in their

computational complexity, which will allow them to scale to much larger datasets that will

certainly be available in the future.

1.5 Thesis Statement

Bioinformatics must keep pace with the data production of modern sequencing technology, or

innovation and further scientific and medical progress may be stifled. To provide an effective

and practical means to address this problem, this thesis shows that bioinformatics computing

should embrace existing, cost-effective computing hardware, such as commodity servers and,

more importantly, large-scale compute clusters.

The statement of this thesis is:

Important computational problems in bioinformatics can be effectively parallelized

and efficiently scaled out using commodity hardware clusters.

This thesis is supported by evidence from three major research projects, which address the

challenges outlined in the previous section.

First, the crucial WGS preprocessing steps of alignment, sorting, and duplicate marking are

addressed using Persona, a dataflow-based, distributed framework for commodity clusters,

and the Aggregate Genomic Data (AGD) file format. AGD provides a uniform representation for

bioinformatics data in a single, chunked, column-oriented store. This new format is necessary

to achieve the I/O bandwidth and functionality required by distributed computation. The

Persona framework unifies disparate existing bioinformatics tools in a single parallel execution

environment that can scale alignment linearly across a commodity cluster. Persona shows that
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decoupling I/O and computation with small tasks can achieve a system that scales efficiently.

Our evaluation shows that Persona accelerates several different applications (BWA-MEM

alignment, sorting, duplicate marking) on commodity servers, and can scale the SNAP and

BWA-MEM alignment applications linearly on a 32 node commodity cluster.

Second, we introduce a new tool that aids in the parallelization and optimization of bioin-

formatics software (and software in general): Memoro, a detailed heap profiler. Using the

example of a bioinformatics program, we show that understanding how efficiently a program

uses its heap can identify opportunities for performance optimization. This is especially

relevant in the bioinformatics space, as solutions and systems are often built by bioinformati-

cians who are not software engineering experts. Detailed heap profiling is a technique that

uses a compiler to place instrumentation at every memory access in a program, along with

a runtime system to check whether accesses were inside heap memory. All program heap

accesses are recorded, along with detailed statistics, and analyzed using a method that we

show can effectively identify where a program is inefficiently using the heap. An evaluation of

Memoro shows that the proposed method can highlight issues leading to performance gains

of 10%.

Finally, we propose a new solution to the important problem of finding similar protein se-

quences. This proposal involves building clusters of proteins, where a cluster is defined by

a representative sequence that is similar to all other cluster members. We present a new

clustering algorithm called ClusterMerge that performs precise clustering, a type of clustering

that ensures that each similar pair of proteins is placed together in at least one cluster. Similar

pairs are then extracted from the clusters. ClusterMerge leverages transitivity inherent in the

data to avoid comparing each sequence against all others while maintaining near-perfect

accuracy (i.e. it can recover nearly as many similar pairs as a ground-truth brute-force ap-

proach). Reformulating the problem as a bottom-up merge of cluster sets, we show that the

ClusterMerge algorithm exposes parallelism and build a parallel and scalable system to run it

on commodity clusters. Our evaluation indicates that ClusterMerge can scale with up to 90%

efficiency, and finds similar pairs with half as many operations as brute-force comparison.

In summary, this thesis makes the following contributions:

• Persona, a parallel distributed framework that unites various bioinformatics applications

in a single execution environment that can scale on commodity clusters.

– The AGD file format, which addresses shortcomings in existing monolithic bioinfor-

matics formats. AGD minimizes necessary I/O, partitions datasets for distributed

execution, and can support any existing bioinformatics data.

– Distributed dataflow execution. Persona is built upon TensorFlow, which uses

coarse-grain dataflow that limits framework overheads, which we augment with

fine-grain task scheduling to efficiently use all computing resources.
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– I/O and compute task decoupling. Persona uses queueing to separate dataflow

graphs and thereby decouple I/O and compute stages, allowing for variable granu-

larity, leading to maximization of I/O bandwidth and even compute load balancing.

– Linear scaling — Persona can scale SNAP and BWA-MEM alignment applications

linearly over a 32-node commodity cluster. Persona also accelerates several other

key WGS operations, sorting and duplicate marking.

• Detailed heap profiling: techniques and tools to help programmers understand how

efficiently their programs use the heap, helping to optimize bioinformatics programs

for use on commodity hardware.

– A combined interception-instrumentation technique for tracking heap alloca-

tions, deallocations, and accesses to heap memory with an acceptable level of

performance degradation.

– A set of measures or “scores” that quantify how efficiently a program uses the heap.

– A methodology for aggregating allocations by type, providing greater insight into

allocation behavior than possible before.

– Memoro, a system employing these techniques in 1) a compiler module and run-

time for interception and instrumentation, and 2) a visualization graphical user

interface (GUI) that aggregates data and scores in several forms, helping developers

quickly diagnose problems.

– A case study demonstrating that Memoro identifies impactful performance prob-

lems and that Memoro scores provide meaningful guidance.

• ClusterMerge, an algorithm and system for protein similarity search via precise clustering

that is both accurate and highly parallel and scalable on commodity clusters.

– A formalization of precise clustering using similarity and transitivity.

– An algorithm, ClusterMerge, that reformulates the clustering process to expose

parallelism.

– An application of this algorithm to protein clustering for similar sequence dis-

covery. Our system scales with up to 90% efficiency across a 32-node commodity

cluster while maintaining 99.8% accuracy in similar pairs found.

1.6 Thesis Organization

This thesis is organized in roughly the same manner as the contributions have been presented.

Chapter 2 presents the Persona framework, its goals, design, evaluation, and a discussion.

Chapter 3 discusses detailed heap profiling, its techniques, design of both the compiler module,

runtime, and visualizer, as well as the case study on real-world programs. Chapter 4 presents

ClusterMerge, the algorithm, application to proteins, and evaluation. Chapter 5 provides some

additional discussion and concludes the thesis.
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1.7 Bibliographic Notes

The Persona project was joint work previously published with a colleague, Sam Whitlock, in the

paper Persona: A High-Performance Bioinformatics Framework [41]. Sam contributed the AGD

file format and the scale-out architecture, while I contributed the core dataflow architecture,

integration of existing bioinformatics applications, and micro-architectural analyses.
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Next-Generation Sequencing (NGS) machines produce vastly more data than previous tech-

nology such as Sanger sequencing. Because their output is unusable in its raw form, bioinfor-

matics applications that use genomic sequence data rely on a few crucial computational steps

to preprocess this raw data. These include aligning sequenced DNA fragments (reads) to a

reference genome (alignment), sorting aligned reads, and various other steps. As sequencing

becomes part of advanced clinical techniques, low latency of this processing pipeline becomes

critical. Diagnoses and treatments must be decided on quickly, but many bioinformatics

pipelines can take hours or days to complete.

The best way to solve this problem is to scale these computations efficiently across a com-

modity cluster. However, there are several challenges to overcome. Many separate software

tools exist for each processing step in a bioinformatics pipeline, and while some are parallel

on a single machine, very few are designed to scale across a cluster. Pipelines are typically

constructed in an ad-hoc manner, sacrificing performance for flexibility. Existing file formats

used to store data also tend to be monolithic, which makes partitioning required for parallel

distributed execution expensive and non-trivial, while the formats’ row-orientation precludes

selective field access. Sequencer output and processing also tend to use different file formats,

which duplicates data, consuming even more disk space and memory resources.

This chapter discusses our solution to these challenges: Persona, a framework that integrates

and unifies existing bioinformatics applications in a common execution environment that

can scale out efficiently. Persona is supported by the Aggregate Genomic Data (AGD) for-

mat, a column-oriented, partitioned design that unifies bioinformatics data under a single

representation that explicitly supports distributed computation.

First, this chapter will review background material relevant to Persona and AGD, including

current bioinformatics solutions for preprocessing and commonly used file formats. Next, the

AGD format is introduced, followed by a discussion of the goals, design, and implementation

of Persona. Finally, our evaluation of Persona and AGD shows that several WGS preprocessing
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steps can be accelerated using Persona, particularly alignment, which can be scaled linearly

on a cluster of 32 servers.

Bibliographic Note

This chapter is based on the paper Persona: A High-Performance Bioinformatics Framework,

previously published and presented at the USENIX Annual Technical Conference in 2017 [41].

2.1 Background

The basics of short-read Whole Genome Sequencing (WGS) was discussed in Section 1.2. In

this section, we provide a more detailed overview of the computations required to analyze

the raw data produced by NGS machines, along with a discussion of the file formats that are

commonly used to store raw and processed data.

2.1.1 WGS Preprocessing

Recall that modern NGS sequencing machines produce hundreds of millions to billions of

reads in an indeterminate order. Each read is 100-150 base pairs long and could map to poten-

tially any location in the sample genome, which is 3.2 billion base pairs long for humans. Reads

are also produced with non-negligible error rates and vary in their quality. Computational

preprocessing is therefore required to reassemble these raw reads into a complete, coherent

genome upon which further analyses can be performed. Preprocessing is a critical step in most

bioinformatics pipelines because few analyses can take place before a sequenced genome

is reconstructed from the output of the sequencer. In particular, the important technique

of variant calling, which looks for mutations or polymorphisms among DNA samples or a

reference genome, requires this step. As we will see, current preprocessing solutions can be

very time-consuming — parallelizing and scaling out preprocessing is therefore crucial to

accelerating many bioinformatics pipelines.

There are generally two ways to reassemble a genome from raw reads. First, de novo assembly

attempts to order the reads by comparing them against each other. Greedy de novo assemblers

operate by aligning reads to one another, clustering highly overlapping reads, assembling

these into larger contiguous regions, and repeating. An early example is CAP [70]. Other de

novo assemblers use graph techniques on read k-mers1 to reach a more optimal ordering of

reads. Examples include SPAdes [33] and Velvet [134]. More popular, however, is reference-

guided assembly, where reads are aligned to a preexisting reference genome. This process

of alignment is one of the most computationally intense and time-consuming steps of WGS

preprocessing, so we will explore it in more depth.

1A k-mer is a subsequence of length k. For example, ATGG has two 3-mers: TGG and ATG.
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Alignment

Although reads from a sample can differ slightly from a reference genome, it is usually possible

to find a very closely matching site for a given read because genomes of the same species

are highly similar. Humans, for example, vary by up to 0.6% [45], implying that our genomes

are typically over 99.4% identical. The process of alignment leverages this fact to locate each

read in the sequencer output to its most likely position in the reference genome, in order to

reassemble the reads into a complete genome. Other literature refers to alignment as mapping

or uses the more general term assembly.

Due to the duplication that takes place in the sequencing process, each base in the genome

will have multiple reads “covering” it. The average degree of coverage or depth is often used as

a metric of sequencing quality. For example, if the coverage of a dataset is 50×, this means

that each base in the sample has on average has 50 reads that include it. Higher coverage is

critical to reducing overall sequencing errors because a larger consensus of reads covering a

given base reduces the chance the base will be incorrectly determined. If one read contains

an incorrect base, then statistically a large fraction of the other reads covering that base will

have the correct base, which allows correct identification based on simple consensus or other

statistical methods.

Alignment is a challenging problem. Each short read of one hundred or so base pairs must

be mapped to its best matching location in a several billion character reference genome (in

the case of human genomes, 3.2 billion base pairs — other species can be much smaller, e.g.

bacteria at 1-10 million base pairs, or much larger, e.g. the axolotl at 32 billion base pairs).

Finding the best location for a read using a globally optimal technique such as Needleman-

Wunsch alignment [95] is O(n2) in time and space, making it far too expensive in practice.

Practical solutions employ heuristics to find the likely best locations for a read, and then

verify and rank these potential mappings using an exact local alignment (typically Smith-

Waterman [115]).

There are two primary heuristic techniques that aligners use to find likely match locations

for a read. Both involve building an index of the reference genome, which can then be used

to quickly find all locations where a particular k-mer is present in the reference. The general

algorithm proceeds by iterating through the k-mers present in the read, using the index to

find out where these k-mers exist in the reference. The read is then locally aligned at each

potential location identified by the heuristic using Smith-Waterman (S-W) [115] or similar,

which generates an optimal alignment score that takes into account gaps, inserts and deletes.

Inserts and deletes capture situations where the sample genome is missing a base or has

an additional base, relative to the reference, going beyond the basic edit distance that only

models mismatching bases. Gaps model multi-base insertions or deletions. Penalties to the

alignment score introduced by inserts, deletes, and gaps are parameters that can be changed

by the user.
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Alignment scores output by S-W are used to rank potential locations, and the read is mapped

to the best location found. For performance, algorithms will often terminate once they find

a “good enough” match. Reads can also go unmapped if the aligner finds no well-matching

location. This technique is commonly called seed and extend because a potential alignment is

seeded using the heuristic and then extended using local alignment.

The first heuristic technique commonly used builds an FM-index [54] of the reference. An FM-

index is a substring index based on the Burrows-Wheeler Transform [38], allowing the lookup

of substrings in sub-linear time. The Burrows-Wheeler Aligner (BWA) [79] is a popular tool

that uses this approach. Other examples include Bowtie [75], Bowtie2 [74], and SOAP2 [82].

The second common heuristic used in short read aligners is to build an index using hashing.

The k-mers in the reference are hashed and inserted into a table. Read k-mers can then be

looked up in constant time to find potential alignment locations (seeds) in the reference.

Hash-based seeding can be faster, however, it uses significantly more memory. Examples of

hash-based short read aligners include SNAP [132] and mrFAST [131].

As they use heuristics, these aligners do not always find optimal or even the same alignments.

They also have many parameters that can be adjusted, for example, to find better mappings

for different read lengths or trade accuracy for execution speed. However, most aligners share

in common an inability to quickly process massive datasets. While seed generation tends

to be fairly efficient in most tools, the extension phase that uses local alignment (an O(n2)

algorithm) is very expensive and time-consuming. We have found, for example, that SNAP

can spend up to 60% of its runtime doing local alignment extensions. With very large datasets,

these tools can take many hours to complete the alignment of a whole dataset, even when

running on a parallel machine, as many of these do.

Sorting and Post Processing

Reads are typically written to mass storage by existing tools as they are aligned. As a result, the

output file contains the aligned reads still in the unspecified order produced by the sequencer.

Many downstream processes are only efficient when operating on data ordered by aligned

location, so sorting is a crucial step in WGS preprocessing. Randomly accessing certain loca-

tions is often required as well, so sorted data is usually indexed afterward, requiring another

traversal. There are many common tools used to sort aligned reads, including samtools [81],

Sambamba [121], and Picard [3], which is part of the Genome Analysis Toolkit [6].

An important processing step is to filter alignments that are likely PCR duplicates, which

are caused by the duplication processes in the sequencing machine. Essentially, any two

reads of the same length aligned to the same location are considered duplicates and one is

removed. Some definitions of “duplicate” may also require that the read sequences themselves

be identical as well, depending on the specific tool or implementation. Duplicate marking

software includes GATK Picard [3], SamBlaster [53].
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Base Quality Score Recalibration (BQSR) is another process that cleans the data of artifacts

generated by the sequencing machine. These artifacts are caused by non-random errors in

equipment, such as manufacturing flaws or sequencing chemical reactions. BQSR uses an

empirically derived model to adjust quality scores to reflect these non-random errors.

File Formats

The many separate applications used in the WGS preprocessing steps use several different file

formats used to store data. Initially, new file formats were created by researchers as they were

needed. Some are quite old and were never intended to support highly parallel, distributed

processing of the data they store. For example, FASTA [103], which was first released in 1985, is

a plain text format used to store nucleotide or amino acid sequences. FASTA uses a delimiter

character (“>”) to denote metadata, which is followed by the sequence itself on the next line.

Often, lines are limited to 80 characters. This is so that the files were more readable on the

original development terminals that could only display 80 characters in larger font sizes.

FASTQ [44] is a direct evolution of FASTA, adding a field for quality scores encoded as ASCII

characters. FASTQ is the de facto standard for raw reads and is still the output format for most

sequencing machines. Paired-end sequencing produces two FASTQ files, one for each mate of

the pairs. For modern NGS machines, these files are tens to hundreds of gigabytes.

Aligned reads are typically stored using the Sequence Alignment Map (SAM) format [81].

SAM duplicates the data in FASTQ and includes numerous other fields specifying alignment

information. It is also text-based and row-oriented. WGS post-processing (e.g. sorting) tools

will typically read in a SAM file and produce a transformed copy. Most subsequent analyses of

WGS data also use SAM as input, usually generating another format as output. For example,

variant calling produces a Variant Call Format (VCF), another row-oriented text file similar

to SAM. The Browser Extensible Data (BED) format from the bedtools suite [106] specifies

genomic features as ranges along with other metadata.

Due to increasing dataset sizes, many formats now have compressed counterparts. FASTQ files

are often gzip-compressed to save space. BAM is an indexed, block-compressed counterpart

of SAM. CRAM [4] is a newer format that leverages reference-based compression, in which

reads are stored as their differences relative to a reference genome, leading to vastly reduce

storage but increased computation to extract reads.

WGS Preprocessing Solutions

Many existing systems for WGS preprocessing are built in an ad-hoc manner using shell scripts.

Different applications are invoked at each stage of the pipeline, depending on the particular

data or even the personal preference of a user. For example, alignment may be done with

BWA-MEM, sorting done with samtools, duplicates removed with samblaster, and variants

identified with GATK HaplotypeCaller. Many of these applications are open-source and rely
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on de facto standard file formats described above to interface between pipeline stages. While

flexible and supportive of innovation, this fundamentally limits their data transfers to text

data, at a rate determined by the OS pipe system. These transfers are not necessarily slow at

the OS level, however, the constant marshalling and unmarshalling of text data can impose

a considerable overhead. This method also provides no solution to transfer data to remote

servers over a network. Because applications are isolated, there is little to no opportunity for

cross-stage optimizations, such as keeping data in memory between stages.

The Genome Analysis Toolkit (GATK) [6] is a well-known framework for genomics processing.

GATK is written in Java and uses Spark [133] to distribute processing. However, GATK does not

include all necessary WGS preprocessing steps, notably lacking integration of an alignment

tool, a crucial step in WGS preprocessing. GATK also uses only de-facto standard file formats

and relies on an underlying distributed file system (HDFS [114]) if running on a cluster.

While GATK can supposedly run on a cluster using Spark, this feature still appears largely in

development. It is likely the vast majority of users still use it only on a single machine as part

of shell-scripted pipelines.

Another popular system is BCBio (Blue Collar Bio) [22], which allows users to describe their

pipeline in a simple configuration file, and then run across multiple servers. BCBio relies on

network file systems (NFS) to share large files between processes and performs fairly large-

granularity partitioning upfront. This limits data movement speeds to the NFS maximum,

which may not be sufficient, while the partitioning granularity may lead to load balancing

issues as not all partitions will have the same processing times. While BCBio is a step in the

right direction, at its core, it is still a pipeline of unmodified existing applications and does not

solve the fundamental problems.

We summarize these fundamental problems as follows:

• Existing file formats are monolithic and row-oriented, which

– prevents easy parallel access and distribution,

– precludes efficient use of read and write I/O bandwidth,

– prevents selective field access,

– is inflexible, requiring new standards or formats for new application data types

• Existing WGS applications

– are myriad and isolated, preventing intra-pipeline optimizations,

– rarely have any built-in support for scale-out execution,

– are not always parallel and do not always scale efficiently across cores.

The following sections describe our solutions to these problems. First, the Aggregate Genomic

Data (AGD) format solves the issues related to existing file formats. Persona, a parallel and
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scalable bioinformatics framework, then leverages AGD and existing application code to build

high-performance pipelines that can scale efficiently across commodity clusters.

2.2 Aggregate Genomic Data Format

The Aggregate Genomic Data (AGD)2 format [129] is a new file format for genomics data, and

has several primary design goals. First, AGD seeks to unify the many different bioinformatics

formats used in WGS into a single, common, extensible format that can accommodate all types

of data. Unification can simplify pipelines and applications by requiring only one code library

for I/O and parsing, as AGD can be used at all stages of a WGS pipeline. Format unification

can also eliminate data duplication, such as that in FASTQ and SAM files, and make for more

organized and consistent WGS data storage.

The second goal of AGD is to alleviate many of the performance drawbacks of current file

formats and facilitate high-throughput read and write I/O. As applications scale out to more

cores and servers, the underlying format must be able to sustain the I/O required by the

applications, both for input and output. The row orientation of existing formats results in

much more I/O than necessary when the application does not require access to all record

fields, which is often the case in bioinformatics processes. Row orientation forces I/O and

parsing of all data located between two records in the same column, particularly since many

fields are of variable length. This can lead to unnecessary I/O and cause a bottleneck for some

processes. Writing data back to storage also requires all intervening data between records to

be rewritten. AGD provides selective field access so that applications can access just the fields

that are required. On top of this, AGD uses data compression to reduce the disk space required

for datasets.

Finally, AGD has the goal of explicitly supporting scale-out processing. Existing formats

complicate scale-out processing for two reasons. First, they are monolithic, single files that

must be partitioned either in advance or at runtime, which complicates the system and adds

overhead. Second, their row-orientation and variable record size makes partitioning non-

trivial, as the entire file must be read to find record and partition boundaries. Commonly

used file compression would increase these overheads as well. These complications are

further compounded by the fact that partitioning must be done centrally on a single server

because the operation is sequential. The total system throughput would be limited to that of

a single network interface, crippling scalability. Each different format used would also need

different code written to perform the partitioning of its data. AGD is architected specifically to

circumvent these issues in a simple but effective manner.

As genomic datasets continue to grow larger, the use of compression is crucial. AGD aims to

support variable levels of compression as an additional objective. For example, after a dataset

2As explained in Section 1.7, AGD was primarily conceived of and developed by Sam Whitlock, with some
contributions from myself. It is included here because it is an essential and integral component of Persona.
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has been processed, the user may wish to put it in cold storage, i.e. cheap, durable storage that

has a high read/write cost. A compression algorithm with a high compression ratio would

be more suitable in this case. If a dataset is likely to need processing soon, a better solution

would be to use a cheaper (computationally) compression algorithm that trades compression

ratio for computing efficiency, so that data can be accessed more quickly. Ephemeral data

passed between processing steps might even be stored without compression.

Format Architecture

In most areas of its design, AGD trades complexity for performance. AGD does not have a

great number of features, however, this affords flexibility and performance. AGD also does

not assume any dependencies — it does not require a specific filesystem or platform, only the

ability to store binary objects.

At its core, AGD is a table of records. Each record is a variable-length byte array, with several

structured encodings defined. AGD is a strictly flat schema, in which each record contains all

fields, and it does not support array-like fields or nested records.

There are currently several encodings or types that AGD defines for genomic data. The first

is plain text data. This is simply an ASCII encoded character array, but can also be used to

store arbitrary data structures defined by the user. Persona uses this type to store quality score

strings and metadata strings for sequencer reads.

The second type is a special encoding for sequencer reads. Recall that reads are made up of an

alphabet of five characters: A, T, C, G, and N, an ambiguous base. This bases encoding uses a

three-bit representation for each character, and can pack 21 bases into a single 64-bit field. All

read bases are stored in this format in AGD.

The final data type currently supported by AGD is structured data. This is essentially a se-

rialized in-memory data structure. While there are many structure serialization solutions,

AGD currently uses Protocol Buffers [10]. Structured data fields are used to encode alignment

results in Persona, which indicate in which chromosome (contig3) and at what position a

read has been aligned, along with other mapping quality information. AGD’s simplicity allows

adding additional data types quite easily, however, these three types were sufficient for the

WGS preprocessing implemented in Persona.

To reduce I/O and enable selective field access, we designed AGD with a column orientation.

This means that records are stored by column, instead of by row. Each record field of the same

column is stored physically adjacent to the next record field of the same column. This way, for

example, a program can iterate over the reads in a dataset without traversing the other fields

3“Contig” more generally refers to a set of overlapping DNA sequences that represent a consensus region. While
chromosomes in a reference genome are usually single contigs, there are other contigs in the reference that do not
necessarily represent chromosomes.
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Figure 2.1 – Aggregate Genomic Data (AGD) format architecture

(metadata, quality scores), vastly reducing required I/O. Generally, AGD stores each record

field in a separate column, with a numeric identifier connecting records across columns.

To better support scale-out processing, AGD partitions columns into fixed-length chunks.

Fixed-length refers to a fixed number of records; chunks will not necessarily have the same

byte size. While columns can have different chunk lengths, Persona uses uniform chunk

lengths across all columns. Chunks form the basic unit of storage for an AGD dataset.

Figure 2.1 shows an overview of the AGD format architecture and on-disk representation

for a dataset of aligned reads. The columns consist of bases (encoded with the bases type),

quality scores (plain text), metadata (plain text), and alignment results (structured data).

