A probabilistic approach based on dynamical
systems to learn and reproduce gestures by imitatior

Sylvain Calinor, Florent D’halluirf, Eric L. Sauser, Darwin G. Caldwell and Aude G. Billardl

Abstract—We present a probabilistic approach to learn robust and numerous degrees of freedom, robot control and eslyecial
models of human motion through imitation. The association & rgbot learning became more and more complex too.
Hidden Markov Model (HMM), Gaussian Mixture Regression Learning control strategies for numerous degrees of freedo
(GMR) and dynamical systems allows us to extract redundaneis . . . .
across multiple demonstrations and build time-independenmod- platforms deemed to |nteract_|n comple>_( and variable enviro
els to reproduce the dynamics of the demonstrated movements Ments, such as households is faced with two key challenges:
The approach is first systematically evaluated and compared first, the complexity of the tasks to be learned is such thes pu
with other approaches by using generated trajectories shang  trial and error learning would be too slow. PbD appears thus
similarities with human gestures. Three applications on diferent a good approach to speed up learning by reducing the search

types of robots are then presented. An experiment with the iGb : . . S
humanoid robot acquiring a bimanual dancing motion is first SPace, while still allowing the robot to refine its model oéth

presented to show that the system can also handle cyclic moti. demonstration through trial and error [1], [2]. Second r¢he
An experiment with a 7 DOFs WAM robotic arm learning the  should be a continuum between learning and control, so that
motion of hitting a ball with a table tennis racket is presened control Strategies can adapt in real time to drastic Chah’ges
to highlight the possibility to encode several variations b a the environment. The present work addresses both chaienge

movement in a single model. Finally, an experiment with a . L . . .
HOAP-3 humanoid robot leaming to manipulate a spoon to feed N iNvestigating and comparing methods by which PbD is used

the Robota humanoid robot is presented to demonstrate the gam- 0 learn the dynamics of demonstrated movements, and, by
bility of the system to handle several constraints simultagously. doing so, provide the robot with a generic and adaptive model

of control.
Index Terms—Robot programming by demonstration, Learn-
ing by imitation, Dynamical systems, Gaussian mixture reges- L
sion, Hidden Markov Model. A. Related work and motivations

PbD is of interest for different levels of task represewtati
. INTRODUCTION A large body of work in PbD follow a symbolic approach

OBOT Programming by Demonstration (PbD) cover® representing and encoding the tasks, see e.g. [3]-[8h Su
R methods by which a robot learns new skills througﬁ symbolic description offers the advantage that it prawvide
g way to easily tackle sequences or hierarchies of actions.

lead-through teaching, tutelage or apprenticeship lagni One major drawback however lies in that they rely on a large

PbD takes inspiration from the way humans learn new skiffgnount of prior knowledge to predefine the important cues

by imitation to develop methods by which new skills caﬁmd to segment those efﬁqently. . . )
be transmitted to a robot. PbD covers a broad range ofVOSt approaches to trajectory modeling estimate a time-

applications. In industrial robotics, the goal is to redtice dePendent model of the trajectories, by either exploitiag-v

time and costs required to program the robot. The ratiomsaledNts @long the concept of spline decomposition [9]-{11] or
that PbD would allow to modify an existing product, creatffough an explicit encoding of the time-space dependencie
several versions of a similar product or assemble new pedutt2l- Such modeling methods are effective and precise in
in a very rapid way, and this could be done by lay useFQe description of the actual trajectory, and benefit from an
without help from an expert in robotics. PbD is perceived &XPliCit time-precedence across the motion segments wrens
particularly useful to service robots, i.e. robots deensagidrk  Precise reproduction of the task. However, the explicitetim

in direct collaboration with humans. In this case, methaas fd€Pendency of these models require the use of other methods
PbD go beyond transferring skills and offer new ways fdP' realigning and scaling the trajectories to handle spafd

the robot to interact with the human, from being capable gMporal perturbations. As an alternative, other appresch
recognizing people’s motion to predicting their intentiand have considered modeling the intrinsic dynam|cs_of motion
seconding them in the accomplishment of complex tasks. Me3l-[18]. Such approaches are advantageous in that the

the technology improved to provide these robots with mote agyStem does not depend on an explicit time variable and can
more complex hardware, including multiple sensor moditi be modulated to produce trajectories Wlth S|m|I<'_;\r_dynanncs
areas of the workspace not covered during training.
tAdvanced Robotics Department, ltalian Institute of Tedbgy (IIT), To embed multivariate data exhibiting temporal coherence

16§fe3aﬁ]?:govi'lg'§mgg‘3&'m%”rsr;;gﬁg@I'_;J'O'r;t(')ry (LASA), EcolelyP such as human motion, a variety of approaches have been
technique Fédérale de Lausanne (EPFL), CH-1015 LausaB’wézerland. proposed, ranging fronkidden Markov Model (HMM) [19]

name. sur name@pf| . ch. to spatio-temporal Isomap (ST-Isomap) [20]. We use HMM

human guidance. Also referred to as learning by imitatio



in this work, which has previously been reported as a robust @
probabilistic method to deal with the spatial and temporal
variabilities of human motion across various demonstratio
[14], [17], [18]. Most of the approaches proposed sofar how- =
ever require either a high number of states to reproduce the
motion correctly (i.e. higher than for recognition purpgse

or an additional smoothing process whose drawback is to cut
down important peaks in the motion.

o
1
The proposed model also relies @Gaussian Mixture Re-
(]
T

z2

gression (GMR) [21] to robustly generalize the motion during
reproduction. The approach is contrasted with our previous &
work that employed GMR with time being considered as an
explicit input variable [12]. We demonstrated in previousri

that this framework can be used to learn a skill incrementall
(without having to keep each demonstration in memory) [22].
We also showed that it allows simultaneous consideration of /"——‘ 3
constraints in joint space and task space [23]. Mue#ligl

[24] recently extended the GMR approach to learn bimanual
skills by imitation. In this work, the authors used GMR as
a compact probabilistic representation of the task coimitra
which is then used during reproduction by a gradient-based -
trajectory optimizer. This demonstrates that the genesie f o Z 7 M Real part

mulation of GMR can be efficiently combined with optimal
control methods. Fig. 1. Example of motion encoding and reproduction usirgtthsic control

In opposite to other statistical regression methods such mglel.

