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Abstract

The design of futer parllel computes requires
rapid simulation of taget designs runningealistic
workloads. These simulations have been acatddr
using two tebniques: diect ecution and the use of a
parallel host. Historically these teeniques have been
consideed to have poor portabilityrhis paper identi-
Pes and describes the implementation of feyoker-
ations necessary to maksut simulation portable
across a variety of pailel computes. These four
opemtions ae: calculation of taget execution time
simulation of featwes of inteest, communication of
target messges, and syrwonization of host mces-
Sors.

Portable implementations of these four agérns
have allowed us to easily run thesébnsin Vihd Tun-
nel Il (WWT Il)Na paallel, discete-event, diect-exe-
cution simulatorNacoss a wide ange of platforms,
sud as desktop workstations, a SUN Enterprise server
a cluster of workstations, and a cluster of symmetric
multiprocessing nodes. é\plan to elease WWTI in
August, 1997. Walso plan to port WWT Il to the IBM
SP2.

We bnd that for two behmarks, WWT Il demon-
strates both good performance and good scalability
Uniprocessor WWT Il simulates oneger cycle of a 32-
node taget madine in 114 and 166 host cyclesspec-
tively for the two berionarks on a SUN UWSFARC.
Parallel WWT Il adieves speedups between 4.1-5.4 on 8
host pocessos in our thee paallel madine conbgua-
tions.
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1 Introduction

Software simulation is an important technique for
studying computer architectures ranging from micro-
processors [4, 5] to parallel computers [3, 17, 24].
Simulation speeds up design by enabling architects to
evaluate computers withouulding hardvare proto-
types. Hovever, simulating big problemsNparallel
machines with realistic erkloadsNrequires lage
amounts of computation and memorjwo tech-
niques, directxecution and parallel simulation, neak
this approach feasible.

In direct execution [6], a program from the system
under study (thearget) runs on anasting system
(thehos). For example, a taget® Roating-point mul-
tiply executes as a 3oating-point multiply instruction
on the host. The host calculates thge#® execution
time and only simulates operations vaiéable on the
host.

Direct execution can run orders of magnitudster
than pure softare simulation (which interpretyery
target instruction). This approach can accurately cal-
culate the taget eecution time for statically sched-
uled processors with blocking caches [6].wdeer,
computing the eecution time for dynamically sched-
uled processors with non-blocking caches is an open
problem [15].

Parallel simulation of a parallel computer further
speeds simulation byploiting the parallelism inher-
ent in the taget parallel computer and the parallel
host® lage memory to hold the simulater@rking
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set without paging. The adut of lav-cost parallel
computers, such as symmetric multiprocessors
(SMPs) and clusters of arkstations (C@/s), male
parallel simulation ery attractie.

Unfortunately parallel, discretexent, direct-ge-
cution simulators are compi@ieces of softare that
can be dibcult to lwild and port. Portability is a desir-

able goal because of the wide range of processor

architectures and parallel computers. In part, parallel,
discrete-gent, direct-gecution simulators are not
portable because thaely on machine-specibc fea-
tures. Direct-gecution simulators are tied to specibc
instruction sets by the need to modifygietr xecuta-
bles or assembly code to calculate ge#® execution
time and simulate missing features. Some simulators
[17, 22] also modify the operating system to detect
target cache misses. Similarlyarallel simulators
often use machine-specibc synchronization and com-
munication features to achie good parallel perfor-
mance.

As the authors and users ofo\generations of par-
allel direct-execution simulators, we are painfully
aware of these lo-level dependencies. Inubiding
our tools, we hee identibed four & operations that
underlie parallel, discretesent, direct-gecution sim-
ulation:

¥calculation of taget execution time,
¥simulation of features of interest,
¥communication of tayet messages, and
¥synchronization of host processors.