Columns, and the partitioned chunk files that they are stored in, are tracked via a dataset

unique manifest, implemented as a simple JSON file. The manifest indicates a dataset name,

which columns are present, column data type, as well as a list of chunks and how many records

they contain. This example shows two chunks explicitly in the manifest — the first_ord
field in the manifest indicates the global index of the first record in a chunk. Chunks in this

example contain 200 records.

The total number of chunk files is equal to N times the number of columns. Chunk files are

stored in the underlying medium (e.g. a filesystem or an object store) in a simple, binary

format that starts with a fixed-size header. The header indicates version information and

describes the chunk contents, and is followed by a block of compressed or uncompressed

records. The data block contains contiguous record data, preceded by a relative index. Each

record in the block has a corresponding entry in the relative index, indicating its size. This

allows a program to efficiently traverse the records by simply advancing a pointer by the

amount shown in the corresponding index. In addition, because many record fields are of

similar size in genomics (e.g. read bases and quality scores), the relative index is often highly

repetitive, making it highly compressible, as opposed to an absolute index that indicates the

offset of each record from the start of the block.
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The design of AGD facilitates many of the computations required in WGS preprocessing,

and helps to optimize them. For example, AGD reduces I/O required to perform alignment,

because only bases and quality scores are required to be read from disk, and only results

need to be written back to a new results column. The use of relative indexes leads to efficient

sequential traversal and trivial parsing.

On occasion, some programs require random access to a dataset or a chunk. For example,

when sorting, the process must randomly access unsorted records from a chunk when assem-

bling a sorted one. This can be accomplished efficiently with AGD by building an absolute

index to the file contents with a single pass of the relative index. The correct chunk can be

found by simply traversing the list of chunks in the manifest, or building an index of that as

well.

The chunking of AGD also allows the distribution of this processing without any expensive

coordination. Each chunk can be processed in isolation by different processors, for easily

parallelizable operations such as alignment or duplicate marking. Chunk sizing must be

managed carefully, however. Large chunks, while having better compression ratios and lower

I/O overhead, can lead to straggling4, impacting system efficiency. Smaller chunk sizes have

larger I/O and parsing overheads, and may result in processing cores standing idle.

Subsequent sections in this chapter detail Persona, a high-performance bioinformatics frame-

work that leverages these key design points of AGD to build bioinformatics pipelines for WGS

preprocessing that can scale across commodity servers.

2.3 Persona Architecture

In this section, we describe the functions of Persona and its design objectives. Persona is

designed with personalized medicine in mind. This looks toward the near future when a

person’s genetic makeup will be used to inform medical treatments and healthcare decisions.

Ideally, a doctor should be able to perform WGS analyses in the time-span of an appointment,

i.e. on the order of minutes. Even though the sequencing itself can take hours or days,

clinicians may want to perform analyses on already sequenced patient genomes. For example,

they may wish to realign a patient’s raw sequence data against a new, higher quality reference

genome. It is also possible that sequencing technology will advance to the point where WGS is

possible on the order of minutes.

Persona, therefore, adopts a design philosophy that prioritizes the latency of individual re-

quests. A request, for example, could be to align a dataset against a particular reference

genome, perform a WGS preprocessing pipeline on a patient’s raw sequence data, or compute

variants of a patient’s genome relative to some population. An individual request, however,

4Straggling refers to a situation in which one processor is stuck computing a large sequential task while other
processors sit idle. It is a primary cause of low scaling efficiency, and it is usually a result of tasks being uneven in
size or too large.
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can entail a large amount of data and computation, so throughput is still an important con-

sideration as well. Current methods, as explained in Section 2.1, can take hours or days. The

primary function of Persona is to provide a solution to this problem, allowing individual WGS

preprocessing requests to take place in minutes.

Persona has several design objectives. First, while AGD unifies data, Persona aims to unify

bioinformatics applications and computation under a common framework. A common frame-

work confers many advantages. Users need only install and manage a single system, rather

than many separate applications with different versions. Integrated applications can rely on

common subsystems to perform common tasks such as I/O, file parsing, and decompression,

allowing the development of highly optimized, shared code. A common framework can also

handle parallelism and distributed computing in a common manner, depending on how the

application in question is parallelizable, making it much easier for integrated applications to

scale their workloads. In addition, integration within a framework can allow intra-pipeline

optimizations, such as passing data using in-memory buffers, as opposed to using pipes or

files that incur additional overheads.

A second design objective of Persona is to scale efficiently across local cores and distributed

clusters, and to do so linearly5 when possible. Many tasks in WGS preprocessing are embar-

rassingly parallel, i.e. little to no effort is required to separate the tasks into isolated work units,

and the processing of one work unit does not require communication with any others. Read

alignment, for example, exhibits this behavior. Each read can be processed independently

from the other reads; the only shared resource is the reference genome, and that is read-only

and does not require synchronized accesses. Therefore, read alignment should be able to scale

linearly to a limitless number of processors. However, system-level constraints must be opti-

mized to achieve this goal. A large number of processors require sufficient I/O capacity and

computation to read, parse, and decompress input data so that all processors are kept busy.

Likewise, results must be written back to storage as quickly as they are produced. Persona,

in conjunction with AGD, aims to provide an efficient solution to these system-level scaling

barriers.

A final design objective of Persona, crucial to its primary function, is to be high-performance

and efficient, that is, the majority of time spent performing a computation is spent actually

computing, and not waiting for data or communicating. Persona attempts to keep all avail-

able processors busy doing useful work at all times. For example, Persona uses a zero-copy

architecture, where data is never copied unless absolutely necessary. Copying large amounts

of data, such as those we see in bioinformatics, is costly and wastes CPU cycles that are better

spent doing actual computation.

5Linear scaling is ideal scaling, where each additional processor reduces the total compute time by a propor-
tional amount.
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Architectural Design and Execution Model

In this section, we describe how the design of Persona allows it to achieve the aforementioned

objectives.

Persona utilizes a coarse-grain dataflow execution model. Major functions of the system — I/O,

decompression, parsing, computation — are interpreted as coarse-grain dataflow operators.

Coarse-grain refers to time granularity, with coarse meaning that each operator may require a

significant amount of time to complete. This helps mask the latency overhead of setup and

teardown of each operator. In contrast, fine-grained operators would be small and require

little time to complete.

Dataflow operators have strictly defined inputs and outputs, and can be formed into dataflow

graphs, which in our system are directed, acyclic graphs (DAGs). Each operator is a node in

a graph. The graph is then run by a dataflow engine, which executes the graph according to

dataflow semantics. Dataflow semantics refers to the execution order of nodes in the graph.

Essentially, the final output node is first indicated to the engine, which then enumerates all

dependencies between nodes, up to nodes with no dependencies or those that read inputs. A

node can then be executed as soon as its inputs are available. Independent nodes (those with

no dependency chain between them) can be executed in parallel.

Figure 2.2 shows an example of a dataflow graph. The output of node D is being produced. It

depends on node E and node C (which depends on nodes A and B). Dataflow semantics allow

node E to be executed in parallel with A, B, and C. C must wait for A and B to complete, while

D must wait for C and E.

Persona implements major system functions to dataflow operators. For example, there are

operators for performing I/O from disk or other sources (e.g. loading AGD chunks into

memory), decompressing AGD chunks, parsing decompressed chunks, performing alignment

of reads, writing alignment results, and other functions. This design affords a great deal of

modularity and allows rapid construction or modification of pipelines. For example, if data

must be accessed from a different source, only one node in the graph (the I/O operator)

needs to be swapped, a trivial change. Interfaces between nodes (the graph edges) are strictly

defined, and they remain the same if a node is swapped for another.

A basic dataflow model such as this offers other advantages as well. It simplifies the design,

implementation, and deployment of the system, and it allows for simple integration of new

applications or processing steps. Moreover, the explicit flow between operators simplifies

performance and bottleneck analysis, and it makes it easy to adjust queueing between nodes

for flow control and load balancing. Dataflow also naturally exposes parallelism, as we can see

in the previous example where non-dependent nodes execute in parallel.

Persona uses Google TensorFlow [25] as its underlying dataflow execution engine. Although

designed for machine learning applications, TensorFlow contains a general dataflow engine,
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Figure 2.2 – Dataflow Graph and Execution Semantics — Output of operator D is being pro-
duced. One potential execution schedule sees E executed in parallel with A and B. C is then
executed when its inputs from A and B become available. Finally, the output of D is computed.
The numbered CPU icons show this ordering graphically as well.
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which we repurpose to execute custom-defined operators. In TensorFlow, dataflow operators

are assembled into a graph of nodes using a Python API. Node implementations are called

kernels, and can be device-specific — TensorFlow allows nodes to have different kernel imple-

mentations, to map them to different hardware, most notably CPUs and GPUs. For this work,

we use only CPU kernels, which are written in C++ and compiled alongside the TensorFlow

runtime framework.

We demonstrate that TensorFlow can be used in this new context with minimal overhead (1%).

Persona uses several techniques to achieve this, including augmenting coarse-grain system

orchestration with fine-grained parallel execution within compute-intense kernels, reusing

buffers to implement a zero-copy architecture, and using queueing to both limit memory use

and seamlessly overlap I/O and computation.

Queuing

There is a drawback to TensorFlow’s execution model in that graphs are executed in steps. Each

dependent node is executed once to produce the graph output. A Persona graph would, for

example, read an AGD chunk from disk, decompress and parse it, align the reads within, and

write back the output AGD chunk. The problem here is that while we are performing I/O or

parsing chunks, no computation is being done because the alignment operator is waiting for

data. Ideally, we would like to read AGD chunks and buffer them while computation is being

performed at the same time. To solve this problem, system components are further separated

into subgraphs connected by queues, which allow the subgraphs to execute independently

and seamlessly overlap their functions. Queues employ mutex locking to synchronize accesses

of upstream (or producer) and downstream (consumer) subgraphs.

For example, a subgraph containing nodes that read data from disk can run in parallel with

the subgraph that performs decompression of the data. Figure 2.3 shows how queues work

in TensorFlow. One node (orange in Figure 2.1) provides the queue itself, a shared memory

object. Push and pop nodes execute operations to push and pop data atomically into or out

of the shared queue object. This organization provides a uniform interface to the queue that

preserves TensorFlow execution semantics. Push and pop nodes are simply dataflow operators

that can be added to a graph. In case of a full or empty queue, they block until data or space

become available.

As the figure shows, it is also possible to have multiple subgraphs, upstream or downstream,

accessing the queue in parallel from different thread contexts. Each context instantiates its

own push/pop nodes to access the shared queue atomically. This allows Persona to seamlessly

parallelize certain subgraphs if they are bottlenecks. For example, if the subgraph decompress-

ing AGD chunks in memory cannot provide data quickly enough to the downstream subgraph

aligning reads, it can be duplicated to increase its throughput. This also facilitates tuning of

the overall system to maximize performance.
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Figure 2.3 – Queue connected subgraphs as used in Persona

Persona employs bounded queueing. This provides an inherent mechanism to limit the

memory use of the system by preventing a buildup of data in queues. Since bioinformatics

can be compute-intensive, unlimited queuing could result in data loading far outpacing the

rate of computation, consuming more memory than necessary to keep the processors busy.

Bounded queuing limits the number of items in a queue, blocking the execution of subgraphs

attempting to push more data until a downstream subgraph pops an entry and frees up space.

At the same time, the queuing can ensure there is data immediately available to compute

threads, so no processor ever goes idle.

Bounded queuing is also important for distributed computation. A bounded local queue

on a remote server will limit the amount of work buffered in the server. Otherwise, each

remote server will locally buffer large amounts of work, up to the size of the whole dataset,

producing a situation equivalent to pre-partitioning and distributing all of the data. Since the

computation time of each chunk of data is variable, some may take much longer to compute

than others. This leads to straggling, where a majority of servers have finished computing their

buffered data, but a final server straggles behind. Bounded queuing prevents this by limiting

the amount of locally buffered work.

Data Movement and Resource Pooling

The “native” method of data movement in TensorFlow is passing tensor objects between

nodes in the graph. This is not an efficient solution for Persona, however, because encoding

string data (for reads and quality scores) in tensors leads to a large number of small memory
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allocations because of the tensor object implementation. To avoid this and unnecessary copies

and memory allocations, Persona moves data by passing buffer objects between nodes. These

objects are implemented with TensorFlow’s resource subsystem, which is used to share objects

between nodes, the same system that manages queue objects as described above. A 2-vector

tensor containing a (container, name) pair forms the reference that can be used to look up

objects in the resource subsystem, which is managed by the TensorFlow runtime. The handle

can be passed between nodes as a native tensor.

Buffers in Persona typically contain one AGD chunk, which forms the basic unit of I/O or

computation granularity in Persona. Persona also uses the resource system to share other

read-only data between nodes, such as the reference genome. In figures, blue nodes represent

normal graph nodes, and orange nodes represent those that provide a shared resource.

Normally, when a graph operator needs a buffer for its output, it would simply allocate one

from the OS (TensorFlow uses the OS memory allocator). Conversely, when finished with an

input buffer the operator would deallocate it, again using an OS system call. This approach

leads to a large number of OS-level memory allocation calls, many of which are large (tens to

hundreds of megabytes in size), incurring a potentially large overhead. To avoid this, Persona

uses a resource pooling technique. Buffers or other objects are managed by pool resources,

which keep a list of free and in-use objects.

We will use buffers as an example. When a node needs a new buffer for its output, it will first

access a buffer pool resource to obtain a free buffer. Downstream, when that buffer has served

its purpose and needs to be freed, it is instead returned to the buffer pool. This technique

avoids constant allocations and deallocations, as buffers are allocated up-front and reused.

It also keeps the memory footprint of the entire system relatively stable. There is no limit on

the number of buffers or pooled objects in circulation. However, since Persona uses bounded

queuing, the system naturally reaches a steady state in which all resource object needs are

provided through reuse, and no further allocations are necessary.

Constructing Graphs

Dataflow graphs in Persona, as in TensorFlow, are constructed via a high-level API in the

Python language. A Python function is generated for each dataflow node when the system

is compiled. These functions can then be easily used to form a graph via a chain of calls.

Higher-level constructs, such as the queues that tie together the push/pop/queue nodes as

shown in Figure 2.3, are allocated and connected similarly. This provides several advantages.

First, it hides unnecessary detail from users of the system, such as the underlying kernel imple-

mentation code, which makes it easier to grasp what a particular graph is doing. Second, the

design enforces a high degree of modularity, allowing newly constructed graphs to incorporate

existing nodes and even entire subgraphs. Graphs are also easy to modify, for example, if a

new storage system is used, only the nodes dealing with reading and writing data need to be

changed, keep code modifications to a minimum.
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Figure 2.4 – Aligner nodes split input AGD chunks and allocated output buffers into subchunks,
and delegate to a shared executor to maintain constant throughput.

Although nodes defined by Persona can be connected into arbitrary graphs, certain patterns

will be more efficient than others. The following subsections describe the graphs used by

Persona to build high-performance bioinformatics systems.

I/O Input Subgraph

The input subgraph is designed to keep the process subgraph fed with data while incurring

minimal overhead. Reader nodes read AGD chunks from mass storage. Currently, Persona

supports local disk access or the Ceph object store [128] — other storage systems can be

supported simply by writing the interface into a new Reader dataflow node. For disk files,

Reader nodes mmaps AGD chunk files, producing a handle to a read-only mapped file memory

region. For network files, Reader nodes request the chunk files from a storage system (e.g.

Ceph), putting each into a recyclable buffer resource. Once a chunk has been read, it passes

via a queue to an AGD Parser node, which decompresses and parses the chunk into a useable,

in-memory chunk. Chunk objects are then passed to the process subgraph via a central queue.

Processing Subgraphs

Process subgraphs implement the bioinformatics operations, starting with AGD chunk objects

as inputs. We describe the implementation of several major functions that are currently

implemented in Persona. Since I/O and parsing are provided by upstream and downstream

graphs, integrating new or existing bioinformatics functions is usually simple.
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1) SNAP Alignment — The Persona SNAP aligner node uses the SNAP short read aligner [132],

an open-source tool that is highly optimized for modern servers with a large amount of

memory and many cores. To attain maximum performance, each core in the system should be

running the SNAP algorithm continuously on AGD chunks, however, we found the granularity

of AGD chunks, being optimized for storage, is too coarse for threads and produces work

imbalances that lead to stragglers. To remedy this, execution of the alignment algorithm is

delegated to an executor resource that owns all of the threads and implements a fine-grain

task queue (Figure 2.4). Multiple parallel aligner nodes feed chunks to this executor and wait

for them to be completed. All cores in the system are thus kept running continuously doing

meaningful work.

We found this model necessary since the size of AGD chunks, being optimized for storage, is

too large to distribute among threads and produces work imbalance that leads to stragglers.

The task queue distributes data at a subchunk granularity, which balances the load among the

cores and avoids stragglers while limiting queue contention and overhead. By abstracting the

CPU threads in this way, we maintain the Tensorflow dataflow abstraction while making the

most efficient use of available resources. In addition, the TensorFlow dataflow model executes

in steps, which would introduce pauses between alignments and noticeably reduce system

throughput. We avoid this by having multiple graph-level aligner nodes running in parallel, in

order to keep all CPUs occupied.

When executed, the aligner node receives chunk objects containing reads (base pairs and

quality scores), a handle to a buffer pool of output objects, and a handle to the executor

resource. The chunk object and output buffer are logically divided into subchunks and placed

in the executor task queue as (subchunk, buffer) pairs. The aligner node uses a pool of threads,

each of which dequeues subchunks from the task queue and runs the SNAP algorithm on the

reads to align them to the reference genome. Once a full chunk is completed, the originating

aligner node is notified, and the result buffer is placed in the subgraph output queue.

2) BWA-MEM Alignment — BWA-MEM [78] is another popular read alignment tool that

uses the Burrows-Wheeler transform to efficiently find candidate alignment positions for

reads. We integrate BWA-MEM in the same manner as SNAP, using the executor resource

with a fine-grain task queue (Figure 2.4). We call BWA-MEM alignment functions directly,

with only several small cosmetic code changes. For single-read alignment, this approach is

straightforward, however for paired reads, BWA-MEM incorporates a single-threaded step

over batches of reads to infer additional information about the data6. This preprocessing

leads to better alignment results but separates the computationally intense multithreaded

steps by a sequential computation. Therefore, the executor resource for BWA paired alignment

divides the system threads among these tasks. We found a balance empirically, but because

the computation times are data-dependent, some efficiency can be lost.

6Specifically, it estimates the mean (µ) and variance (σ) of the insert size (gap between aligned read pairs)
distribution, and it will only fully align pair mates that hit within a window of [µ−4σ,µ+4σ] .
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3) Sorting and Duplicate Marking — Persona also integrates full dataset sorting by various

parameters, including mapped read location and read ID. The sort implementation is a simple

external merge sort, where several chunks at a time are sorted and merged into temporary file

“superchunks”. A final merge stage merges superchunks into the final sorted dataset. Persona

sort is several times faster than samtools sorting of SAM/BAM files (Section 2.4).

Duplicate finds reads that map to the same location on the reference genome. Duplicate reads

can disrupt downstream statistical methods, as the duplicates are typically caused by PCR

duplication in the library preparation step before sequencing. Persona duplicate marking uses

a hashing technique based on the approach used by Samblaster [53]. Each read is identified

uniquely by its signature which is comprised of the (contig, position) mapping location. A

hash table efficiently finds reads that map to the same location and marks duplicates.

I/O Output Subgraph

The output subgraph mirrors the input subgraph, with Writer nodes writing AGD chunks

to disk or a Ceph object store, with an optional compression stage. In general, the process

subgraph is responsible for ensuring AGD chunks are properly formatted for a given AGD

column, as the Writer nodes are generic and do not perform column-specific formatting.

Persona also implements an output subgraph for the common SAM/BAM format for compati-

bility with tools that have not been integrated or do not support AGD.

Distributed Computation

Persona uses the TensorFlow distributed runtime for execution across a cluster of servers. In

TensorFlow, graph nodes can be mapped to different devices, including remote devices, such

as remote server CPUs. Running a graph across a cluster first entails describing the cluster in

a config file, and specifying via the Python API which nodes are to run on which server. Any

time an edge connects two distributed graphs, the TensorFlow runtime system automatically

places sender/receiver nodes to transfer data between the two remote nodes.

Since operations such as alignment are easily parallelized, Persona uses this approach to

replicate copies of a pipeline across multiple servers. Each server can then execute alignment

operations on individual AGD chunks in parallel with no coordination.

Figure 2.5 shows an overview of the entire system as it executes alignment. A control server

receives a request to align a dataset, which provides a list of file paths to the AGD chunks

containing the read bases and quality scores. These file paths are loaded into a central queue,

which is the only point of coordination in the system, ensuring that each AGD chunk is aligned

only once. Thanks to the queues, the TensorFlow runtime ensures that all pipelines on each

distributed server execute in parallel. At each execution step, the graph on a remote server

will pull a file path from the central queue. Then, Reader nodes access a Ceph distributed
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Figure 2.5 – Persona executing alignment across a distributed cluster of servers.

object store and perform the I/O to read the AGD chunk files into memory. Handles to the

in-memory data are passed via queues to Parser nodes.

These Parser nodes decompress and parse the AGD files into buffer objects containing the

raw reads and quality scores. These are passed via a queue to the alignment nodes, which use

the shared in-memory reference genome and fine-grain executor, as described earlier in this

section, to align the reads using the available CPU resources. Alignment results are written to

in-memory buffer objects. Finally, Writer nodes compress the output AGD chunks and write

them to the appropriate output location, in this case, a new column in the same dataset in the

Ceph object store.

2.3.1 Discussion

The design of Persona allows it to achieve its design objectives, as will be shown quantitatively

in our evaluation in Section 2.4. Persona and AGD both work together to unify bioinformatics

data and computations under a single framework. The architecture of Persona also allows it

to achieve the crucial design objective of high scalability, with the alignment process scaling

linearly across a 32 server cluster. Persona is highly compute-efficient — profiling shows that

Persona can dedicate nearly 100% of CPU power to the alignment computations, with the
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TensorFlow framework overhead being negligible. I/O and compute overlapping ensure data

is always available for computation, and consequently no compute pipeline stages are stalled.

Using TensorFlow as a general dataflow engine was a key design decision that had many

benefits but also led to some challenges. Bioinformatics data is not particularly amenable

to storage in tensors, the native data type of TensorFlow. Initially, we stored strings of bases,

qualities, and metadata in string type tensors. However, this led to large amounts of small

memory allocations and constant data copying since the std::string type owns its data. This

prompted the decision to move to the recyclable buffer pooling strategy described previously.

In an ideal world, the dataflow engine and runtime of TensorFlow would be separate from the

Tensor data type and would allow more general types of data.

The execution semantics of TensorFlow also caused some issues when trying to maximize

performance, especially in the multithreaded aligner kernels. TensorFlow executes graphs in

steps, where one step executes a given graph and produces one output value. For example, if

we want to process two AGD chunks, we must execute the associated graph two times, once

for each chunk. However, there is a delay between one execution of a graph and the next.

Therefore, parallelism must be used to ensure that threads do not sit idle between executions,

which we achieved by running multiple aligner graphs in parallel. A secondary problem was

the chunk granularity mismatch between I/O and compute, where chunk sizes optimal for I/O

cause imbalance in computation. In the end, we solved both of these issues with a combined

solution described in Section 2.3, where all threads executing a given task (e.g. alignment) are

owned by a shared resource that can be fed with work by multiple graphs that get executed in

parallel by TensorFlow.

Despite these difficulties, we were still pleased overall with TensorFlow. The framework

provides numerous features that greatly ease development and optimization, such as node-

level profiling, graph visualization, and runtime statistics including current queue states or

any other variable one wishes to track. We were also pleasantly surprised at how seamlessly the

implementation was able to overlap disk or network I/O with computation. We also found that

the dataflow semantics, in general, enforce a high degree of code separation and modularity,

which makes for seamless integration of new features e.g. different I/O subsystems.

2.4 Evaluation

In this section, we present a quantitative evaluation of Persona showing that it is a high-

performance, scalable system, and can indeed effectively leverage highly parallel commodity

clusters for bioinformatics preprocessing workloads.
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2.4.1 Experimental Setup

We use a cluster of typical data center server machines, each with two Intel Xeon E5-2680v3

CPU chips at 2.5GHz and 256 GBytes of DRAM. With 12 cores per socket and hyper-threading

enabled, each node has 48 logical cores. All machines run Ubuntu 16.04 Xenial Linux. Each

machine includes two SSDs in RAID1 configuration for the OS, 6 SATA hard disks (4TB, 7200

RPM, 6 GB/s), a hardware RAID controller, and 10GbE network interface. The six disks are

arranged in a 20TB RAID0 configuration, i.e. data is striped across all disks with no replication

or fault tolerance, maximizing read/write bandwidth. This provides a maximum aggregate

read/write bandwidth of approximately 600 MB/s. For single-node (local) experiments, we

store the input data on the 20 TB RAID0 disk array. For distributed (cluster) experiments,

we store the AGD dataset in a Ceph distributed object store [128] spread over 7 servers. The

Ceph cluster is configured to use 3-way replication and each of its 7 nodes has 10 disks. The

compute and storage are connected by a 40GbE-based IP fabric consisting of 8 top-of-rack

switches and 3 spine switches.