Locally Weighted Regression (LWR) [25], Locally Weighted

Projection Regression (LWPR) [26], or Gaussian Process ) _ )
Regression (GPR) [16], [27], GMR does not model the regresperlment y\{here the HQAP-3 humanoid ropot learns a feeding
sion function directly, but models a joint probability dégs task requiring to consider several constraints and lankisnar
function of the data and then derives the regression fumctio

from the joint density model [28].

_ This is an advantage in many robotic appl_ications since the Il. PROPOSED PROBABILISTIC APPROACH

input and output components are only specified at the vety las
step of the algorithm. Density estimation can thus be lehime i )
an offline phase, while the regression process can be corhpute'vlylt'pIe e.xamples.of a skill are demonstrated tc_> .the robot
very rapidly. It can also handle different sources of migsin” Slightly different situations, where a set of positions=

N X . ? DxMxT) itaar (DxMXT) _
data, as the system is able to consider any comblnatlonn%% he d and veI_ocmegoc iRd' . alr_e CC;HECted ‘_jubrl
input/output mappings during the retrieval phase. ing the demonstrationdX is the dimensionality of the variable

In the context of robot learning by imitation, the principaf’’ Mis the _number of demon_strations, dnids the length of a )
advantages of combining HMM and GMR are thus: (1) emonstration). The dataset is composed of a set of datapoin

allows us to deal with recognition and reproduction issu §’3b,}’ Wherg the joint distributiorP(, £) is encoded in a
in a common probabilistic framework; and (2) the |eamin§ont|nuo_uslj||dd.en Markov Model (HMM) of K states. The
process is distinct from the retrieval process, where adstah utput dlstrlbgnon of_ea_lch state Is reprt—_zsen_ted by a Gaiuss|
Expectation-Maximization (EM) algorithm is first used to learn locally encoding variation and correlation informationhel

the demonstrated skill during the phases of the interatkian parameters of the HMM are P'E‘ﬁ”ed bw’_a’H’Z} and
do not require real-time computation (i.e. after the demoHa_arned througBaum-Welch algorithm [19], which is a variant

strations), and where a faster regression process is theeh (& EXPectation-Maximization (EM) algorithm.11; is the initial

for controlling the robot in an online manner during th robability of being in state, a;; is the transitional probability
reproduction phases rom statei to statej. u; and X; represent the center and

The remainder of the paper is organized as follows SéEe covariance matrix of theéth Gaussian distribution of the
Il presents the probabilistic approach. Sec. Il evaluated HMM. Input and output components in each state of the HMM

discusses the proposed approach with respect to 4 state®f defined as

the-art approaches in robot learning by imitation. Sec. IV N

presents an experiment where the iCub humanoid robot learns i = [ Mé } and %, = {
a periodic bimanual gesture through the use of motion sensor i

Sec. V presents an experiment where the WAM robotic arm

learns two different ways of striking a ball in table tennisvhere the indice§ and® refer respectively to position and
through kinesthetic teaching. Sec. VI finally presents an exelocity components.
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A. Control model - Basic version .3
In the basic control model, a desired velocitys estimated 5 *2
throughGaussian Mixture Regression (GMR) as z 4 £l
K« § S 4 43%%
©
A . . _ £ 2
&= hi [ +EED T @ - )], (1) 5
=1 oo 80 60 40 -20 o
€ Real part

which is used to control the system by estimating at each
Iteratlon_ a new VelOCIty given the current position, see] [Z%ig. 2. Example of motion encoding and reproduction usirgy eéktended
for details. control model.

In the GMR framework, the influence of the different
Gaussians is represented by weights € [0, 1], originally
defined as the probabilities of an observed input to belong dgmonstrations (trajectory represented by blue linesg. firbt

each of the Gaussians [21] two states of the system are unstable but bring the robot to
R asymptotically stable states after a few iterations. No&t the
hi(x) = N (z; pi, X7), system in this basic version may provide poor solution when
and normalized such th@f hy=1. initiating the motion in a region that has not been coverdd ye

A direct extension of this estimation is to recursivelyirajectory represented by red lines).
compute a likelihood through the HMM representation, thus
taking into consideration not only the spatial informatlmt B. Control model - Extended version
also the sequential information probabilistically encdated

) For the reason mentioned above, we extended the basic
in the HMM

control model with an acceleration-based controller simib

K a mass-spring-damper system, where the model of the demon-
hit(x) = Z hji—1 aji | N(z; pi, 27), strated trajectories acts as an attraétartarget velocity: and

j=1 target positiont are first estimated at each time step through
GMR. Tracking of the desired velocity and desired position
Z is then insured by the proportional-derivative controlldre
Yicceleration command is determined by

and normalizing such th@f{ hi+ = 1. Here,h; ; represents
theforward variable [19], which corresponds to the probabilit

of observing the partial sequenge;, zo, . .., x; } and of being
in states at timet. &V &P
At a given instant, the regression process described in (1) P ‘(fc — iR+ /_(;g — x_\)ﬁp 3)

can be rewritten as a mixture of linear systéms

Y o w1 wherexY andx” are gain parameters similar to damping and
i = ET) (2) stiffness factors.

by = pif = SE(8F) In the above equation;¥ allows the robot to follow the

ﬁmonstrated velocity profifz” prevents the robot to depart

K
&= hi(Ajx + b)) with
=1

Fig. 1 presents an example of encoding and reproductif o . .
using this basic control scheme, where the number of state rom a known S|tuat|pn, and force_s It to come back_to this
the HMM has been deliberately fixed to a low value. The first served subspace if a perturbation accurs. By using both
four graphs show the dynamic behavior of the system whi§rms concurrently, the robot follows the learned nondmne

using each Gaussian separately, where the circles repregé(ﬁ'am'cs while tracking _the movgment. Similarly to (2), (3).
the equilibrium points defined byA’-_lb’.. The bottom-left &N be formulated as a mixture of linear systems, see Appendi

. A.
raph shows results for two reproduction attempts repteden” ™ _. . .
grap P P P Fig. 2 presents reproduction results with the extended

by blue and red thick lines, where the initial positions are | sch h h q d HMM di
represented by points. The last graph shows the poles of ﬁp@f[ro scheme, where the same dataset an encoding

system, given by the eigenvalues of matricésin (2). We as in Fig. 1 has been utilized. The left graph shows the
observe in the first four graphs that each Gaussian repiegen wo reproduction attempts where the robot smoot_hly comes
the local distribution of z, ©:} can retrieve curved trajectories ?Ck to j[h_e_ demongtrated movement when starting from a
(rotational fields induced by the polesYhe last graph shows different initial situation. The right graph shows the plef

that for the first two states, the poles have a real positi\g%e corresponding linear systems (see Appendix A), cangist

part, which may lead to unstable systems in some situatio sfour poles per Gaus§|an instead of two, as the system is now
based on an acceleration command.

