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ABSTRACT

Natural disturbances play a key role in ecosystem dynamics and are important factors for sustainable
forest ecosystem management. Quantitative models are frequently employed to tackle the complexities
associated with disturbance processes. Here we review the wide variety of approaches to modelling nat-
ural disturbances in forest ecosystems, addressing the full spectrum of disturbance modelling from single
events to integrated disturbance regimes. We applied a general, process-based framework founded in
disturbance ecology to analyze modelling approaches for drought, wind, forest fires, insect pests and
ungulate browsing. Modelling approaches were reviewed by disturbance agent and mechanism, and
a set of general disturbance modelling concepts was deduced. We found that although the number of
disturbance modelling approaches emerging over the last 15 years has increased strongly, statistical con-
cepts for descriptive modelling are still largely prevalent over mechanistic concepts for explanatory and
predictive applications. Yet, considering the increasing importance of disturbances for forest dynamics
and ecosystem stewardship under anthropogenic climate change, the latter concepts are crucial tool for
understanding and coping with change in forest ecosystems. Current challenges for disturbance mod-
elling in forest ecosystems are thus (i) to overcome remaining limits in process understanding, (ii) to
further a mechanistic foundation in disturbance modelling, (iii) to integrate multiple disturbance pro-
cesses in dynamic ecosystem models for decision support in forest management, and (iv) to bring together
scaling capabilities across several levels of organization with a representation of system complexity that
captures the emergent behaviour of disturbance regimes.

© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Disturbances are key processes in forest ecosystem dynamics
(Oliver and Larson, 1996). They strongly influence the structure,
composition and functioning of forest ecosystems (Franklin et
al., 2002) and determine the spatial and temporal patterns of
forested landscapes (Forman, 1995). Analyses of old-growth forest
ecosystems show that the temporal and spatial interplay between
individual tree mortality and disturbances at varying scales, from
small gaps to landscapes, is creating the multitude of successional
pathways observed in natural forest ecosystems (Spies, 2009). Fur-
thermore, disturbance processes are a key driver for evolutionary
plant strategies (Grime, 2001; Gutschick and Bassirirad, 2003).

Due to their important role in forest dynamics, disturbances
are relevant factors also in the management of ecosystems for
functions, goods and services. Traditional management paradigms,

originating in Central Europe in the 19th century and aiming at
sustained timber yield, largely neglected disturbance dynamics in
their conceptual design (cf. Puettmann et al., 2009), a fact that
is also reflected in early modelling concepts such as yield tables
(see Pretzsch et al., 2008 for a historical overview). Consequently,
these management paradigms aimed at an exclusion or at least
minimization of disturbance impacts, as these were viewed as
interfering with “normal” forest structure and development. How-
ever, the recent disturbance history of managed forests in Europe
and elsewhere clearly documents that these efforts widely failed
(e.g., Schelhaas et al., 2003), and that disturbances such as wind
storms and forest fires play a key role in the resource economy of
most forested regions worldwide (e.g., Baur et al., 2003; Prestemon
and Holmes, 2004).

With the increasing valuation of ecosystem services beyond
timber production and a focus on the protection of biodiver-
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sity, a contrasting view of natural disturbances has been adopted
in forest management. In the ecosystem management approach
(Christensen et al., 1996; Kohm and Franklin, 1997), natural
disturbances are recognized as blueprints for “close-to nature”
management, assuming that the ecosystem and its components
(e.g., endangered species) are resilient to disruptions that closely
mimic natural dynamics (e.g., Palik et al., 2002; Bouchard et al.,
2008). Emerging management frameworks such as the “histor-
ical range of variability” (Keane et al., 2009) explicitly address
the important role of disturbances in ecosystem dynamics, but
challenges remain with regard to their social acceptance and
practical implementation (e.g., Wong and Iverson, 2004; Long,
2009).

In addition, climatic changes have the potential to rapidly
invalidate historical baselines by altering key drivers of distur-
bance regimes (Lindner et al., 2010). For example, insects are
affected directly by changes in temperature due to their ectother-
mic metabolism. Although numerous additional factors such as
host availability and synchronization contribute to the complexity
of climate-insect systems, climate change is expected to pre-
dominantly facilitate insect herbivores in temperate and boreal
forest ecosystems (Bale et al., 2002; Battisti et al., 2005; Netherer
and Schopf, 2010). Forest fires and large-scale drought events are
further examples for disturbance events directly dependent on cli-
mate. Recent heat/drought episodes such as the European heat
wave of 2003 (Rebetez et al.,, 2006) and the drought period in
the south-western US (Breshears et al.,, 2005) have had strong
impacts on forests (van Mantgem et al., 2009; Allen et al., 2010),
and are likely to occur more frequently in the coming decades. Also,
recently observed increases in fire frequency and severity have
been linked to changes in the climate system (Westerling et al.,
2006).

Quantitative models are powerful tools to analyze the com-
plex relations between disturbances and their environment as well
as their interactions with forest management by formalizing our
understanding and allowing quantitative hypothesis testing. Con-
sidering the complexity of forest ecosystem dynamics, models
are particularly useful (i) for a structured scientific analysis and
quantitative evaluation of our understanding, and (ii) for harness-
ing scientific knowledge towards sound ecosystem management
(cf. Bunnell and Boyland, 2003). Concurrent with an increasing
ecological understanding considerable advances in the modelling
of natural disturbance processes have been made over the last
decades (e.g., Ryan, 2002; Keane et al., 2003, 2004 for fire; Gardiner
et al., 2008 for windthrow, Malmstrém and Raffa, 2000; Dukes et
al., 2009 for insect herbivory). Yet, despite increasing knowledge
on individual processes and their modelling, this potential has had
only limited impact on forest ecosystem modelling (Johnson and
Miyanishi, 2007), such that a coarse representation of disturbance
regimes persists in these models (Cushman et al., 2007). As a con-
sequence, disturbances are still widely neglected in models that

Table 1

are applied in a forest management context, potentially leading to
biased results in model-based decision support (Seidl et al., 2008),
or disturbance regimes are imposed on models by external param-
eters rather than being simulated as emergent properties of system
dynamics (cf. Schumacher and Bugmann, 2006).

To facilitate future efforts in disturbance modelling in this
regard, our objective was to provide a review of the different
approaches to modelling natural disturbances, addressing the full
range of disturbance processes from individual events to integrated
disturbance regimes. Based on the notion that disturbances are
frequently interacting, we review a variety of disturbance agents
rather than restricting our view to a single agent. To consistently
analyze modelling concepts across agents we apply a common,
process-oriented framework founded in disturbance ecology. Our
specific objectives were (i) to review the wide variety of distur-
bance modelling approaches for different disturbance agents, and
(ii) to synthesize modelling concepts and highlight challenges with
regard to an improved integration of disturbances in dynamic
ecosystem models in the context of forest management and climate
change.

2. Methods and materials

We adopted a definition of disturbance that is rooted in for-
est ecosystem dynamics, where it is a discrete event in time
that disrupts ecosystem structure, composition and/or processes
by altering its physical environment and/or resources, causing
destruction of plant biomass (synthesized from White and Pickett,
1985; Gunderson, 2000; Grime, 2001; White and Jentsch, 2001).
Factors characterizing disturbances such as their abruptness, dura-
tion and magnitude are considered relative to ecosystem properties
and their characteristic time scales. “Discrete” thus implies that a
disturbance does not necessarily occur instantaneously, but rapidly
relative to the change in the system’s state variables that would
occur in the absence of disturbance. We restricted our review to
natural disturbances and focused on disturbances that do not irre-
versibly alter system integrity, i.e. processes within the domain of
general systems stability (cf. Gunderson, 2000).

We structured our review according to disturbance agents,
addressing drought, wind, fire, insect pests and ungulate brows-
ing (Sections 3-7). Addressing this diverse set of abiotic and biotic
disturbance agents we aimed at covering the broad range of scales
and processes relevant for the modelling of complex, integrated dis-
turbance regimes. To facilitate a process-oriented view we further
structured the review according to main disturbance mechanisms.
We followed White and Jentsch (2001) in distinguishing the mod-
elling of an individual disturbance event vs. the larger context
of a disturbance regime (cf. also Moloney and Levin, 1996). In
compliance with White and Picketts’ (1985) concept of distur-
bance analysis we reviewed models according to the five broad
mechanisms susceptibility, occurrence, impact, spatio-temporal

The process-oriented structure for reviewing disturbance modelling approaches in this study, and its relation to commonly used disturbance descriptors.

Level of organization Mechanism

Aspects addressed in modelling

Related disturbance descriptors?

Disturbance event Susceptibility

Occurrence

Predisposition of forest vegetation (i.e., lack of
resistance to agent)
Sensitivity of disturbance agent to its environment

Frequency, return interval, predictability

Frequency, return interval, predictability

(e.g., climate, antagonists), triggering elements,

population levels
Effects on vegetation structure, composition and

Impact

Magnitude, intensity, severity

functioning and their local spatial distribution

Disturbance regime Spatio-temporal dynamics

Spatial spread at landscape scale, correlation and

Distribution

feedbacks with landscape patterns

Interactions

Facilitation (and competition) between
disturbance agents

Synergism

2 Sensu White and Pickett (1985, p. 7).
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Fig. 1. A generic process-oriented framework for modelling natural disturbances in
forest ecosystems. For a characterization of the five major disturbance processes (in
italics) see Table 1. The inner rounded box delineates a single disturbance event for
a respective agent (at time t and location s). The outer box contains the elements
of the disturbance regime of a landscape S, i.e. spatial and temporal dynamics (e.g.,
the influence of adjacency and landscape context on a disturbance event (with s € S),
the temporal changes of susceptibility with succession) as well as interactions with
other disturbance agents of the disturbance regime. V=forest vegetation, A= focal
disturbance agent, s = spatial location, ¢t = units of time.

dynamics and interactions (Table 1), resulting in a conceptual
framework for disturbance modelling (Fig. 1) as the structural
backbone of our analysis. Within this mechanistic framework we
reviewed modelling approaches according to their process reso-
lution and system dynamics, and synthesized general disturbance
modelling concepts (Section 8). Since the utility of a model can
only be judged in the context of its intended domain of application
and a particular scientific question being asked, we largely refrain
from a general valuation of approaches (sensu “model X is better
than model y”) in Sections 3 though 7, but we close with a discus-
sion of current challenges and promising approaches for modelling
natural disturbances in the context of climate change and forest
management (Section 8).