Persona accesses Ceph objects via the Rados API [12]. Using the rados bench tool, we mea-

sure the peak Ceph read throughput of our configuration at 6 GB/s, with sequential reads and

evenly distributed data.

In all our experiments, we use half of a paired-end whole-genome dataset from Illumina [50]

(ERR174324), which consists of 223 million single-end 101-base reads. The dataset is 18

GB in gzipped-FASTQ format and 16 GB in AGD format. The use of single-end read data

is an arbitrary choice; the integrated aligners of Persona and AGD also support paired-end

alignment. The reference genome to which we align the dataset is the common hg19 human

genome [7]. Alignment throughput is measured in bases aligned per second. This is a more

realistic reporting than reads per second because that metric does not take into account the

length of the read. This makes it difficult to compare against other measures that may use

read of a different lengths.

2.4.2 Persona Configuration

Table 2.1 shows the graph-level and TensorFlow configuration in those experiments. All exe-

cution uses the TensorFlow direct session, unmodified. For cluster-wide execution, Persona

launches a TensorFlow instance per compute server. Within each server, the first stage in the

TensorFlow graph fetches a chunk name from the manifest server; the latter is implemented

as a simple message queue. Unless noted, the AGD chunk size is 100,000, grouped into 2231

chunks. At this chunk size, both the bases and the qualities are ∼3.5 MB. As our performance

analysis focuses mainly on alignment, we read only these two columns of each chunk, total-

ing ∼7 MB per chunk. This also shows the advantage of a column-oriented design — we can

avoid reading data that is not required by the computation being performed, such as when

metadata fields are not required by the alignment computation.
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Parameter Value

Filename queue capacity (chunks) 3

Input buffer queue capacity (chunks) 2

ReadData queue capacity (chunks) 3

Output result queue capacity (chunks) 3

Reader Node parallelism 2

AGD Reader parallelism 2

Aligner Node parallelism 1

Writer Node parallelism 2

Table 2.1 – Parameters used in all experiments.

SNAP AGD Single Node Speedup

Disk(Single) 817 sec 501 sec 1.63

Disk(RAID) 494 sec 499 sec 0.99

Network 760 sec 493.5 sec 1.54

Data Read 18GB 15GB 1.2

Data Written 67GB 4GB 16.75

Table 2.2 – Dataset Alignment Time, Single Server

2.4.3 I/O Behavior of AGD

We first study the I/O behavior of Persona and AGD. I/O behavior in Persona is fundamental,

since we can never assume a given patient’s genome data will already be in memory (or that it

even fits in memory). We perform alignment using different disk I/O configurations, using

the SNAP alignment subgraph and comparing to the SNAP standalone program. We use

SNAP instead of BWA because it has higher throughput and is better able to exercise the I/O

subsystem. The single disk configuration stores the genome (and the results) on a single local

disk. The RAID0 configuration uses a hardware RAID0 array of 6 disks to increase bandwidth.

Both SNAP and Persona are tuned for best performance and use 47 aligner threads.

Figures 2.7 and 2.6 provides a characterization of the CPU utilization using a single disk and

the full RAID0 configuration. Both systems overlap I/O and decompression with alignment:

SNAP uses an ad-hoc combination of threads, whereas Persona leverages dataflow execution.

Figure 2.7 and Figure 2.6 show that Persona is CPU bound in both configurations, but that

SNAP can only fully use the CPU resource in the RAID0 configuration because a single disk

does not provide enough write throughput.
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Figure 2.6 – Comparison of SNAP (GZIP’d FASTQ) and Persona (AGD) in CPU utilization with a
6-disk RAID0 array.

In particular, Figure 2.7 shows a cyclical pattern with SNAP where the operating system’s buffer

cache writeback policy competes with the application-driven data reads; during periods of

writeback, the application is unable to read input data fast enough and threads go idle.

Table 2.2 summarizes the difference in terms of the amount of I/O traffic required as well as

the impact on execution time. While the column-orientation of AGD has a marginal benefit

in terms of data input, it has a 16.75× impact on data output, and a 1.63× speedup for the

single-disk configuration. When the storage subsystem provides sufficient bandwidth, as for

the RAID0 configuration, the performance of SNAP and Persona are nearly identical. Persona,

however, does at least the same amount of work with less hardware and eliminates the disk

I/O bottleneck.

The benefits of column-orientation of AGD are not limited to local disks. Table 2.2 also shows

the speedup of 1.54× when the data is stored on Ceph network-attached storage7. This also

shows another benefit of the modularity of Persona: the Ceph data access functionality is

simply implemented as another dataflow node and easily integrated into the system. To do

this in SNAP or any other aligner would require significant engineering effort.

7SNAP does not natively support reading from Ceph, so we use the rados utility to pipe the dataset in gzipped
FASTQ format, and feed the resulting SAM file into Ceph.
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Figure 2.7 – Comparison of SNAP (GZIP’d FASTQ) and Persona (AGD) in CPU utilization with a
single disk.

Finally, Table 2.2 shows that, by overlapping I/O with computation in meaningful-sized pieces,

the performance of Persona is nearly identical to SNAP and CPU bound in three very different

storage configurations.

2.4.4 Single Node CPU Alignment

We characterize the thread scaling behavior for Persona with both the SNAP and BWA-MEM

aligners while comparing them to their standalone baselines. These experiments show that

Persona imposes negligible core-scaling overhead on the subsystems we have integrated and

avoids thread and I/O saturation issues by efficient overlapping.

Figure 2.8 shows the scalability of standalone SNAP and BWA-MEM compared to Persona as a

function of the number of provisioned aligner threads on a 48 core server. The experiments

were measured on the RAID0 configuration so that SNAP has enough I/O bandwidth. For

SNAP, Figure 2.8 shows clearly (1) a near-linear speedup up to 24 threads, corresponding to the

24 physical processor cores of the server; (2) beyond 24 cores, the 2nd hyper-thread increases

the alignment rate of a core by 32%. At 48 threads, however, contention with I/O scheduling

causes a drop in performance in SNAP. BWA-MEM experiences a similar drop when no threads

are available to perform I/O operations to keep compute threads fed with data. Persona is

41



Chapter 2. Scaling Bioinformatics with Persona

0 6 12 18 24 30 36 42 48
Number of Threads

0

10

20

30

40

50

60

70

Al
ig

nm
en

t R
at

e 
( M

eg
ab

as
e 

/ S
ec

on
d 

)
SNAP
Persona SNAP
BWA
Persona BWA
SNAP Perfect
BWA Perfect

Figure 2.8 – Thread scaling of SNAP and BWA in Persona

less sensitive to operating system kernel thread scheduling decisions thanks to TensorFlow’s

built-in queue abstractions.

BWA scales well to 24 threads but suffers from high memory contention after hyper-threading

kicks in, something that cannot be fixed without significant changes to the codebase. However,

because Persona avoids setting up and tearing down threads for different steps of processing,

Persona’s BWA-MEM subgraph scales better than the standalone program.

2.4.5 Cluster Scalability

Figure 2.9 shows the throughput of two different systems as a function of the number of remote

nodes. “Actual” represents the measured performance of Persona using the SNAP alignment

node, reported in gigabases aligned per second for a single genome i.e.,a measurement of la-

tency. “Simulation” is the ideal speedup line based on the maximum local server performance

of ∼45.45 megabases aligned per second (see Section 2.4.4).

Persona scales linearly up to the available 32 nodes by making efficient use of all compute

resources, hiding all I/O latencies, and addressing the straggler problem through shallow

queues. Again, we use SNAP because the higher throughput is better able to exercise the I/O

subsystems. The BWA-MEM aligner throughput may be lower per node but it may scale to
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Figure 2.9 – Alignment throughput of Persona (SNAP) across a 32-server cluster. A simulation
shows that the system can scale to over 60 servers until the I/O bandwidth limit of the Ceph
cluster is reached.

higher numbers of servers because of proportionally lower I/O. We reiterate that our point is

not to compare BWA-MEM to SNAP but to show that Persona can scale to a large number of

servers by keeping process subgraphs fully supplied with data.

Using 32 servers and the SNAP process subgraph, Persona aligns the genome in 16.7 seconds,

from the beginning of the request to when all results are written back to the Ceph cluster.

This corresponds to 1.353 gigabases aligned per second. Given that many aligners on single

nodes can take hours to align large datasets, this represents a significant gain in throughput

performance and single dataset latency and is possibly the fastest whole-genome alignment

to date.

We use a different methodology to test the scalability of the storage cluster. Given the alignment

rate per server, we do not have enough machines in our cluster to saturate the storage cluster.

In order to see where its limits are, we deployed multiple “virtual” TensorFlow sessions per

server and replaced the CPU-intensive SNAP algorithm with a stub that simply suspends

execution for the mean time required to align a chunk, and then outputs a representative (but

incorrect) result. In this sense, the computation becomes simulated, while all I/O (disk, but

the network I/O in particular) is performed as normal. Since the chunks are sized large enough
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Tool Time Speedup

Persona 556 sec 1.0×
Samtools 856 sec 1.54×

Samtools w/ conversion 1289 sec 2.32×
Picard 2866 sec 5.15×

Table 2.3 – Dataset Sort Time in Seconds, Single Server

to mask any long-latency outlier reads, the mean alignment time has low enough variance

that the simulation model is accurate.

Figure 2.9 shows the results in the “Simulation” line. We first validate that the simulation

matches the “Actual” measurements up to 32 nodes. We then observe that the Ceph cluster

scales to ∼60 nodes without loss of efficiency. Beyond 60 nodes, with an AGD chunk size of

100,000 reads, writing alignment results back to the Ceph storage cluster is the limiting factor.

We again see that the TensorFlow framework imposes negligible overheads.

2.4.6 Sorting and Duplicate Marking

We also compare Persona in sorting performance to Samtools [81] and Picard [3], standard

utilities for sorting SAM/BAM files. Table 2.3 shows the results when configuring Samtools

to use all 48 cores available. Picard does not have an option for multithreading. Samtools

requires sorting input in BAM format; we include both sort and sort plus conversion times

from SAM to BAM format. The conversion time is included because it is a real overhead that

bioinformatics pipelines need to deal with. Persona can directly process aligned results in

AGD, performing the sorting operation up to 2.32 times faster than Samtools including the file

conversion time. The sort implementation of Persona is currently naive, using std::sort()
across chunks. These results can probably be improved substantially.

We compare the duplicate marking performance of Persona to Samblaster [53], whose algo-

rithm is employed in our implementation. Recall that this algorithm involves forming keys

out of read alignment positions and uses hashing to detect duplicates. Samblaster can mark

duplicates at 364,963 reads per second, while Persona, which uses Google’s optimized dense

hash table, can mark duplicates at 1.36 million reads per second. Note that Persona also uses

less I/O since only the results column needs to be read/written from the AGD dataset, again

showing the advantages of using AGD.

2.4.7 Conversion and Compatibility

To support existing sequencer output formats and other tools that have not yet been integrated,

Persona can import FASTQ and export BAM formats at high throughput. Persona can import

FASTQ to AGD at 360 MB/s, while BAM format files are produced from AGD at 82 MB/s. BAM
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Figure 2.10 – Persona profiling analysis breakdown

export is slower because a significant amount of time is spent compressing the output as

required by the format. Still, the 16GB AGD dataset can be completely exported to BAM in only

3.5 minutes. The operation is difficult to scale out because the output BAM file is a monolithic

block.

2.5 Analysis & Discussion

This section presents a performance analysis of Persona running both SNAP and BWA-MEM,

which we undertook to better understand system performance and possible avenues for

improvement. We also discuss several attempts to accelerate the system, including using

different hardware, namely the Intel Xeon Phi many-core system [71]. Lastly, we provide a

Total Cost of Ownership (TCO) analysis showing that Persona/SNAP running on a commodity

cluster is an extremely cost-efficient approach to executing alignment in WGS preprocessing.

2.5.1 SNAP and BWA-MEM Profiling

Our performance analysis focuses on alignment, as it is the most compute-intense step we

have integrated into Persona. As this operation is the primary system bottleneck, we used
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Figure 2.11 – Workload analysis (with and without Hyperthreading) compared to several SPEC
benchmarks.

Intel’s VTune Amplifier [107] to profile both BWA-MEM and SNAP while running in Persona, to

identify any possible avenues for improvement. Figures 2.10 and 2.11 summarize the findings,

while displaying several relevant SPEC benchmarks for comparison.

Both aligner profiles share some similarities, in that they are heavily CPU backend-bound

i.e.,many cycles stalled due to lack of resources for accepting µOps into the pipeline such

as D-cache misses or busy functional units. With SNAP, we see that the issue is due to the

core and not memory access — primarily, this is due to short but frequent calls to a local

alignment edit distance function that has a high proportion of integer arithmetic instructions

causing functional unit contention, and many data-dependent instructions and branches.

Figure 2.12 illustrates this from another perspective, showing memory bandwidth values

(again measured using VTune) as we scale the number of threads while running SNAP. Note

that this measurement is an aggregate of both CPU packages in the server. Memory bandwidth

scales linearly with the number of cores, does not saturate, and is therefore not a barrier to
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Figure 2.12 – Measured memory bandwidth of SNAP as the number of threads scale.

core scaling for the tool. Figure 2.12 shows that memory bandwidth is relatively low for the

alignment workload. The per-core bandwidth required to keep the alignment threads busy is

approximately 500 MB/s, and the peak bandwidth (with 48 threads performing alignment) is

20.5 GB/s. This is 15.1% of the available system bandwidth of 136 GB/s.

In BWA-MEM, the system is more memory bound. VTune reports that this is primarily due to

cache and DTLB misses, and our findings corroborate previous analyses [135]. Their analysis

showed that BWA is primarily limited by memory bandwidth because of irregular access

patterns stemming from the suffix tree structure it uses to find potential alignment locations.

The tree structure memory access patterns tend to be disjoint, as a child tree node is not likely

to be contiguous with, or even near its parent. There is little locality, and caching, therefore,

provides little value with a majority of accesses go all the way to DRAM.

From profiling, we found that despite its high performance, Persona/ SNAP exhibits little ILP8,

running with an IPC (Instructions per Cycle) of approximately 1. The heart of this computation

is a simple routine that compares each read against potential matches in the reference genome

and selects the best possibilities using an optimized linear programming technique called

Landau-Vishkin [73]. Within this computation, an appreciable fraction of time is spent in

short string comparisons. The architecture of modern Intel Xeon x64 servers and the Xeon Phi

Knights Landing server are not well matched to this computation for a variety of reasons:

• It is difficult to express the inherent fine-grain parallelism in a linear programming

algorithm. This computation has three independent sub-computations (extending the

8Instruction-Level Parallelism — modern processors can execute independent instructions of the same thread
in parallel
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three nearest, previously computed neighbors in the linear programming matrix and

selecting the best), each of which involves multiple short string comparisons. A compiler

cannot fuse these loops to schedule their instructions since the loop bounds differ. And,

even if this was possible, existing processors do not have enough resources to run the

three computations simultaneously.

• The vector (SSE/AVX) string comparison instructions, despite doubling the granularity

of comparison from 64 to 128 bits, performs worse than scalar code because the distance

to the first mismatch is typically small and the vector instructions have long latencies.

Hyper-threading exacerbates the problem because of contention for the vector unit.

• The computation is fine-grained (average of 660 nanoseconds) and potentially accesses

a large amount of data (anywhere in the 40 GB reference genome) with little locality, so

the large L3 caches are of little value.

2.5.2 Other Microarchitectures

We also tested Persona on the Xeon Phi processor (“Knights Landing”) [71]. At the time, we

had only a pre-release version of this processor, running at a reduced clock rate of 1.3 Ghz,

but its 64 cores are 4-way hyperthreaded with dual 512 bit wide SIMD units. This corresponds

to a total of 256 hyperthreads. We found that thread scaling fell off after 128 threads (2 per

core) due to functional unit contention, i.e. there are more instructions in the stream ready to

execute than hardware functional units to execute them. Overall performance is significantly

lower than the standard Xeon. VTune again showed that the workload is highly core-bound.

The inner alignment loops where most time is spent have a low diversity of instructions, easily

saturating available functional units. While the alignment workload scaled across cores and

hyperthreads, for this application, a high clock rate is more beneficial for performance than

more hyperthreads or improved vector units.

GPU architectures may appear attractive for parallel workloads, however, the alignment

computations are irregular and filled with data-dependent branches. Thread divergence

would likely lead to minimal SIMD performance gains.

2.5.3 TCO of Cluster Architectures

Personalized medicine is becoming practical because of dramatic decreases in the cost of

genome sequencing. In light of these decreases, it is worth considering the cost contributions

of the storage and computation required to enable personalized/precision medicine. We

consider three cases: a single system attached to a single NGS sequencer, our balanced cluster,

and a nation-wide solution. All cost figures are as of 2017. We limit the analysis to alignment,

the most expensive computation we have yet integrated into Persona.
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Item Unit cost Units Total

Compute
Server

$8,450 60 $507K

Storage server $7,575 7 $53K

Fabric ports $792 67 $53K

Total $613K

TCO(5yr) [64] $943K
Cost/Alignment (100% Utilization) 6.07¢

Table 2.4 – Cluster TCO and alignment costs. The storage cluster has 126 TB of usable capacity,
corresponding to approximately 6,000 sequenced genomes.

First, Figure 2.7 shows the performance of a single server, where genomic data is stored,

aligned, and processed on a local machine. A single server can, therefore, align ∼144 se-

quenced genomes per day, if we assume that the average genome size is the same that we

have used to perform our measurements. Considering the total cost of ownership (TCO) of the

server over 5 years, this implies a cost of 4.1¢ per alignment, assuming full utilization. Note

that this scenario has limited genome storage capacity.

Second, there are economies of scale for sequencing, and a more likely scenario would be

a regional center providing sequencing, processing, and storage services. A small cluster

and network storage subsystem, as we have used in our experiments, could support 5173

alignments per day. Figure 2.9 shows that our storage cluster can sustain the I/O requests

of a cluster of twice this size, offering expansion capacity. Table 2.4 summarizes the cluster

compute and storage costs over a 5 year lifetime. For the network fabric cost, we determine the

per-port cost of the 8-TOR, 3-spine architecture deployed in our physical cluster, and multiply

by the number of ports used. Table 2.4 shows that, assuming the system is fully loaded, the

TCO of a genome alignment on such a regional cluster is 6.07¢, higher than above because of

the larger storage subsystem needed to support the throughput.

Third, a nation-wide solution would be needed to support initiatives such as Genomics

England’s 100,000 Genomes [57]. For this, additional storage is required as our balanced

cluster has a usable capacity of 126 TB, which can store 6,000 in AGD format (1 day worth

of sequencing). One can use the 60:7 ratio of computing to storage machines as a “not to

exceed” scaling guide. The TCO model of Table 2.4 can be adjusted to estimate the capacity

and throughput requirements of a deployment.

Storage is the dominant cost of a cluster and therefore of WGS preprocessing as well. With

our current high-throughput storage subsystem, the cost per genome for storage is $8.83, two

orders of magnitude higher than the alignment cost. Genomes that are not being actively

processed could be stored in a tiered storage system using slower, lower-cost storage and

erasure coding [48]. Currently, using Amazon Glacier storage ($0.007 GB/month [1]), a full

genome could be stored for 5 years for $6.72, only slightly less expensive than locally hosted
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storage. However, a large scale storage-as-a-service solution like that of Glacier has the benefit

of providing fault tolerance and a guarantee that data will not be lost, something that a local

solution would find difficult or expensive to provide. Note that with higher coverage datasets,

storage amounts and cost would increase.

Computation is far from the dominant contribution to the cost of sequencing a genome. Stor-

age, while more expensive, is still far from a significant expense, but if the cost of sequencing

continues to decline at its faster-than-Moore’s-Law rate, storage may become the limiting

factor in widespread genome sequencing. Novel compression techniques or more storage-

efficient formats will likely be required. A good example is reference-based compression [55],

where only the differences between reads and the reference are stored. When reads are “de-

compressed”, they are simply reconstructed using the stored diffs and the reference bases.

This can reduce storage requirements by as much as 20×.

2.6 Related Work

While we have already detailed some popular alternative solutions for building bioinformatics

pipelines, this section provides a comprehensive overview of previous work related to Persona.

Because of its potential, bioinformatics and genomics have been the topic of much research.

Large organizations such as the Broad Institute have established pipelines (Genome Analysis

Toolkit [6]), a system similar to Persona. GATK also employs sharding for parallel data access

(via an underlying distributed file system, HDFS9), but uses the standard SAM/BAM formats,

often merging multiple input files into single files, which can limit scalability. Recently, GATK

has also been ported a cloud environment, Google Genomics [2]. Microsoft also advertises

cloud-based genomics capabilities [89]. However, these companies have not released details

of their internal systems architectures, so it is unclear how they compare.

In terms of file formats, the recent ADAM format [87] is most similar to AGD. It also uses

a column store format to achieve better compression. Data is serialized using a common

framework (Avro) that supports multiple languages and is easily parsed. ADAM relies on Spark

and HDFS for distributed computation, again restricting users to a single storage subsystem

type. In terms of performance, ADAM claims a ∼2× speedup over Picard in single node sorting,

whereas Persona achieves a ∼5× speedup. HDF5 [122] is a general-purpose hierarchical file

format that can also support a bioinformatics schema similar to ADAM. In contrast to AGD,

it restricts users to MPI for multiprocessing and is difficult to tune for high performance.

TileDB [99] is a system that stores multi-dimensional array data in fixed-size data tiles, similar

to HDF5 but superior in write performance and concurrency. TileDB “chunking” is similar to

AGD, but it employs a more rigid data model and is generally much more complex. Parallel

access is implemented using MPI as in HDF5. Furthermore, GenomicsDB [66] is built on

9Hadoop Distributed File System [114], a cluster data storage approach that shards files across cluster servers,
to facilitate a processing model where computation is “moved” to where the data is.
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TileDB to store genomic variant data in 2D arrays, columns and rows correspond to genome

positions and samples, respectively.

AGD differs substantially from these formats in that it is simple and requires only a way to

store keyed chunks of data. The AGD API to access chunk data can simply be layered on top

of different storage or file systems, using those system’s APIs for parallel access, distribution,

replication, etc.

Distributed alignment has been explored before, for example, CloudBurst [111], which uses

Hadoop MapReduce. They also find that the problem scales linearly and that distribution

can result in significant speedups. CloudBurst reports 7 million reads aligned to one human

chromosome in 500 seconds using 96 cores (5256 bases aligned per second per core), however,

a direct performance comparison is difficult because their alignment algorithm is different,

their read size is different (36 base pairs versus our 101), and their cluster architecture and

CPU is different. Cloud-Scale BWAMEM [42] is a distributed aligner that can align a genome in

∼80 minutes over 25 servers, but requires different file formats for single (SAM) or distributed

computation (ADAM). SparkBWA [26] is similar, scaling alignment out over a Spark cluster,

but not achieving linear scaling. ParSRA [60] shows close to linear scaling using a PGAS10

approach, but relies on FUSE to split input files among nodes. Eoulsan [72] uses MapReduce

to perform several pipeline steps and supports different aligners. Pmap [68] uses MPI to scale

several different aligners across servers and claims linear scaling.

We point out that the majority of related work in scaling alignment or other genomics pro-

cessing predominantly uses Hadoop or Spark frameworks over HDFS. These frameworks

employ the principle of moving computation to where data resides, usually because query

input data is small, and the data backing the response computation is large and relatively fixed.

In genomics, however, the opposite pattern is true: input query data is large (e.g. a patient’s

raw sequenced genome) and fixed backing data is relatively small (e.g. the reference genome).

In a small-scale or research setting, the Spark/Hadoop model may well be an efficient and easy

to use solution. However, we believe that in large-scale personalized health systems, where

thousands of genomes must be processed and stored, this approach will quickly become

inefficient.

Other efforts include SAND [93], where alignment is divided into stages for reads, candidate

selection, and alignment on dedicated clusters using algorithms similar to BLAST. There have

also been efforts to distribute BLAST computation itself [104]. Others have shown that aligning

reads to a reference genome scales linearly [63]. merAligner [58] implements a seed-and-

extend algorithm that is highly parallel at all stages but uses fine-grained parallelism more

amenable to supercomputing systems rather than the clusters or data centers that Persona

targets. GENALICE Map [123] reports 92 million bases aligned per second on a single machine,

faster than even SNAP, however, it is a closed-source proprietary product.