Here, we suggest to define the velocity gaihin (3) such
t, for low values ok”, the model follows the motion with
e same velocity profiles as the ones demonstrated in simila

(i.e., the first two equilibrium points are unstable). Byngsi
the basic control method, the motion is correctly reproduce
when starting in regions that have been covered during tt

INote that this representation is also similar to the TalSgjeno fuzzy
modeling technique [30]. 3Sourcecode of the algorithm is available online [31].

2A condition for asymptotic stability is that the poles ligistly in the 4In the experiments presented here, velocity and positienupdated at
closed left half of the complex plane (i.e. the real part dftié poles must each iteration through Euler numerical integration.

be negative). 5By settingxY = ﬁ andx” = 0, the controller is similar to (1).
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situations. The position gair” can be modulated such that 0.
it acts as an attractor to the trajectory, which depends en th
strength of the perturbation (or if the system needs to start » o
from locations that have not been demonstrated yet). Itlshou

also not be too high to avoid that the system, acting only as  -os
an attractor, comes back to the trajectory and stops insttad °
following the remainder of the motion. We thus defin® as

an adaptive gain that rapidly grows as the system departs fro 05

. . 2 0
the area covered by the demonstrations, and is null when the %008 gy
system is close to the demonstrations. We defileand x” —HMM —TGMR —LWR —LWPR — DMP
as
v 1 » » Linax — E(x) Fig. 3. Left: Example of a dataset of 3 dimensions randomly generated. The
K™= AL’ K" (z) = Kmaxﬁ? (4)  four plus signs represent the keypoints used to generatsthmuous motion.
max min Right: Reproductions by using the various methods proposed fopadson.
where Lmax = max log (N (uf; 18, 27)),
1€1,
. time step At = 0.003 sec. Every 50 iterations, the target
Lomin = min  log (N (z; ¥, X¥)). ) ; . ' X
m ie{1,K} g (W (w; 7, 57)) is switched to the next keypoint. For the last keypoint, 50
zEW additional iterations are used to let the system converge to

In the above equatiom represents a |Og-|ike|ih0(ﬁj5;ax the last keypOint. To simulate motion Variabi"ty, eachadatt

is the maximum gain allowed to attain a target posifion, consists of 3 trajectories produced by slightly varying the
defines the robot's workspace or a predetermined range R§itions of the keypoints with a Gaussian noi§&0,0.1).
situations fixed a priori for the reproduction attempis.is the An example of generated motion is presented in Fidef8
duration of an iteration step. At each iteratioif,(x) is thus The resulting trajectories present natural looking motiuat
close to zero ifr is close to the Gaussian distributions. In thishare similarities with those of humans. The automatiratio
situation, the controller reproduces a motion with veiesit Of the generation process allows us to flexibly evaluate the
similar to those in the demonstration sequences. On the otfgitation performance of our algorithm with respect to seve
hand, ifz is far from the areas of demonstrations, the systefiatasets of different dimensionalities.

comes back towards the closest Gaussians (in a likelihood

sense) with a maximum gain of”_ ., still following the

max’

pattern of motion in this region (determined 6)/. . . .
Parts of the movement where a strong inconsistency has' N€ @pproach that we propose in this paper will be further

been observed (i.e., where the variations in the demoiustsat 4€n0ted asHMM , as its core representation is based on
are high) indicate that the position does not need to be ecackiidden Markov Model. We compare this approach with four
very precisely. This allows the controller to focus on theept 2lt€rnative methods that have shown good performance in
constraints of the task, such as following a desired vejocif®POlcS experiments. o .

On the other hand, parts of the movement exhibiting strong 1 ©MR : Time-dependent Gaussian Mixture Regression [12]
position invariance across the multiple demonstratioshei 1S Pased on our previous work, where time is used as an

tracked more precisely, i.e. the gain controlling the epor €XPlicit input variable. The demonstrations are first adign
position will automatically be increased. in time throughDynamic Time Warping (DTW), see [12] for

details. Then, the distribution of temporal and spatialaldes
{t,z,z} is encoded in &aussian Mixture Model (GMM).

] . i At each time step during the reproduction process, a desired
A. Generation of human-like motion data position# and a desired velocity are then retrieved through

To analyze systematically the proposed system, sevesal 8MR by estimatingP(x, z|t). The controller used by the
of natural trajectories are created. First, a set of keypdinof robot to reproduce the skill is the mass-spring damper syste
D dimensions is randomly generated (each varigile}? ;  defined in (3).
is generated with a uniform random distributittt0, 1)). LWR: Locally Weighted Regression [25] is a memory-

A Vector Integration To Endpoint (VITE) system, which has based probabilistic approach. It is used here to estimate at
been suggested as a biologically plausible model of humaach time step a desired positiérand a desired velocity:.
reaching movement [32], is then used to generate trajestorEach datapoint of the dataset participates in the estimatio
by starting from a first keypoint and recursively defining théhe solution by using a Gaussian kernel with fixed diagonal
next keypoint as the target. It is defined here as a criticaltpvariance matrix centered at the current position to weigh
damped mass-spring-damper controlier (X —z)x” —ix¥  the influence of each datapoint. The controller used by the
with parametersc” = 25, k» = (x")?/4, and integration robot is the mass-spring damper system defined in (3).

LWPR: Locally Weighted Projection Regression is an in-
'6Note that here, the log-likelihood measures correspondsveé@hted ~ramental regression algorithm that performs piecewisesli
distance measures.