The literature search was conducted using the databases of Else-
vier Scopus®, ISI Web of Knowledge®, OvidSP®, CAB Abstract®, and
Google Scholar® during a six-month period from August 2009 to
January 2010. Queries contained different permutations of the five
selected disturbance agents (including aliases and explicit species
names) and the mechanisms described in Table 1 as search terms.
Additionally, we performed relational database searches exploiting
the network of citations (forward and backward) around relevant
disturbance modelling literature. In total 324 references to mod-
els and applications of disturbance modelling were included in our
review (see Online Supplement).

3. Drought
3.1. Modelling drought events

3.1.1. Susceptibility

Water limitation affects forests at multiple levels (Breda et al.,
2006); thus it is explicitly included in most forest ecosystem mod-
els. Still, we find an inclusion in our disturbance-focused review
valuable since drought is an important factor in the interaction
with other disturbance agents in forest ecosystems (e.g., Bigler et
al., 2005) and the simulation of drought conditions remains chal-
lenging for current ecosystem modelling approaches (Hanson et
al., 2004). In line with the scope of this review we focus on mod-
els addressing distinct drought periods leading to tree mortality
(see McDowell et al., 2008 for a recent review of ecological mech-

anisms), whereas gradual effects of water stress on processes such
as growth are not the focus here.

Susceptibility of forest ecosystems to drought is mainly deter-
mined by site (e.g., soil texture, soil depth, water holding capacity)
and stand (e.g., leaf area, species composition, rooting depth) char-
acteristics. In models explicitly simulating water cycling in forest
ecosystems, site conditions are represented at varying levels of
detail, including one- or multi-layered soils as well as different
schemes of water extraction based on soil texture (see Wullschleger
et al., 2001; Hanson et al., 2004; Grant et al., 2006 for an overview
over different concepts). In most models these characteristics
strongly shape the predisposition of a site to adrought event, yet the
scarce availability of detailed soil data for model parameterization
and initialization often limits the applicability of a complex soil rep-
resentation in landscape-scale simulations. Many widely applied
physiological models (i.e. approaches that explicitly incorporate
fundamental processes of tree physiology such as photosynthesis,
respiration and allocation) and forest gap models (i.e. models sim-
ulating the forest as a composite of small patches of (potentially)
different composition and successional stage) thus employ an one-
layer bucket model (i.e. models assuming a single well-mixed body
of water for a stand) specified by field capacity to permanent wilt-
ing point (e.g., Bugmann and Solomon, 2000: FORCLIM; Thornton
et al., 2002: BIOME-BGC). Examples for process-models utilizing
a more complex soil architecture are given by Grote and Pretzsch
(2002: BALANCE) and Lasch et al. (2005: 4C).

In physiological models including a detailed routine to cal-
culate transpiration, trees consume water from the soil storage
pool(s), thus accounting for soil-vegetation-atmosphere feedbacks.
Increasing drought susceptibility due to higher stand-level water
demand is an emerging property of such approaches (e.g., Running
and Coughlan, 1988: FOREST-BGC; Sitch et al., 2003: LP]). Hanson
et al. (2004) in their analysis of 13 detailed process models (hourly
to monthly time-step) found that also the conductance gradient
within a canopy is important in “big leaf” approaches (i.e. models
with a linear scaling of leaf photosynthesis processes to canopies,
stands and landscapes) to accurately simulate the water cycle. Fur-
ther interactions between stand structure and water availability are
included in models that simulate the interception of precipitation.

In many gap models, which are explicitly designed to simulate
species dynamics, species-specific drought tolerance is consid-
ered mostly by means of an ordinal ranking with regard to a
drought response scalar (cf. Bugmann and Cramer, 1998: FORCLIM;
Waullschleger et al., 2001), rather than a consideration of physiolog-
ical mechanisms and responses. More detailed approaches consider
the species-specific distribution of fine root surface area in differ-
ent soil layers in the competition for water among individual trees
(e.g., Grote and Pretzsch, 2002). In addition to site and stand charac-
teristics directly influencing the water balance, other stressors can
influence the predisposition of trees to drought. In many gap mod-
els the occurrence of multiple stressors additionally predisposes
trees to die in case of drought, due to lowered margins to mortality
thresholds (Keane et al., 2001).

3.1.2. Occurrence

The explicit simulation of the onset of drought requires infor-
mation on the course of climate drivers and the resulting soil
water dynamics at daily or smaller time steps (Tiktak and van
Grinsven, 1995), although some models also operate on a monthly
basis (Nepstadt et al., 2004: RisQue), or even at annual time steps
(van Minnen et al., 1995: FORSOL). In process models, the driv-
ing force is plant available soil water (Tiktak and van Grinsven,
1995; Nepstadt et al., 2004). Drought stress occurs if the actual
plant-available soil water falls below a certain predefined thresh-
old value, e.g., below the wilting point (van Minnen et al., 1995).
For example, in the process model 4C drought stress occurs if the
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daily water demand depending on potential evapotranspiration,
interception evaporation and unstressed stomatal conductance of
the forest stand exceeds the water supply from the soil (Lasch et al.,
2005). Detailed physiological models explicitly simulate thresholds
in leaf water potential, with some approaches also accounting for
sapwood water storage as well as root and xylem conductivity (e.g.,
Martinez-Vilalta et al., 2002; Zavala and Bravo de la Parra, 2005).
Process models capturing the gradual onset of drought periods with
fine temporal resolution (i.e., hourly) frequently contain formula-
tions balancing water supply and demand of the soil-root-canopy
system (cf. Grant et al., 2006).

In another model family drought stress has been related to the
ratio of vegetation demand (potential evapotranspiration, PET) vs.
supply of water from the soil (actual evapotranspiration, AET), in
relation to species-specific thresholds (e.g., Prentice et al., 1993:
FORSKA; Bugmann, 1996: FORCLIM; Lexer and Honninger, 2001:
PICUS). The number of drought days has also been proposed as
proxy for drought disturbance and mortality in simulation models
(e.g., van Minnen et al., 1995), but has been found inferior com-
pared to the AET approaches described above (cf. Fischlin et al.,
1995: FORCLIM).

In contrast, the water cycle is not simulated explicitly in empir-
ical models. For example, simple regression approaches based on
climate drivers have been used to estimate drought occurrence
and impact (Solberg, 2004). In empirical simulation models, the
occurrence of drought stress can be included probabilistically via
empirically derived distributions of prior drought events for a
specific region. A modification of such historical data allows for
scenario analysis also in empirical simulators (e.g., Fabrika and
Vaculciak, 2009: SIBYLA).

3.1.3. Impact

Although a number of physiological models simulate the cir-
cumstances leading to drought at a very detailed level, the modelled
ecosystem impact typically focuses on short-term gas exchange
and the resulting growth reduction (e.g., Hanson et al., 2004). While
the drought-related decline of ecosystem pools is accounted for in
such approaches, drought disturbances and the resulting pulses of
tree mortality are not simulated explicitly. In this regard Zavala
and Bravo de la Parra (2005) presented a process-based individual
tree model that explicitly accounts for water stress and subse-
quent drought-induced tree mortality, using days with leaf water
potential approaching the cavitation threshold as the key driver.
Martinez-Vilalta et al. (2002) used hydraulic loss in xylem conduc-
tivity and its feedback to leaf area as a proxy for the death from
drought in their detailed plant water transport model. GOTILWA+
(Sabate et al., 2002), which simulates drought-induced mortality
through a water-deficit mediated negative carbon balance, addi-
tionally includes a drought-related response of foliage phenology
tailored to Mediterranean conditions. It is thus able to simulate the
immediate plant response to a drought disturbance in terms of leaf
area loss, rather than assuming full elasticity (i.e. an immediate
recovery of foliage after the drought event). A delayed recovery
from drought is also incorporated in the process-based model
CABALA (Battaglia et al., 2004), where trees have a memory of plant
water stress that reduces stomatal conductance for a certain period
after the stress is removed.

In contrast to many physiological approaches, models of
long-term ecosystem dynamics generally simulate tree mortality
directly (Keane et al., 2001). Albeit at a coarser process resolu-
tion (but see, e.g., Friend et al., 1997: HYBRID), such models are
able to simulate the effects of drought disturbances on ecosystem
dynamics and succession. The effects range from a few individu-
als dying to a complete loss of living tree biomass in response to
drought, accounting for the growth history of the affected indi-
viduals (Keane et al., 2001). However, most gap models assume

full elasticity, i.e. if the drought duration is shorter than the stress
threshold no mortality occurs and no feedbacks to tree vitality are
simulated. Furthermore, mortality thresholds and assumptions in
such model formulations are frequently based on theoretical con-
siderations scarcely corroborated with empirical data and difficult
to parameterize. In this regard Bigler and Bugmann (2004) and
Wunder et al. (2006) presented efforts to evaluate and improve
such theoretical mortality models with empirical data. However,
one problem in this context is that empirical models tend to be
site- and time-dependent (cf. Wunder et al., 2008). Considering
these complexities and uncertainties, McMahon et al. (2009) used a
hierarchical modelling framework applying a Bayesian approach to
embrace such aspects in model predictions of drought disturbance.

3.2. From events to disturbance regime

3.2.1. Spatio-temporal dynamics

Spatio-temporal dynamics of drought regimes are modelled
mainly with regard to the spatial distribution of predisposing soil
characteristics in combination with spatial and temporal variation
in climate drivers (e.g., precipitation, temperature, vapour pres-
sure deficit, radiation). Spatial patterns and trajectories over time
are thus mostly determined by abiotic drivers, and are not primar-
ily an emerging property of the model itself. However, subsurface
water flow and thus local water availability are strongly influenced
by topography, particularly in landscapes characterized by complex
(i.e., mountainous) terrain. Such topographic effects on hydrology,
influencing spatio-temporal dynamics of drought regimes, can be
modelled implicitly (i.e. statistical partitioning of watersheds into
hydrologically similar areas, e.g., the TOPMODEL approach of Beven
and Kirkby, 1979) or explicitly (i.e. simulate lateral flow between
entities, e.g., the DHSVM approach of Wigmosta et al., 1994). Band
et al. (1993: RHESSys) and Engel et al. (2002) give examples for an
integration of the former approach within established physiological
modelling frameworks that can be used to study spatio-temporal
landscape level drought patterns. Integrated ecosystem models
using explicit soil water routing are still scarce, although the work
by Tague and Band (2001: RHESSys) highlights the advantage of this
approach in simulating spatially distributed soil moisture patterns.

3.2.2. Interactions with other disturbance agents

Drought is an important predisposing factor for a number of
other disturbance agents, and these interactions are thus mod-
elled in a variety of approaches, particularly with regard to fire and
insect herbivory (cf. Sections 5 and 6). However, the influence of
other disturbance agents on drought-induced mortality (addressed
here) is limited, and mostly restricted to a reduction in compe-
tition for available water via mortality. Such interactions can be
modelled by all above-mentioned process-based approaches that
include disturbance feedbacks on vegetation structure and water
cycling.