10Partitioned Global Address Space, a parallel programming model that uses a global address space over physi-
cally partitioned memory.
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In contrast to previous work, Persona and AGD provide a general high-performance framework

that facilitates linear core and server scale-out of not only alignment but many bioinformatics

processes. Persona has negligible overhead, and does not restrict users to specific storage

systems or parallel patterns. The dataflow architecture can support different models of par-

allelism, while the Python API allows user-composable pipelines. AGD provides scalable,

high-bandwidth access to data. Both Persona and AGD are also extensible, making it easy to

integrate new or existing tools and data schemas.

2.7 Conclusion

Current NGS technologies produce vast amounts of data that require a great deal of compu-

tation to analyze. Many current approaches to bioinformatics processing cannot keep up

with the growth of data from sequencing machines. This chapter has shown that the existing

state of the art algorithms and applications can, when embedded in the Persona distributed

dataflow framework, scale to the required levels.

Persona can align short reads at a rate of 1.353 gigabases per second using 32 commodity

servers, completing a 223 million read dataset in 16.7 seconds. When scaled up, Persona

executes alignment extremely cost-efficiently, at only 6.07 cents per aligned dataset. Persona

shows definitively that horizontally scaling across commodity clusters is the easiest, more

compute-efficient, and most cost-efficient method of performing the large-scale bioinformat-

ics computations of the future.

52



3 Optimizing Heap Performance with
Memoro

The preceding chapter has shown that it is possible to scale bioinformatics computations

in a compute-efficient and cost-efficient manner. While parallelism and scaling are crucial,

programs must also make efficient use of the local CPU resources — well-optimized software

can compound the benefits of scaling.

This is true for all software systems, but bioinformatics may, in fact, benefit disproportionately

from optimization. Many commonly used tools in the domain are open-source and are

developed by people who are not experienced software engineers. This can leave opportunities

open for optimization.

For example, when evaluating a particular program for integration into Persona, we felt

the program was underperforming, given its algorithm. We then used a profiling tool to

understand where the program was spending its time and why it was so slow. What we found

was surprising: the program spent over 30% of its run time allocating and deallocating memory.

This left us with many questions. Why was the program making so many allocations? Was it

actually using this memory? How was it using this memory? Which locations in the source

code were most responsible for inefficient heap allocations? More generally, is it possible to

automatically detect and quantify inefficient usage of memory of the heap?

To help answer these questions, for both bioinformatics and other software, we built a new,

detailed heap profiler called Memoro. Memoro uses a combination of static instrumentation,

subroutine interception, and runtime data collection to build a clear picture of exactly when

and where a program performs heap allocation and, crucially, how it uses that memory. Mem-

oro also introduces a new visualization application that can distill collected data into scores

and visual cues that assist developers in quickly pinpointing and eliminating inefficient heap

usage in their software. Our evaluation and experience with several applications demonstrates

that Memoro can reduce heap usage and produce runtime improvements of up to 10%, al-

lowing bioinformatics and other applications to make better use of the resources available on

commodity cluster machines.
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Bibliographic Note

This chapter is based on the paper Detailed Heap Profiling, previously published and presented

at the International Symposium on Memory Management in 2018 [40].

3.1 Heap Memory Use and Profiling

Modern software relies heavily on heap memory; even small applications can perform millions

of allocations at thousands of different locations within their code. Inefficient use of dynam-

ically allocated memory can increase both peak memory usage and program run time. For

example, unused memory that remains allocated wastes space, or a program in a loop might

continuously allocate and deallocate memory unnecessarily, wasting time. Understanding and

fixing memory allocation problems is not simple because libraries, frameworks, and packages

hide internal memory allocations inside abstraction boundaries, which makes discovering and

fixing problems challenging, particularly in large, complex systems. As a result, it is very easy

for inefficient heap usage and performance-adverse allocations to go completely unnoticed.

Even when a developer is actively looking for performance problems, they can also be difficult

to find. Development tools, however, can help find and fix these issues. This chapter describes

a dynamic tool called Memoro that tracks and analyzes memory allocations and usage, and

visualizes the resulting data, to aid in identifying and correcting memory allocation, use, and

deallocation defects.

x[7] = 42;
__memoro_record(x,28);

int* x = malloc(32);

Instrumented Binary Visualizer App

Heap Chunk

Metadata

Runtime

Compile + instrument 

Heap Usage 
History

Figure 3.1 – Overview of Memoro operation — The runtime intercepts allocation calls and
updates metadata at every access to a heap chunk. Accesses are detected by program instru-
mentation inserted by the compiler. Data is dumped to disk and visualized using a secondary
visualizer program.
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Most existing tools for profiling heap allocations provide only a simple, one-dimensional

perspective on memory allocation. Typically, they report how many bytes of memory are

allocated at each allocation call site and provide a mechanism for aggregating allocations

up a dynamic call graph.Tools for managed languages may also report statistics related to

the garbage collector. This data, while often quite informative, is lacking richness and the

insight necessary to understand many memory performance problems. Other methods of data

aggregation and presentations can offer deeper insights into program behavior. For example,

objects of the same type may be allocated at many points in a program; and to understand the

performance effects of these objects, it is often helpful to aggregate all allocations of the same

type of object. It is also valuable to know how efficiently a program uses the words of memory

that it allocates:

• How much has the program actually written and read the memory (i.e., was this alloca-

tion necessary)?

• How much of the allocated memory block was accessed by the program?

• Was the memory block write-only? Read-only?

• What was the ratio of reads to writes?

• Was the memory block accessed by multiple threads?

Finally, there are dynamic patterns of memory usage that strongly hint at program perfor-

mance problems. For example, allocating an insufficiently large region of memory and re-

peatedly growing it leads to unnecessary data copying. Or, freeing an object long after its final

access prolongs its memory block’s lifetime and increases memory usage.

Figure 3.2 shows a visual representation of some of these patterns. Chunks 1, 2, and 3 show

a typical buffer growth reallocation pattern. Chunk 1 lives only for a short time until it is

copied into newly allocated Chunk 2 and then deleted. Eventually, Chunk 2 is filled and is

copied into newly allocated and larger Chunk 3, and so on, until the maximum required size is

reached. This growth pattern is typical of common constructs like std::vector, which keep

their contents in a contiguous buffer and reallocate and copy when the current maximum size

is reached.

Chunk 5 in Figure 3.2 shows a pattern of continuous allocations and deallocations, where

chunks are allocated and then deallocated very quickly — they have short lifetimes. This

pattern can be observed when an allocation executes inside a loop. In this case, it would

be better to allocate one chunk outside the loop and reuse it, rather than waste time in the

allocator every loop iteration.

Chunk 4 illustrates other inefficient uses of a single chunk in time and space. It is read and

written for only a small part of its actual lifetime. It may be more efficient for the program to
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Figure 3.2 – Chunks of allocated heap memory visualized in time and space.

allocate it later or deallocate it sooner, to reduce aggregate maximum memory usage. Likewise,

in space, these reads and writes access only a small portion of the allocated bytes and many

bytes go unused. It may be possible for the program to allocate fewer bytes and reduce total

memory use.

While memory allocation in managed (garbage collected) languages has been heavily studied,

fewer tools are available for unmanaged languages, despite the increasing use of implicit

memory allocation in C++ and other native libraries. This chapter focuses on memory per-

formance problems in languages such as C and C++, with explicit memory allocation and

deallocation. Most recent research on explicit allocation has focused on correctness concerns

such as premature deallocation or data races. This chapter, by contrast, focuses on allocation

and deallocation performance problems, and other performance problems that stem from

the inefficient use of allocated heap memory.

Memoro is a new heap profiling system that provides a developer with a meaningful, quanti-

tative analysis of a program’s heap usage and indications of how efficiently it uses the heap.

Figure 3.1 shows an overview of Memoro. It uses a combination of function call interception,

static compiler instrumentation, and runtime data collection and analysis to capture detailed

information about heap allocations and the use of allocated memory. This detailed informa-

tion is then distilled into a set of scores that measure heap usage efficiency in several categories.
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A cross-platform Memoro visualizer presents both summary and detailed information in a

concise and effective format using graphs and other visual elements, allowing developers

to quickly pinpoint potential problems. The visualizer also works in conjunction with the

runtime to attach associated allocation object types to allocation points, allowing the user to

aggregate heap usage by object type, a feature missing in other heap profilers for native code.

While Memoro collects a large amount of data, careful static instrumentation keeps runtime

overheads at an acceptable level, similar to existing, less informative heap profiling solutions.

The Memoro implementation is based on the LLVM/Clang AddressSanitizer framework [112]

and is thus portable to any system that the sanitizer framework supports. Since the instru-

mentation and runtime are in the compiler back-end, other language front-ends should be

able to use Memoro as well.

All of Memoro (the compiler instrumentation and runtime as well as the visualizer software) is

open source and available [24].

3.2 Related Work

Memoro extends the functionality of existing profilers, as heap profiling is not a new concept.

This section will review existing systems and literature in the area of heap profiling and

analysis.

One of the best-known systems for profiling program behavior is Valgrind [96]. Valgrind is

a framework for the dynamic analysis of binaries. It translates a binary at runtime into an

intermediate representation and allows other tools to insert instrumentation to analyze and

perform measurements on the executed instruction stream. Massif [19] is a tool that uses

Valgrind for heap profiling. It tracks how many bytes of memory each source code line has

allocated at specific points in time (snapshots). Third-party tools exist to visualize Massif data,

but since it is snapshot-based, high-frequency events can be missed if they happen between

snapshots. Memoro, on the other hand, continuously monitors all heap events, retaining

maximum data fidelity. Any aggregation or windowing of data is done interactively after

profiling a program. Another Valgrind tool called Dynamic Heap Analysis Tool (DHAT) [21]

attempts to analyze heap usage efficiency and collects data similar to Memoro. DHAT only

produces text output that is often difficult to understand, and it does not allow aggregation

by data type. In addition, for large programs with many allocations, DHAT provides no

mechanism to help programmers identify the most inefficient allocation points. Another

drawback of Valgrind-based solutions is their high overhead, which can be upwards of 50×.

Other heap profilers intercept and redefine allocation routines in a runtime library that can be

used with any executable. Google Perftools [15] uses this approach; as does HeapTrack [16],

a Linux heap profiler; and MTuner [124], a Windows heap profiler. These tools have higher

resolution than Massif as they do not take snapshots, and have much lower runtime overhead

because they only intercept allocation functions. Unlike Memoro, they do not collect any in-
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formation as to how a program used its heap memory, as they do not add any instrumentation

capable of gathering and recording memory references.

In managed languages, Shaham et al. profiled Java heap allocations to perform more timely

garbage collection and reduce memory consumption [113]. Chis et al. use a ContainerOr-

Contained relation to detect high-impact patterns within Java heaps [43], some of which are

similar to the patterns that Memoro detects. Blended Program Analysis [49] also makes use of

static analysis in conjunction with a dynamic representation of the program call structure to

better understand Java application performance.

Several tools use static instrumentation to analyze programs to find memory access bugs

like overflows and out-of-bounds. Of particular note is the AddressSanitizer framework [112],

which we have used to build Memoro. AddressSanitizer uses static instrumentation and

a specialized allocator to detect memory errors such as out-of-bounds accesses and use-

after-free. Other tools built on AddressSanitizer include a leak detector and a race condition

detector.

DINAMITE [90] is a system that also uses compile-time instrumentation to trace memory

accesses, allocations, and function calls, to analyze memory performance bottlenecks. It does

not focus particularly on heap memory, and suffers from high overhead as well (36× to 537×,

depending on the level of analysis).

GCSpy [105] is a tool that provides visualizations of the heap, focusing on garbage collected

languages. A server API implementation is required for languages other than Java, and it does

not appear to analyze how efficiently a program uses its heap objects.

Overall, Memoro goes beyond existing solutions by providing detailed profiling and heap usage

efficiency analysis in a low-overhead package. Most heap profilers for native languages use

allocation routine interception to build a time-based log of heap allocations and deallocations.

While this approach can track heap usage through time, it is typically the only data collected

and displayed to a developer. The developer thus lacks insight into how their program actually

uses the bytes that it allocated. Gleaning this information from source code, by trying to guess

what objects were accessed where and when, can be time consuming and error-prone, and it

is often impractical on large projects in which developers may be unfamiliar with a majority of

the code.

In addition to all of these concerns, existing profilers lack a means of mapping heap allocations

to object types. Since objects of the same type can be allocated at different places in a program,

without this information, there is no easy way to view their heap usage holistically.

Finally, there are few if any heap profilers (or associated data visualization tools) that are truly

cross-platform.
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3.3 Memoro Profiler

The Memoro profiler system provides developers with data, analyses, and visualizations

that allow quick identification and diagnosis of inefficient heap usage and poor allocation

strategies.

Inefficient heap usage can occur in many ways. For example, a program may allocate memory

that it never writes or reads; it may be possible to eliminate these allocations. Similarly, a

program may allocate memory that it only writes and never reads. A program may allocate

a chunk of memory but only use a small fraction of it, effectively wasting the rest. Objects

may also live on the heap long after their last reference, taking up space that could have been

reused. Alternatively, objects may be allocated long before their first usage, wasting memory

in another manner.

Poor allocation strategies include repeatedly allocating and deallocating an object and succes-

sively growing a buffer to larger sizes. All of these dysfunctional allocation strategies can have

an impact on performance, both directly because of the time spent in allocation routines and

indirectly by fragmenting the heap and making subsequent allocations more expensive.

Any program transformations to boost heap usage efficiency described in this chapter are still

ultimately at the discretion of a developer. A program transformation is correct only if it does

not change program behavior on all possible execution paths. Since dynamic analysis tools

capture program behavior only along a subset of these paths, we assume that the developer

will examine the program and find a correct transformation. It may be possible to build a tool

to analyze and implement these restructurings, but that is beyond the scope of this thesis.

In this section, we will describe the data that is captured by Memoro and how it is collected.

Analysis and visualization of the data is described in Section 3.4. We provide the following

terminology and definitions to avoid confusion:

• Allocation Point: a location in a program that explicitly allocates memory (e.g. malloc,
new), fully identified by its dynamic call stack trace. The stack trace disambiguates

different call sequences leading to an allocation point [30] and provides the basis for

aggregating chunks with the same call context. It is unique up to intra-procedural

control flow and loop iteration counts. We did not find path-sensitive information to be

necessary.

• Chunk: A region of heap memory returned at an allocation point. An allocation point

produces multiple chunks in consecutive calls.

• (Chunk) Metadata: The data pertaining to a specific chunk.
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3.3.1 Data Collection

Similar to some other profilers, Memoro builds a time-indexed log of all heap allocations

and deallocations in a program. This is done by intercepting calls on the standard allocation

routines (new, malloc, etc). For each allocation, the stack trace is logged [30] along with the

allocation size and the time since the start of program execution. Time is measured in CPU

clock cycles1 Each unique allocation point is associated with all chunks that it allocated over

the execution of the program, including the chunks that were freed.

To discover inefficient heap usage and multi-thread accesses, additional information is re-

quired about how and when a program accesses heap chunks. More specifically, Memoro

records the following metadata values for each chunk allocated:

• The time at which this chunk was allocated (8 bytes).

• The chunk size (8 bytes).

• A unique ID denoting the allocation point stack trace2 (4 bytes).

• The time of the first memory access to the chunk (8 bytes).

• The time of the last memory access to the chunk (before deallocation or program

termination, 8 bytes).

• The access interval, defined as the address range of bytes that were accessed within the

chunk. This is stored as two integers representing the upper and lower index access

bounds (4 + 4 bytes). This measure is a trade-off from a more full representation of

“actually accessed” memory, which would require a minimum of one bit per byte to

indicate whether the program accessed the byte in question. Currently, we consider this

an unacceptable overhead and so use the access interval as a proxy.

• The number of reads and number of writes to the chunk. The maximum of this value is

configurable, but larger maximums can increase the metadata size overhead as more

bits are required to store larger numbers (currently 1 + 1 bytes). Memoro will record up

to the maximum representable number of the field (e.g. up to 256 for an 8-bit field), at

which point it saturates and does not “roll back” to zero.

• Whether the chunk was accessed by multiple threads (1 byte). This requires accessing

the ID of the current thread by the runtime, which acquires a global lock, affecting

performance. The collection of this data is off by default.

• The thread ID of the thread that created this chunk (4 bytes).

1In recent multicore architectures, the timestamp counter (accessed via rdtsc on Intel processors) is syn-
chronized across cores, making this approach time-distortion free. Although the execution of the timestamp
instruction can be reordered by an out-of-order processor [18], introducing uncertainty, the events that we log are
relatively infrequent and unlikely to be affected by this.

2The actual stack traces are stored in a separate hash table structure.
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One other field is required by the allocator to accomplish its function:

• Whether the chunk is currently allocated or not (1 byte). Not strictly required for memory

profiling, but required for the correct operation of the allocator.

The total byte size of one metadata record is current 52 bytes. This is already a large amount

of metadata, however, the actual memory overhead will vary from program to program,

depending on the actual allocations it makes. The memory overhead of allocating a 1-byte

chunk will be extremely high, however, the overhead of a contiguous 1 GB array would be

extremely small, since both allocations have the same amount of metadata.

3.3.2 Instrumentation

To collect this information, memory accesses in a program are instrumented. This means that

some mechanism is used to run additional, specialized code at instrumentation points in the

program to extract information about the program state. In this case, an instrumentation point

is any load or store operation in the program, because we are trying to record information

about heap accesses.

There are two ways to implement this instrumentation mechanism. Dynamic instrumentation

reads the instruction stream of the program as it is executed, inserting instrumentation

at runtime under defined conditions. Static instrumentation uses a modified compiler to

insert instrumentation code at predefined points in the program binary itself. Both methods

have advantages and disadvantages. Dynamic instrumentation (a good example being the

tool Valgrind, discussed earlier in Section 3.2) is generally more costly in terms of runtime

overhead, but it has the advantage that program source is not necessary and it need not be

recompiled to be instrumented. Static instrumentation requires modifying a compiler to

insert the instrumentation code and therefore requires access to the program source. However,

its overhead is generally much smaller because there is no layer between the hardware/OS

and the instruction stream. Both methods can easily access and record the required program

state for a tool like Memoro.

Given these two options, we believe that users profiling program performance will most likely

have the ability to compile the source. Even with Valgrind, debugging information is necessary

to interpret the recorded data (such as stack traces). Low overhead also makes for faster

debug/test cycles for users and allows the instrumented program to run in more contexts.

Therefore, we chose to use static instrumentation to implement Memoro.

A modified compiler inserts instrumentation code at each memory access in the user’s pro-

gram. In effect, every memory access is transformed from:

*address = ...; // or: ... = *address;
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to:

if (IsHeapChunk(address)) {
MemoroRecord(address, kAccessSize, kIsWrite);

}
*address = ...; // or: ... = *address;

Essentially, the compiler inserts a runtime function call before a memory-accessing instruction.

First, a predicate provided by the runtime system determines if an address points into heap

memory. The details of this predicate evaluation are provided in Section 3.3.3, but briefly, it is

possible because the runtime system implements the memory allocator and is aware of all of

the heap address spaces. If the predicate evaluates true, the runtime records the access to a

chunk in the chunk’s metadata. The memory access executes as normal in either case, and the

actual program semantics are unchanged.

In the compiler, the instrumentation pass runs after the optimization passes, to avoid instru-

menting memory accesses that will be optimized away. This approach to instrumentation is

similar to other tools in the sanitizer framework [112], and in fact, the Memoro instrumenta-

tion compiler pass and runtime is built on the sanitizer framework, which itself is integrated

into the LLVM compiler system [76].

Because we are only interested in heap memory accesses, not all memory accesses need

to be instrumented. There are several regions of memory in a program: global, stack, and

heap. Ideally, we would only instrument the heap accesses 3. However, in the LLVM IR, global,

stack and heap memory are all accessed via the same instructions (loads and stores), so it

is necessary to examine the pointer operand to determine which type of memory is being

accessed. In many cases, it is easy to deduce that a reference points to a local stack object

produced by alloca, the stack allocation instruction; in this case, we omit instrumentation

because we are guaranteed that the memory is not in the heap.

Other cases are more complex. For example, an object may be allocated on the stack, and a

pointer to the object passed to another function. It is difficult to tell at compile time what type

of memory a pointer points to without inter-procedural analysis similar to escape analysis [36].

Without this analysis, accesses must be instrumented conservatively and pointers checked at

runtime, or we risk missing potential heap accesses.

The current instrumentation pass logic follows a single link in the static single assignment

(SSA) of the LLVM IR to determine if an access is to stack-allocated memory. By examining

whether the pointer operand came directly from a stack allocation (alloca) instruction, we

can identify references to stack-allocated variables and avoid instrumenting a large number

of loads and stores, reducing the instrumentation and runtime overhead. More complex

3This is not to say that stack objects are not interesting, but they are beyond the scope of this thesis. Future
work could integrate stack memory analysis into Memoro.
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computations that produce pointers to the stack are currently not fully analyzed and their

memory access is instrumented. In the future, a more thorough propagation analysis might

eliminate more unnecessary instrumentation.

Runtime checking of pointers is one of the main causes of Memoro overhead, as we will see in

more detail in our evaluation in Section 3.5.

Type Extraction

We have found that it is useful to know the data type of a chunk when visualizing and analyzing

collected data. For example, objects of a class such as a tree node may be allocated at several

different points in a program, and it is often convenient to aggregate these allocations and

treat them as if they occurred at one call site. This was shown by our motivating example

bioinformatics program — it was allocating the same object type in many different places,

usually in call stacks deep in Standard Template Library (STL) containers. It was extremely

difficult to see the aggregate effect of this particular object type on heap usage using standard

profilers. To this end, the Memoro instrumentation pass in the compiler associates type

information with allocation points.

Many allocations correspond semantically to allocating typed objects or arrays of typed

objects, even though the allocate routines return void* (e.g. new or malloc). In the LLVM IR,

an allocation function call is usually followed by a cast instruction. The type for a particular

allocation point can be inferred from this cast. In the absence of a cast, a byte type e.g.,char*
is assumed. In the rare case of multiple cast instructions, the first type that is not a byte type is

preferred.

The compiler pass writes (code location, type) pairs to a file, which the visualizer uses to

associate types with allocation points in its display of Memoro data. Occasionally, in templated

code or at allocation code in header files, we see multiple different types mapped to one

allocation point. This occurs because the compiler scope is limited to a single compilation

unit i.e.,a source file, and an allocation point in a header can, therefore, appear in multiple

places. Rather than make complex modifications to the compiler, the instrumentation pass

emits all types encountered for an allocation point. The visualizer, having access to complete

stack traces from the runtime system, will display the first type that is compatible with the

stack trace. Although this technique is a heuristic, we find it is correct in the vast majority of

cases.

3.3.3 Runtime System

The runtime system for Memoro provides two types of functionality: 1) a memory allocator

to keep track of which address ranges are heap-allocated, and 2) mechanisms to log and

store metadata corresponding to individual heap chunks. Metadata for a chunk includes the

chunk size, where it was allocated (stack trace), timestamps recording the times of the first
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and last reads/writes to the chunk, the byte access interval, the number of reads and writes,

and whether the chunk was accessed by multiple threads (Section 3.3.1). This data must be

updated every time a chunk is accessed.

As described above in Section 3.3.2, memory references in the program are conservatively

instrumented, and not all instrumented references will be to heap memory. The runtime must

first determine whether the pointer in question is pointing to memory owned by the heap, and

then update the associated chunk metadata. To keep runtime overhead low, both the pointer

ownership check and metadata lookup and update must be done quickly, as memory accesses

occur frequently in programs.

The amount of metadata per allocated heap chunk, currently 52 bytes, is large because times-

tamps need to be 64 bits. 64 bits are required since time is measured in CPU cycles; even

unsigned 32-bit counters would overflow before most programs finish executing. Chunk

metadata can be stored in memory, which is fast, but sometimes the region for the stored

metadata of freed chunks needs to be expanded, which involves copying and is expensive. We

believe a better idea would be to log data to disk at this point, but care must be taken to ensure

the runtime does not block.

Our runtime system borrows from the AddressSanitizer framework, whose runtime imple-

ments both the allocator and the allocation routine interception. The allocator consists of two

components: a thread-local primary allocator, and a shared secondary allocator. The primary

can allocate chunks efficiently without locking, but is limited in the alignments/sizes of chunks

it can allocate. The secondary is a fallback that can allocate any size/alignment, but must be

locked to ensure safety when accessing shared data structures used to allocate/deallocate

chunks, and when determining pointer ownership.

The primary allocator maps up-front a large portion of address space from the OS via mmap.