"kP.. = 2000 has been fixed empirically in the experiments presentefdJnCtion approximation [26]. The algorithm does not requir

max

here. to store the training data and has been proved to be efficient

B. Comparison with other approaches

I1l. EVALUATION THROUGH GENERATED DATA



in a variety of robot learning tasks including high dimemsib SMM TGMR ""A‘AWR LWPR %AP
Vil 2 3

data. We use here an implementation of LWPR with the input .. 012 sooo 3
space defined by a set of receptive fields with full covariance o1 01 soo0] &
matrices. By detecting locally redundant or irrelevantingi- 008
mensions, the method locally reduces the dimensionalitiyef 006
input data by finding local projections througfartial Least oo o

Squares (PLS) regression [33]. The learning parameters are ™ "~ | ='="SN -
fixed based on the recommendations provided in [26]. During s o4 s 0 84 s e 84 s 6
reproduction, LWPR is used at each iteration to estimate a

K K

My
desired velocityi given the current position. The receptive 15
fields are then used to determine a desired positismilarly
as in the methods above. The controller used by the robot is !
the mass-spring damper system defined in (3). o

DMP: The Dynamic Movement Primitives approach was
YT Y 6 7
K

0.08 4000
0.06 3000

0.04 2000f — = — - - — - - -1

o r M W s O o N

originally proposed by ljspeed al [13], and further extended
in [34], [35]. The method allows to reach a target by modulat-
Ing a S_et of mass-s_prmg-damper systems. This allows tom_)” Fig. 4. Influence of the number of statés on the metrics, forD = 7

a particular path with the guarantee that the velocity /@8BS gimensions. The dashed line i3 represents the mean RMS jerk of the
at the end of the movement. A phase variable acts as a dedeyonstrations.

term to ensure that the system asymptotically converges to a

reaching point. A formulation of DMP similar to the one used I .
for the HMM approach is detailed in Appendix B. on the derivative of acceleration, has been shown to be a good

candidate to evaluate smoothness of human motion [37]

3 4 5 6 7
K

T
C. Metrics of imitation performance Mz = T E [1Z7%]].
t=1

Five metrics are used to evaluate a reproduction attempt
2’ € RIPXT) with respect to the set of demonstrationse M, Computation time (in seconds) of the learning process.
RPXMxT) M;: Computation time (in seconds) of the retrieval process
M;: This metric evaluates the generalization capabilifipr one iteration.
by measuring how well the reproduced trajectory matchesM, and M; are evaluated through non-optimized Matlab
the different demonstrations. It evaluates the accuraghef implementations of the algorithms running on a 2.5GHz Pen-
reproduction in terms of spatial and temporal informatiofium processor. The aim here is to provide information on the
where aroot-mean-square (RMS) error on position (with range of values and scaling properties that one can exueut fr

respect to theM = 3 demonstrations of the dataset) ighe various learning and reproduction proce$ses.
computed along the reproduced motion We also evaluate the capability to handle external pertur-
bations by generating a random force along the motion and
M T h . . . . .
My = 1 Z Z 12} = 2| superposing it with the acceleration computed in (3). Mstri
YT MT ¢ Smitll My, M5 and M3 are then used to evaluate the reproduction

m=ti=l attempts when faced with these perturbations. A continuous

Ma: For this metric, the reproduced motion is first temforce is created by first generating a set of keypoints along
porally aligned with the demonstrations throudlynamic the motion (with random time of occurrence and amplitude),
Time Warping (DTW) [12], and a RMS error on position and interpolating between these keypoints through a third-
similar to M, is then computed. In contrast with,, spatial order spline fit. This process is similar to the Perlin noise
information is prioritized here (i.e., the metric compatike originally proposed to generate naturally looking text@8],
path followed by the robot instead of the exact trajectornd further extended to naturally looking perturbationinot
along time). Depending on the skill that should be learnehotion [39].
metrics M and M, have different importance. To reproduce
a demonstrated motion from a distant initial position, it i%, £ aiuation results

sometimes desirable to first come back to the motion path,_l_h diff ¢ d with th
and then follow the motion (e.g., drawing an alphabet letter ree different sets of movements are generated with the

on a board requires\, to be low). Other skills require to approach presgnted in Sec. lllI-A. For each se_t of movements,
take into consideration the timing, although this may havetgree reproduction attempts are performed. This procebeis

detrimental effect on the precision with which the path can 6epeatedf for valglogs nILEmeerlof s:ates, g|me33|o_nallt|e_i; an
followed (e.g., intercepting a falling object requiré4, to be ranges of perturbation. Examples of reproduced trajextaric

low). Indeed, the importance of the metric highly depends (_m'es_ented in Fig. Bight. The quantitative results are presented
the skill that one wants to transfer to the robot [36]. In Figs 4-6.

. M3: This metric eV_aluates th_elsm_OOthne_Ss of the reproducCsrhe standard versions of the algorithms have been usedt tuatuid be
tion based on RMS jerk quantification. This measure, basgdhsible to adapt each algorithm to make it run faster.



thus be noted that by using a single pass, the computation
time can be reduced by an order of magnitude.

In this experiment, we concentrated on a case where the
learning process is separated from the retrieval proceghid

0.14 014 8000

0.1 01 6000

0.08 ’ 0.08
4000
0.06 h 0.06

00t 4 004 2000 context, both a batch learning process and an online legrnin
002 002 o g process can be employed. The computation time needed for
3 s 7 o1 "3 s 7 9 %3 s 7 9 on learning also has less importance than the one required for
D D D
M, 0t Ms real-time reproduction of a skill. The most important aspec

here is that the user should not wait too long for the robot
to update its model of the skill after arrival of each new
demonstration. In Fig. 4, as all the methods learned in less
2 P than 2 sec., the computation time remains acceptable for an
1 efficient teaching interaction. Fok,, the computation time
used by LWR for reproduction is not competitive and is thus
not depicted here (it goes ovek 10~2 sec. as in the proposed
implementation, each datapoint contributes to the esiimjt

The other approaches show a linear dependency on the number
of states and are all suitable for online application in taiso

0 = 0

9 1 3 5 7
D D

Fig. 5. Influence of the dimensionalit® of the dataset on the metrics, for
K = 4 states (see Fig. 4 for legend).