The main contribtion of this vork is to identify
and implement these four operations iraghion that
minimizes the dependence of a parallel simulator on
host-specibc features. Sectrexamines alternate
implementations of these four operations. Sedion
and Sectio® describe tw tools, calledElsie and
Syntironized Active Mesgas (SAM}hat encapsulate
these operations in a portableywElsie is an editor
that modiPes»@cutables to calculate ¢mt execution
time and simulate a parallel compusenizmory sys-
tem.SAMis a messaging library that supports parallel
simulation.

Using Elsie and SAM we ported theé\sconsin
Wind Tunnelll (WWTII)Nthe successor to the origi-
nal Wisconsin Whd Tunnel (WWT)[17]Nto a wide
range of platforms, including desktomskstations, a
SUN Enterprise seer, and a Cluster of SIRCsta-
tions. We are also portingVWTII to the IBM SP2.
We bnd thatWWT Il shavs excellent to modest per-
formance on our diérent platforms (Sectiob and
Section6). In Sectior7 we present our conclusions.

We plan to releas®/WTII in August, 1997. The
exact release date and additional information about

WWTIl will be available from the URL:http://
www.cs.wisc.edu/~wwt/wwt2/.

2 Operations

In this section we discuss alternatimplementa-
tions of four key operations that underlie parallel, dis-
crete-@ent, direct-gecution simulation. These
operations help isolate host-specibc features, which
malkes it easy to port and tune the performance of a
parallel simulatarThe brst tw operationsNcalcula-
tion of taget execution time (Sectio@.1) and simula-
tion of features of interest (Secti@r?)Nrelate to
direct xecution, while the last taNcommunication
of taiget messages (Secti@rB) and synchronization
of host processors (Secti@m)Nrelate to quanta-
based, parallel, discreteent simulation.

2.1 Calculation of Target Execution Time

Simulation is generally uninteresting without a tar-
get® eecution time. In pure sofave simulation,
which interprets eery taget instruction, calculating a
taget® eecution time is simple. The simulator
updates a clockariable after simulating each gzt
instruction. Unfortunatelyreturning control to the
simulator after eery instruction defeats the purpose
of direct eecution. This is because directeeution
speeds simulation by directlxexuting blocks of tar-
get instructions on host hardve without ap simula-
tor intenention. Consequentlyjumping into the
simulator after eery instruction to update the ¢gt
clock can bexpensve for direct ®ecution.

The cost of updating a tget clock \ariable can be
reduced in tw ways. First, instead of updating the tar-
get clock after eery instruction, we can update it at
edges of basic blocks in a routime€ontrol Rav-
graph. Ball [1] sheved hav to optimize this by updat-
ing a countersuch as the tget clock, only on a sub-
set of edges. Second, instead of jumping into the
simulator the taget itself can maintain and update its
own taget clock wariable. This implies that the tgat
code must be augmented witktra code that updates
the taget clock. V¢ call this taget clock instrumenta-
tion.

Tamget clock instrumentation can be done at four
levels: source code [6], assembly code [3, 7], object
code, and xecutable [17]. Unfortunatelythe prst
three approaches require source, assenablpbject
code, which may be hard to obtain faendorpro-
vided libraries or commercial operating systems and
databases. HExcutable modibcation remwes this
restriction. Hovever, executable modibcation intro-
duces tw problems. First, it is comptdo implement
because thexecutable editor must handle machine-
specibc details (e.g., Px branch addresses after the



Workshop on Brformance Analysis and Its Impact on DesigAl(®, June 1, 1997

introduction of taget clock instrumentation code). check the tayet cache state, unbkheWWTapproach
Second, lik assembly or object code modibcation, in which the simulator cheekl the taget cache block
executable modibcation mek the simulator depen-  state only on tgret cache misses.

dent on a specibc instruction set. Consequerdlgu- Replacing instructions with me code sgments
lating the taget e&ecution time via xecutable introduces problems similar to thosecéd by taget
modibcation has been considered teehpoor porta- clock instrumentation. Hence, our solution is similar
bility. We augmentElsie (Section3) to replace taget
Fortunately researchers ka recently deeloped instructions to simulate features missing in the host.
executable editing tools that allousers to treerse In our case, this feature is theger memory system.