4. Wind
4.1. Modelling wind events

4.1.1. Susceptibility

The susceptibility of forest ecosystems to wind damage is
determined by tree and stand characteristics (e.g., tree species,
tree/stand height, slenderness of trees, crown and rooting char-
acteristics, stand density) as well as site characteristics (soil type,
soil moisture content, topography). Essentially, all these factors
need to be accounted for in modelling susceptibility to windthrow
and/or wind breakage. Early conceptual models based on qualita-
tive assessments were proposed for this task (e.g., Tang et al., 1997;
Mitchell, 1998). Penalty point-based predisposition rating systems
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were employed to combine stand and site predisposition factors in
expert systems (Fiihrer and Nopp, 2001). Non-parametric quantita-
tive models such as classification and regression trees or gradient
boosting were recently harnessed to model windthrow suscepti-
bility (e.g., Dobbertin, 2002; Lindemann and Baker, 2002; Kupfer et
al., 2008).

However, by far the most common empirical approach to
develop windthrow models based on stand and site characteristics
is logistic regression, using site variables (e.g., Kramer et al., 2001),
site and stand variables (e.g., Lohmander and Helles, 1987; Jalkanen
and Mattila, 2000; Mitchell et al., 2001), individual tree variables
(e.g.,Peterson, 2004; Rich etal.,2007) or combinations of these (e.g.,
Valinger and Fridman, 1999; Fonseca, 2004: ModisPinaster; Mayer
et al., 2005) as predictors. Spatial and neighbourhood aspects were
alsoincluded as explanatory variables in such statistical approaches
(e.g., Scott and Mitchell, 2005; Schindler et al., 2009). While most
of these studies generally achieved satisfactory explanatory power,
a high level of stochasticity was documented, e.g., in the analy-
sis by Schiitz et al. (2006). Considering the incomplete and “noisy”
data sets common to disturbance modelling, methods from artifi-
cial intelligence recently proved to be superior to logistic regression
in modelling windthrow susceptibility (Hanewinkel et al., 2004).
Furthermore, the study of Lanquaye-Opoku and Mitchell (2005)
highlighted the limited generality of region-specific, empirical
regression models.

This problem is remedied by mechanistic models that deploy
causal links between wind loading, tree/stand variables and the
probability of damage, and quantify susceptibility in terms of a
physically meaningful target variable (e.g., critical wind speed for
breakage or uprooting, cf. Gardiner et al., 2008). The model Forest-
GALES, for instance, uses soil type and rooting depth as explanatory
variables in regression models that determine resistance to uproot-
ing (Gardiner and Quine, 2000). Peltola et al. (1999a: HWIND)
employ soil bulk density and the resulting weight of the root-soil
plate to model the forces counteracting uprooting. Such mecha-
nistic approaches have been widely adopted and parameterized
to model wind susceptibility (e.g., Achim et al., 2005: GALES;
Nicoll et al., 2005: GALES). However, they are currently limited
to predictions for structurally uniform, single species stands (see
Gardiner et al., 2000). In this regard the approaches by Ancelin et al.
(2004: FOREOLE) and Schelhaas et al. (2007: ForGEM-W) represent
important steps towards a mechanistic calculation of critical wind
speeds for complex forest canopies. Even more detailed approaches
address certain aspects of tree susceptibility in particular: Chiba
(2000: Sawada) used a mechanistic model based on stem bend-
ing stress to assess stem breakage in relation to stand structure,
while Dupuy et al. (2007) focused on tree anchorage, modelling 3D
root systems by means of a finite element model. However, where
detailed mechanistic approaches are not feasible due to data or
computational constraints a simple age-dependent susceptibility
(where age is a proxy for height) is frequently applied (e.g., He et
al,, 1999: LANDIS; Schelhaas et al., 2002: EFISCEN).

4.1.2. Occurrence

The probability of critical wind speeds needed for damage, and
thus the occurrence of damage, can be estimated based on statisti-
cal distributions (e.g., Weibull distribution) of wind speed (for each
direction) using time series data from nearby weather stations (e.g.,
Thiirig et al., 2005: MASSIMO; Schelhaas, 2008: ForGEM-W). For
example, Bengtsson and Nilsson (2007) presented an approach to
calculate return periods of historic storm events based on statistical
extreme value theory.

An alternative empirical approach to quantify storm occur-
rence was presented by Canham et al. (2001: SORTIE). They
simultaneously estimated local storm severity and individual tree
susceptibility, exploiting the considerable variability within a

windthrow event. In analogy to bootstrapping, plot-specific (i.e.,
the storm severity indices) and species-specific (i.e., susceptibil-
ity) parameters were sequentially refined until the most likely
parameter values were identified (see also Papaik and Canham,
2006: SORTIE). Other empirical windiness scoring systems were
used to predict local distribution parameters quantifying the wind
regime based on altitude and position in the landscape, e.g., the
Detailed Aspect Method of Scoring (DAMS) in ForestGALES (Quine
and White, 1994). Several earlier analyses (e.g., Ruel et al., 1997;
Suarez et al., 1999) found topographic indices to perform equally
well as local wind estimates in windthrow modelling. Recently,
however, Mitchell et al. (2008) confirmed the utility of mesoscale
numerical weather prediction data for modelling the occurrence of
windthrow events.

Local airflow models are frequently employed to simulate the
occurrence of critical windspeeds, accounting for local topography
(Talkkari et al., 2000: MS-Micro/3; Zeng et al., 2006: WAsP) but
also allowing the evaluation of the effects of stand structure (e.g.,
through management) on the occurrence of critical wind speeds
(Blennow and Sallnds, 2004: WINDA; Vendldinen et al., 2004:
WASsP; Panferov and Sogachev, 2008: SCADIS). Such process-based
approaches to calculate the occurrence of critical wind speeds are
not only useful in downscaling observed wind fields but are well
suited to be applied with regional climate projections. Blennow and
Olofsson (2008: WINDA) gave an example of driving a local airflow
model with data from a regional climate model to assess windthrow
occurrence and risk under climate change. However, the climatic
influence on windthrow occurrence is not limited to wind speed.
Peltola et al. (1999b) presented an approach to test climate change
induced feedbacks on critical wind speed due to changes in soil
frost.

4.1.3. Impact

The majority of wind disturbance model applications consider
only potential risk based on static stand conditions or simulated
stand development (as projected in a separate assessment step,
e.g., using yield tables or growth-and-yield models). They thus
do not model vegetation feedbacks of wind impacts explicitly. In
this model class, approaches focusing exclusively on stem break-
age are available (e.g., Chiba, 2000), while the widely used models
ForestGALES and HWIND account for both effects of strong winds,
breakage and uprooting (Gardiner et al., 2000). Changes in the
predisposition of trees during a storm event (e.g., as stand struc-
ture is altered by the disturbance) are not accounted for in these
approaches, however.

If feedbacks on forest structure and resources are explicitly con-
sidered (e.g., Zeng et al., 2006), trees are modelled to either die or
survive a storm event unharmed in most models, despite the range
of potential wind damage effects. This most common approach to
model wind impacts is used in individual-based succession models
(Hickler et al., 2004: LPJ-GUESS, Uriarte and Papaik, 2007: SORTIE),
in grid-based state-transition models (Rademacher et al., 2004:
BEFORE) as well as in empirical models (Thiirig et al., 2005). The
process-based model of Schelhaas et al. (2007) additionally sim-
ulates tree Kkills by falling neighbours. At lower resolution than
the individual tree, storm impacts are modelled to “reset” age-
based cohorts in a number of different cohort approaches (e.g.,
Frelich and Lorimer, 1991: STORM; He et al., 1999; Schelhaas et al.,
2002).To account for windthrow impacts in simulations with struc-
turally simple “big leaf” ecosystem models, a removal of biomass
from the respective pools and an adjustment in respiration rate are
employed (e.g., Lindroth et al., 2009: BIOME-BGC).

A simple indirect method to model storm impacts on forest
ecosystems beyond tree mortality is to use descriptive damage
classes as the response variable of wind damage models. For exam-
ple, Boose et al. (2001) used a modified version of Fujita’s (1987)
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scale, a widely applied descriptive system for assessing wind dam-
age, which qualitatively accounts not only for stem breakage or
uprooting but also for damages to leaves and branches in lower
damage classes. The importance of branches and twigs and their
behaviour under strong winds is, however, increasingly recognized
also in mechanistic sway models (Kerzenmacher and Gardiner,
1998; James et al., 2006).

4.2. From events to disturbance regime

4.2.1. Spatio-temporal dynamics

Since the occurrence and impact of wind disturbances are
strongly driven by variables extrinsic to the forest ecosystem (such
as weather and topographical position), the resulting disturbance
regime largely reflects these drivers; that is, in contrast to other
disturbances (such as insect pests and fires), models do not usually
produce the spatio-temporal patterns of wind disturbance as an
emergent property of the simulation. The majority of modelling
approaches to date focus on either spatial or temporal aspects
of forest dynamics and storm events. A number of studies high-
lighted the influence of the spatial configuration of forest stands
on landscape-scale wind susceptibility. Such approaches evaluate
snapshots of landscape structure (e.g., Blennow and Sallnds, 2004;
Venadldinen et al.,, 2004) or use growth models, sometimes in con-
junction with GIS software, to project stand development (e.g.,
Wilson, 2004: LMS; Zeng et al., 2007: SIMA; Blennow et al., 2010:
FTM) as the basis for predicting susceptibility to storm events. Zeng
et al. (2009: HWIND), for instance, recently corroborated the rele-
vance of landscape configuration in their analysis based on Monte
Carlo renderings of a forest landscape. However, these approaches
do not model feedbacks of wind disturbance events on forest struc-
ture, i.e. wind-mediated changes of susceptibility and impacts on
ecosystem dynamics are neglected.

Other approaches explicitly include wind damage effects
on simulated forest development and resource trajectories.
Individual-based models were used to simulate the effect of wind
events on local structure and forest dynamics (e.g., Rademacher et
al.,2004; Papaik and Canham, 2006; Uriarte and Papaik, 2007). Sim-
ilar approaches were incorporated into models operating at larger
spatial scales (e.g., Moorcroft et al., 2001: ED; Gimmi et al., 2009).
Spatially explicit forest landscape models (i.e. models simulating
patterns and processes at the scale of forest landscapes, i.e. typi-
cally >102 ha) such as LANDIS extended this approach to include
explicit neighbourhood relations (i.e. contiguous blowdown areas)
and species-specific susceptibilities to simulate realistic landscape
patterns of wind events (He et al., 1999; Scheller and Mladenoff,
2005). However, such approaches do not currently account for the
influence of neighbouring stand patterns on susceptibility to wind
damage.