M, M, M, (less than 1 millisecond per iteration for the considereainer
01 01 5000 of states).
00| S Fig. 5 shows the influence of the dimensionalilyon the
o o 4000 EEE? metrics for the different approaches (see legend in Fig. 4),
*—h—Af—y 3000 when consideringk’ = 4 states in the model. We see with
o ;;gzg o o M, and M, that the methods perform similarly well in terms
. . (===} - of RMS errors.
0 10 2 %0 40 0 10 2 30 40 0 10 20 0 40 When the dimensionality is low, the difficulty is to deal

with the redundancy in position that can appear when ran-
Fig. 6. Robustness to external perturbations, Kbr= 4 states andD = 7 ; i ; i i
dimensions (see Fig. 4 for legend), domly ge_neratlng tra;ectorles_(l.e., when passing throtingh
same point several times during a demonstration). When the
dimensionality is high, these crossings are less likelydoua

Fig. 4 shows the influence of the number of statésin I—rllowever,.thefd;]ﬁicglty Is in this} ggse tq eﬁ:;ientl;;]_haf;dle
the model (or basis functions), for the different methodﬂ'e(st e sparsity of the data (curse of dimensionality). Thig fac

Sec. llI-B) and metrics (see Sec. llI-C). As LWPR is an On"ngeflected by the data, and is_espec_ially noticeab_le for LWR.
incremental learning method, the threshold that detersrine The performance Of_LWPR s a bit worse, which can be
minimum activation before a new basis function is creatdgPlained by the online nature of the learning process, that
(parameterug., in [26]) has been gradually increased untirﬁanmt determine in gdvance whetheriloops in the motion will
the number of receptive fields matches the desired numbe i encountgred, while a .batch learning process can cluster
states’ We see withM; and M, in Fig. 4 that all methods these crossings more easily. . .

perform very well, accurately following the demonstrated For M4 n F|_g._5,_we see that the computation time of
movements in terms of RMS errors. By encapsulating Colf,g(pectat|on-MaX|m|_zat|on (EM) used by HMM and TGMR
relation information across input and output variables, MM produces very variable results. Ind_eed, EM s a !ocgl search
performs well with a very small number of states. DMP alsBrocedure that starts randomly (withmeans initialization)

shows a low RMS error but requires at least 4 primitives gctir‘?md sto_ps once a '_"_C"’F' maximum I|ke_I|hood is reached.
as attractors. Depending on the initialization, a very different number of

We see with Ms in Fig. 4 that DMP reproduces theiterations may be required to reach the local optimum. For

smoothest movement (actually smoother than the origin%ffa.mmle’f.mdlow dlmen.S|ons, the Iocalllclzpltlmtum may notthbe
demonstrations with RMS jerk depicted in dashed line). It %'V't"?l on as c.rosl,sw_lg.? Tre tmor]? 'tﬁy 0 ocf(]:uhr mrb ©
noticeable that smoothness is not much affected by the num lon. Here, a single mitialization for Ine search hasrbee
of states in general. Fobt,, DMP and LWR show the best ixed, and no constraint has been fixed on the number of

performance in terms of the computation time used by giigrations, which may explain the high computation time of

learning process (LWR is zero as it is a data-driven approa ﬂirlg E;:sec. rquiretq by EMr:O Ieatrrr: tthtﬁ dgﬁcgset gtene{ﬁt(zd fo
without learning), while HMM and TGMR (both trained by~ — ™" or reproduction/Ms shows that the different methods

Expectation-Maximization) show a bit worse performance. Toremain competitive in terms of online retrieval of data gles

cope with the online learning nature of LWPR, 10 passes haé/héllgv\}l;m”'sg):ond’ and quasi linear trend for dimensiaresii

been performed on the dataset shuffled randomly. It sho : :
ig. 6 evaluates the robustness to external perturbations,

9For LWPR, theM, computation time is evaluated by taking only the Iasfcor K = 4 states gndD =7 dlmenS|on_s. Perlin noise '5_
learning step into consideration. generated by selecting randomly 4 keypoints along the motio



Fig. 7. Left: X-Sens motion sensors used to record the user’s gesture
by collecting joint angle trajectories of the two arms (14 B Right:
Demonstration of the skill with simultaneous reproduct@mthe robot.

Crossing point o0

20 1200

and generating a force through a random uniform distributio ‘ . "

with standard deviatiom. A continuous force signal is then ) 20 0

retrieved by interpolating between the keypoints. We se¢ th o ‘ 0

HMM, TGMR, LWR and LWPR are robust to perturbations, - 20 s 5 o

but that the performance of DMP decreases whéncreases. 20 &2

This difference can however be explained by the fact that DMP & *Tamowe o waone

uses a fixed value for”, while the other approaches have _ _ _

b . lemented with an adaptive aain as defined in (@3 8. Demon:straﬂontdjp-l_eft), model (op-n_ght), reproductlon_s t(ott_om-_

een Imp p_ g ) and evaluation Kottom-right) of the dancing motion. For visualization
For all approaches, smoothness is nearly not affected by tluepose, the 14 DOFs periodic trajectories and associaM Have been

perturbation for the values ef considered, principally due to Projected into a latent space of 3 dimensidigs, £2, &3} through Principal
. . Component Analysis (PCA). The reproductions with the HMM and DMP
the proportional-derivative controller.
proport vatv - " . processes are respectively represented with black anowyéies. ForM s
We can conclude from this evaluation that HMM remainis the last graph, the dotted line depicts the RMS jerk vahrettiie training

competitive with respect to the other approaches considergata-
The next sections present three robot learning applicaition
that are aimed at demonstrating the strengths of the prdpo
approach in contexts where the other approaches would
handle the transfer of the skill efficiently.

ﬁgteach joint is then computed by decomposing the rotation
matrix into joint angles, see [22] for details. The uppeistor
is defined here as a kinematic chain where ghaulder joint
connects the girdle and the upper arm (3 DOFs), ditew
connects the upper arm and the forearm (1 DOF),vihist
The aims of this experiment are to show that: (1) thgonnects the forearm and the hand (3 DOFs).
proposed approach can be used to learn periodic motiony simple rhythmic movement is demonstrated through the
containing crossings (e.g. such as in a “8” figure); and (Zotion sensors and simultaneously reproduced on the iCub.
the algorithm can efficiently handle bimanual movements iier having observed 3-4 periods of the movement, the robot
joint angle space. learns a model of the cyclic motion. The motion is reproduced
by the HMM approach presented in Section Il, and compared
A. Experimental setup to DMP. For DMP, the version of the algorithm for periodic

The iCub robot is used in the experiment, which is an opefotion is employed, see Appendix ‘8.
source humanoid robot resulting from the European project
RobotCub [40]. 14 DOFs out of the 53 degrees-of-freedo
(DOFs) are used to control the two arms of the robot.