Regions, divided into freelists of chunks of varying size, utilize this space. Metadata for each

chunk resides at the upper end of the address space of a region. The metadata for a chunk is

thus accessed at a fixed offset, which is fast and does not require conditional branches. Because

the primary allocator is aware of its address space, pointer ownership can be determined in

constant time by a simple boundary comparison. Figure 3.3 shows a diagram of the primary

allocator memory layout.

The secondary allocator is meant to service large and rare allocations, and will mmap chunks

and metadata directly, with the metadata being placed in extra space at a page boundary.

This requires locking for thread safety. The chunk metadata, however, can still be accessed

in constant time because it is at a known offset. However, because the set of chunks is now

disjoint, the secondary allocator must traverse the array of chunks when determining whether

it owns a pointer. The allocator must also be locked to do so safely. Therefore, programs

that allocate large chunks accessed by multiple threads will experience higher than average
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Figure 3.3 – Primary thread-local allocator memory layout. A contiguous block is divided into
regions of defined chunk sizes, with metadata occupying the end of a region’s address space.
This allows both chunks and metadata to be looked up in constant time via offset arithmetic.

overhead4 due to linear traversal, and lock contention in the secondary allocator. Figure 3.4

shows a diagram of the secondary allocator memory layout.

To reduce this overhead, Memoro provides the option to use a modified allocator that avoids

locking while determining pointer ownership or looking up metadata. This relies on the

assumption that the user has correctly synchronized accesses to shared memory, and will

not deallocate shared chunks while another thread is accessing them. If this happens, the

runtime may crash as it tries to access metadata for a chunk that has just been deallocated.

Indeed if the program does contain such race conditions, it might crash anyway. Memoro is

not designed to detect such cases, however, another sanitizer tool, the Thread Sanitizer, is

designed for just this problem.

There is a trade-off to removing locking in the secondary allocator, however. During a pointer

ownership test, unrelated chunks that are allocated/deallocated will modify the array of

chunks that the allocator manages, causing the pointer ownership test traversal to possibly

miss an owned pointer, resulting in a false negative and a missed access to a heap chunk. This

can happen because of how the secondary allocator manages its array of chunks. Essentially,

when a chunk is deallocated, the “hole” left in the array of chunks is plugged with the last

element of the array, and the size count is decremented. If this deallocation operation happens

4This is simply an artifact of the current implementation; in Section 3.6 we discuss other allocator schemes and
tradeoffs that may alleviate this overhead.
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Figure 3.4 – Global secondary allocator that handles allocators larger than the primary’s max
chunk size. Chunks are mmap’d directly and stored in an array, leading to O(n) lookup time.

while a pointer check is in progress and the check (a linear traversal) has passed the location

of the deallocated chunk, it will likely miss the last chunk that was used to “plug the hole” in

the array. If the missed last chunk did indeed contain the pointer being checked, the memory

access to that chunk will not be counted.

Program semantics and safety, however, are preserved, provided the user’s program has no

race conditions as described above. The only side effect is the slight chance that a few read or

write operations will not be counted by the runtime. We examine and quantify the overhead

and benefit of the allocator modifications in more detail in Section 3.5.

While active chunk metadata is stored and managed by the allocator, freed chunk metadata is

copied and stored in a separate memory-mapped array associated with the corresponding

allocation point. These are stored alongside the allocation point stack traces themselves in a

hash table structure. At program exit, a routine compresses and records the chunk metadata

array of each allocation point into a compact binary file. The metadata itself, as well as the

runtime storage of active and freed chunk metadata, will lead to slightly higher memory use

compared to uninstrumented programs.

The runtime system also intercepts a variety of standard library calls that access memory (e.g.

memset, memcpy), as opposed to providing an instrumented standard library. Many of these

interceptions aggregate multiple accesses (individual loads and stores) into one large access,

which helps reduce overhead.

The compiler modification source and binaries are available [24].
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3.4 Memoro Visualizer

While the instrumentation and runtime system collect a large amount of raw data, the Memoro

visualizer provides insight into program behavior using that data. As the name suggests, the vi-

sualizer makes heavy use of visual cues, produced by aggregating and analyzing data, to direct

a developer to areas of a program that display inefficient usage or performance-detrimental

allocation patterns. As many inefficient usage and allocation patterns can be difficult to see in

raw data, Memoro employs a new technique to distill and quantify these patterns into scores.

Scores form the primary analysis that helps prioritize the visual cues used in the visualizer.

These scores run on a scale between 0 and 1, where 0 is undesirable or inefficient behavior and

1 is the most desirable, efficient behavior. Alongside data visuals, scores provide a developer

with a specific indication of the problem with heap usage and the ability to quickly pinpoint

the locations that are most likely responsible for poor behavior/performance. The following

subsections describe the scoring algorithms, the visual displays that use the scores, and how

they inform a developer.

3.4.1 Data Analysis and Scoring Algorithm

Memoro takes into account several aspects of heap usage when measuring how efficiently a

program has used the heap, generating scores quantifying lifetime, usage and useful lifetime.

Lifetime

Lifetime refers to how long heap chunks are active before being freed. Memoro pays par-

ticular attention to short lifetime chunks, especially those that are grouped tightly in time.

These patterns indicate regions of code in which chunks are constantly being allocated and

deallocated, typically with very few reads and writes to the chunks. An example is when a

developer (perhaps mistakenly) explicitly creates an object inside an inner loop. Often, these

objects are not explicitly malloced, but rather are a stack-allocated container object whose

constructor allocates heap memory. In a tight loop, repeatedly allocating memory, particularly

if not heavily used, can have significant performance impacts.

Memoro builds a lifetime score by looking for short lifetime chunks that were allocated close

together in time from the same allocation point, where “short” is a modifiable parameter. To

build these groups of short lifetime chunks, the array of all chunks for an allocation point is

sorted by time and traversed. Any chunks allocated within some threshold time of each other

are added to the same group. The threshold interval is a parameter, with a default of 0.1% of

total run time. Then, a score Sg for each group G in allocation point A is computed as follows:

Sg =

∑
C∈G Cl

|Cg |
Gl
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where Cl is lifetime of chunk l , |Cg | is the number of chunks in group g , and Gl is the group

lifetime. The group lifetime is defined as the time difference between the earliest allocation

and the latest deallocation.

The lifetime score Sl for allocation point A is then computed as:

Sl =
∑

G∈A Sg

|G|

where |G| is the total number of groups.

In essence, the average chunk lifetime of each group is normalized by the group lifetime Gl

and the allocation point lifetime score Sl is the average of all the group scores, resulting in a

normalized value between 0 and 1, where 1 is best and 0 is worst. The group normalization

avoids the situation in which a few abnormal short-lived allocations exert a strong influence

on the final score.

Usage

The usage score for an allocation point provides a measure of how well a program makes use

of the bytes of memory that it allocates. In an ideal situation, every allocated chunk will be

fully written and read by a program, preferably many times (good reuse). A poor usage score

can indicate that areas in a heap chunk are unused or write-only, or that only a fraction of

the bytes of a heap chunk are read or written. For example, a larger than necessary buffer

may contain several unused elements. Eliminating these can reduce the total heap usage and

improve allocator behavior.

The usage score Su is computed for an allocation point A as follows:

Su =
∑

C∈A Uc ·CB y tes Accessed∑
C∈A CTot alB y tes

Uc =
{

0 Cr d = 0 || Cwr = 0

1 other wi se

Uc is the Useless function, which returns 0 if a chunk has no reads or no writes. The usage

score is thus a normalized average of the number of bytes accessed by a program relative to

the total bytes allocated. To keep overheads reasonable, the profiler does not collect the full

byte-level access statistics, but rather an access interval (lowest and highest accessed location),

which is updated whenever a chunk is accessed.
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Useful Lifetime

Even when chunks on the heap live for a long period, a program may not make good use

of them during their entire life. Chunks may be allocated and not written or read for a long

period, or vice-versa, chunks may be allocated and used but then sit idle for a long time. Heap

usage over time could be reduced by allocating these chunks when they are needed and freeing

them when they are no longer needed. The useful lifetime score quantifies this concept for an

allocation point:

Sul =
∑

C∈A Cacti vel i f e

Cl

|C |

where active life is the time difference between the first and last accesses to the chunk (recorded

via instrumentation) and Cl is the total chunk lifetime. The sum is then normalized by the

number of chunks to produce another score between 0 and 1.

Finally, global scores are calculated by determining the geometric mean of each score across

all allocation points. Variances of global scores are also calculated to give the programmer an

estimate of the score distribution across the program.

Discussion

These scores are intended to provide developers with clear, digestible measures of how effi-

ciently their program uses the heap. They do not always convey an unequivocal truth and can

be context-dependent, occasionally requiring a manual examination of a program. For exam-

ple, different inputs or workloads for a given program may affect which bytes are accessed

in a chunk or how long a chunk lives. In general, it is not possible to modify a program to

achieve a score of 1.0. However, we have found in practice that the scores provide very helpful

information to pinpoint heap usage issues. The case study in Section 3.5.2 provides some

examples.

Other Inferences

Memoro will make several other metrics based on the collected data and display them for

each allocation point, to help a developer prioritize issues. These include:

• Top percentile of bytes allocated: Memoro marks an allocation point if it is in the top

90th percentile of maximum heap usage.

• Top percentile of chunks allocated: Memoro marks an allocation point if it is in the top

90th percentile of total chunks allocated.

• Read- or write-only chunks i.e.,useless chunks.
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• Runs of monotonically increasing allocation sizes, indicative that early allocations were

too small.

3.4.2 Visualizer Application

Modern applications, even small ones, can perform millions of allocations at thousands of

different locations. Presentation and meaningful analysis of this mountain of data is crucial to

properly interpreting and quickly diagnosing problems. The visualizer application of Memoro

is a separate tool that provides a visualization of the data that the instrumentation and runtime

system collects. A global view gives a developer a bird’s eye view of the entire dataset, with the

option to “zoom in” to specific data points in the detailed view. In both views, the user can

filter and aggregate by stack trace function name, time interval, or object type. Memoro scores

are used throughout to give intuitive visual cues to the user, in order to guide them to areas of

interest.

Global View

The global view aims to provide a developer with an overview and summary of a program’s

behavior as a whole. This is achieved via two visuals, a flame graph [61] (Figure 3.5) and a line

graph showing the total (aggregate) heap usage across the program lifetime (Figure 3.10). A

flame graph is a visualization that shows stack depth in the y axis, and stack frames in the x

axis, sized proportionally according to some value, typically the number of samples in a CPU

profile. The proportional size of a frame is equal to the aggregate size of all of its children

plus the frame’s value. For example, Figure 3.5 shows a flame graph in which the frame sizes

are proportional to the number of allocations over the program lifetime. Function main in

contrived.cpp contains three allocation points, one of which is contained deeper inside

a std::vector::push_back() call. Flame graphs are useful because they give an overall

summary of how the memory usage occurs at different points in a program, over its entire

execution.

The Memoro flame graph can display several categories of data values, including the total

number of allocations per allocation point (as seen in Figure 3.5), and total bytes per allocation

point at a given point in time (selectable by the user). This is similar to memory flame graphs

described in [61]. The flame graph “tips” correspond to unique allocation points, and are

colored with a severity indicator, a visual cue that maps Memoro scores for that allocation

point to a set of colors. The mapping is from the geometric average of all scores to a set of

12 colors, roughly, from blue to green to yellow to red. Global scores for lifetime, usage, and

useful lifetime are also displayed along with total allocations, maximum heap usage, total

allocation points, and the approximate time the program spent in allocation routines.
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Figure 3.5 – Visualizer flame graph representation, showing a global view of all allocation
points in the program. It can be organized by number of allocations (shown here), or by byte
usage at any point in time. The severity indicator that color codes an allocation point score
is mapped to the flame graph allocation points. Long stack traces can be viewed fully in the
bottom left, or via the tooltip.

3.4.3 Detailed View

While the global view can identify problematic allocation points, a developer may need to

examine these points in more detail. The detailed view allows a developer to drill down and

examine individual allocation points, view their allocation patterns over time, and easily iden-

tify the cause of low scores. Figure 3.6 shows how individual allocation points are displayed,

along with their aggregate heap usage – the line graph overlaid on the global aggregate graph.

This makes it easy to see how individual points contribute to the total heap usage. The severity

indicator in the top right corner of each allocation point again provides a visual cue that

flags points with poor overall scores. Full stack traces are also displayed, with the ability to

open source files and jump to the corresponding line of code. Statistics and inferences for

an allocation point are displayed separately, including their scores. Allocation points can be

sorted by heap usage, average score, individual score values, and the number of allocations.

Figure 3.6 – Visualizer allocation point representation, showing number of chunks allocated,
peak heap usage, object type, severity indicator, and aggregate line graph.

71



Chapter 3. Optimizing Heap Performance with Memoro

Figure 3.7 – Heap chunk allocated inside a loop, written/read, and freed. Time progresses from
left to right; the length of a chunk represents its lifetime. These chunks correspond to those
above in Figure 3.6 (middle, yellow indicator).

Figure 3.8 – std::vector reallocation pattern, with darker chunks indicate larger byte sizes,
and the chunk tooltip.

Allocation patterns over time can also provide a visual indication of poor allocation strategies

or inefficient usage that are not always obvious in an aggregated line graph or simple statistics

like the number of chunks allocated. Because programs can make many allocations, fidelity

can be lost when aggregating data. To this end, the visualizer also displays individual chunks

of an allocation point as blocks, whose length corresponds to lifetime and whose color shade

corresponds to their size. Black vertical lines indicate the access interval as recorded by the

runtime system. Figures 3.6-3.10 show some examples of this display, including common

inefficient patterns in an actual program, all of which are actual screenshots from the Memoro

visualizer.

In Figure 3.7, chunks are allocated inside a loop, where they are written, read, and then freed

– and then allocated again in the next iteration. Figure 3.8 shows the reallocation pattern

for a std::vector. As integers are pushed into the vector, it allocates a larger array, copies

existing data, and frees the old, smaller array. This happens several times as the vector

grows exponentially. The visualizer marks larger byte size chunks with darker colors. The

visualizer tooltip also shows a developer additional detailed information about individual

chunks, including the number of reads, writes, size, access interval, and whether or not the

chunk was accessed by multiple threads. Figure 3.9 shows chunks allocated and freed in a

loop with very short access intervals, indicating low useful lifetimes. Finally, Figure 3.10 shows

the combined aggregate heap usage across time.
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Figure 3.9 – Low useful life chunks, as indicated by extremely short access interval, indicated
by the black bars.

Figure 3.10 – The aggregate total heap usage graph. A cursor shows the exact cycle time and
total heap usage at that time.

As can be seen in Figure 3.6, the scores for each allocation point are again translated to a

clear visual cue for the user — the color-coded severity indicator in the upper right corner

of each allocation point displayed. We can see that the third has the lowest score because

it allocates short lifetime chunks that also have a short useful life, while accessing only four

bytes out of 400, giving a low usage score as well. In contrast, the first point is much better,

allocating longer lived chunks that have a long useful life and in which every byte is accessed.

Note that this point could be reduced to a single allocation had we called vector::reserve()
before pushing values. Figure 3.11 shows a full screenshot of the detailed view of the Memoro

visualizer application.

The visualizer also contains a comprehensive filtering system that allows a user to filter data

by keyword in stack traces, by allocation data type, or by time intervals. Aggregates, graphs,

and visuals, in both global and detailed views, are updated according to the filters applied.

The visualizer GUI (Graphical User Interface) is implemented using Electron [5], a framework

for building cross-platform applications using Javascript and CSS. The result is a responsive

and visually pleasing product, similar to a modern web app. However, with larger programs,

profiling can generate a significant amount of data — millions of data points, across many

thousands of allocation points. Javascript is not particularly well suited to the efficient pro-

cessing of large amounts of data, so a C++ data processing backend is used to perform all data

manipulation, including file loading, aggregation, score generation, and filtering. A minimal
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amount of data required for display is returned to the JS frontend, keeping the visualizer

responsive and fluid.

The visualizer application, as with the rest of Memoro, is open source and available [24].
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3.5 Evaluation and Case Study

In this section, we provide an evaluation of the runtime and instrumentation overhead of

Memoro, as well as a case study showing how Memoro can lead to meaningful improvements

in different programs, and in particular some bioinformatics programs. Such improvements

help programs make more efficient use of available commodity cluster hardware, furthering

the goal of parallel and scalable bioinformatics systems.

3.5.1 Instrumentation and Runtime Overhead

We first evaluate the effectiveness of static analysis at reducing the number of memory ref-

erences that must be instrumented (Section 3.3.2). Recall that our approach follows a single

link in the LLVM SSA graph to see if a load or store is accessing a stack-allocated value. If this

is the case, the memory accesses can safely be left uninstrumented, as we are guaranteed

they are accesses to local stack variables. On average, in all programs in our study, we found

that ∼66% of memory access passed to the runtime were heap accesses. This means that

∼34% of accesses could have been left uninstrumented, thereby reducing overhead. However,

as discussed in Section 3.3.2, this improvement requires more advanced, inter-procedural

program analysis.

Next, we evaluate the system runtime overhead, that is, how much more time it takes to

run a program instrumented with Memoro than the unmodified program. Runtime system

overhead is heavily dependent on how a program uses its heap. To break down this overhead

and understand which factors influence it, we use Memoro to profile two large, popular

open-source programs — LevelDB [59] and Memcached [20]. LevelDB is exercised using its

internal benchmark utility (db_bench) running the fillseq benchmark, which sequentially

writes a series of values to the database. The read or write access ratio does not matter to

Memoro, and does not influence overhead. Any access to heap memory will have the same

amount of overhead generated, regardless of whether it was a read or write. What influences

Memoro overhead is the instruction mix of the program, in particular, the ratio of read/write

instructions to everything else. More reads and writes leads to more instrumentation points,

which leads to more runtime evaluations and higher overhead.

For Memcahed, a load generator and measurement tool called Mutilate [77] is used to create

Memcached get requests over 5 seconds, while Memcached itself is run with a single thread.

Mutilate is run with default values. LevelDB performance is measured in MB/s while Mem-

cached throughput is measured in Queries per Second. Experiments are run locally on a server

with two Xeon E5–2680v3 CPUs at 2.5 GHz with 256GB of RAM running Ubuntu 16.04. Results

are show in Table 3.1.

First, we examine the effect of the aggregate static instrumentation on performance, by

replacing runtime instrumentation library with empty functions, and hence recording no

data. Memcached has 1.1× lower throughput, while LevelDB has 2.1× lower throughput. We
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Memcached (Q/s) LevelDB (MB/s)

Unmodified 52184.4 55.5
No-op Inst. 47668.3 (1.1×) 26.8 (2.1×)
Full Collection 18051.4 (2.89×) 1.8 (30.8×)
No-lock Sec. 22521.8 (2.32×) 4.1 (13.5×)

Table 3.1 – Throughput and slowdown of Memcached and LevelDB when unmodified, with
no-op compiler instrumentation only, with full runtime data collection, and with the modified
non-locking secondary allocator to reduce overhead.

find that this is primarily a function of the number of instrumentation points — LevelDB has

significantly more loads and stores to be instrumented; at the LLVM IR level, LevelDB contains

39% loads and stores as opposed to Memcached’s 19% loads and stores. As mentioned above,

the program instruction mix is responsible for the difference in overhead between the two

programs.

Next, we fully enable Memoro instrumentation and data collection. There is a large difference

in overhead cost between the two programs, ranging from 2.89× for Memcached to 30.8× for

LevelDB. To understand why, we use a standard CPU profiler (Intel VTune 2017) to see where

time is spent. Profiling indicates nearly half of the time in LevelDB is spent in the secondary

allocator acquiring locks5 to safely record Memoro metadata. As it turns out, LevelDB uses an

arena allocator that obtains large memory blocks via malloc. These allocations are served by

the secondary allocator in the Memoro runtime, as the primary thread-caching allocator is

unable to handle such large allocations. The remainder of the overhead (and the majority of

overhead in the Memcached experiment) comes from looking up the metadata for a chunk

and updating statistic counters.

This result prompted us to modify the secondary allocator to eliminate locking when deter-

mining pointer ownership, as discussed in Section 3.3.3. The final row of Table 3.1 shows

that with the modified secondary allocator with lock-free ownership checking, overhead for

Memcached is slightly reduced, while overhead for LevelDB is reduced by over 50% to 13.5×.

Overhead for LevelDB is still higher primarily because the ownership check in the secondary

allocator is linear in complexity, exacerbated by the fact that LevelDB had a high number of

instrumentation points. Furthermore, of all our tests, LevelDB had the lowest proportion of

heap accesses relative to all memory accesses, meaning that many accesses to non-heap data

were being checked by the runtime. This results in a large number of full traversals of the

secondary allocator chunk list for LevelDB, to confirm that the accesses are not in the heap.

Recall that the secondary allocator in the runtime is global, and must lock to determine pointer

ownership safely. Without the lock, a thread might deallocate a chunk while another thread

is attempting to determine pointer ownership — this may result in illegal memory accesses

and crash the runtime. Multithreaded programs with large allocations will thus experience

5The benchmark by default uses two threads
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higher than average overhead, due to this implicit sharing (and mutex locking) introduced

by the Memoro runtime. This explains the higher overhead seen in the LevelDB experiment.

Possible solutions to ameliorate this are discussed in Section 3.6.

In terms of memory use overhead, the more allocations that a program makes, the higher the

overhead cost because Memoro records metadata for every allocated heap chunk. Metadata

is also the same size for all chunks, meaning that small allocated chunks will have higher

memory use overhead relative to large chunks. In longer running profiles, memory overhead

may start to impact performance, however, we have not experienced this in any program we

have profiled so far. This is mostly due to Memoro spending time to map memory from the OS

to store metadata. For typical programs, however, overheads are around 3–5×, as shown in

our case study below. Regardless, we are investigating static buffering techniques to eliminate

this, also discussed in Section 3.6.

3.5.2 Case Study

In this section, we illustrate several uses of Memoro that lead to improvements in heap

efficiency and program runtime, as well as examples that demonstrate the utility of the data

analysis that Memoro performs. All tests were performed on a 2.5GHz Intel Core i7 processor

with 16GB of RAM running MacOS v10.12.16 (Sierra). The Memoro instrumentation used was

built into LLVM/Clang [76, 84] release version 4.0.

Protocol Buffers

Protocol buffers (protobuf) [10] is a popular framework from Google for data serialization.

In protobuf, messages are defined using a declarative language, which the protobuf compiler

compiles to classes in various languages that can serialize themselves. The protocol buffer

implementation makes heavy use of the heap, especially when messages contain repeated
fields, or arrays of data. These can be arrays of basic supported data types or arrays of sub-

messages. In either case, deserializing or constructing protocol buffer messages may perform

many allocations, which can incur significant performance overhead, especially in latency-

sensitive systems that must process many messages per second.

Recently, the protocol buffer implementation added arena allocation to alleviate this issue. An

arena pre-allocates a large block of memory and uses it for internal message data, to avoid

repetitive OS heap allocations when constructing or deserializing messages. The point of our

study is to show that Memoro will correctly identify the problem allocations that prompted

this change, and present correct and meaningful analyzed data.

We construct a benchmark using the following protobuf message, which consists of a string

field, a repeated field of integers (an array), and a repeated field of a sub-message that itself

contains a repeated field of integers:
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Without Arena With Arena

Total Allocations 268117 112391
Lifetime Score 0.40 0.60
Usage Score 0.94 0.74
Useful Life Score 0.72 0.37
Runtime (ms) 72 65 (−9.7%)
Instr. Runtime (ms) 1520 (21.1×) 1623 (24.9×)
Memory (MB) Uninstr. Instr. Uninstr. Instr.

2.76 26.6 3.2 17.6
9.6× 5.5×

Table 3.2 – Protobuf benchmark with and without arena allocation. Note that the overheads
are abnormally high because the benchmark does very little work relative to the number of
allocations it makes.

message SubRecord {
repeated int64 ids = 1;

};

message Record {
repeated int64 numbers = 1;
repeated string strings = 2;
repeated SubRecord subs = 3;

};

The benchmark serializes an instance of a Record with 1000 integers, and five sub-messages

each with 1000 integers. Then, the message is deserialized 1000 times in a loop, creating a

new instance each time, and then destroying it. We run the benchmark with and without the

arena allocation, after having compiled it with the Memoro instrumentation and runtime

system. The total number of allocations and global scores generated by Memoro for each are

summarized in Table 3.2.

Without arena allocation, Memoro reports a global average lifetime score of only 0.40, indicat-

ing that many allocation points in the program produce chunks that do not live long and that

we may have allocations in a tight loop, as expected. Average usage is high however since every

chunk allocated has been almost fully read and written by the program. The useful life score is

also relatively high at 0.72 since chunks are read and written during most of their lifetime.