4.2.2. Interactions with other disturbance agents

As for drought, the influence of other disturbance agents on
wind events is mainly limited to indirect effects, e.g., mediated
by changes in age-class structure due to mortality from inter-
acting disturbances. Such effects are explicitly modelled in the
landscape approach of Scheller and Mladenoff (2005: LANDIS-II),
who demonstrated the implications of wind-fire interactions on
forest succession. Disturbance agents like fungi and pathogens also
have the ability to influence the resistance of trees to breakage and
windthrow. Papaik et al. (2005: SORTIE) implemented this inter-
action in their individual-based vegetation modelling approach by
distinguishing wind susceptibility parameters for different levels
of pathogen infection. Their simulations highlighted the influence
of pathogens on windthrow and subsequent vegetation develop-
ment.

5. Forest fires
5.1. Modelling forest fire events

5.1.1. Susceptibility

Susceptibility to fire depends on the properties of living and
dead vegetation as fuel, i.e. its amount and spatial distribution,
which are related to forest composition and structure. Fuel proper-
ties are frequently summarized in fuel models (i.e. a multi-attribute
characterization of fuel traits used to predict fire behaviour). Dif-
ferent concepts have been developed (cf. Arroyo et al., 2008),
with approaches ranging from fuel types with inherent charac-
teristics for empirically-based models (e.g., Forestry Canada, 1992;
Fernandes et al., 2009) to a detailed description of fuel properties
for semi-physical and physical models, e.g., fuel load by size class
and condition (dead or alive), fuel depth, the ratio of surface area to
volume, energy content and fuel moisture (e.g., Rothermel, 1972).

In contrast to the static characterisation in fuel models dynamic
estimates of fuel characteristics can be derived from vegetation
models. Simple representations are based on age since the last
fire as a proxy for fuel accumulation (e.g., Li et al., 1997) or
employ fuel accumulation curves (Cary and Banks, 1999; Hall et
al,, 2006). In this regard Zinck and Grimm (2009), bridging the
gap between ecological and physical fire models, recently demon-
strated the key importance of ecological legacy in fire systems.
More complex dynamic vegetation models employ state-transition
approaches (Keane et al., 1996: FIRE-BGC), they simulate age
cohorts (Mladenoff and He, 1999: LANDIS) or individual trees
(Miller and Urban, 1999: ZELIG; Schumacher et al., 2004: LAND-
CLIM) explicitly. The latter fine-grained dynamic approaches not
only track fuel dynamics and accumulation, but also provide indi-
cators of vertical fuel structure (e.g., canopy base height, foliar
density), an important input for the simulation of crown fires (van
Wagner, 1977; Cruz et al., 2005).

5.1.2. Occurrence

Fire ignition modelling can be tackled stochastically or deter-
ministically, the latter harnessing density distributions to quantify
fire occurrence. The spatial scale of such distribution-based
approaches varies from fine-scale grids (Cardille et al., 2001) to
broad aggregation for administrative entities (de la Riva et al,,
2004; Martinez et al., 2009) or ecological regions (Chou et al., 1993;
Wotton et al., 2003), while multi-scale approaches were presented
by Diaz-Avalos et al. (2001) and Gonzalez-Olabarria et al. (2010).
A Weibull distribution is an example for a flexible approach to
characterize fire occurrence for a given location (e.g., Moritz et al.,
2004).

If a fire event is to be simulated explicitly, the highly com-
plex interactions between fuel, weather, topography, and society
are most commonly embraced implicitly in a stochastic approach,
e.g., based on fire ignition probability (Martell et al., 1987; Cardille
et al,, 2001; Martinez et al., 2009). Alternatively, the use of fire
frequency (instead of fire ignition probability) was suggested by
Malamud et al. (2005), accounting for the fact that there are many
more minor, undetected ignitions than “relevant” fires. Most natu-
ral fires are caused by lightning strikes, and hence the frequency
and type of electric storms in a region are important drivers in
such models (Rorig and Ferguson, 1999). Human-caused ignitions
depend on the presence of people and their respective activities.
Fire ignition as a function of human and/or biophysical explanatory
variables is often modelled using generalized linear models such
as logistic, Poisson or negative binomial regression (e.g., Wotton et
al,, 2003; Martinez et al., 2009; Syphard et al., 2008), generalized
linear mixed models (Diaz-Avalos et al., 2001; Gonzalez-Olabarria
et al,, 2010), through direct gradient analyses (e.g., Viedma et al.,
2009), weight of evidence (e.g., Romero-Calcerrada et al., 2008),
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using neural network models (e.g., Vega-Garcia and Chuvieco,
2006), or fuzzy logic (Loboda and Csiszar, 2007). However, many
widely applied dynamic landscape models, simulating individual
fire events explicitly, are based on descriptive parameters of the
fire regime only, e.g., average return intervals and maximum (and
sometimes also minimum) fire sizes (e.g., Mladenoff and He, 1999).
More recently an increasing number of models were presented
in which fire occurrence is predicted as an emergent property of
the interactions between climate, vegetation and human impacts
(e.g., Schumacher et al., 2006: LANDCLIM; White et al., 2008: LAFS;
Kloster et al., 2010: CLM-CN).

Once a fire is ignited, its behaviour is not just a function of the
nature, amount and spatial distribution of fuels (see above), but
it is also influenced by weather (wind, relative humidity, ambient
temperature, solar radiation) and topographical conditions (slope,
aspect). Models explicitly simulating fire behaviour frequently use
fire weather indices (e.g., Deeming et al., 1972; van Wagner and
Pickett, 1985) to account for the effects of recent weather condi-
tions on fuel moisture, in addition to considering actual weather
and its effect on fire behaviour. Since, in contrast to other dis-
turbance agents, humans have an active role in the occurrence
and development of many forest fires, also anthropogenic compo-
nents have to be considered in explicit fire behaviour modelling
(cf. Weibel et al., 2010). Fire modelling tools such as FARSITE
(Finney, 1998) and BehavePlus (Andrews, 1986; Andrews et al.,
2004) simulate fire behaviour at the stand- or landscape-level
from fuel, weather and topography. They can be applied to pre-
dict the behaviour of an individual fire event in detail or to generate
process-based fire vulnerability maps (e.g., Keane et al., 2010: FIRE-
HARM). Such dynamic spatial simulation models addressing fire
behaviour explicitly have been increasingly presented and applied
over the last years (Cary et al., 2006, 2009; Finney et al., 2007: FVS;
King et al.,2008: FIRESCAPE). For an in-depth discussion of the mer-
its of alternative approaches to fire behaviour modelling we refer
to Sullivan (2009).

5.1.3. Impact

First order fire effects on forest vegetation (i.e. fire severity) are
mainly a function of the amount and rate of heat release (i.e. fire
intensity, see review in Michaletz and Johnson, 2007). Although
physically-based models of heat transfer to live tissue have recently
been developed (Bova and Dickinson, 2005; Michaletz and Johnson,
2006), the most common approaches in current tree mortality mod-
els are still largely empirical (Peterson and Ryan, 1986; Fernandes
et al., 2008). Such approaches use data on fire-induced injury and
individual tree traits (e.g., tree diameter, bark thickness) as descrip-
tors to model the probability of post-fire tree mortality. Indicators
of fire injury can be derived from direct observations such as crown
scorch height or volume, crown consumption, stem char height,
bark char depth and forest floor consumption (Ryan and Reinhardt,
1988; McHugh and Kolb, 2003; Rigolot, 2004; Varner et al.,2007), or
they can be established indirectly through fire behaviour (Beverly
and Martell, 2003; Kobziar et al., 2006; Schwilk et al., 2006). For the
latter, flame size or fire intensity can be translated into crown injury
through crown scorch height models (e.g., van Wagner, 1973).

In contrast, second order fire effects, such as post-fire vegetation
response, may be independent of severity (e.g., Keeley, 2009). Many
fire-adapted species have the ability to sprout from below-ground
parts after a fire event. A vital attributes approach (cf. Krivtsov et
al,, 2009) can been used to model such plant responses (Noble and
Slatyer, 1977). At the community level, vegetation impacts of fire
are frequently modelled using a rule-based representation of veg-
etation changes, e.g., as transition to early seral communities (Kurz
et al., 2000: TELSA) or alternative vegetation types (Rodrigo et al.,
2004). In simulation models keeping track of a higher level of detail
in vegetation structure, fire impacts are modelled by resetting the

age matrix (Li and Barclay, 2001: SEM-LAND) or killing individual
trees (Keane et al., 2001) - a high-resolution vegetation modelling
component is thus a prerequisite for a detailed modelling of fire
impacts.

5.2. From events to disturbance regime

5.2.1. Spatio-temporal dynamics

Climate, fuel, landform and human activity interact in a com-
plex manner to determine the spatio-temporal characteristics of
a fire regime (Falk et al., 2007). Descriptive statistical approaches
frequently used to characterize this landscape-scale heterogeneity
are fire size distributions (e.g., Vazquez and Moreno, 2001; Diaz-
Delgado et al., 2004; Rollins et al., 2004), e.g., often following a
power law (e.g., Moritz et al., 2005). Others have concentrated
solely on the statistical analysis of extreme events in the context of
fire size (Moritz, 1997; de Zea Bermudez et al., 2009). Embracing
spatial heterogeneity, models can be used to study fire incidence
with regard to the null hypothesis of random occurrence across
landscapes (e.g., Mermoz et al., 2005; Bajocco and Ricotta, 2008).
How fire occurrence differs for land cover categories and spatial
patterns within a landscape was modelled based on a resource
selection function approach (e.g., Moreira et al., 2001, 2009; Lloret
et al.,, 2002; Mermoz et al., 2005) and a kernel density approach
combined with a classification tree analysis (Amatulli et al., 2006).
The latter method has recently also been applied to study fire sever-
ity within a landscape (Alexander et al., 2006; Lee et al., 2009;
Thompson and Spies, 2009).

To simulate spatio-temporal characteristics of forest fires in
a fully dynamic framework, two general scopes of application
can be distinguished (cf. Li et al., 2008). Fire event simulators, as
described above, operate on a high temporal resolution to provide
detailed predictions of the spatio-temporal development of a fire,
but they usually have a short-term focus. Algorithms to simulate
fire spread in such models are, for instance, Huygen'’s wavelet prop-
agation (Anderson et al., 1982; Finney, 1998), Dijkstra labelling in
which spread is modelled according to the heuristic shortest paths
(e.g., Kourtz et al., 1977), or a system of partial differential equa-
tions (Richards and Bryce, 1995; Richards, 1999). Focused more
on the long-term dynamics of fire regimes, forest landscape mod-
els mostly use less complex approaches to simulate fire spread,
such as applying a predetermined fire perimeter (“cookie cutter”)
or lattice model approaches, including cellular automata and bond
percolation spread models (cf. Keane et al., 2004).