A set of motion sensors are used to record the user’s gestureBig. 8 presents the encoding, reproduction and evaluation
by collecting joint angle trajectories of the upper-bodysty results. The 14 DOFs motion contains a crossing in jointepac
see Fig. 7. 6X-Sens motion sensors are attached to the uppewhich is also observed in the PCA projection of the data. At a
arms, lower-arms, and at the back of the hands of the usgiken iteration, the robot must thus move differently defing
The data are sent to the robot either by wirel&getooth on the precedent postures along the motion. We see that the
communication or byySB connection. high-dimensional periodic movement with crossing is ccitye

Each sensor provides the 3D absolute orientation of edechndled by DMP and HMM (8 states have been used in both
segment by integrating the 3D rate-of-turn, acceleratiod acases). DMP shows the best score in terms of accuracy and
earth-magnetic field at a rate o Hz and with a precision of smoothness. The drawback is that the cyclic form must be
1.5 degrees. For each joint, a rotation matrix is defined as teet beforehand (discrete and periodic signals use a differe
orientation of a distal limb segment expressed in the frafme o
reference of its proximal limb segment. The kinematics o1oti  1°For DMP, the period of the movement has been defined explibitre.

IV. EXPERIMENT WITH ICUB HUMANOID ROBOT

g? Experimental results



Fig. 9. Left: Experimental setup for the experiment of teaching Baerett
WAM robotic arm to hit a ballCenter: Reproduction of alrive stroke.Right:
Reproduction of aopspin stroke.

representation in DMP), and an external method is requoed t
estimate the period of the motion.

In contrast to HMM. LWR and LWPR have problems t(fig. 10. Encoding and reproduction results of the table iseerRperiment
! in position space)Left: Demonstrated movements and associated Hidden

correctly handle the crossing point during the movemermtr markov Model, where 8 Gaussians are used to encode the tegasis of
an algorithmic point of view, passing through the same poimvements (the learned transitions are represented il EjgThe position of
several times along the motion (or along the cy: tHRe ball is depicted by a plus sign, and the initial pointshef trajectories are
- epicted by points. The trajectories correspondingppspin anddrive strokes
case of periodic movement) can not be handled by aBfé respectively represented in blue and red for visuiizaiurposes, but the
LWPR. This is confirmed practically by running the algorithmrobot does not have this information and is also not awaré@frumber of
on the dancing dataset. When reaching the crossing poﬁﬁegories that has been demonstratight: 10 reproduction attempts by
S . . tatting from new random positions in the areas where eitbespin and
the two methods provide inadequate motion behaviors. TE\@e strokes have been demonstrated.
controller can produce an undesired average of the differen
motion behaviors learned at this point. The system can also
follow indefinitely only a single part of the periodic movente is used by players to allow the ball to be hit harder but
(e.g., by circularly following only the upper part of a “8”still land on the table. The stroke with no spin (or with a
figure). small amount of topspin) is referred to dsve. The motion
For this reason, LWR and LWPR have not been quantitand orientation of the racket at the impact thus differ when
tively evaluated here. Similarly, TGMR has not been evadatperforming atopspin or a drive stroke. Training was done
as it cannot efficiently encode periodic motion due to the eRy an intermediate-level player demonstrating seviazspin
plicit encoding of time in the model. A video of the experirheranddrive strokes to the robot by putting it in an active gravity
accompanies the submission, and is available online [31]. compensation control mode, which allows the user to move
the robot manually. Through thignesthetic teaching process,

V. EXPERIMENT WITH WAM ROBOTIC ARM the usemolds the robot behavior by putting it through the task

This experiment aims at demonstrating that the framewof Nitting the ball with a desired spin. The ball is fixed on a

can be used in an unsupervised learning manner. By that Wigk during demonstration, and its initial position iscked

mean that several movements can be encoded in a sing)e? Stereoscopic vision system.

HMM, without specifying the number of movements, and The recordings are performed in Cartesian space by consid-
g| €ring the position: and orientatiory of the racket with respect

without associating the different demonstrations with assl : ) - -
or label. to the ball, with associated velocitigsand ¢. A quaternion
representation of the orientation is used, where three ®f th

: four quaternion components are used (the fourth quaternion

A. Experimental setup component is reconstructed afterwards). The user denadestr
The experiment consists of learning and reproducing ti¢total 4 topspin strokes and 4irive strokes in random order.

motion of hitting & ball with a table tennis racket by usingrhe categories of strokes are not provided to the robot, and

a Barrett WAM 7 DOFs robotic arm, see Fig. Bft. One  the number of states in the HMM is selected thro@glyesian

objective is to demonstrate that such movements can be trajigormation Criterion (BIC) [41].

ferred using the proposed approach, where the skill regjuire A gamped least square inverse kinematics solution with

that the target be reached with a given velocity, directiod a gptimization in the null space of the Jacobian matrix is used

amplitude. In the experiment presented here, we extend {3€reproduce the task, see [23] for details.
difficulty of the tennis task described in [13], [34] by assoq

that the robot must hit the ball with a desired velocity mted _

from the demonstrations. The robot thus hits the ball, corets B+ EXperimental results

its motion and stops, which is more natural than reaching it Figs 9 and 10 present the encoding and reproduction results.

with zero velocity. We see that the HMM approach reproduces an appropriate
In table tennistopspin occurs when the top of the ball ismotion in the two situations. Fig. 1left, presents the states

going in the same direction as the ball is moving. Topspinansitions learned by the HMM. We see that the model

causes the ball to drop faster than by gravity alone, ahds correctly learned that two different dynamics can be


Aude
Sticky Note
This is a bit debatable as with HMM you provide transition prob, hence more information than that used to train LWR andLWPR> 