With arena allocation, however, we see a near reversal of values. The lifetime score has

increased to 0.60, showing that the new allocation scheme has reduced the number of short

lifetime allocations. While we might expect a higher value, the current implementation does

not allocate strings in the arena, and the arena itself allocates several short-lived items. The

loop is also simply deserializing data and not doing any real work. The total number of

allocations has been cut nearly in half. The usage score has decreased, which may seem
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counter-intuitive, but it is what we expect — because the arena allocates large blocks upfront,

some parts of them inevitably go unused. Likewise, the useful lifetime score has decreased to

0.37, because the arena blocks live for longer than the period during which they are read and

written by the program.

In effect, Memoro shows clearly the trade-off that protobuf arena allocation makes: slightly

less efficient use of heap chunks in return for fewer, higher lifetime allocations, ultimately

resulting in lower runtimes. In the case of this benchmark, a 9.7% improvement in execution

time.

Bioinformatics

Our second case study takes us to the bioinformatics field, the central application field of this

thesis. The particular toolset we analyze is the bamtools API [34], a library and associated

toolkit written in C++ for manipulating BAM files [80], one of the most common file formats

in bioinformatics. BAM is the binary counterpart of SAM (Sequence Alignment Map), a

format used to store alignments of sequenced genomic data. Common operations include

data conversion, sorting, and filtering. In this case study, we analyze two tools that use the

bamtools API: sorting and filtering.

We first compile the bamtools source code using Memoro instrumentation and run the sort

tool using a BAM file containing approximately 4000 aligned reads. Each read is 101 bases

long, similar to the data used to evaluate Persona in Chapter 2. After visualizing the results

using the Memoro visualizer, we make several observations:

• The number of allocation points is very high — there are over 5000 unique points in the

code that allocate memory on the heap.

• The total number of allocations is very high — over 64000 heap allocations over the

program lifetime.

• The majority of points with many allocations have extremely low lifetime scores, zero or

close to zero.

A glance at the flame graph shows that the vast majority of these allocations are within the

std::sort routine used for sorting sub-arrays of reads before merging them. Comparing the

stack traces of the high-allocation points, we see that many of them involve either creating

alignment data structures or copying the alignment data structures. When we filter the data

based on the primary alignment data structure copy constructor, we find that it is called in

over half of all allocation contexts. A quick look at the data structure reveals the issue: copying

the structure is expensive because it contains several std::string and std::vector fields

that also allocate memory and copy data. Because this structure is used as the template value
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4K Read BAM file

Unmodified Modified
Total Allocations 64022 37333
Total AllocPoints 5705 279
Lifetime 0.90 0.85
Usage Score 0.92 0.82
Useful Lifetime Score 0.60 0.55

1M Read BAM file

Runtime (s) 31.83 28.49 (−10.5%)

Table 3.3 – Persona profiling results when sorting a 4000 read BAM file. Note how the large
number of allocation points with few allocations has skewed scores of the unmodified version.

Uninstrumented Instrumented

Runtime (ms) 134 404 (3.01×)
Memory (KB) 7888.9 45674.5 (5.78×)

Table 3.4 – Instrumentation and runtime overhead sorting a 4000 read BAM file.

for the sort, a great number of allocations and copies are generated as the algorithm swaps

values.

To reduce these costs, we identify the fields in the alignment structure that are read-only and

wrap them in shared pointers. This way, the cost of copies is much reduced as only a shared

reference count is incremented. The result is that the total number of allocations is reduced to

∼37000, and the number of unique allocation points reduced dramatically to 279. All results

of the sort analysis are display in Tables 3.3 through 3.4. While the number of allocations is

still high, they have been removed from the computationally intense portion of the program

(along with associated copying), resulting in an execution time improvement of 10.5% when

tested with a BAM file containing one million reads. A more extensive redesign of the data

structure to avoid using string altogether could produce further allocation reductions, but

would require pervasive changes to the code base. For example, it may be possible to replace

these instances of string with string_view, which does not store data but merely holds a

pointer to the underlying data. Since the input file and data in memory should be read-only,

the only reason to make any copies should be when writing entries to the sorted output. The

runtime overhead imposed by the instrumentation was relatively low, approximately 3.0×.

We also analyze the filtering tool included with the bamtools API, profiling with the 4000 read

BAM file and single filter predicate that removes any read with mapping quality below a value

of 50. The visualizer quickly gives us a rundown of potential problems. There are again a large

number of allocations, primarily from constructing all of the string data that comprises the

alignment structure. The visualizer also flags two allocation points in particular with very

low scores (and red indicators) — particularly low lifetimes and low usage, and allocations
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4K Read BAM file

Unmodified Modified
Total Allocations 35708 27792
Total AllocPoints 363 349
Lifetime 0.90 0.90
Usage Score 0.82 0.83
Useful Lifetime Score 0.69 0.70

1M Read BAM file

Runtime (s) 15.85 14.34 (−9.5%)

Table 3.5 – Persona profiling results when filtering a 4000 read BAM file, pre and post modifica-
tion.

Uninstrumented Instrumented

Runtime (ms) 71 388 (5.46×)
Memory (KB) 3739.6 16297.9 (4.36×)

Table 3.6 – Instrumentation and runtime overhead filtering a 4000 read BAM file.

proportional to the input size. The stack traces show these are caused by two data structures:

std::queue and std::stack. The queue allocations are caused by copying another queue,

simply to iterate over it without destroying the original since the queue interface provides

no iterators. The stack is used to parse and evaluate boolean filter expressions, but since it

is allocated on the program stack, it is constantly created and destroyed (thus allocating and

freeing internal memory). The underlying std::deque container also allocates blocks of 4KB,

only a few bytes of which are used, causing the low usage score.

We make two minor fixes to reduce the number of allocations and increase overall scores. First,

we make the stack object static in its function (safe since the program is not multithreaded),

which preserves its memory across invocations. Second, we change the queue object to a

double-ended queue (std::deque) to gain iterators and avoid copying. The net result is that

total allocations are reduced to ∼38000 and the global average usage and useful life scores

increase by 1%. Tables 3.5 through 3.6 summarize the results. Total execution time when

filtering a BAM file with one million reads using a single predicate is reduced by 9.5%. Thus

we can see that by improving Memoro scores, we can also improve overall performance. The

runtime overhead imposed by the instrumentation is 5.5×, slightly higher than the previous

example.

3.5.3 Discussion

Using Memoro has helped us to design the visualization and data presentation in a way that

helps pinpoint issues very quickly. In all of our case studies, Memoro made heap usage issues
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obvious. The majority of our time was spent gaining familiarity with the codebases to identify

and understand the changes suggested by the presentation of the data.

We have not yet found an occasion when Memoro provided misleading information or false

positives in terms of lifetime, usage or useful life, or any other visualization. When a low (poor)

score is appears, it is usually very easy to understand by examining the allocation point in the

detailed view.

3.6 Future Work

Memoro currently works well and is easy to understand and use. Nevertheless, we have plans

to improve it by reducing its runtime overhead. Currently, the compiler pass only traces the

address operand from a load or store instruction across one arc in the SSA graph to see if it was

produced by an alloca instruction. Although simple, this analysis reduces runtime overhead

by roughly 10%. As we have seen with the LevelDB experiment, a large proportion of instru-

mented load/store instructions are not heap accesses. A more sophisticated analysis could

trace more pointer operands from alloca instructions, and eliminate more instrumentation

points and reduce overhead further. Moreover, it is possible to detect strided access patterns

e.g.,to a string or array and track all of their access with a single runtime system call, rather

than separately recording each memory reference.

Memoro currently stores the metadata for all freed chunks in arrays in memory until the

program terminates. We believe the memory pressure and array resizing overhead could be

reduced by fixing the amount of buffering and using a separate runtime thread to periodically

write this data to disk.

As shown in Section 3.5.1, multithreaded programs with large allocations can suffer atypically

large overhead due to implicit memory sharing and locking introduced by the runtime sec-

ondary allocator. It may be possible to reduce this overhead by avoiding the locking when

looking up chunk metadata in the secondary allocator. Although there would likely be race

conditions, the difference between this unsafe metadata modification and atomic operations

would likely be statistically insignificant. Another solution could be to use purely thread-local

allocators to avoid any implicit sharing. This may lead to higher memory overhead, but would

likely a worthwhile trade-off to keep the runtime overhead low. Or more dramatically, we

could change the memory allocator to make it possible to associate efficiently metadata with

large regions of memory.

Our goal is to include Memoro in the sanitizer framework that is part of the Clang and GCC

distributions. This will make this tool for detailed heap analysis readily available to users of

these compilers on all platforms.

Moreover, the collection methods and data analysis presented in this chapter apply to other

languages and runtime systems. Managed or dynamic language runtimes could track the
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same data that Memoro collects and generate output in our compact binary format. The

Memoro visualizer could then be used for these systems as well, performing the same analyses

and score generation, and offering the same insight into heap and memory efficiency. As the

visualizer is open source, it is also easy to add new scores or metrics for other languages, as

their heap usage patterns may differ from native languages.

3.7 Conclusion

Memoro is a new, detailed heap profiler that uses a combination of static instrumentation,

function interception, and runtime data collection to provide a clear view of how a program

uses the heap, implemented in a low-overhead, cross-platform package. Memoro can show

developers not only when and where bytes were allocated on the heap, but how and when

the program used those bytes. The Memoro visualizer provides a method to distill the large

amounts of data collected by the runtime into scores, displaying these alongside allocations.

These color-coded, numeric scores help developers quickly pinpoint potential heap efficiency

issues.

The result is accurate and fast diagnoses of heap efficiency problems, which in three different

evaluations led to significant performance improvements. In the case of the BamTools API,

an important and widely used tool in bioinformatics, our changes informed by profiling

with Memoro led to a performance increase of over 10%. Memoro can help to optimize

bioinformatics programs, and let them take full advantage of commodity hardware resources

available in standard clusters and data centers, which, as Chapter 2 has shown, are a compute

and cost-efficient way to scale and parallelize bioinformatics WGS preprocessing tasks. In

the next chapter, this thesis will further demonstrate that this is also true for bioinformatics

analyses downstream of genomics preprocessing.
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The Persona system described in Chapter 2 showed that bioinformatics preprocessing pipelines

can be effectively and efficiently scaled across commodity hardware clusters. However, many

downstream applications consume this preprocessed data, which will also need to be par-

allelized and scaled as well. An important application is the analysis of protein sequences.

Specifically, we are interested in finding similar or homologous proteins, which are those that

share a common ancestry. Finding homologous proteins is important because it helps us iden-

tify evolutionary relationships between species, as well as to characterize newly sequenced

proteins by inferring their function from known proteins.

Traditional approaches to finding similar proteins are expensive, typically involving O(n2)

computations. However, recent work has shown that this can be reduced by clustering similar

proteins first and then performing an intra-cluster all-against-all comparison. Unfortunately,

the current implementation is sequential and does not scale.

In this chapter, we introduce a solution to this problem. First, the idea of using clustering

to group similar elements together in order to find all similar pairs is generalized as precise

clustering. Then, a new algorithm called ClusterMerge is introduced to perform precise

clustering. ClusterMerge exploits the transitivity of similarity to build clusters and avoid

comparisons — transitively similar sequences can be clustered together and stand in for

each other in subsequent comparisons, allowing the algorithm to avoid many comparisons.

Crucially, ClusterMerge exposes a large amount of parallelism, which we exploit to build highly

parallel, scalable, and efficient solutions that can take advantage of commodity clusters.

This chapter will first review some background material on proteins and protein similarity

search. The concept of precise clustering is then introduced, followed by a description of

the new ClusterMerge algorithm. Our parallel and scalable solutions are then discussed

and an evaluation is presented, showing that protein similarity search via clustering can be

effectively parallelized and scaled across commodity clusters, with improvements of over

1400× compared to existing sequential solutions.
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Bibliographic Note

This chapter is based on the paper Parallel and Scalable Precise Clustering for Homologous

Protein Discovery, available on arXiv [39].

4.1 Background

This section will review the basics of proteins, their relation to genes, and current methods for

finding similar proteins.

4.1.1 Proteins and Protein Sequences

A protein is a functional molecule made up of a folded amino acid chain. Proteins are coded

in an organism’s genes, where a gene is a subsequence of nucleotides (A, T, C, G) within the

DNA. Three DNA letters correspond to one amino acid in the chain of the protein, and special

three-letter combinations signal the stop and start of gene codings within the genome. During

the process of gene expression, a protein is “read” from the coding gene. The DNA of the

gene is first transcribed into a messenger RNA (mRNA) molecule, which is also comprised of

nucleotides but is single-stranded. The RNA is subsequently translated by a ribosome, another

complex macromolecule, into the amino acid chain that folds into the final functional protein.

Individual amino acids in the chain are also referred to as residues. This process, while greatly

simplified in this presentation, is commonly referred to as the central dogma of molecular

biology [46] — DNA is transcribed to RNA which in turn is translated into functional proteins

(Figure 4.1).

DNA

RNA

Protein

Transcription

Translation

Figure 4.1 – The central dogma of molecular biology: DNA is transcribed to RNA, which is
translated into proteins.
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Genomics preprocessing pipelines, such as those accelerated by Persona, can be used to extract

the protein sequences in a sample genome. From a whole sequenced genome, gene start

and stop sequences can be detected and sequences extracted. Alternatively, techniques such

as RNA-Seq [126] can sequence the RNA in an organism’s cells directly (the transcriptome),

however, this is a subset of the proteome. Other methods can sequence proteins directly,

including Edman Degradation [52] and mass spectrometry methods.

Proteins perform many crucial functions in biological organisms. Recall, for example, the

hemoglobin protein mentioned in Chapter 1. Hemoglobin is the protein responsible for

transporting oxygen in the blood cells of almost all vertebrate species, including humans.

That hemoglobin is found in almost all vertebrates is no coincidence, it is a consequence of

gene inheritance and the evolutionary process. Though small differences create variations in

hemoglobin in species over time, similarities can help understand the evolutionary relation-

ships between species. In this sense, proteins can be seen as proxies for genes, and similar

proteins can allow us to infer common ancestry among genes.

Similar genes or sequences with shared ancestry are referred to as homologs [100], of which

there are two types. Paralogs occur when an ancestral genome has two copies of a gene that

diverge after speciation. Orthologs occur when genes diverge after speciation, usually retaining

the same function. Because of their direct relation to speciation, orthologs are of particular

interest to researchers.

Homologous genes or proteins, in general, are also important because their detection allows

the transference of knowledge from well-studied genes to newly sequenced ones. Homologs,

despite having accumulated substantial differences during evolution, often continue to per-

form the same biological function. Therefore, a newly sequenced gene or protein can be

characterized by finding a highly similar protein whose function is known [29, 56]. In fact,

most of today’s molecular-level biological knowledge comes from the study of a handful of

model organisms, which is then extrapolated to other life forms, primarily through homology

detection. Several sequence homology techniques are among the 100 most-cited scientific

papers of all time [125].

Because similar proteins imply an evolutionary relationship, homologs can also be used to help

understand evolutionary paths between species, allowing the construction of phylogenetic

trees [27].

4.1.2 Finding Similar Proteins

Finding similar proteins among a set essentially amounts to building a database, where an

entry for each protein is linked to all the other similar proteins. The definition of similarity in

this context may vary, but most sources, including this thesis, use a gapped alignment score

generated by the Smith-Waterman (S-W) algorithm [115]. This algorithm can accurately model

both insert and delete mutations that occur in nature, while also taking into account the fact
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that some amino acids more readily replace others in proteins that have the same function

but are usually found in different species. S-W uses a dynamic programming approach that

always finds an optimal alignment and score, however, it is expensive, with a complexity of

O(n2), where n is the length of the proteins.

Current approaches to finding similar (homologous) proteins are also computationally expen-

sive. The baseline is to perform an exhaustive, all-against-all (O(n2), where n is the number

of proteins) comparison of each sequence against all others using the S-W algorithm. This

naive approach finds all similar pairs, but it scales poorly as the number of proteins grows.

Several databases of similar proteins produced by this approach exist, including OMA [28] and

OrthoDB [127]. Analyzing their content is costly. OMA, for example, has consumed over 10

million CPU hours, but includes proteins from only 2000 genomes.

The large amounts of data being produced by many laboratories require new methods for

homology detection. In a report published in 2014, the Quest for Orthologs consortium, a col-

laboration of the main cross-species homology databases, reported: “[C]omputing orthologs

between all complete proteomes has recently gone from typically a matter of CPU weeks to

hundreds of CPU years, and new, faster algorithms and methods are called for” [116]. Ideally, a

new algorithm with asymptotically better performance would find the same similarities as the

ground truth, all-against-all comparison.

4.1.3 Saving Time with Clustering

One recent approach by Wittwer et al. [130] uses a clustering method to group sequences

likely to be similar together. Then, similar proteins can be extracted by performing an all-

against-all comparison within each cluster, avoiding many unnecessary comparisons between

sequences in different clusters. The key to building clusters that do not miss similar pairs,

while avoiding many unnecessary comparisons, lies in recognizing that protein sequence

homology exhibits a transitive property. If sequence A is transitively similar to sequence B,

and B is similar to sequence C, then C will be similar to A. Transitively similar homologous

sequences can, therefore, be clustered together and represented by a single sequence. The

represented sequences avoid all subsequent comparisons, relying on the representative to

capture further similar sequences. Sections 4.3 and 4.3.1 will discuss in further detail what

transitive similarity is and how it works for protein sequences.

The drawback, however, is that the algorithm implementing this approach is sequential and

not parallel or scalable. Each sequence processed depends on the clustered state of all previous

sequences, forming a synchronization bottleneck. The algorithm is still O(n2), at least it is

while the number of clusters continues to grow.1 A faster, preferably parallel and scalable

approach, is required to deal with large-scale datasets.

1At some point, the growth of clusters would taper off as the clusters form a comprehensive representation of
all genomes
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Unfortunately, fast (sub O(n2)) clustering algorithms — based on k-mer counting2, sequence

identity3, or MinHash [37] — identify significantly fewer homologs [130], and hence are not

practical for this application. Section 4.2 will review these papers in more detail. In the absence

of a better algorithm, a scalable parallel implementation of an O(n2) solution would help keep

pace with the production of sequence data.

This chapter presents just such a method: a new algorithm for clustering to find similar pairs in

a set, which exposes parallelism that we can leverage to build highly parallel, scalable systems

to execute it. First, this type of clustering is formalized as precise clustering — a clustering in

which each similar pair is guaranteed to be found together in at least one cluster. Next, we

describe a new algorithm called ClusterMerge that uses transitivity and a bottom-up cluster

merging approach to build a precise clustering from a set of elements. We show how the

algorithm enables the construction of highly parallel and scalable implementations, and apply

this to the problem of finding homologous proteins. Our implementation finds 99.8% of

ground truth homologs and runs over 1400× faster than the sequential approach, on a cluster

of 32 commodity servers. This demonstrates clearly that even for downstream bioinformatics

applications beyond WGS preprocessing, commodity clusters are an effective and efficient

approach.

4.2 Related Work

Clustering, in general, has been the subject of considerable research, and we will review the

literature in this section, with a particular focus on the clustering of bioinformatics data.

Andreopoulos et al. surveyed the uses of many different clustering approaches in bioinformat-

ics [31]. Common techniques are difficult to apply to protein clustering, however, because of

the high level of precision required for this problem.

Many clustering algorithms are designed to generate partitions, where each element is as-

signed to exactly one partition. This can be a problem for homology detection via precise

clustering, because some proteins are similar to many others, leading to a situation where, in

order to find all homologous sequences, all proteins would all need to be in the same partition.

This would defeat the purpose of the clustering in the first place. Multiple cluster membership

is therefore required for proteins. Partitioning algorithms also require an equivalence relation

between elements, which is stronger than the not-necessarily transitive similarity relationship

in protein clustering.

Another common partitioning approach called k-means clustering requires a target number

of clusters, which is unknown in advance for proteins, and also partitions the set. Hierar-

chical methods partition elements into a tree and preserve hierarchy among elements, but

generally require a similarity matrix to exist, which is not the case for our problem, and they

are expensive (O(n3)). Of particular note is agglomerative hierarchical clustering, which also

2Comparing the number of matching k-mers between two sequences
3The number of characters that match between two sequences
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uses bottom-up merge, e.g., ROCK [62]. Density-based clustering uses a local density crite-

rion to locate subspaces in which elements are dense; however, they can miss elements in

sparse regions and generally cannot guarantee a precise clustering. Density-based techniques

have received attention from the parallel computing community, with the DBSCAN [108] and

OPTICS [32] algorithms being parallelized by Patwary et al. [101, 102]

An additional complication of these methods is that they rely on distance metrics in normed

spaces (e.g. Euclidean distance) that are usually cheap to compute. Edit distance, however,

is not a norm and is expensive to compute. Although pure edit distance (i.e., Levenshtein

distance) can be embedded in a normed space [98], it is not clear if the gapped alignment

necessary for protein similarity can be as well.

The clustering of biological sequences is also the subject of considerable research. Many

of these clustering algorithms employ iterative greedy approaches that construct clusters

around representative sequences, a sequence at a time. If the sequence is similar to a clus-

ter representative, it is placed in that cluster. If the sequence is not similar to any existing

cluster representative, a new cluster is created with the input sequence as its representative.

Some approaches use k-mer counting to approximate similarity (CD-HIT [83], kClust [65],

Mash [97]), while others use sequence identity, i.e., the number of exact matching characters

(UCLUST [51]). Of note is Linclust [117], an approach that operates in linear time by select-

ing m k-mers from each sequence and grouping sequences that share a k-mer. The longest

sequence in a group is designated its center and other sequences are compared against it,

avoiding a great deal of computation.

Unfortunately, sequence identity and k-mers are unsuitable for finding many homologs. Pro-

tein alignment substitution matrices are heterogeneous (e.g., BLOSUM62 [67]) since distinct

amino acids may be closely related. Hence, protein sequences that appear different — with

low sequence identity and therefore few or no shared k-mers — can often have high alignment

scores. These important similar pairs will be missed by k-mer-based clustering techniques. For

example, the fraction of similar sequence pairs found by kClust, UCLUST, MMSeqs2 linclust,

and MMSeqs2 are 10.4%, 13.5%, 0.5%, and 36.4%, respectively. k-mer based methods are

simply not capable of modeling protein sequence similarity to the degree necessary to capture

all homologous sequences that we are interested in finding.

4.3 Precise Clustering

This section describes how to cluster items to efficiently find similarities and provides the

basis for our parallel implementations. Precise clustering is a clustering that ensures each

pair of similar proteins (or elements being compared, more generally) appear together in at

least one cluster.4 The similar elements can then be easily found by pairwise comparison of

elements each of the resulting clusters. By clustering, many comparisons between dissimilar

4Since a protein sequence can be in more than one cluster, clustering is not partitioning.
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elements can be avoided, because they will not be found in the same cluster. Traditional

clustering techniques such as k-means, hierarchical clustering, density/spatial clustering,

etc. are difficult to apply to proteins because they either partition the data and do not satisfy

the precise clustering property, require a similarity matrix, or simply do not identify enough

similar pairs.

For clustering elements such as proteins, the only assumption we can make is that we have a

similarity function that produces a value when applied to two input elements. If this value

is greater than a threshold, we conclude that the elements are similar. Otherwise, they are

not similar. The only way to determine if two elements are similar is to compare them. We

will use f (i , j ) to denote the similarity function — f (i , j ) > T therefore indicates similarity,

where T is a parameter called the threshold. If f (i , j ) > T , we say that i and j are a significant

pair. We assume that the similarity function is reflexive, that is, f (i , j ) > T ⇐⇒ f ( j , i ) > T . We

do not assume that the similarity function satisfies the triangle inequality, that is, f (i ,k) >
T ∧ f ( j ,k) > T ; f (i , j ) > T .

Clusters are defined by a single representative element. Every other element in the cluster is

similar to the representative. However, cluster members are not necessarily similar to each

other. Formally, a cluster C is a subset of elements that has a representative element rC :

∀e ∈C , f (e,rC ) > T (4.1)

The basic approach to building clusters with these minimal assumptions is to do so greedily

and sequentially as with Wittwer’s approach [130]. The first element forms the first cluster

representative. The next element is compared against this representative, and if similar, it is

added to the cluster. If not similar, it forms a new cluster with itself as representative. The

process repeats until all elements have been clustered. The problem with this, however, is that

when an element is added to a cluster, it is no longer available for subsequent comparisons

and similar elements may be missed. This approach does not produce a precise clustering. An

alternative is to form a cluster around a single element, in which case the solution devolves to

an all-against-all comparison.