the control-Bav graph of a tayet &ecutable and .
introduce foreign code in an almost machine-indepen- 2.3 Communication of Brget Messages
dent ishion. These tools relie the writers of xeecut-
able editors from wrrying about lav-level machine-
specibc details. In Secti@) we shav how we used
one such tool, called EEL [13], taibd an executable
editor, calledElsig to perform the tayet clock instru-
mentation on tayet xecutables.

Communication is inherent in parallel simulation
because tget nodes xxchange messages with one
another However, the natve communication support
differs radically across parallel computers. Mealyi
Parallel Processors (MPPs) are programmed with
explicit message-passing, @@ with soclets, and
2.2 Simulation of Features of Interest SMPs with shared memorgZonsequentlythe com-

munication code written for one machine cannot be

Researchers uild simulators to study proposed easily ported to another machineo @ercome this
parallel architectures. Hence, simulators mustwallo problem, we hee deeloped a simple messaging
researchers to simulatewdeatures, which may or library called Syntironized Active Mesgas (SAM)
may not be currentlyvailable in a parallel host.oF which abstractsveay the communication primues
example, WWTsimulated a hardare, cache-coherent, from the mechanisms and techniques used in imple-
shared-memory machine on the TMC CM-5, which is mentation. This als us to easily porEAM across
a message-passing parallel machine. different parallel computers.

In direct xecution, to simulate features missing in
a host, the tget often needs the ability to jump into

the simulator on speciPc gat instructions. & Parallel, discretexent simulation (PDES) that
example, to simulate the get memory system, the  seq the conseative time hucket synchronization
target must transfer control to the simulator oryédr method [21] must rapidly synchronize host proces-
loads and stores. _ sors. In this method, et execution is brokn up into

Researchers kie used tw approaches to simulate  |ock-step interals called quanta (Figud. Target
features missing in the host. The brst approach usesmessages sent during one quantum can ofegtar-
hardware and softare mechanismsvailable in the get state in subsequent quanta.

host to simulate speciPc gat features. & example, Quanta-based PDES imposes three synchronization
WWT and Tapevormll [22] marked host memory  qqirements. First, host processors must be able to

blocks that are absent in theger cache or _TLB with determine that a quantum haied, and thus syn-
bad ECC. Accesses to memory blocks Wlth bad I_ECC chronize with the taet node. Second, when a quan-
generated traps that werectored to the simulator via expires, host processors must synchronize among

the operating system. This alled WWT and themseles using a barrier and calculate the duration

Tapavormll to simulate cache and TLB miSses, ot the ngt quantum interal. The duration of the me
respectrely. Unfortunately this method is not easily — quantum interal is often calculated as the sum of the

portable because it requires operating system modiP- minimum taget execution time across all host proces-
cation to catch the ECC traps. Additionaliyost sors (comentionally called a reduction) and aeeix
dynamlcqlly—schec_iuled processors are whjiko sup- guantum length (e.g., 100 ¢mt processorycles).

port precise xceptions on ECC errowithout precise  Thjrg host processors must ensure that all messages
exceptions, a simulator will not be able to correctly ¢ant in a quantum are regedl and processed before
simulate taget cache misses. , the beinning of the net quantum. This alls a host

_ The second approach is to replaceeannstruc-  processor to schedule reception of aljéarmessages
tions with code sgments that transfer control to the ¢ the bginning of a quantum. The folldng three

simulator This approach is more general than the pre- paragraphs discuss each of these three synchroniza-
vious approach. Heever, this method can pay a per-  tjon requirements.

formance penalty for its generalitifor example, to
simulate taget cache misses, all loads and stores must

2.4 Synchpnization of Host Processors
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FIGURE 1. This figure shows how quanta-based PDES
simulates a parallel target machine. Each host
processor directly executes target instructions and
simulates target events (processing time), enters an idle
phase in which it spins for the global synchronization to
begin, and then resumes execution after the
synchronization.