The relative influence of weather, fuel and management-related
variables on the spatio-temporal dynamics of wilfire is a “hot
topic” that is increasingly examined through landscape fire models
(Venevsky et al., 2002; Thonicke and Cramer, 2006; LaCroix et al.,
2008; Cary et al., 2009; Parisien and Moritz, 2009). Schumacher et
al. (2006), for instance, were able to reproduce key features of the
fire regime along a large altitudinal gradient in the Rocky Moun-
tains based on climatic and topographical data alone. However,
ongoing research showed that it may not be possible to directly
apply a model that is successful in one region to other regions
(Weibel, 2009). These issues of generality and spatio-temporal
interactions are thus of particular importance for addressing emer-
gent questions in relation to climate change, forest management
and the fire regime.

5.2.2. Interactions with other disturbance agents

Anumber of disturbance agents dynamically interact with forest
fire regimes at various scales (Stocks, 1987; Allen, 2007; Woodall
and Nagel, 2007). Dry conditions are a prerequisite for significant
fire events, and drought indices are thus a key component of for-
est fire weather indices. Statistical regression approaches to model
the drought-fire relationship have been presented recently, e.g., by
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Girardin and Mudelsee (2008), Amiro et al. (2009), and Weibel et al.
(2010). However, generally dry climate conditions also reduce pro-
ductivity and thus fuel availability, exerting a negative feedback on
fires. This complex interaction between intensification and relax-
ation, requiring a process-based representation of both vegetation
and fire processes, has been modelled only rarely to date, e.g., by Ni
etal.(2006) who used the process-based dynamic global vegetation
model LPJ-DGVM.

Storm events as well as attacks from insects or pathogens can
kill trees and break branches, thus increasing the fuel load and
influencing burn extent and severity. These effects were modelled
statistically applying logistic regression approaches (e.g., Fleming
et al., 2002; Bigler et al., 2005; Sieg et al., 2006), classification tree
models (Kulakowski and Veblen, 2007) as well as Markov chain
Monte Carlo approaches (Lynch et al., 2006). Notably, Lundquist
(2007) used a structural equation modelling approach to assess the
effect of numerous disturbance agents on fuel loading, finding the
greatest interactions for wind (indirect) and root rot (direct). Such
approaches, going beyond the consideration of independent indi-
vidual predictors and allowing the examination of simultaneous
and interacting influences, are particularly valuable to gain insight
into the complex interactions that are characteristic for disturbance
regimes.

Disturbance interactions were also incorporated in biophysical
models of fire behaviour, accounting for their effects on fire inten-
sity and crown fire likelihood. Custom fuel models for Rothermel’s
surface fire spread model were for instance developed for differ-
ent stages of a bark beetle outbreak cycle (Page and Jenkins, 2007;
Jenkins et al., 2008). Reich et al. (2004) combined multiple ordinary
least squares regression models and binary regression tree analy-
sis in a two-stage approach to derive fuel models accounting for
the effects of other small-scale disturbances on fuel loading. While
fire behaviour models, relying on such fuel models, are mostly used
to assess particular events or project landscapes under given con-
ditions, the long-term effects of insect-fire interactions on stand
development trajectories were for instance addressed by employ-
ing the Forest Vegetation Simulator (FVS) as a predictive platform
in combination with extensions for fire and insects (e.g., Hawkes
et al,, 2005; Coleman et al., 2008). Trading off process resolution
for scale, these interactions were modelled via changed vegetation
structure and composition at larger scales by means of state-and-
transition approaches (e.g., Bachelet et al., 2000: MC1; Kurz et al.,
2000: TELSA), and cellular automata (e.g., He and Mladenoff, 1999;
Shifley et al., 2006: LANDIS). Despite the substantial ecological
and management implications of wildfire disturbance interactions
(e.g., Axelson et al., 2009) and the potential of models for address-
ing them, limited process understanding and demanding scaling
requirements (from the level of small-scale fuel conditions to
decades and centuries of landscape dynamics) still pose a chal-
lenge for simulation modelling and make disturbance interactions
an active field of research and debate.

6. Insects
6.1. Modelling insect attacks

6.1.1. Susceptibility

The susceptibility of forests to insect attack and damage is
largely determined by environmental factors and specific fea-
tures of stands and individual trees (Berryman, 1986; Speight and
Wainhouse, 1989; Fettig et al., 2007). Forest management, manip-
ulating the latter aspects, significantly affects the susceptibility to
insect pests (e.g., Veteli et al., 2006; Fajvan et al., 2008; Jactel et
al., 2009). The potential influence of vegetation attributes is best
illustrated by tree-based classifications according to a set of dis-

criminating variables, often including stand basal area or specific
tree properties (Reynolds and Holsten, 1996; Negréon and Popp,
2004). Logistic regression models are commonly used to predict
probabilities (e.g., likelihood of attack) as a function of suscepti-
bility indicators at the stand and tree level (Perkins and Roberts,
2003; Magnussen et al., 2004; Negroén et al., 2008, 2009). Examples
of comprehensive susceptibility models were given by Wulder et
al. (2006) for Dendroctonus ponderosae (Hopk.) and by Luther et
al. (1997) for Acleris variana (Fern.). Ogris and Jurc (2010) recently
presented a correlation model using a multivariate regression tree
to predict potential sanitary fellings of bark beetle-attacked Nor-
way spruce based on 21 climate, soil and forest variables. Despite
several restrictions, such as the high demands regarding data qual-
ity or the limited geographical transferability, such multiple linear
regressions continue to be widely used. The local evaluation of site
and stand characteristics as indicators of stand susceptibility based
on discriminant analysis may also be insightful for incorporation
into more general process models (e.g., Shore et al., 1999; Dutilleul
et al., 2000). In this regard, however, work by Park and Chung
(2006) suggested alternative analysis approaches, demonstrating
the high capacity of artificial neural networks to predict tree death
or survival following the attack of Thecodiplosis japonensis (Uch. et
Inou.).

Another family of modelling concepts explicitly addresses host
susceptibility, i.e. how the physiological status of the host influ-
ences the risk for insect attacks. The plant stress hypothesis states
that insects feeding on mature plant tissue are favoured by envi-
ronmental situations that are stressful to the host (White, 2009),
while the plant vigour hypothesis states that insects feeding on
newly produced plant tissue are favoured by conditions beneficial
for biomass production (Price, 1991). Thus, tree vigour or relative
tree growth rate have been used as proxies for tree resistance or
susceptibility to insect attacks (Waring and Pitman, 1983; Miinster-
Swendsen, 1984; Baier, 1996; Negron, 1997). For example, models
of tree physiology were applied to predict variations in vigour asso-
ciated with climate characteristics (e.g., Coops et al., 2005, 2009:
3-PG).

However, herbivore-host interactions in the form of tree
defence mechanisms, not considered in the previously described
approaches, are crucial for the susceptibility to many biotic dis-
turbance agents. Larsson et al. (2000), examining the conditions
triggering outbreaks of Neodiprion sertifer (Geoff.), analysed how
interactions between individual insects and the host plant will
translate into effects at the population level. They found that
even small changes in needle resin concentration may have a
significant impact on population growth. Resin capacity of trees
was also found to serve as a simple descriptor of tree resis-
tance in a mathematical model of chemical ecology and spatial
interaction between D. ponderosae and its hosts (Logan et al.,
1998).

6.1.2. Occurrence

Insects are ectothermic organisms, and their distribution is
thus strongly influenced by weather and climate. Several statis-
tical modelling techniques, commonly referred to as bioclimatic
envelope models, have been developed for assessing the geograph-
ical distribution of species as a function of climate variables (see
review by Heikkinen et al., 2006). The CLIMEX modelling frame-
work, for instance, was applied to different insect species (Sutherst
and Maywald, 1985; Sutherst et al., 2000; Vanhanen et al., 2007).
Other approaches include panel data modelling for fitting of regres-
sion models (Gan, 2004). Bioclimatic models assume an equilibrium
of the modelled distribution with climate conditions, and time lags
of species dispersal are rarely accounted for (Heikkinen et al., 2006),
which creates uncertainties in projections of future species distri-
butions (Mitikka et al., 2008). To reduce uncertainties associated
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with individual model concepts, a combination of approaches has
been advocated (Aradjo and New, 2007).

Phenological models (i.e. models of insect life cycle events)
employ species- and life stage-specific temperature requirements
towards a more process-based representation of an insect’s cli-
mate dependency (Gaylord et al., 2008). Such approaches have
been developed for important insect pest species, such as Ips
typographus (L.) (Wermelinger and Seifert, 1998; Netherer and
Pennerstorfer, 2001; Netherer and Nopp-Mayr, 2005; Baier et al.,
2007: PHENIPS; Jonsson et al.,, 2007, 2009) and Lymantria dis-
par (L.) (Logan and Bentz, 1999; Gray, 2004; Powell and Logan,
2005; Pitt et al.,, 2007). Incorporating species-specific diapause
regulation into such models was found crucial for predicting the
response to driving climate variables (Gray et al., 2001; Steinbauer
et al., 2004; Dolezal and Sehnal, 2007; Tobin et al., 2008). How-
ever, since detailed experimental knowledge on the phenology
of many insect species is lacking, frameworks for the explo-
rative analysis of weather impact on insect life cycle stages over
space and time were proposed to facilitate phenological mod-
elling (Jarvis, 2001). Furthermore, insect phenology may change
in response to environmental changes, which is rarely consid-
ered in current phenological models. To predict the amount
and rate of such changes, genetic variation and selection pres-
sure have been suggested as suitable indicators (van Asch et al.,
2007).