Experimental setup Model for landmark 1
10
X:
\ 0|
X1 a 'g
fm ' = -100
Jo y x
: —200
2
100 200
. \ Al X, (mm)
g > Reproduction in new situation
0 10 10
—— v
3 = = L0 1 | , "
T 2 —_ =
£ E
Fig. 11. Leftt HMM representation of the transitions and initial state g -109 % -109
probabilities (the corresponding state output distriimgi are represented in
Fig. 10). The states of the HMM are spatially organized adoancircle 204 204
for representation purposes. The possible transitionsdepécted inside the
circle by arrows, while the probabilities of starting fronm anitial state %, (mm) 100 p— 200

are represented outside the circle by arrows. Probabiliibove 0.1 are

represented by black lines (self transitions probaksiitiee not represented Fig. 12. Top-left: Experimental setup to teach the HOAP-3 humanoid robot to
here). From this representation, two different sequenadinetl by states feed aRobota robotic doll. Top-right, bottom-left: Trajectories relative to the
transitions 2-3-1-7 and 4-6-5-8 appear, initiated by 2 fog first one, and two landmarks are encoded in two HMMs of 4 states. Each Gamissicodes
by 4 or 6 for the second on&ight: Position and velocity of the racket at the position and velocity information along the task. Genetatajectories using
time of the impact for the 8 demonstratiorte) and for the 10 reproduction the corresponding models are represented with dashed lifese the dots

attempts Ifottom). show the initial positions. The position of the landmarks @presented with
a triangle for the plate and with a square for Robota’s moBtittom-right:
TABLE | The final reproduction is represented by a solid line. Theadyction shows
POSITION AND VELOCITY OF THE RACKET AT THE TIME OF THE IMPACT that the robot tends to satisfy the first constraint first fach for the plate)
FOR DEMONSTRATIONS AND REPRODUCTIONS and then switches smoothly to the second constraint (tchréacRobota’s
mouth).
Demonstrations Reproductions

position[m] velocity [m/s] position [m] | velocity [n/s]

X -0.43+ 0.01 -2.19+ 0.04 -0.41+ 0.01 -2.37 0.12
Drive 0.17 0.01 0.27+ 0.30 0.17+ 0.06 0.20+ 0.27 . . . . .
)z/ 0.43- 001 | -1.19+ 0.31 | 0.39f 0.02 | -1.24t 0.32 with a humanoid robot extends this approach by considering
Tonsoi X -g-fgi 8-821 -S-éi g-fg -g-fgg-gj -é-f%tt 8-1182 trajectories with respect to multiple landmarks. HOAP-3
opspin . . -0. . . . . . . . . . .
PSP i 044f 002 | 0.73: 038 | 043f 003 | 073+ 016 humanoid robot frontujitsu is used in the experiment. It has

in total 28 DOFs, of which the 8 DOFs of the upper torso
are used in the experiment (4 DOFs per arm)kiAesthetic
achieved here, depending on the initial position of the mbct)eachmg process 1s gsed for demonstranon. The selected

. . . . motors are set to passive mode, which allows the user to move
It is thus possible to encode several motion alternatives iy . .

. . ) ) reely the corresponding degrees of freedom while the robot
a single model, without having to provide the number ande ! . - .

. . . Xxecutes the task. The kinematics of each joint motion are

labels of alternatives during the demonstration phase. The

) . . . recorded at a rate of kHz.
alternatives are then automatically retrieved dependimthe . . . .
initial situation. The experiment consists of feedingRabota robotic doll

Fig. 11right, and Table | present the results of the strokééztl’tvvherel_(;otﬁp'g first brl_r:g{s a ngggr; t’o a pl‘?ﬁ of m?:ghed
at the time of the impact with the ball. We see that th otatoes and then moves 1t towaresotas moutn, see Fig.

system correctly attains the ball at a velocity similar te th 2. Four kinesthetic demonsirations are provided by cirgngi

one demonstrated (in terms of both amplitude and directior&e initial positions of the landmarks from one demonstrati

A video of the experiment accompanies the submission, athdthe gthfe;.hThe exggnmtentt:r exgl'?tly signals the stard
is available online [31]. € end ot the recording to the robot.

The set of landmarks (or objects) tracked by the robot is
VI. EXPERIMENT WITH HOAP-3AND ROBOTA pre-defined. The ppsﬂmn of.the plate is recorded throu_g_h a
i ) , ) patch attached to it, which is tracked by an external vision
This experiment aims at demonstrau_ng that the framevv_ogbstem placed to the side of the robot. The positioRaifota’s
can be used to learn a cpntroller by taking s_|multaneou$dy "mouth is tracked by proprioception through the robot's moto
account several constraints. Here, we consider the caseewhg, .o sHiOAP-3's left arm is rigidly attached t®obota and
a set of movements relative to a set of landmarks must P@yap_3 is connected toRobota’s head encodersRobota’s
conS|d(|ered_ for a corgact reprodu<|:t|on O'; thehSk'" (ll(.e.,enfh head is thus considered as an additional link to the kinemati
several actions on objects are relevant for the task). model of the robot. This allows to precisely track the positi
_ of the mouth during demonstration and reproduction, withou
A. Experimental setup the use of a visual marker that would easily be occluded by
In the previous experiment, we learned trajectories in tfiee spoon moving around the mouth.
frame of reference of a single object (the ball). This expernit In the demonstration phase, the positionof the end-
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effector is collected in the frame of reference of the rabotvalid only for a specific case, that is, in the context where
torso (fixed frame of reference as the robot is seated duriag acceleration command is recursively evaluated aftenav
the experiment). This trajectory is expressed in the framebserved a set of position and velocity data.

of reference of the different landmarks (moving frames of The proposed HMM approach shares many characteris-
references) defined for each landmarloy positiono(™ and tics with the DMP approach, but has some advantages that

orientation matrixR (" have been highlighted through the experiments. In DMP, the
() )\ () () )\ weights are determined through a decay term, which allows
= (R ) [x -0 } ’ = (R ) L. the system to guarantee convergence to the last attragtor

Encoding in aHidden Markov Model is computed for each I contrast, the HMM method has the disadvantage that its
landmark as described in Section II. During the reproducti¢t@Pility lies on proper choice of the gains in (3). An impeop
phase, for new positiool™ and orientation?’'") of the land- chplce would directly affe_ct th_e st_ab|l|ty of the system.eSh _
marks, the generalized positighand velocityi of the end- 9ains must be set by estimating in advance the perturbations
effector with respect to the different landmarks is progect that are expected during reproduction and/or the rangevaino

back to the frame of reference attached to the torso initial positions that the system is expected to handle.
A . On the other hand, the HMM approach has the advantage of
#) = Rz 4oy &' = Rz, being able to encode several motion alternatives in the same

m8del (see the table tennis experiment in Sec. V). Partial

The associated covariances matrices are transform . . S
: ; . femonstrations can be provided, which is a clear advantage
through the linear transformation property of Gaussian d|§Or the teaching interaction (e.g. to refine one part of the

tributions movement without having to demonstrate the whole task
syrn) = R sy (RIm))T again). Compared to DMP that must explicitly embed the
Svin)  _ prn) Hin) (R/(n))—r. cyclic or discrete form of the motion, the HMM approach

allows periodic and reaching movements to be handled in a
At each time step, the command defined in (3) is usehified way (and simultaneously), without having to specify
to retrieve the desired velocity’ and desired positiort’, the representation beforehand (see the dance learning-expe
where the resulting distribution&/ (2, >'*) and A'(#/, ') iment in Sec. IV). It is also not necessary to specify the
are respectively computed through the Gaussian produfttsquency of the movement in contrast with DMP that requires
[T, N (@™, 3%y and TTY_, M(2/(™, £/, This al- to first use an external system to estimate the fundamental
lows the system to combine automatically the different coifrequency of the system [43], [44].