A stronger property than similarity, however, enables us to form a precise clustering, as well

as to avoid unnecessary comparisons. That property is transitive similarity. If element i is

transitively similar to an element j , the property guarantees that any subsequent element k

that is similar to i will also be similar to j . If element i is a cluster representative, j can be

clustered with i and all elements similar to j will be added to this cluster because of transitive

similarity. No significant pairs involving j will be missed, and j does not need its own cluster.

Transitive similarity is not necessarily reflexive, and we will discuss why this is the case for

protein sequences in Section 4.3.1. Transitive similarity also implies similarity; if two elements

are transitively similar, they are also similar.
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More formally, we define a transitivity function R(i , j ) to denote transitive similarity between

i and j .

∀k,R(i , j ) =⇒ f (i ,k) > T ∧ f ( j ,k) > T

R is interpreted as follows: R(i , j ) evaluating true implies that if f (i ,k) > T then f ( j ,k) > T for

any k. That is, if two elements i , j are transitively similar, we know that any third element k

that is similar to i will also be similar to j . Figure 4.2 shows a visual representation of transitive

similarity between elements i and j .

i

j

k
R(i, j)

f(i, k)>T

=> f(j, k)> T

Figure 4.2 – The transitivity function R(i , j ) allows an inference that indicates j will be similar
to k because i is similar to k.

R is required because the similarity function f (i , j ) is not guaranteed have a transitive property

and we do not assume that it obeys the triangle inequality. Most other clustering methods

use distances in normed spaces or similarity measures that can be embedded in normed

spaces, which obey the triangle inequality (e.g., Euclidean distance). The clustering approach

described in this chapter handles data that does not meet this requirement, which is necessary

to cluster biological sequences, but could also be useful in many other contexts, such as

clustering multimedia objects (e.g., images) or comparing time series (e.g., stock market,

seismological, or climate data). Transitive similarity, as with similarity, is not necessarily

inherent in the data. A domain expert must design R(i , j ) such that it satisfies the transitive

similarity property.

The greedy sequential algorithm tests a new element for transitive similarity with a current

cluster’s representative. If an element is transitively similar to the representative, it is added

to the cluster and can rely on the representative to match subsequent elements to which

it is similar. If the new element is only similar to the representative, the element is added

to the cluster but continues to be compared to representatives until either 1) a transitively
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similar one is found or 2) a new cluster is created for the element. In this way, each element is

clustered with those to which it is similar, either by becoming the representative of its own

cluster or by relying on a transitively similar representative. This ensures a precise clustering

while avoiding comparisons to sequences that are transitively represented.

4.3.1 Clustering Proteins

We will use proteins as an example to illustrate the concepts of similarity, transitive similarity,

and clustering, as proteins are the primary motivation for this work. We use the Smith-

Waterman (S-W) alignment score as the similarity function for proteins. If the S-W score is

above a threshold T , two sequences are similar. Figure 4.3 shows three sequences, A, B, and C,

where A is similar to B and B and similar to C. C, however, is not similar to A because it aligns

with a different subsequence of B.

Seq A

Seq B

Seq C
f > T

f > T

A

B
B
C

Desired Clustering Result:

Figure 4.3 – Clustering protein sequences. Sequence A is similar to sequence B, which is similar
to sequence C. C is not similar to A.

If we use only similarity to cluster, significant pairs can be missed — the order of evaluation

will affect which significant pairs are found. For example, comparing f (A,B) first will lead to a

cluster represented by A, with B as a member. When C is then compared to the representative

A, it is not similar and forms its own cluster. The (B, C) significant pair will be missed. Starting

the process with sequence B would lead to a single cluster represented by B with A and C as

members.

With transitive similarity, a precise clustering can be formed irrespective of comparison order.

However, we first need a transitivity function for proteins. Protein sequence alignment does

have a transitive property, however, S-W is a local alignment algorithm, meaning that it may

not include (“cover”) all residues (individual amino acids) in both sequences, especially when

the sequences are of different lengths. If a sequence is clustered with a representative that

does not completely cover it when aligned, the uncovered subsequence will be unrepresented.

This may cause subsequence homologies to be missed, such as that between sequences B and

C if B was represented by A.
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X 

Y 

Uncovered Subsequence

S-W score

uX uY

R(X, Y)           score > minT,  uY < maxU
R(Y, X)           score > minT,  uX < maxU

Figure 4.4 – Transitivity function for protein sequences.

Therefore, subsequence homologies must be taken into account when designing a transitivity

function for proteins. Figure 4.4 illustrates the transitivity function for proteins using two

sequences X and Y. Depending on the size of each sequence and the alignment, there may

be several uncovered residues in each sequence, shown as uX and uY in Figure 4.4. For

one sequence to transitively represent the other, the alignment score between X and Y must

be greater than mi nT , the transitivity threshold, a parameter typically greater than T . The

number of uncovered residues in one of the sequences must be less than parameter maxU

(maximum uncovered), to ensure that homologous subsequences are not missed. In this

example, Y could transitively represent X because uX is small, but X could not transitively

represent Y because a large section of Y is uncovered. This example also illustrates that R(i , j )

for proteins is not reflexive.

Now we return to our example from Figure 4.3. Following the sequential clustering algorithm,

R(A,B) will indicate that B cannot be transitively represented by A, because the alignment

does not cover a large subsequence of B. Because they are similar, however, B is added to the

cluster with A and will also represent its own cluster. C can be transitively represented by B

and will be placed in the cluster with B. We end up with the desired precise clustering shown in

Figure 4.3. With transitive similarity, the order of comparison does not matter — any sequence

not transitively represented by an existing cluster will represent its own cluster.

The sequential algorithm and transitivity function studied here is essentially that presented

in [130], though they also augment the approach to use multiple representatives for a single

cluster, which helps to slightly increase the percentage of significant pairs found. The drawback

to this algorithm, however, is that it is sequential and difficult to parallelize because every

element depends on the clustered state of all previous elements, forming a synchronization
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bottleneck. In this chapter, we introduce ClusterMerge, a new algorithm for precise clustering

using transitive similarity to expose parallelism, which can be exploited for highly scalable

implementations that can leverage cost-efficient commodity clusters.

4.3.2 The ClusterMerge Algorithm

ClusterMerge is a new algorithm for precise clustering that exposes parallelism by structuring

the clustering computation as a bottom-up merge of single-element clusters. In this section,

we will explore how this is possible using transitive similarity while maintaining the precise

clustering property.

Merging Clusters

The key to exposing parallelism lies in recognizing that clusters with transitively similar repre-

sentatives can be merged. This allows us to reframe clustering as a series of cluster merges. Two

clusters can be merged as follows. First, the representatives are compared using the similarity

function f . If they are similar, the transitivity function R is applied to see if they are transitively

similar. If so, the clusters can be combined into a single cluster, with one representative for

all elements. Otherwise, if the representatives are only similar but not transitively similar,

members of either cluster might be similar to the other representative. To avoid missing these

similar elements, each cluster is compared against the other’s representative and the similar

elements are added to the other cluster. Finally, if the representatives are not similar, both

clusters remain unchanged. The result is a set of one merged cluster or a set of two clusters

whose representatives are not transitively similar and thus not mergeable.

Merging can also be applied to two sets of clusters. Algorithm 1 describes the process in detail.

Each cluster in the first set (cs1) is compared to and possibly merged with every cluster in

the second set (cs2). For each cluster pair, the process described above is applied. Finally, all

un-mergeable clusters are returned in a new set.

Figure 4.5 illustrates the possible results of merging two clusters of proteins using this al-

gorithm. Sequences X and Y are representatives of two clusters. Based on the result of the

transitivity function (described above in Section 4.3.1) applied to X and Y, either 1) the cluster

of X is merged into the cluster of Y, 2) the cluster of Y is merged into the cluster of X or 3) the

clusters exchange similar members if X and Y are similar but not transitively similar. This

results in a set of one fully merged cluster as in situations (1) and (2), or two clusters whose

representatives are not transitively similar (situation 3).

ClusterMerge Algorithm

The ClusterMerge algorithm uses cluster merging to perform precise clustering. Each element

is initially placed in its own cluster as its representative and each cluster is placed in its own
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Algorithm 1 Cluster Set Merge
procedure MERGE(cs1,cs2) .merge cluster set 1, 2

newC l uster Set ←;
for cluster 1 in cs1 do

for cluster 2 in cs2 do
if (cluster 2.H asBeenMer g ed) conti nue
s ← f (cluster 1.r ep,cluster 2.r ep) . Similarity
if (s < T ) conti nue
if cluster 2.I sTr ansi t i ve(cluster 1) then

cluster 2.Ob j s.append(cluster 1.Ob j s)
cluster 1.H asBeenMer g ed ← Tr ue
br eak

else if cluster 1.I sTr ansi t i ve(cluster 2) then
cluster 1.Ob j s.append(cluster 2.Ob j s)
cluster 2.H asBeenMer g ed ← Tr ue

else
E xchang eSi mi l ar (cluster 1,cluster 2)

end if
end for
if !cluster 1.I sMer g ed then

newC l uster Set .append(cluster 1)
end if

end for
for cluster 2 in cs2 do . add unmerged clusters

if !cluster 2.H asBeenMer g ed then
newC l uster Set .append(cluster 2)

end if
end for
return newC l uster Set

end procedure

A

X (rep)
X

Y (rep)
B

C
Y

Uncovered Subsequences

S-W score

uX uY

?

score > minT,    
        < maxU score > T

(1) (2) (3)

score > minT,    
       < maxUuX uY

C
Y

A
X

B

A
X

B
C

Y
A

X

B
C

Y

AC

Figure 4.5 – Potential outcomes of merging two clusters of proteins.
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Element

Cluster

Cluster Set

Figure 4.6 – ClusterMerge algorithm. Elements are placed in trivial clusters which are then
merged until an un-mergeable set remains.

Algorithm 2 ClusterMerge

procedure BOTTOMUPMERGE(el ement s)
set sToMer g e ←Queue()
for e in el ement s do

set sToMer g e.push(new C l uster Set (e))
end for
while set sToMer g e.si ze() > 1 do

cs1 ← set sToMer g e.pop()
cs2 ← set sToMer g e.pop()
csNew ← Mer g e(cs1,cs2) .merge sets cs1 & cs2
set sToMer g e.push(csNew)

end while
f i nalSet ← set sToMer g e.pop() . final set of clusters

end procedure

set. Algorithm 1 is then applied to merge cluster sets in a bottom-up fashion as depicted in

Figure 4.6.

Algorithm 2 describes this bottom-up merge process. To start, a new cluster set is created

for each element, with a single cluster containing only that element. These cluster sets are

added to a FIFO queue of sets to merge (the set merge queue). The algorithm pops two sets

off the queue, merges them using Algorithm 1, and pushes the resulting cluster set onto the

queue. The process terminates when only one set is left. This algorithm forms the basis of the

ClusterMerge implementations further described in Section 4.4.

97



Chapter 4. Scaling Protein Similarity Search with ClusterMerge

Discussion

With a complete5 transitivity function, ClusterMerge will not miss any similar element pairs

because all elements are implicitly compared against each other, either directly or implicitly

via a transitive representative. The chosen element remains representative of its cluster until it

is (possibly) fully merged with another cluster. After that, transitivity ensures that subsequent

similar elements will then also be similar to the new representative. Therefore, even though

cluster members are not necessarily transitively represented by the cluster representative, the

algorithm also ensures that those non-transitively similar elements retain their own cluster.

In reality, a complete and computationally efficient transitivity function rarely exists for non-

trivial elements, so an approximation is necessary, as in our motivating example of protein

sequence clustering. Incompleteness in the transitivity function can lead ClusterMerge to

miss some significant pairs. However, as is demonstrated in Section 4.5, even an approximate

transitivity function can produce very good results. This is also why the transitivity function is

applied both ways in Algorithm 1 — approximate transitivity is not necessarily reflexive.

The threshold value T is a parameter that would be chosen by an end end-user domain

expert to specify the desired degree of similarity between elements. Users do not currently

have influence over which elements are used as representatives, which are selected by the

algorithm.

Complexity

The worst-case complexity of ClusterMerge is O(n2), however this is a fairly strict upper bound.

Consider the tree structure formed by the cluster set merges, which has a depth of l og2n,

where n is the number of elements to be clustered. At the first layer, there are n/2 merges

possible, each comparing two clusters of one element each. At there second layer, there are

n/4 merges, each comparing a worst-case total of 4 clusters (if no full clusters were merged in

the layer above). Generalizing this pattern we obtain

n/2×12 +n/4×22 +n/8×42 . . .

which we can reduce to

2n
l og2n∑

i=0
2i = 2n ·2log2n+1 −1 = 2n · (2n)−1 ≈ n2

5A complete transitivity function correctly captures all transitive similarity in the data.
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However, when clusters are fully merged, there is a reduction in work at each level, leading

to sub-n2 performance. In a more optimal case, assuming that at each step the merger of

two cluster sets cuts the total number of clusters in half, complexity falls to O(nlogn). Actual

complexity, therefore, depends on the amount of transitivity in the data being clustered.

4.4 Parallel ClusterMerge

Now that we have a similarity and transitivity function for proteins, we can build a system to

implement ClusterMerge. However, in order to handle large datasets, ClusterMerge will need

to run in parallel and across multiple servers in a cluster.

There are several opportunities for parallelism inherent in ClusterMerge, which can be used

to construct efficient systems for both shared-memory and distributed environments. Since

the designs for shared-memory and distributed systems differ slightly, we will refer to the

shared-memory design as Shared-CM and the distributed design as Dist-CM.

The obvious parallelism in ClusterMerge is that smaller sets near the bottom of the computa-

tion tree can be merged in parallel. In general, as long as there are sets of clusters to be merged

in the set merge queue, a thread can pop two sets, merge them, and push the result back onto

the queue. These operations are independent and can run in parallel.

However, after many merges, only a few large sets remain. The “tree-level” parallelism is no

longer sufficient to keep system resources occupied, and the final merge of two sets is always

sequential. Therefore, the merge of a set must also be parallelized, which is also beneficial

since the sets can grow to be very large.

Shared-CM and Dist-CM both use the same technique to split large set merges into smaller

work items called partial merges. Consider merging two cluster sets, Set 1 and Set 2 (Figure 4.7).

A partial merge merges a single cluster from Set 1 into a subset of the clusters of Set 2. Threads

or remote workers can execute these partial merges in parallel by running the full inner

loop of Algorithm 1. This allows the system to maintain a consistent work granularity by

scheduling a similar number of element comparisons in each partial merge. Partial merge

granularity is controlled by increasing or decreasing the size of the subset of Set 2 that the

single cluster of Set 1 is merged into. The subset size is measured by counting the total number

of sequences contained in the clusters, instead of counting clusters directly. This is because

clusters can have extreme variation in the number of sequences they contain — five small

clusters translates to much less computation than five large clusters. As a result of this partial

merge technique, the load is evenly balanced, preventing stragglers and leading to good overall

efficiency. Shared-CM and Dist-CM differ only in how they coordinate the synchronization of

the results of partial merges.
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Set 1 Set 2 Partial Merge 1 Partial Merge N

...

Partial Merge 2 

Figure 4.7 – A merge of two large cluster sets is split into partial merges. Threads (or remote
workers) can then simultaneously process a merge of two sets.

4.4.1 Shared-Memory

Shared-CM is designed to be run on a multicore computer. Shared-CM splits set merges into

partial merges, as described above, and allows threads to update the clusters in each set in

place.

Consider a thread executing a partial merge, where a cluster from Set 1 is being merged into

some clusters from Set 2. While the thread has exclusive access to the cluster from Set 1, it

has no such guarantee for the clusters in Set 2. Concurrent modifications, including removal

of clusters and creation of new ones, can happen because of simultaneous partial merges of

other items from Set 1.

Shared-CM uses locking to prevent races. The merging logic is the same as Algorithm 1,

however, clusters of the second set are locked before being modified in-place. The final

merged set is simply the clusters remaining in Set 1 and Set 2 that have not been fully merged.

The order of merges is not fixed and the process sacrifices determinism, but the significant

pair recall is as high as deterministic execution. The synchronized cluster merging algorithm

is shown in Algorithm 3, where a cluster c from Set 1 is being merged into a set cs.

Figure 4.8 illustrates the system design. A coordinating thread pops two sets off the Set Merge

queue. The merge is split into partial merges, as described above, and they are inserted into a

partial merge queue. A pool of worker threads then processes the partial merges. Once all of

the partial merges in a set merge are completed, the coordinating thread collects remaining

clusters from both sets into a new merged set and pushes it onto the set merge queue.

As long as there are sets to be merged, most or all processors in the machine can be kept busy.

Although the design is simple, it is highly effective — Shared-CM can scale nearly linearly

across all cores (Section 4.5.2).
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Algorithm 3 Cluster Merge Locked

procedure MERGELOCKED(c,cs) . cluster c, cluster set cs
newC l uster Set ←;
for cluster in cs do

if (cluster.H asBeenMer g ed) conti nue
s ← f (c.r ep,cluster.r ep) . Similarity
if (s < T ) conti nue
cluster.Lock()
if cluster.I sTr ansi t i ve(c) then

cluster.Ob j s.append(c.Ob j s)
c.H asBeenMer g ed ← Tr ue

else if c.I sTr ansi t i ve(cluster ) then
c.Ob j s.append(cluster.Ob j s)
cluster.H asBeenMer g ed ← Tr ue

else
E xchang eSi mi l ar (c,cluster )

end if
cluster.Unl ock()
if (c.H asBeenMer g ed) br eak

end for
end procedure

4.4.2 Distributed

While locking works well in a multicore computer, it would limit scalability on a distributed

cluster. Dist-CM is a controller-worker distributed system. The controller is responsible

for managing the shared state of the computation, while the majority of the computing is

performed by remote workers. Dist-CM ensures that all processing sent to remote workers

is fully independent. Workers, therefore, do not communicate with each other. They only

communicate with a central controller to obtain work, resulting in a very scalable system.

Dist-CM uses several techniques to control the size of an average work item to prevent load

imbalance and enable efficient scaling. First, batching is used to group small cluster sets into

a single work item. This provides each remote worker with a computation that will not be

dwarfed by its communication overhead. Batches are executed by a remote worker, and the

resulting cluster set is returned to the controller. Batching is important for the early phase of a

computation when each set is small and requires little computation.

For larger merges near the top of the tree, Dist-CM uses partial merges in much the same

manner as Shared-CM to maintain a consistent work item granularity and keep all processors

busy. Because there is no inter-worker communication, the controller is responsible for

managing partial merge results as they are returned. Recall that each partial merge work item

merges a single cluster from Set 1 into a subset of clusters of Set 2. The result of a partial merge

executed by a remote worker is a set containing some clusters of Set 2, with the single cluster
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Figure 4.8 – High-level architecture of Shared-CM.

from Set 1 possibly fully merged with one of them and/or some of its elements exchanged with

the Set 2 clusters.

For each outstanding merge, the controller maintains a partially merged result, identified by

an ID associated with all partial merges involved in its computation. This partially merged

state begins as simply both sets of clusters. When a partial merge result is returned to the

controller, it uses the ID to look up the associated partially merged state. The controller then

updates the state with the returned results, adding new elements to existing clusters and

marking any fully merged clusters. In the partially merged state, clusters are represented as

hash tables, in order to avoid adding any duplicate sequences while retaining O(1) insert time.

After processing the final partial merge for a set merge, the resulting set is constructed by

simply combining non-fully merged clusters from both sets.

Figure 4.9 illustrates the design of Dist-CM. Once again the set merge queue is loaded with

single element cluster sets but at the central controller. A coordinating thread on the controller

will pop two sets off the queue. If the sets (in terms of total clusters) are smaller than a batch

size parameter, the thread will pop more sets until their size is equal to or greater than the

parameter. These sets are compiled into a batch work item and pushed into a central work

queue. Partial merges are then are pushed into the central work queue as individual work

items. If the sets popped by the coordinating thread are large, they are split into partial merges,

which are again sized based on the number of sequences in the clusters. This dynamic load

balancing minimizes straggling in remote workers and is important to achieve good scaling.

The central work queue feeds a set of remote worker nodes.

Results from workers are returned to the controller and either pushed onto the set merge

queue if the result is a complete cluster set, or used to update the partially merged state

if the result was a partial merge. If the partially merged state was completed by the result,

the complete set is pushed to the set merge queue. The process finishes when the final set
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Figure 4.9 – High-level architecture of Dist-CM.

of the merge tree is complete. All messaging and communications are implemented with

Zero-MQ [13], a popular lightweight distributed message queue library.

The trade-off inherent in this design is that Dist-CM does more work than necessary in

exchange for no communication among workers. A cluster in a partial merge will continue to

be merged into clusters in the set by Dist-CM even if these clusters were fully merged away

by other workers. As a result, Dist-CM can perform slightly more work than Shared-CM and

can occasionally add the same elements to the same cluster (these duplicates are removed by

the controller). Because of this trade-off, Dist-CM is about 17% slower than Shared-CM when

using a single remote worker.

Scalability can be adversely affected by communication overhead or the amount of work in a

single work item. Very small work items will have communication overheads that may dwarf

the actual computation. Very large work items can cause stragglers and load imbalance that

can leave processors idle. Early versions of Dist-CM operated without dynamic sizing of partial

merges; each merged a single cluster into an entire set. This led to massive load imbalance

and long idle periods waiting for large merges to complete. With very large datasets, the in-

memory structures representing the entire set can also grow very large and increase memory

pressure in both workers and the controller. Dynamic sizing of partial merges is crucial to
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ensure proper load balance and minimize stragglers, and it improved scaling efficiency by

almost 3×.

Furthermore, unbalanced work distribution can cause stragglers if some workers locally queue

more work than others. To avoid this, we switched from a round-robin work distribution

method to a Join-Idle-Queue [85] style approach in which workers inform the controller when

they need more work. A single thread in each worker is responsible for requesting work from

the controller, whenever the worker’s local queue has space free. This queue is kept small,

balancing a trade-off between hiding latency and limiting the amount of locally queued work.

This approach keeps all workers busy so long as work is available.

4.4.3 Optimizations

Several important optimizations enable efficient scaling of Dist-CM, mostly focused on mem-

ory usage and network bandwidth. In early versions, the controller sent entire sets with

each partial merge request to a remote worker, which nearly saturated network bandwidth,

especially when merging the last few sets with large clusters.

This communication overhead was greatly reduced through several techniques. First, each

worker replicates the sequence dataset and refers to sequences by a 4-byte index. Actual

sequence data is never transferred, and even large clusters with thousands of sequences only

require a few kilobytes — simply an array of indexes. Still, with very large datasets, the total

number of clusters and sets can grow large and memory use can become an issue, particularly

in the controller that stores the entire state of the computation. The in-memory data structures

therefore also use indexes to represent sequences to reduce the memory footprint.

Second, workers cache copies of sets so they are only transferred over the network once to

each remote worker. To execute a partial merge, the worker can construct the appropriate

subset of a set from its cached copy. A partial merge request on the wire then simply contains

only one cluster from the first set and two indices from the second set, which indicate the

subset into which the first cluster is to be merged.

Finally, the results of a partial merge are returned as diffs. Only newly added sequences in

each cluster are sent back to the controller. This reduces network bandwidth by a considerable

amount, especially when merging a small cluster into a subset of larger ones.

4.5 Evaluation

This section describes the evaluation of several aspects of ClusterMerge applied to protein

sequence clustering. Both Shared-CM and Dist-CM variants are evaluated in this section.

Both implementations are written in C++ and compiled with GCC 5.4.0. To compute sequence

similarities, we used the Smith-Waterman library SWPS3 [119].
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We use two datasets for our evaluation. One is a dataset of 13 bacterial genomes extracted

from the OMA database [28], a total of 59013 protein sequences (59K dataset). This is the

same dataset used by Wittwer et al., which allows comparison with their implementation.

The second dataset is a large set of eight genomes from the QfO benchmark totaling 90557

sequences (90K dataset). Although these are a small fraction of the available databases, each

represents billions of possible similar pairs, and require many hours to evaluate in a brute-

force manner.

Our tests are performed using servers containing two Intel Xeon E5-2680v3 running at 2.5 GHz

(12 physical cores in two sockets, 48 hyperthreads total), 256 GB of RAM, running Ubuntu

Linux 16.04. The distributed compute cluster consists of 32 servers (768 cores), a subset of a

larger, shared deployment. These are connected via 10 Gb uplinks to a 40GbE-based IP fabric

with 8 top-of-rack switches and 3 spine switches. This is the same cluster setup used in the

Persona evaluation in Section 2.4. The dataset is small enough such that a local copy can be

stored on each server. In fact, even large protein datasets are easily stored on modern servers.

For example, the complete OMA database of 14 million protein sequences fits within 10GB, a

fraction of modern server memory capacity.