Numerous herbivore insect species are typically present at low
levels in a forest ecosystem, but only a mass outbreak makes
them a disturbance with major impacts on forest vegetation.
Weather and climate can be used as predictors for the probabil-
ity of mass outbreaks, as specific weather situations commonly
serve as triggers influencing host tree susceptibility and/or insect
performance. Successful modelling requires the identification of
key processes regulating the species-specific outbreak dynam-
ics. The outbreak potential of certain bark beetle species (e.g.,
Dendroctonus frontalis (Zimm.), Ungerer et al., 1999, and D. pon-
derosae, Régniére and Bentz, 2007), for instance, is regulated by
winter survival, thus low winter temperatures are among the most
important factors for modelling the large-scale pattern of their
epidemics. Other insects, such as I. typographus, require ample
brood material with severely reduced defence capacity in addition
to favourable weather conditions in order to reach an epidemic
population size, i.e. being able to attack living trees (Christiansen
and Bakke, 1988; Fettig et al., 2007). To capture these dynamics,
a process-based model describing the build-up and depletion of
resources (i.e. host trees) at the landscape level was developed
by @kland and Bjernstad (2006). Large-scale temporal correlations
in weather and habitat controls were found to be responsible for
the spatially synchronous outbreaks of insect pests (Peltonen et
al., 2002; @kland et al., 2005). To investigate the relative impor-
tance of these processes, Powers et al. (1999) applied a multi-scale
approach including point-pattern analysis, regression analysis and
timeseries analysis of the outbreak dynamics of Dendroctonus pseu-
dotsugae (Hopk.). To simulate the effects of future weather and
habitat conditions on outbreak characteristics (duration, severity
and consistency), Gray (2008) used constrained ordination regres-
sion for the case of Choristoneura fumiferana (Clem.) outbreaks in
Canada.

The challenge of modelling full-scale insect population dynam-
ics requires integration over processes and scales, combining
information about host and insect sensitivity to weather, timing of
life cycle processes, reproductive success and mortality. Examples
were presented by Wilder (1999), predicting the timing and mag-
nitude of L. dispar outbreaks based on egg and larval performance,
and Régniére and Bentz (2007), mechanistically modelling the reg-
ulation of population dynamics by density independent winter
mortality and stage specific cold-tolerance. An important aspect in

modelling population dynamics are the regulatory effects of preda-
tors and parasitoids (e.g., Mills and Getz, 1996; Abbott and Dwyer,
2007; Berggren et al., 2009). Modelling insect population dynamics
is a particularly valuable approach in the context of pest control,
where models were developed to simulate pheromone trap effi-
ciency (Byers, 1993), bark beetle flight behaviour (Byers, 1996) and
the risk of outbreaks based on pheromone trap records (Faccoli and
Stergulc, 2004, 2006). In this context Bogich and Shea (2008) have
recently demonstrated the utility of a metapopulation approach
in determining optimal management strategies along an outbreak
front of L. dispar.

6.1.3. Impact

The direct impacts of insect herbivory on tree physiological
traits are frequently simulated explicitly for defoliators. Statistical
models such as multiple linear regression and nonlinear regression
models were employed to estimate defoliation (i.e. loss of leaf area)
based on stand and environmental descriptors (e.g., Davidson et al.,
2001; Wolf et al., 2008: GUESS; Komonen and Kouki, 2008). Simi-
lar statistical approaches were used to directly model tree growth
reductionin response to defoliation (e.g., Mason et al., 1997; Pothier
et al., 2005; Campbell et al., 2008). With regard to insect herbivory
on phloem rather than on foliage, the Westwide Pine Beetle Model
(Smith et al., 2005; Ager et al., 2007: FVS) represents a process-
oriented approach in which the beetle occupation level necessary
to kill one square foot of basal area is used as a proxy for the
physiological effects of phloem feeding. More detailed process-
based models explicitly take into account the nesting population
density per tree as well as tree defence and recovery (Logan et
al.,, 1998). In addition, carbon balance approaches were applied
to model physiological effects of phloem feeding (Dungan et al.,
2007).

The vast majority of models including insect disturbances, how-
ever, simulate their impact on vegetation simply in terms of tree
mortality. Statistical analyses by means of regression models cor-
roborate the relevance of the local environment and individual
tree characteristics as predictors of insect-related tree mortality
(e.g., Negroén et al., 2001; Doak, 2004; Fabrika and Vaculciak, 2009:
SIBYLA). Nonetheless, statistical models were also developed at the
stand level, using multiple linear or logistic regression as well as
classification and regression tree models (Negrén, 1998; Eisenbies
et al., 2007; Pothier and Mailly, 2007). To stratify stand level esti-
mates and identify weakened or preferred host individuals, tree
characteristics and configuration are frequently used (Lexer and
Honninger, 1998; Seidl et al., 2007: PICUS; Ager et al., 2007).
Also population levels were considered in modelling stand level
host tree selection, i.e. accounting for a changing host size with
increasing insect pressure (Smith et al., 2005; Ager et al., 2007).
In a detailed mechanistic framework, such insect-host relations
can be modelled as colonization-dependent attractor-repellent
functions of pheromones, as shown by Logan et al. (1998) for D.
ponderosae.

6.2. From events to disturbance regime

6.2.1. Spatio-temporal development

The temporal dynamics of insect herbivory and its potential
feedbacks on ecosystem processes can be studied by integrating
such agents into dynamic ecosystem models. Defoliation effects,
for instance, were included into physiological “big leaf” models via
simple defoliation ratios or linear models depending on host avail-
ability (Hogg, 1999: FOREST-BGC; Wolf et al., 2008). Accounting for
disturbance effects in country-scale resource assessments, Kurz et
al.(1992) and Kurz and Apps (1999) developed a distribution-based
approach based on long-term disturbance records (CBM-CFS),
recently refined with regard to insect disturbances (Kurz et al.,
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2009). In another country-scale study, Seidl et al. (2009) applied a
statistical meta-modelling approach to upscale process-based esti-
mates of bark beetle mortality in the large-scale forest scenario
model EFISCEN.

While all these approaches account for the dynamic feed-
backs between forest vegetation and disturbances over time, they
do not simulate the spread and spatial pattern of insect distur-
bances explicitly. Approaches that focus on the latter aspect include
statistical pattern detection and generation (Gray et al., 2000;
Edgar and Burk, 2007). In simulation modelling cellular automaton
approaches are frequently applied to keep track of spatial depen-
dencies (Bone et al., 2007; Lee et al., 2007). Recently, Zhu et al.
(2008) presented a process-driven statistical approach to simu-
late bark beetle mortality events in a spatially explicit manner,
using univariate, spatio-temporal Markov random field models
to incorporate both spatial and temporal effects. Embracing a
metapopulation view, an elegant solution to modelling spatio-
temporal dynamics was presented by Bogich and Shea (2008).
Focusing on a moving window along the main outbreak front, they
modelled spatial dynamics with a finite state-space of a trace-
able number of patches. Using a dynamic state variable approach,
Chubaty et al. (2009) simulated spread and colonization of D. pon-
derosae as an emerging property of behavioural decisions aimed at
maximizing colonization success while accounting for energy and
time constraints.

Some forest landscape models are explicitly designed to address
the interactions between insect and forest dynamics over time
and space. Processing stand level simulation entities in paral-
lel and allowing between-stand contagion at every simulation
time step was an early approach to address landscape dynam-
ics (Crookston and Stage, 1991; Crookston and Dixon, 2005: FVS).
Cellular automaton approaches are used widely to simulate spa-
tial spread of insect disturbances across forest landscapes. They
allow a flexible implementation of spatial interactions and veg-
etation feedbacks at various levels of process resolution, ranging
from disturbance-mediated vegetation state transition probabili-
ties accounting for neighbourhood effects (Kurz et al., 2000: TELSA)
to models explicitly tracing insect-host interactions and their
respective life cycles (Sturtevant et al., 2004: LANDIS-II; BenDor
et al., 2006).

6.2.2. Interactions with other disturbance agents

A large number of insect disturbance agents are highly sen-
sitive to other disturbances, and outbreaks are in many cases
linked to triggering events such as windthrow or drought. Mod-
els of such interactions mainly focused on descriptive, statistical
approaches, including various logistic regression models (Bebi et
al., 2003; Bigler et al., 2005; Breece et al., 2008), generalized lin-
ear models with different link functions (Peltonen, 1999; Eriksson
et al., 2005; Hood and Bentz, 2007) and classification tree models
(Kulakowski and Veblen, 2007). As an alternative approach for eval-
uating hypotheses and conceptual understanding about fire-bark
beetle interactions, Youngblood et al. (2009) demonstrated the util-
ity of structural equation modelling. In a more process-oriented
approach Seidl et al. (2007) used a dynamically calculated estimate
of drought-induced host tree stress to account for increasing tree
susceptibility to I. typographus attack. Moreover, resource depletion
approaches were used to study population effects of windthrow
events for this important European bark beetle species (dkland and
Berryman, 2004; @kland and Bjernstad, 2006). The indirect influ-
ence of other disturbance agents on insects via a changing habitat
and host tree distribution was assessed using landscape modelling
approaches, e.g., for fire effects on bark beetles (Li et al., 2005:
SEM-LAND) as well as for fire effects on defoliators (Bouchard and
Pothier, 2008).

7. Ungulate browsing
7.1. Modelling browsing events

7.1.1. Susceptibility

The impact of browsing on forest dynamics depends on the iden-
tity and density of ungulate populations and their food choice,
as well as on the species-specific resistance of tree saplings
(Boulanger et al.,2009). Many tree species have developed chemical
and mechanical defences against browsing from large herbivores
(Massei et al., 2000), but also fast growth can mitigate the impact
of browsing events by enhancing the replacement of lost material
or reducing the time during which small saplings are susceptible.

In many forest models that account for the effect of ungulates,
the species-specific resistance or susceptibility of tree saplings is
considered to be constant; they thus address the above mentioned
processes in a highly aggregated fashion. For example, in forest
gap models browsing is frequently implemented by means of an
ordinal or continuous susceptibility parameter, reflecting palata-
bility and browser preference for saplings of a certain size (Seagle
and Liang, 2001: ZELIG; Wehrli et al., 2007: FORCLIM). Rammig
et al. (2007) used a species-specific browsing probability index to
study the effect of browsing in a grid-based vegetation model. Other
approaches incorporated the selection of specific plant species by
ungulates in relation to the relative abundance of plant biomass
(Jorritsma et al., 1999: FORGRA). Recently, Vospernik and Reimoser
(2008) and Reimoser et al. (2009) developed a GIS-based statistical
model to predict habitat suitability for roe deer and predisposi-
tion for browsing damage in spruce-dominated forests in Austria,
using terrain, understorey vegetation and forest stand properties
as predictors.

7.1.2. Occurrence

In most forest models browsing occurrence and intensity are
assumed to be constant over space and time. Wehrli et al. (2007),
for instance, introduced a lumped, site-specific ordinal factor for
browsing intensity and occurrence in FORCLIM, which in com-
bination with the respective susceptibility parameter results in
browsing impact. For white-tailed deer browsing in an Eastern
North American riparian hardwood forest, Seagle and Liang (2001)
used a more detailed two-stage approach to modelling browsing
probability, accounting for both density of tree regeneration (con-
sidering seedlings and saplings less than 2 cm diameter) and an
ungulate density index. Occurrence and intensity were determined
by species-specific browsing factors as functions of the species’
relative densities and browsing preference rank.