There are two ways to determine if a quantum has
expired. First, the simulator can check quantum expi-
ration on specific entry points into the simulator. This
approach is very efficient if the target frequently
returns control to the simulator (e.g., on every load
and store). WWTII uses this approach. However, this
approach can hurt performance if simulated features
do not recur frequently. This is because target nodes
may not synchronize frequently enough, and conse-
quently, target nodes waiting for messages from other
target nodes may not make progress. Second, we can
modify a target executable to check the progress of
target execution time at specific points (e.g, on target
clock updates) and jump into the simulator if a quan-
tum has expired. This is a more robust method, but
introduces additional overhead compared to the first
method.

Different parallel computers provide different
degrees of hardware support for barrier synchroniza-
tion and reductions. For example, the TMC CM-5
supports both hardware barriers and hardware reduc-
tions, while the Cray T3E supports only hardware bar-
riers. In contrast, the SUN Enterprise E5000 or a
COW connected with Myricom Myrinet switches
have no hardware support for either; hence, these
machines must implement both in software. Lack of
hardware support for barriers and reductions can
degrade the performance of quanta-based PDES, par-
ticularly when the quantum intervals are short.

Target Source Code
Standard C Compiler

Target Executable
Elsie

Instrumented Target Executable

Wisconsin Vihd Tunnel Il

<¢—— Host
(WWT 11)

Configuration

Target output
Target execution time
WWT llstatistics

FIGURE 2. This figure shows how Elsie is related to
WWTII .

Most parallel computers do not provide hardware
support to determine if all messages injected into a
host network have been drained (the TMC CM-5 is a
notable exception). However, there are a variety of
ways of doing this in software. For example, we can
collect acknowledgments for every message injected
into the network. Alternatively, we can piggybad all
messages over a software barrier (e.g., our COW
implementation of synchronization and communica-
tion described in Section 4), which would guarantee
message reception before the beginning of a new
quantum.

3 Elsie

Elsie modifies target executables that run on
WWTII (Figure 2) to achieve the calculation of target
execution time and simulate features of interest. Like
other executable editors for direct-execution simula-
tors [24, 17], Elsie adds instrumentation to calculate
the target’s execution time and to simulate the target’s
memory system. Surprisingly, Elsie can be written in
an almost machine-independent fashion for three rea-
sons. First, Elsie uses the EEL executable editing
library [13], which hides most details of modifying
executables. EEL provides operations that Elsie uses
to traverse a target executable’s control-flow graph
and to add code snippetsSnippets contain machine-
specific instructions, which Elsie adds to edges in a
control-flow graph to track the target’s execution time.
Elsie also replaces target memory instructions (e.g.,
loads and stores) with snippets that jump into the sim-
ulator, which simulates the target memory system.
Second, there are few machine-dependent snippets
and they are small. The eight mandatory snippets all
contain four or fewer instructions each. Consequently,
only small portions of machine-specific code must be



Workshop on Brformance Analysis and Its Impact on DesigAl(®, June 1, 1997

rewritten to port Elsie to a different instruction set.
Finally, EEL itself runs on different instruction-set
architectures, such as the SPARC and the IBM RS/
6000. Hence, porting Elsie from a SPARC to an IBM
RS/6000 only requires rewriting machine-dependent
snippets.

The introduction of code snippets to target executa-
bles incurs only a modest increase in the size of the
target executable’s text segment. The instrumentation
overhead (measured in number of instructions added
statically) for target execution time and memory
instruction simulation are 68% and 70% respectively,
averaged across our target benchmarks (Table 2). This
is comparable to the instrumentation overhead intro-
duced by MIT Proteus [3] or Stanford Embra [24].