Our baseline for clustering comparisons is Wittwer’s incremental greedy precise clustering

of [130], which is the only clustering method that can achieve an equivalent level of similar

pair recall.

4.5.1 Clustering and Similar Pair Recall

For consistency, our clustering threshold is the same as the incremental greedy precise clus-

tering in Wittwer et al. [130], a Smith-Waterman score of 181. The threshold is low, but this is

necessary to find distant homologs. After ClusterMerge identifies clusters, an intra-cluster, all-

against-all comparison is performed, in which the sequence pairs within a cluster are aligned

using Smith-Waterman. Those with a score higher than the clustering threshold are recorded

as a similar pair. For our datasets, the number of actual similar pairs is small compared to

the number of potential similar pairs (e.g. 1.2 million actual versus 1.74 billion potential),

leading to relatively few alignments to complete this stage. Biologists may perform additional

alignments to derive an optimal alignment concerning different scoring matrices, however,

this is orthogonal to the concerns of this thesis.

Recall is the percentage of ground truth pairs found by our systems. The ideal recall is 100%.

Both Shared-CM and Dist-CM ClusterMerge, using a minimum full merge score (mi nT ) of

250 and a max uncovered residues (maxU ) of 15, produce clusters with a recall of 99.8±0.01%.

Recall variability is negligible and is due to the non-determinism of parallel execution. Of

the pairs missed by ClusterMerge, very few were high scoring pairs. The median score of a

missed pair is 191 and the average score of a missed pair is 235. These values are very close to

the cluster threshold itself (in contrast to high scoring pairs, which can be greater than 1000),

indicating that these are not likely biologically “important” pairs (Figure 4.10). ClusterMerge
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Figure 4.10 – Cumulative fraction of missed pairs reaching at least a certain similarity score, as
the clustering threshold T and fully merge threshold mi nT are varied (maxU = 15). Cluster-
Merge shows a low sensitivity to small parameter variations, while most missed similar pairs
remain low-scoring ones.

misses only a handful of high scoring pairs, around one-millionth of total significant pairs, as

seen in Figure 4.10.

In clustering the 59K sequence dataset, ClusterMerge performs approximately 871 million

comparisons. By contrast, the full, all-against-all comparison requires approximately 1.74

billion comparisons, showing that ClusterMerge reduces comparisons by nearly 50%.

In terms of the clusters themselves, ClusterMerge generates similar clusters as incremental

greedy clustering [130], with a total of 33,562 clusters. In each, the vast majority of clusters

contain between 1 and 4 sequences, with a few large clusters (33% of clusters contain more

than 10 sequences, 8% of clusters contain more than 100 sequences, 0.5% of clusters contain

more than 1000 sequences). ClusterMerge generates slightly larger outliers, with its largest

cluster containing approximately 1500 sequences, as opposed to the greedy method’s largest

cluster of around 1150 sequences.

Figure 4.10 shows that ClusterMerge and our transitivity function are relatively insensitive to

parameter variations. Lower clustering thresholds T and lower full merge thresholds mi nT

generally lower the number of missed similar pairs, although the absolute percentage of

missed pairs remains extremely low, with the majority being low-scoring pairs.
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Figure 4.11 – Scaling of Shared-CM up to 48 threads. Scaling is nearly linear up to all 24
physical cores, while hyper-threading provides no benefit.

4.5.2 Multicore Shared-Memory Performance

In this section, we evaluate how well Shared-CM performs on a single multicore node. This

experiment uses a reduced dataset of 28600 sequences, to lower runtimes at low thread

counts. Figure 4.11 shows the total runtime decreases as we increase the number of threads.

Shared-CM achieves near-linear scaling — profiling with Intel VTune indicates little or no

lock contention. Memory access latency and NUMA costs have no effect as the workload is

compute-bound.

Note, however, that scaling is linear only on physical cores. The primary compute bottleneck

is the process of aligning representative sequences using Smith-Waterman, which processes

data that fits in the L1 cache and can saturate functional units with a single thread. Therefore,

hyper-threading provides no benefit.

The only major impediment to perfect scaling is some loss of parallelism before the last and

second-last merges since the second-last merge must be fully completed before work for the

last merge can start to be scheduled.

Shared-CM with a single thread clusters the bacteria dataset in 31905 seconds, compared

to 1486 seconds with 24 threads, a speedup of 21.5×. To compare with incremental greedy

clustering, we run Wittwer’s single-threaded code [130] on our machine with the same dataset,

resulting in a runtime of 89486 seconds. Shared-CM is approximately 2.8× faster on a single-

core and 60.2× faster using all cores.
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Figure 4.12 – Scaling of Dist-CM over 32 servers (768 cores).

4.5.3 Distributed Performance

Dist-CM allows us to scale ClusterMerge beyond a single server. To evaluate the scaling of

Dist-CM, we hold the dataset size constant and vary the number of servers used to process
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Figure 4.13 – Workload scaling of Dist-CM.

work items (batches or partial merges), otherwise known as strong scaling. The baseline single

core runtime for Dist-CM clustering the 59K dataset is 39314 seconds. Figure 4.12a shows that

on 32 nodes (768 cores), Dist-CM clusters the dataset in 65 seconds, resulting in a speedup of

604×. Strong scaling efficiency at 768 cores is 79%. Compared to single-threaded incremental

greedy clustering [130], Dist-CM is 2.27× faster using a single core, and 1400× faster using the

full compute cluster.

The reason for non-linear scaling is essentially the same as Shared-CM — around the last few

merges of cluster sets, scheduling of work may halt as the system waits for an earlier merge to

finish before it can schedule more work. There will always be some small portion of sequential

execution, so perfect scaling is impossible by Amdahl’s Law.

That being said, this sequential section is proportionally lower with larger datasets. Fig-

ure 4.12b shows strong scaling when clustering the larger 90K sequence dataset. The scaling is

more efficient (90% at 32 nodes), with a speedup of 28.7× relative to one worker node.

In addition, we perform a weak scaling experiment in which we vary the amount of work in

proportion to the number of nodes. Because our dataset is evolutionarily diverse and has

relatively low levels of transitivity, ClusterMerge is closer to O(n2) in the number of sequences.

The number of comparisons increases quadratically with the number of sequences. Figure 4.13

clearly shows this by varying the number of sequences that Dist-CM clusters using 10 worker

nodes. The runtime curve fits almost exactly to a degree two polynomial. Therefore, for our

weak scaling experiment, we increase the number of sequences at each step by a square root

factor to maintain a proportional increase in workload. Figure 4.14 shows the results, again

while clustering using 1 to 32 nodes. Runtime remains nearly constant throughout, indicating
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Figure 4.14 – Dist-CM weak scaling over a 32 node (768 core) cluster. Nearly 100% efficiency at
32 nodes.

a weak scaling efficiency of 95-100%. We thus expect that Dist-CM will be able to cluster much

larger datasets while maintaining high scaling efficiency.

4.5.4 Effect of Dataset Composition

As noted in Section 4.3.2, the complexity, and therefore runtime depends on how many clusters

can be fully merged at each level of the tree. If the transitivity function accurately represents

similar elements, the number of full merges at each level is primarily affected by the number

of transitively similar elements in a dataset. More transitively similar elements will result in

more complete cluster merges, bringing runtime cost closer to the O(nlogn) optimum.

For protein clustering, the dataset with 13 bacterial genomes has a relatively low number of

transitively similar sequences since the species are, genetically speaking, very distant (more

distant than humans and plants). Given a set of more closely related genomes, with more

transitively similar sequences, we hypothesize that ClusterMerge will generate fewer clusters

and run much faster, due to more clusters being fully merged. To test this hypothesis, we

clustered a third dataset of more closely related Streptococcus bacteria genomes, consisting of

33 genomes of different Streptococcus strains (69648 sequences, a similar number to the other

dataset).

Using Shared-CM with 48 threads, the clustering is completed in 283 seconds, producing 10500

clusters. As predicted, clustering is much faster than the 13 bacterial genome dataset (1486
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seconds), as the number of transitively similar sequences leads to more full cluster merges,

which are both fast and lead to less work further up the merge tree. Again, ClusterMerge

produced a high recall of 99.7% of similar pairs relative to a full all-against-all. The particular

genomes being clustered therefore have a marked effect on the total runtime of the algorithm.

4.6 Discussion

As there are theoretically a limited number of different protein sequences in existence, it is

worth thinking about the limits of clustering proteins. It is possible that, at some point, enough

proteins from different branches of the tree of life will be clustered such that any subsequent

protein would be completely represented by the existing set of cluster representatives. Clus-

terMerge would not add any new clusters, and any subsequent protein could be classified in

O(nlogn) time. This would form a complete, protein-based “map” of the entire evolutionary

tree of life, a powerful tool for understanding the path of evolution on earth.

However, it is not yet clear how many different genomes or proteins would be required to form

such a map. It may be still some years before enough organisms have been sequenced. It

is also possible that ClusterMerge will need to be augmented by other approaches that are

optimized for expanding a large set of existing clusters, rather than building clusters from

individual sequences. For example, ClusterMerge would be used to build an initial set of

clusters from a diverse set of proteins, with a simpler parallel iterative approach taking over

when the likelihood of adding a new cluster to set reaches a low enough threshold.

4.7 Conclusion

ClusterMerge is a parallel and scalable algorithm for precise clustering of elements. When

applied to protein sequences, ClusterMerge produces clusters that encompass 99.8% of signif-

icant pairs found by a full all-against-all comparison, while performing 50% fewer similarity

comparisons. Moreover, ClusterMerge is very parallel, and our implementations achieve

speedups of 21.5× on a 24-core shared-memory machine and 604× on a cluster of 32 nodes

(768 cores). The distributed implementation of ClusterMerge for protein clustering (Dist-CM)

can produce clusters 1400× faster than a single-threaded greedy incremental approach, while

maintaining the same level of significant pair recall. We hope that ClusterMerge will enable

protein database projects such as OMA [28] to continue to build larger databases, and continue

to scale as more data becomes available.
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5 Conclusion

Next-generation sequencing technologies are now being applied at scale, sequencing thou-

sands of genomes from various organisms and generating vast amounts of data. This data

requires a large amount of computational analysis to unlock its secrets, which has given rise to

the field of bioinformatics. This thesis shows that important computational problems in bioin-

formatics can be effectively parallelized and scaled out efficiently on commodity hardware

clusters. Horizontal scaling and cost-effective analyses will allow bioinformatics processes to

continue to meet the demands of increasing data volumes and the computational needs of

businesses and researchers.

This thesis has presented three research endeavors in support of the statement. First, whole-

genome sequence preprocessing is addressed using the Persona scalable bioinformatics

framework. Preprocessing consists of computational stages that prepare raw sequence reads

for analysis: aligning sequenced reads to a reference, sorting them, marking duplicate reads,

as well as other operations. This process can take many hours with current approaches, which

typically involve stringing together individual tools using scripts or other ad-hoc methods.

Current file formats are also bottlenecks that prevent effective scaling on parallel computers.

Persona solves these issues by integrating different algorithms and tools into a single frame-

work that is engineered to run efficiently on a cluster. The Aggregate Genomic Data file format

unifies data under a single partitioned, column-oriented storage scheme, which supports

distributed computation and reduces I/O demands. In combination with AGD, Persona lever-

ages a combination of fine- and coarse-grain dataflow execution, load balancing, and thread

and node-level parallelism to scale preprocessing across a cluster. In particular, sequencing

mapping or alignment is scaled nearly linearly, aligning 223 million reads in only 17 seconds,

on a cluster of 32 nodes.

Second, the Memoro detailed heap profiler aids developers in making more efficient use of

local memory resources and improving their program’s performance. For bioinformatics,

in particular, many tools are open source and have been developed by non-expert software

developers. This leaves many opportunities for optimization, particularly in the area of heap
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usage. Inefficient heap usage can lead to serious performance degradations that are often

difficult to find.

Memoro solves this problem by implementing detailed heap profiling. In this technique,

instrumentation inserted by a compiler at every memory access record statistics whenever the

program accesses heap memory. Memoro can determine not just when and where memory is

allocated, but how the program used it, including reads, writes, and when and where those

reads and writes occurred. Memoro distills all of this recorded data into a score for each

allocation, with a low score indicating a higher probability of performance issues arising

with data allocated at that point. Programmers can use the Memoro visualizer to easily find

memory performance issues in their code.

Memoro is effective for bioinformatics programs — fixing issues found by the tool led to a 10%

performance increase in the BAMTools API, a common library for building bioinformatics

applications.

Finally, protein sequence similarity search is explored using the ClusterMerge system. Prepro-

cessing in whole-genome sequencing is not the only step at which new methods are required to

deal with large amounts genomic data. Downstream applications include building databases

of sequenced and characterized proteins, a computationally expensive process that typically

involves aligning all proteins against one another (all-against-all), an O(n2) computation.

These databases are used to characterize new proteins and explore evolutionary histories

and are thus very important to biological research. However, new methods are needed to

future-proof their construction in the face of growing data — a lower bound of O(n2) does not

scale well.

ClusterMerge uses precise clustering to build parallel solutions to this problem. Precise

clustering is a clustering that ensures any two similar elements will be in at least one cluster

together. Similar elements can then be easily found by comparing only elements within a

cluster, reducing the total operations required. To efficiently build a precise clustering and

not miss any similar pairs, ClusterMerge relies on transitivity between elements. Transitively

similar elements can stand in for one another in subsequent comparison computations,

allowing inference of similarity and avoidance of actual computation. The ClusterMerge

algorithm then builds clusters by putting each element (protein sequence) in its own cluster

and merging similar clusters.

Crucially, ClusterMerge exposes parallelism in its tree-like computation structure, which

we leverage to build scalable implementations. Individual merges of clusters can also be

parallelized and distributed. The resulting implementations can build precise clusterings of

protein sequences 1400× faster than previous implementations.

All together, these various examples show how much the bioinformatics field can benefit from

designs that carefully consider how to parallelize and run efficiently on commodity clusters.

We maintain that this is the best approach to deal with the increasing amounts of bioinfor-
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matics data. Commodity clusters are widely available, well understood, and much more

cost-efficient than specialized supercomputing solutions. They can also easily be augmented

with accelerators for specific workloads (Graphics Processing Units, Field-Programmable Gate

Arrays) or integrated with different storage subsystems such as HDFS or the Ceph object store

used for Persona. Given this flexibility, and the fact that bioinformatics workloads can be

effectively parallelized, distributed, and scaled out, we believe commodity clusters are the

right choice.

5.1 Discussion

Alongside the central statement of this thesis, Persona, Memoro, and ClusterMerge offer other

valuable insights and lessons, while reaffirming some common themes and wisdom from

computer systems design.

5.1.1 Common Themes

Persona and ClusterMerge differ in the structure of their computations. Persona, particu-

larly the alignment workload, is embarrassingly parallel, while ClusterMerge maintains a

central state that requires communication. However, once algorithmic innovations allowed

ClusterMerge to parallelize and scale, we can see many similarities between the two systems.

Work imbalance is a crucial issue in both systems. In Persona/SNAP alignment, one sequence

may generate significantly more work than another. A read to be aligned to the reference

may generate many possible candidate locations if it has many hits in the hashed index of

the reference. If there are few good candidates (i.e., locations where the read aligns well with

the reference genome) among these, many will be evaluated during the search, each costing

an additional edit distance computation. To show these differences in alignment times, we

measure the alignment times for 50,000 random reads and show a scatterplot of alignment

times shown in Figure 5.1. The alignment time of a read is roughly correlated with the number

of candidates that were evaluated during its alignment. The mean alignment time is only

96 microseconds, however, a significant number of reads can take up to 16 milliseconds —

several orders of magnitude more time.

ClusterMerge also experiences work imbalance from two related sources. First, individual

sequences being aligned can vary in size by orders of magnitude (e.g. aligning a 400 residue

protein to a 30000 residue protein). Because alignment complexity is proportional to the

product of the sequence lengths, longer sequences can take a much longer time to align.

Figure 5.2 shows alignment times for small and large matrix alignments. As the sequence

length product increases into the millions, alignment time (using SWPS3) goes from tens of

microseconds to multiple seconds — five orders of magnitude larger. Note that the axes use a

log scale, indicating that the time increases are exponential. Second, partial merge work units,

where one sequence of a cluster is merged with a subset of sequences from the other cluster,
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Figure 5.1 – Read alignment time in Persona/SNAP, which is roughly correlated to the number
of candidate locations evaluated.

can be imbalanced again due to sequence size differences. As we can see from Figure 5.2, a

very long sequence being merged into a cluster will consume much more time than a short

sequence being merged into the same cluster. Though the remedies to these problems were

described in the respective Persona and ClusterMerge chapters, work imbalance was generally

one of the main challenges when designing these systems, especially for the scale-out design.

Work imbalance can severely reduce scaling. Initial tests of Persona that aligned entire AGD

chunks using single threads experienced a large amount of straggling, where all threads save

one or two finish executing, leaving most of the system idle while the remaining work com-

pletes. Likewise, ClusterMerge experienced a similar problem when partial merges consisted

solely of one cluster sequence being merged into another cluster — at large dataset sizes,

each partial merge in later stages of the merge tree was a large unit of work, leading to a large

amount of straggling and system idleness. While this thesis is not about load balancing, the

experience of building these systems has made it clear why it is an important research topic

on its own, and why it is a prime consideration when designing scalable distributed systems.

Another source of load imbalance, as well as another common theme in ClusterMerge and

Persona, is queuing. Queues manifest at many levels in a distributed system, often implicitly.

TensorFlow queues in Persona were explicitly declared with a particular size and used to

separate the functional domains of the system. ClusterMerge had some explicit queues, e.g.

for distributing thread local work, but the ZeroMQ messaging layer also queues requests and

responses implicitly and transparently to the system.

116



5.1. Discussion

Matrix Size (times 1M)

A
lig

nm
en

t T
im

e 
(m

s)

0.1

1

10

100

1000

10000

0.001 0.01 0.1 1 10 100

Figure 5.2 – Protein sequence alignment time versus matrix size (the produce of the sequence
lengths).

The performance of both systems was affected by queuing and both had to be tuned for high

performance. Persona queues were limited to relatively small sizes, otherwise, local workers in

the cluster would queue work that could not be utilized by other workers when they became

idle1. In terms of system-level work distribution, TensorFlow queuing and data movement

was clear and explicit. Subgraphs on each remote worker would pull data from a central queue

and locally queue a few work items, to keep all processors busy. By contrast, ClusterMerge

work distribution was less clear because the underlying ZeroMQ layer hid these details. As

mentioned in Chapter 4, the use of ZeroMQ was modified to achieve a Join-Idle-Queue [85]

style approach similar to that used by Persona. Otherwise, the default round-robin distribution

led to load imbalances. In distributed computational systems, we can see that queuing and

load balancing are related, and proper handling of trade-offs is crucial to the design of efficient

systems.

Memory management is also an important consideration when building high-performance

computational systems. In their development, both Persona and ClusterMerge had memory

usage issues that needed to be diagnosed and fixed. Tools, such as Memoro presented in

Chapter 3, or profilers like Intel VTune, are extremely helpful in finding and fixing problems.

1It is possible that some form of work-stealing could be implemented in the TensorFlow layer, but we did not
investigate this
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5.1.2 Lessons

Systems for Bioinformatics

The original goal for Persona was to build a system and data format that would encompass and

unify most if not all tools and computations in the bioinformatics field. With such a system,

a bioinformatics workload could be easily distributed and scaled out to large clusters, with

most of the complex system plumbing made transparent to users. However, going from whole-

genome sequencing preprocessing to protein similarity search showed that bioinformatics

spans an extremely wide array of algorithms and computational patterns. To design one

system that can scale and accelerate any bioinformatics tool or algorithm may be an exercise

in futility.

As an example, consider our first attempt at solving the protein similarity search problem,

which involved engineering a solution using Persona. The general idea was to directly paral-

lelize the sequential greedy clustering algorithm, by managing a growing set of clusters directly

in remote nodes. The nodes were connected in a ring, and new sequences would pass around

the ring, being compared to existing cluster representatives, and added to clusters if they

were similar. At the end of a trip around the ring, after being compared to all clusters, a new

cluster would be created for a sequence if necessary. The benefit was that nodes in the ring

could operate in parallel, with bookkeeping information sent along with each sequence as it

traversed the ring.

However, there were several issues with this design. First, there was no way to properly load

balance. Clusters were assigned to nodes randomly and statically, and some nodes would

end up with many large (expensive computationally) clusters, while others with smaller,

cheaper clusters. A single node would always become the computation bottleneck and limit

the system scalability. Second, the amount of bookkeeping was large compared to the size

of each sequence. The system had to maintain state along with each sequence that would

track whether or not it had been compared to all clusters created from preceding sequences in

a fixed order. Otherwise, similar pairs would be missed. This bookkeeping imposed a large

amount of overhead, as well as increasing complexity.

To be clear, not all downstream applications of preprocessed sequencing data requires central

state like clustering. Variant calling, for example, is similar in computational structure to

alignment. Variant calling is the process of analyzing “piled up” aligned reads at each location

in the genome, to see if there are genetic variants: single nucleotide mutations (known as

SNPs, single nucleotide polymorphisms), or larger variants involving multiple bases. In terms

of computational structure, in most cases, small windows of the genome containing probable

variants can be analyzed completely in parallel. Persona would still be a very good fit for this

type of computation, although we did not yet integrate any variant calling algorithms.

The lesson here is that Persona is optimal for batched, feed-forward, throughput-oriented

workloads. It was not designed to implement distributed clustering methods that rely on
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mutating a centrally managed state. At the end of this exercise, it was clear that another

system-level design was needed. For bioinformatics, one size definitely does not fit all.

Bioinformatics Tools and the Future

Most bioinformatics tools in common use are open source and available, which the field should

be commended for. Open software and methods drive further research and development.

However, this can come at a cost.

As noted near the beginning of this thesis, there are many different tools in common use

for bioinformatics applications. These tools are typically the product of research-oriented

developers, working at universities and research institutes, whose goal is to push forward

bioinformatics methods and algorithms. As such, their concern is generally to produce

software that solves problems and shows their method works and is accurate. Performance

is probably often a secondary goal, and most designs and implementations are engineered

to run on a single commodity processor, not a cluster. Choices in algorithm design and

implementation can also severely affect performance.

Consider the BWA-MEM aligner, arguably the most popular tool for alignment in preprocess-

ing. When aligning paired sequence reads with default settings, this tool groups reads into

batches of 100,000 after aligning each pair and uses a batch to estimate the insert size (the gap

between the aligned pair of reads) distribution. This presumably leads to better accuracy in

the aligned reads, but introduces a sequential step in the middle of an otherwise parallel task,

effectively preventing thread scaling beyond 12-15 threads. Note that this was not exposed in

the evaluation of Persona in Chapter 2, because single-ended alignment was being used.

Memoro also exposed instances where design decisions led to poorer performance than

necessary. In the BAMTools API for sorting, holding input file data in std::string objects is

wasteful as it is not possible to extract substrings without copying, which is unnecessary for

read-only data. It should be possible to retain input file data in one place in memory, and use

pointers into the data to do the sorting, maintaining a zero-copy architecture.

Choices like these must be weighed more carefully, given discussions about the state of

bioinformatics data in Chapter 1. Performance and scalability must become first-class con-

siderations when designing new bioinformatics tools. Sequencing technologies are moving

forward at a brisk pace, and computational analyses risk falling behind if bioinformatics

developers do not take a high-performance, scale-out approach to building applications. As

this thesis states, developers should embrace commodity clusters to ensure their systems can

keep up. Performance-oriented frameworks like Persona can help developers take advantage

of today’s scalable computing infrastructures, hiding complexity of scaling computation and

overlapping I/O, allowing developers to focus on correctness and accuracy while still being

able to scale. ClusterMerge has shown that even large-scale computations with central state
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can be scaled effectively on commodity clusters, if the algorithm and implementation and

designed carefully.

5.1.3 Conclusion

Data pressure in bioinformatics continues to grow, with sequencing machines producing more

and more data with each generation. This thesis has shown that for various bioinformatics

problems involved in processing this data, adopting a distributed approach with horizontal

scaling using commodity cluster hardware is an effective and efficient solution. Problems such

as alignment inwhole-genomee sequencing preprocessing and protein sequence similarity

search can be scaled nearly linearly across clusters of 32 servers, aligning 223 million reads

in 17 seconds with the Persona system or finding all significantly similar protein pairs 1400×
faster than previous methods using ClusterMerge. The Memoro detailed heap profiler can

also help bioinformatics developers find heap usage inefficiencies in their code, facilitating

more effective use of available hardware and memory resources. The successful performance

and scaling of these systems shows that adopting commodity clusters and building applica-

tions engineered for horizontal scaling is the right approach to future-proof bioinformatics

tools. This will allow researchers and clinicians to take full advantage of the genomic data

revolution.
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