When high-quality data on browser density as well as brows-
ing occurrence and intensity are available, as is the case for many
domestic ungulates (e.g., goats, horses, cattle), detailed mechanistic
models can be developed. Such models are particularly relevant to
better understand the impacts of heavy herbivore pressure experi-
enced by many natural and managed forests in Europe in the recent
past. For example, Weber et al. (2008) enhanced the gap model
FORCLIM by incorporating a better understanding of the palata-
bility and susceptibility of two tree species, simulating domestic
goat grazing based on land-use history. Gillet (2008: WoodPaM)
developed a mosaic model of vegetation dynamics in silvopastoral
landscapes, in which local browsing occurrence and intensity is
deduced from the frequency of cattle visits to each cell, depend-
ing on its attractiveness (e.g., slope, tree cover, forage availability)
and overall stocking density.

7.1.3. Impact

At the individual plant level, browsing can be a severe pertur-
bation for palatable trees, resulting in loss of foliage and twigs or
damages to stems, and thus affecting growth and eventually also
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leading to mortality. Tester et al. (1997) used a frame-based mod-
elling paradigm to assess how such “external” drivers affect forest
succession. Their study showed that browsing, depending on its
effect on vegetation in conjunction with other factors, can result
in the transition from one successional stage to another. Studying
a related objective, Gillet et al. (2002: PATUMOD) used a com-
partment model to evaluate browsing impacts on vegetation in a
forested ecosystems subject to high browsing pressure.

In certain forest gap models the rate of tree establishment is
partially determined by browsing intensity, which acts as a filter
upon the probability of tree regeneration (i.e. browsing-induced
mortality is intrinsically accounted for by reduced species-specific
establishment probabilities rather than being considered explic-
itly). Weber et al. (2008) refined this approach by implementing a
boolean auxiliary variable that either allows or prevents seedling
establishment, depending on browsing pressure within the patch
and the species’ susceptibility to browsing. In contrast, Seagle
and Liang (2001) implemented species-specific browsing intensity
explicitly as a modifier reducing sapling growth, thus increasing
the probability of mortality (while not assuming direct browsing-
induced mortality). They demonstrated the utility of their approach
for simulating vegetation impacts of different deer population lev-
els on long-term successional trajectories in riparian hardwood
forests.

More explicit approaches, in which browsing leads to a reduc-
tion in tree height or the consumption of entire saplings, were
presented by Rammig et al. (2007) and Jorritsma et al. (1999). Such
approaches allow for the incorporation of tree-size specific mor-
tality rates associated with browsing, i.e. small saplings are not as
resistant to browsing as taller trees. Another important interaction
for modelling browsing impacts exists with light availability and
tree growth, as shading directly affects sapling growth and thus
the time needed for trees to outgrow highly vulnerable develop-
ment stages (Wehrli et al., 2007). In this regard Weisberg et al.
(2005: HUNGER) presented an approach that models the interac-
tion of light availability and browsing impact. Their physiological
model furthermore simulates the partitioning of carbon and nitro-
gen to shoot and root tissue, a critical process for simulating realistic
responses to browsing events. Two forms of browsing, lateral and
top-down, are considered simultaneously and independently as
stochastic processes in their model.

For modelling the impact of Sika deer browsing on hard-
wood forests in Japan, forest dynamics were added to an existing
herbivore-vegetation model by Akashi (2009). This deterministic
approach incorporating both forest and deer population dynam-
ics proved insightful in studying the resilience of forest vegetation
to browsing, the effect of browsing on equilibrium states of the
vegetation, the effect of unpalatable plants on plant-herbivore
dynamics as well as the interaction between herbivore and plant
population dynamics.

7.2. From events to disturbance regime

7.2.1. Spatio-temporal dynamics

Most of the models reviewed above apply a time step of one
year. An exception is the FORGRA model of Jorritsma et al. (1999),
which uses a monthly time step to account for seasonal variation
in forage availability and species composition. Detailed physiologi-
cal models (e.g., Weisberg et al., 2005) use process-dependent time
steps ranging from 0.1-day to one year, and their spatial grain of
operation may be as small as 0.001 ha. While such approaches are
typically applied at decadal time frames, gap models, which operate
at the scale of a gap created by the death of a large canopy tree (typ-
ically 0.01-0.1 ha), are explicitly designed to evaluate long-term
(i.e. several hundred years) interactions of browsing and vegeta-
tion dynamics (Seagle and Liang, 2001; Weber et al., 2008). While

these approaches simulate vegetation-disturbance dynamics over
time, they are not spatially explicit.

With regard to the latter aspect Rammig et al. (2007) presented
a spatially explicit grid-based vegetation model with a grain of
1m2, incorporating browsing effects to simulate post-disturbance
vegetation development. In a follow-up study, Rammig and Fahse
(2009) demonstrated the importance of considering spatial veg-
etation patterns when simulating browsing impacts. At lower
resolution, Kirby (2004) developed a simple spatially explicit state-
and-transition model to explore Vera’'s hypothesis (Vera, 2000)
of long-term patch dynamics driven by wild large herbivores in
natural lowland forest landscapes. Based on the assumption that
grazers and browsers were more diversified and abundant in the
past, results indicate a browsing-mediated 500-year cycle of suc-
cessional vegetation phases (grove, break-up, park, scrub).

Seagle and Liang (2001) suggested that in addition to the
spatially explicit distribution of trees also the landscape-scale
population dynamics of herbivores should be incorporated into
ecosystem models. Such an integration of approaches to model deer
population dynamics and forest succession at the landscape scale
(cf. Weisberg et al., 2006) would be able to account for the three-
dimensional hierarchy that is important for the spatio-temporal
dynamics of browsing in forest ecosystems: Deer browsing in
forests is determined by the distribution of saplings in the land-
scape, deer densities affect the regeneration dynamics of trees,
and the species-specific selectivity of deer browsing influences
forest composition over time. Ungulate-vegetation interactions
need to be better understood over multiple scales, using a more
system-oriented approach to comprehensively address the direct
and indirect effects of ungulates on communities, ecosystems and
landscapes (Weisberg and Bugmann, 2003). The importance of
modelling the spatio-temporal interactions among browsers, tree
populations, shrub and herb communities was underlined by Gillet
(2008), demonstrating that a shifting mosaic of silvopastoral com-
munities at the landscape scale can emerge from a mechanistic
compartment model.

7.2.2. Interactions with other disturbance agents

State-and-transition models can be used to simulate the change
in vegetation states across single or multiple successional path-
ways, and can incorporate the interaction of disturbances such
as fire, drought, insect outbreaks, herbivory and diseases (e.g.,
Hemstrom et al., 2007; Strand et al., 2009: VDDT). At finer process
resolution, the spatially explicit, process-based approach of Kramer
et al. (2003: FORSPACE) focuses on the interaction between ungu-
late browsing and fire on forest dynamics at the landscape level.
The interaction of these two disturbances was assessed by evaluat-
ing foliage biomass against ungulate biomass. To evaluate the effect
of browsing on the extent of fires, the areas affected by fire under
different scenarios of fire frequency and ungulate densities were
compared for both the herb and tree layers.

To some extent, forest management may act in the same man-
ner as large scale disturbances, and Kramer et al. (2006) found
clear spatial interactions between forest management and ungu-
late browsing, with small-scale mosaic-type variation illustrating
the importance of fluctuating herbivore density in relation to for-
est type and forest management. Rammig et al. (2007) simulated
the regeneration of a subalpine forest after a major windstorm
and explored how varying browsing pressure affects re-vegetation.
By reducing tree height ungulate browsing resulted in trees being
exposed for longer time periods to extreme conditions in the
blowdown area, thus leading to increased tree mortality. In a
recent statistical approach, Eschtruth and Battles (2008) modelled
the effect of insect-related decline on ungulate herbivory, finding
higher herbivory impacts and changes in affected species as a result
of the interaction. However, to date disturbance interactions are
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rarely accounted for in studies of ungulate herbivory (Wisdom et
al., 2006).

8. Discussion and conclusion
8.1. Concepts in modelling natural disturbances

In Sections 3-7 we have reviewed the variety of approaches
available for the modelling of five natural disturbance agents.
The subset of the literature analyzed for this review (324 unique
references) clearly reflects the increasing recognition and impor-
tance of disturbances in forest ecology and management over
the last 15 years, as well as the growing capacity of models to
address these complex processes (Fig. 2a). Our analysis showed
that the large majority of approaches reviewed (68.5%) address
mechanisms pertaining to disturbance events (i.e. susceptibility,
occurrence and/or impact, see Online Supplement for data and
methodological details). Modelling higher-level aspects of distur-
bance regimes, such as spatio-temporal dynamics and interactions,
have received increasing attention only in recent years, facilitated
by a focus on landscape scale processes in ecology (Turner, 2005).

To synthesize general disturbance modelling concepts from
the reviewed literature we analysed approaches with regard
to the aspects (i) process representation (i.e. along a gradient
from descriptive statistical models to predictive process-based
approaches), (ii) emergence and feedbacks of disturbance dynam-
ics (i.e. are disturbance events emerging from the modelled system,
or are they imposed externally; and are dynamic feedbacks on
vegetation considered), and (iii) integration into ecosystem sim-
ulation (i.e. which aspects of ecosystems, e.g., vegetation structure,
composition, physiology, landscape patterns, are affected by dis-
turbances in the model). Based on the seven general concepts thus
synthesized (Table 2) we find that the single most common con-
cept used is statistical modelling (42.3%). Particularly with regard
to modelling individual disturbance events in detail (Fig. 2b) we
are only gradually progressing from descriptive modelling to more
process-oriented approaches. Furthermore, also the ability to cap-
ture dynamic interactions in models and simulate disturbances as
emerging properties of the system (cf. Railsback, 2001) remains
limited, despite its great importance for predictive modelling, e.g.,
under novel future climate conditions. Our review showed that
process-based approaches including such dynamic feedbacks are
still relatively rare, particularly for the simulation of vegetation
susceptibility and disturbance occurrence (see Fig. 2b). Promis-
ing examples have been presented particularly pertaining to biotic
disturbances, e.g., explicitly considering population dynamics of
the disturbance agent (e.g., @kland and Bjernstad, 2006; Gillet,
2008) or agent-host feedbacks (Ager et al., 2007; Seidl et al., 2007).
Although less common for abiotic disturbances, which are often
primarily modelled as being determined by external forcings, we
found examples of dynamic process-based models for all reviewed
disturbance agents.