In practice, EIsi€s instrumentation overhead in
terms of actual execution time can be even lower for
two reasons. First, the instrumentation overhead is
perfectly parallelizable, because Elsie does not add
extra instrumentation code for parallel simulation.
Second, EEL can hide instrumentation overhead by
scheduling instrumentation instructions in idle super-
scalar execution slots [19].

The introduction of instrumentation code to jump
into the simulator to simulate every memory instruc-
tion increases WWTII’s overhead compared to WWT
or Tapevormll. WWT and Tapevormll have low
overhead because they directly execute memory
instructions that hit in the target cache (see
Section 2.2). WWTII reduces this overhead by pro-
viding a fast path for loads and stores that hit in the
target cache. Normally, on a load or store, the simula-
tor translates the virtual address to the physical
address using the target TLB, indexes into the cache,
finds the appropriate cache block through a tag match,
checks the state of the cache block, and, on a cache
hit, loads or stores a value from or to the cache block.
Instead, in the fast path, WWTII maintains pointers to
all valid target cache blocks in each target TLB entry.
Thus, if a load or store hits in the target cache,
WWTII can directly find the block on a target TLB
access. The fast path optimization speeds up WWTII
by 8% (averaged across our target benchmarks) on a
SUN Enterprise E5000 machine running a 32-node
target on a uniprocessor host. All our results
(Section 6) assume this last optimization.

4 Synchronized Active Messages (SAM)

Syndironized Active Mesgas (SAM)provides an
architecture-neutral programming model that unifies a
parallel host’s communication and synchronization
operations for a quanta-based, parallel, discrete-event
simulation. This achieves the communication of target

PO P1 P2 P3
< -
~
Q -~
E s E N
[l e

FIGURE 3. SAM implementation for a COW. P0, P1, P2,
and P3 denote host processors. Dark boxes represent data -
here only P0 sends a message. Solid lines represent the flow
of synchronization messages with data (piggybacking).
Dotted lines represent flow of synchronization messages
without data.

messages and synchronization of host processors in
the simulator.

SAM by design, is very simple so that it can be
implemented easily across a wide range of parallel
machines. SAM provides three main primitives:
SAM_Send_MsgSAM_Bcast_Msgand SAM_Sync
Host processors communicate using
SAM_Send_Msg, calculate the next quantum dura-
tion using SAM_Bcast_Msg (that is, via broadcast
messages), and synchronize using SAM_Sync. Like
Active Messages [23], a SAMmessage contains a vir-
tual address of a handler that will be called at the
receiving host processor. However, unlike active mes-
sages, SAM does not guarantee message reception
until  SAM_Sync completes. When SAM_Sync
returns, SAM guarantees that all messages have been
received and processed (so that messages have been
scheduled for the next quantum) by calling the corre-
sponding handlers. SAMcalculates the next quantum
duration via message broadcasts for simplicity, and
thereby avoids a separate reduction interface, such as
the one in the TMC CM-5.

Currently, SAMruns on three platforms: an SMP, a
Cluster of Workstations (COW), and a Cluster of
SMPs (COW/SMP). Each implementation is opti-
mized to the platform’s underlying communication
substrate.

The SAM SMP implementation is straightforward
because our SMP (SUN E5000) supports efficient
low-latency communication over the memory bus.
SAMallocates a shared-memory segment and for each
process in the parallel program SAMsets up two sets
of mailboxes in shared memory—destination mail-
boxes and source mailboxes. A process’ destination
mailbox is used by another process to send a point-to-
point message to this process. Each message is explic-
itly copied into the destination mailbox because two
process’ only share the segment containing the mail-
boxes and not the entire address space. Mutual exclu-
sion of destination mailbox is ensured through an
atomic fetch-and-add operation. A process uses its
own source mailbox to enqueue broadcast messages.
We do not enqueue a broadcast message in the desti-
nation mailboxes because that would create multiple
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Parallel Host Inter-Host N | P