straints associated with the landmarks. Another drawback of DMP is that a heuristic must be
explicitly defined to let the system recompute the value of
B. Experimental results the canonical variable in case of a strong perturbation or

Fig. 12 ts th di its. Toe-rioht h when one wants to reproduce only a subpart of the motion.
hi r:? ht pt);esenhs the ?nco 'n? IESUGS. !_ngd_ i]r_%pt_ Indeed, DMP is robust to spatial perturbation but requires
'ghiights throug € forms ot the Haussian distrutiong, o peyristics to handle temporal perturbations suchlag de

th‘_’ﬂ parts of the motion are more const_ramts than othe Hd pauses in the motion (the perturbation needs to be ddtect
With respect to landmark 1, strong consistency among t € order to re-estimate the value of the decay tesmFor

demonstrathns have been qbserved at the beginning Qf x%mple, if the robot needs to reproduce only one part of the
gesture (motion of the spoon in the mas_hed potatoes), V\{b'c. otion, or if the target is movings must be re-evaluated in
reflected by the narrower form of the ellipses at the beggm"?:onsequence. Handling this type of perturbation is in Gntr

of the motion. inherently encapsulated in the proposed model, which then

W'Fh respect to landmark 2b()tt_om-left graph), strong does not need the explicit parametrization of a temporahgec
consistency among the demonstrations have been observe, paaial and temporal distortions are handled very flexibly
the end of the gesture (when reaching for Robota’s mout

. . . rough the HMM representation.
Fig. 12bottom-right, pres_ents the reproductlon results. We see The proposed HMM approach is not constrained to move-
that_ the robot _automa}tlcally combines th_e two sets of co Jents with a unique zero-velocity attractor point. As high-
stramts (assaciated W.'th _the plate a_r!d _W'th Robotas_ m)out“ hted in Sec. V, several points of interest to be attainét w
to find a trade-off satisfying probabilistically the corsstits

b d durina the d rati Avid fth ai a desired velocity can be automatically extracted along the
observed during the demonstrations. A video oTne EXpamme, i, - o single model is used to encode multivariate data,
accompanies the submission, and is available online [31].

which allows automatic learning of the correlations betwee
the different variables and the use of this information for
VII. DiscussION reproduction. To handle multivariate data, DMP considkes t
We presented an evaluation experiment based on randomiifferent variables as separate processes synchronizéideby
generated data and three applications highlighting differ phase variable, while HMM encapsulates the complete @orrel
capabilities of the model. The aim of the experiment presgnttion information. The covariance matrices in (1) providedb
in Section Il was to conduct a systematic evaluation fanformation on the spread of each c This therefore
various dimensionalities, for models of various compleaind allows building an efficient regressiont%jnate, even i |
for perturbations of varying amplitudes. It however rensaimumber of Gaussians is considered.
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We plan in future work to extend the framework to skillsvhere gains:” and k¥ have been fixed to obtain a critically
requiring more complex dynamics. Of particular interest idamped system. The weights, are defined by Gaussian
the consideration of force signals in the learning by inotat distributions
framework. This would allow the transfer of tasks requiring hi(s) = N (s; p3, 33),
specific compliance to the robot, such as handling manipula- . K .
tion skills collaboratively with a human user. Current worl?nd n_o_rr_nqllzed S_UCh that;" hy = 1. s < [0,1] is a decay
also investigates how the proposed approach can be combiffed |n|t|_aI|zed with s - 1 and converging tso zero through
with Reinforcement Learning techniques, which would allow a canonical systeth 5 = —as. Centersy; are equally

the robot to reuse its knowledge for the exploration of neWstnbuted between 1 and 0, anq variance parametgrare
solutions [2]. set to a constant value depending on the number of kernels

(here,a = 0.1, x* = (k¥)*/4 andXf = 525).
Centers:} are learned through regression from the observed
datal? For each datapoinfz;,i;,i;}, of the training set
We presented and evaluated a probabilistic approach comv = M T), and following (5), a set of attractofs are defined
bined with dynamical systems to allow robots to acquire nexs
skills by imitation. The use of HMM allowed us to get rid R . e b ]
of the explicit time dependency that was considered in our % = Ei K" @R R+ x Vie {L..., N
previous work [12], by still encapsulating precedence finfo By rewriting (5) in a matrix form, we defin& = H® with
mation within the statistical representation. For the emnt ¥ — (&1,....4n), H = (;}0’ . .,;}N) and® = (u?,. .. ,M%)
of separated learning and reproduction processes, thislnq¥y ¢ RNxP f ¢ RV*K and & € RE*P). The set ofh;

formulation was systematically evaluated with respectuo ojs determined for each datapoint by numerically integratin

previous approach,ocally Weighted Regression (LWR) [25],  the canonical system = —as. Centersu? are then estimated
Locally Vieighted Projection Regression (LWPR) [26], and through least-square regression

Dynamic Movement Primitives (DMP) [13], [35]. We finally

VIIl. CONCLUSION

presented three applications to highlight the strengththef ®=(H"H)'H'X,
proposed approach. where(HTH)~1HT is the pseudoinverse df.
DMP can be also used to model periodic motion. In this
APPENDIXA case, the canonical system is defined as 27 /T whereT is
REFORMULATION AS MIXTURE OF LINEAR SYSTEMS the period of the motion. The weights of the Gaussian kernels
By rewriting & and  in (3) as a mixture of linear systemsare then defined as
. M; = $é2(5e)~1, hi(s) = N (825 115, 37),
i; %zfi Z:E%}iiiﬁ with i\f: Mfz— (E%”)(Ef)*luf, and normalized such th@f hi = 1. s[24 is the value of

1 & s modulus2rw. Centersu? are distributed equally around the
o= pf —DFE(E) e, LT Hi qualy

and knowing thatZZ.K:1 h; = 1, (3) can be rewritten as
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