Concepts for the modelling of disturbance events are frequently
harnessed in modelling the higher level dynamics of disturbance
regimes. Our review corroborated the importance of landscape-
level processes for the mechanistic modelling of disturbance
regimes (Fig. 2¢). Disturbance interactions, however, which are an
important part of the latter, are still predominately modelled using
descriptive statistical concepts. This points at particular limitations
with regard to our process understanding of complex interactions
in disturbance regimes and highlights the need for further research
in this area. A prerequisite in this regard, that we hope to foster with
this contribution, is to overcome the strongly separated (reduction-
ist) research agendas for individual disturbance agents towards a
more holistic (ecosystem-oriented) view of disturbance regimes.

8.2. Challenges for disturbances modelling under climate change

Despite the considerable advances since the seminal work of
White and Pickett (1985) the modelling of natural disturbances
in forest ecosystems - from single events to complex regimes —
remains challenging. From our review and synthesis of modelling
approaches, and under particular consideration of the imminent
changes in climate, we propose four major challenges for modelling
natural disturbances in forest ecosystems:

(i) Overcoming key limitations in understanding: Despite a con-
siderable research focus on natural disturbances over the last
years, we are only gradually developing a comprehensive pic-
ture of individual disturbance events, their variability in time
and space and the interactions among multiple disturbance
events and agents. Unprecedented bark beetle epidemics (Raffa
et al,, 2008), intricate fire—-management interactions (Noss
et al., 2006), and widespread drought-induced tree mortality
(Allen et al., 2010) highlight areas of yet limited understand-
ing, that are likely to become exacerbated in the face of
climate change (Dale etal.,2001). In this regard statistical mod-
elling can provide insights on quantitative relationships for
exploratory research questions. For example, structural equa-
tion modelling (e.g., Youngblood et al., 2009) or hierarchical
Bayesian methods (e.g., McMahon et al., 2009) are particularly
suitable for such tasks, allowing the consideration of simul-
taneous (and interacting) drivers as well as of non-Gaussian,
nested and random effects. Furthermore, recent methodologi-
cal advances have improved our inference abilities in working
with the highly variable, incomplete and noisy characteristics
of mostdisturbance datasets (e.g., machine learning algorithms
such as random forests, genetic algorithms, and neural net-
works). Yet, it has to be noted that purely statistical approaches
cannot elucidate causalities or make predictions for novel envi-
ronmental conditions, for which process-based approaches are
imperative.

(ii) Improved process modelling: Increased knowledge about
quantitative relationships from empirical modelling should
stimulate the formulation of process-oriented models. This
is of particular importance since a realistic representation
of processes in ecological models is likely to enhance their
applicability under changing environmental conditions. The
growing body of approaches for mechanistic disturbance mod-
elling (Fig. 2b and c) documents the advances made in this
field in the recent past (see also Johnson and Miyanishi, 2007).
However, a detailed mechanistic representation of disturbance
processes in models is still hard to reconcile with the need to
embrace the heterogeneity and spatio-temporal dynamics in
forest landscapes (cf. the discussion by Gardiner et al., 2008),
thus highlighting the need for further development in this field.

(iii) Integrating disturbances into ecosystem models: A consideration
of disturbance processes in the context of spatio-temporal for-
est dynamics is essential, since natural disturbances strongly
influence the structure and functioning of forest ecosystems,
and, via legacies, have a lasting influence on forest develop-
ment (Franklin et al., 2002). An important aspect in modelling
disturbance regimes is thus to integrate short-term processes
of disturbance events with long-term vegetation dynamics.
Following Holling et al. (2002), it is this interplay of pro-
cesses on different temporal and spatial scales that is crucial
for the resilience of ecosystems, and ultimately for sustain-
able development. Our review showed that only a limited
set of models addresses this integration of disturbances with
dynamic ecosystem processes to date. For example, models of
plant physiology offer a consistent framework to study distur-
bance effects on biogeochemical cycles in forest ecosystems.
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Fig. 2. (a) The emergence of the reviewed disturbance modelling approaches over the last 15 years, grouped by major disturbance mechanisms. Note that the reviewed liter-
ature represents a subset of new and innovative approaches for the selected disturbance agents, and is thus only an indicator for the increase of the full body of disturbance
modelling literature. See Online Supplement for methodological details. (b) Distribution of general concepts for modelling disturbance events by disturbance mecha-
nism. sPBM = static process-based models; dPBM =dynamic process-based models. (c) Distribution of general concepts for modelling disturbance regimes by disturbance
mechanism. For a description of disturbance mechanisms and modelling concepts see Tables 1 and 2 respectively.

However, the majority of these approaches lack a detailed rep-
resentation of forest structure and spatial heterogeneity, and
are thus limited with regard to the modelling of disturbance
processes (e.g., tree mortality). In this regard concepts from
vegetation dynamics have been found to provide a useful plat-
form for integration, since they by design address the major
demographic processes growth, mortality and regeneration.

(iv) Bringing together scalability and system complexity: A limita-
tion of many vegetation models towards the integration of
disturbance regimes is their implicit consideration of space
(e.g., the gap model approach, reviewed by Bugmann, 2001). As
a rule, disturbances are spatially explicit processes. Concepts
from landscape dynamics are focusing explicitly on spatial pat-
terns and interactions, thus offering a valuable platform for
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Table 2
Concepts to model natural disturbances in forest ecosystems.

Level of organization Concept?

Characteristics

Disturbance event Statistical models

Static process-based models

Dynamic process-based models

Statistical models

Disturbance regime

Vegetation dynamics models

Plant physiology model

Landscape dynamics models

Descriptive modelling; uses empirical data to model response variables by
means of statistical approaches (e.g., uni- and multivariate regression models,
classification and regression trees, distribution-based analyses)

Mechanistic approaches modelling disturbance processes based on
environmental and vegetation drivers; first-order markovian, i.e. no dynamic
feedbacks (spatial or temporal) and emergent traits within the model system,
(e.g., biophysical disturbance models, bioclimatic envelope models of
biological agents)

Mechanistic approaches modelling disturbances events as emerging
properties of dynamic (spatial and/or temporal) interactions between
vegetation, environment and disturbance processes (e.g., coupled
vegetation-disturbance models)

Descriptive modelling; uses empirical data to model response variables by
means of statistical approaches (e.g., as uni- and multivariate regression
models, classification and regression trees, distribution-based analyses, spatial
statistics approaches)

Process-based approaches focusing on spatio-temporal interactions of
disturbances with vegetation structure and composition as emergent
properties of processes such as growth, mortality and reproduction (e.g., gap
models, vegetation state-transition models)

Process-based approaches focusing on spatio-temporal interactions of
disturbances with ecosystem functioning (e.g., C and N cycling); processes of
plant physiology such as photosynthesis, respiration and allocation are
modelled explicitly (e.g., models of biogeochemical cycling)

Process-based approaches focusing on spatio-temporal interactions of
vegetation and disturbances at the landscape scale; modelling of landscape
patterns and processes (e.g., cellular automaton models, pattern generators,
GIS-based models)

2 Although we broadly distinguish statistical and mechanistic concepts, i.e. models for description vs. understanding and prediction, we acknowledge that rather than
being mutually exclusive a continuum between those two poles exists (see Korzukhin et al., 1996).

integrative modelling of disturbance-mediated forest dynam-
ics. Yet, the considerable scaling demand in modelling
disturbance regimes, i.e. the need to address processes over
several levels of organization, remains a considerable chal-
lenge in this regard. Many landscape modelling approaches
resort to simplified, implicit scaling approaches to address
these demands (cf. Bugmann et al., 2000; Mladenoff, 2004).
This, however, impairs key capacities of dynamic models with
regard to robust projections under novel conditions, such as
emergence and adaptive behaviour (Railsback, 2001; Holling
and Gunderson, 2002).

Addressing these challenges will foster an integrated, process-
based modelling of disturbances, which is needed to support
concepts of ecosystem stewardship developed in response to a
changing environment (Chapin et al., 2009). We need models
that integrate disturbance and vegetation processes, and address
their interactions over a wide range of spatial and temporal
scales. Towards this goal, the integration of several modelling
concepts summarized above appears promising. Potential frame-
works for such integration efforts include multi-scale hierarchical
approaches assuring consistent and robust scaling (cf. Makeld,
2003); modular designs, which allow the incorporation of processes
in their respective spatial and temporal domain with interactions
facilitated by a common platform (e.g., Scheller et al., 2007); meta-
model concepts to consistently scale and integrate process models
(e.g., Urban et al., 1999; Seidl et al., 2009); and hybrid approaches
integrating multiple concepts towards a balanced representation
of a wide variety of ecosystem processes (e.g., Seely et al., 2004).

8.3. The role of disturbance modelling in ecosystem management

Disturbances are increasingly recognized as important factors
in the stewardship of ecosystems (Jactel et al., 2009; Swanson and
Chapin, 2009), and there is no doubt that the growing capacities in

disturbance modelling can support forest management on multiple
levels. Models allow for a quantitative assessment of disturbance
effects on forest resources and can thus demonstrate the conse-
quences of neglecting disturbances in the planning for sustainable
forest management (Schelhaas et al., 2002; Seidl et al., 2008). Fur-
thermore, integrated vegetation-disturbance models are essential
tools in scenario analysis, allowing management strategies to be
scrutinized for their resilience to disturbances (Gunderson, 2000),
their trajectories relative to the historic range of variability (Keane
et al., 2009), or their vulnerability to climatic changes (Seidl et al.,
in press). Particularly in pest control and fire management, dis-
turbance models are indispensable tools not only in management
planning but also in operational management, e.g., to define burn
prescriptions or to coordinate and plan wildfire suppression (e.g.,
Gonzalez et al., 2005; Bettinger, 2010).

The stochastic and inherently unpredictable nature of indi-
vidual disturbance events requires the adoption of probabilistic
approaches for addressing them. Disturbance modelling, beyond
its immediate utility for forest management, can thus support
the transition from a deterministic to a probabilistic framework
in management decision making. In many cases stochastic vari-
ation due to the effect of individual disturbance events will be
orders of magnitude larger than deterministically derived differ-
ences between alternative management strategies. Demonstrating
such effects by means of integrated vegetation-disturbance models
can support a paradigm shift from static optimization of a narrow
set of management objectives to managing for complexity with the
aim of preserving adaptive capacity as the foundation of sustain-
able management (Puettmann et al., 2009). The effect of (inherently
unpredictable) disturbance events also puts the fallacy of accuracy,
often introduced by the application of numerical models in deci-
sion support, into perspective (see Wolfslehner and Seidl, in press).
Disturbance modelling can thus facilitate a broader perspective of
managing under uncertainty in ecosystem stewardship (Ascough
et al., 2008).
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