Machine | Processor | Communication
Memory | Network
Bus

SMP 167 MHz (83.5 N/A 1 8
(8-proces-|UltraS-  [MHz,
sor PARC 256-bit
SUN wide

E5000)

cow 67 MHz |50 MHz, | Myri- 8 | 8
(unipro-  |Hyper- 64-bits com

cessor SFRARC |wide Myrinet

SFRARC- switches|
sener20)

cow/ 67 MHz |50 MHz, | Myri- 4 | 8
SMP Hyper- 64-bits com

(dual-pro- |[SFARC  |wide Myrinet

cessor switches

SFARC-

sener20)
TABLE 1. This table shows the experimental

configuration for our parallel machines. N = number of
nodes and P = total number of host processors in each
machine. Each node of our COW is equipped with two
processors. However, for the COW runs we only use
one processor, whereas for the COW/SMP runs we use
both the processors in a COW node.

copies of the same message. Finalligen a process
calls SAM_SyncSAMdrains a process@rodestina-

Target Description Input Data Set
Benchmark
FFT Performs Bst fou- |Points = 29
rier Transform
Radix Performs intger Keys = 256K
radix sort Max Key = 512K
Radix = 1K

TABLE 2. This table shows the target benchmarks and
the corresponding input data sets we used for our
experiments.

sage size does not signibcantlyfeaf message
lateng.

Taking these characteristics into account, we
implement SAM_Sync through a sofive lutterf3y-
style messagexehange pattern. The number of stages
is logarithmic in the number of processors, thereby
reducing the number of messages on the critical path.
We further reduce the number of messagepiggy-
bading the taget messages from the current quantum
and the data needed to determine the geantum
length on the biterBy synchronization. ASVWTII
sends ery fav short messages in each quantum, the
total cost of the Wtter3y is not substantially increased
over the synchronization cosen though our piggy-
backing scheme sends all data to all host processors
(Figure3).

The CQON/SMP implementation combines the
COW and SMP implementations. The host processors
within an SMP Prstxxhange their messages. Then
one pre-designated host processor in each SMP node

tion mailboyes and checks all other processO sourceexchanges messages with other host processors fol-

mailboxes for broadcast messages. Subsequently
SAM calls the handlers corresponding to each mes-
sage and returns control to the simulator

The CQV implementation ofSAMis more com-
plex. Analysis of the C®/@ communication charac-
teristics rgeals that minimizing lateycand number
of messages areery important WWTII sends fe
messages (twor less, per processor) that are small
(80 or faver bytes) in a quantum.

The standard model of the latgrno send a mes-
sage from one process to another on th&\d©

end-to-end message latgre! +" * b,
where! is the message latgnfor a zero-length mes-
sage," is the incremental cost per byte, and b is the
number of bytes in a messagee \se the Berdey
Active Messages as the maticommunication layer
on the CQV. For this messaging layer is 26 usecs
and" is 0.071usecs/byte, and the ratio bfto " is
366 bytes. This shwes that communication lateypof
short messages is dominated!hywhich means that
we should minimize the number of messages. The
high! to" ratio means that a modest increase in mes-

lowing the same piggybael hutterRy as shaen in
Figure3. Finally, host processors within an SMP syn-
chronize locally to ensure that the pre-designated pro-
cessor has drained all messages from thearktw

S Methodology

This section describes ouxperimental frame-
work, WWTII, and the taget architecture and bench-
marks we use for this studyablel shavs our three
different parallel machine conbgurations. Our SMP is
a SUN E5000 machine with eight 167 MHz UltraS-
PARC processors connected with a split-transaction
memory lus called the UltraGaplane [20]. The
COW nodes hee 67 MHz HyperSRRC processors
and are connected with Myricom Myrinet switches
[2]. The CON/SMP is the same as the BODexcept
that each node has awprocessors, instead of one.
Each CQV node has a 50 MHz in-order memonysb
called the MBus [12]. W use 8 C®/ nodes and 4
dual-processor CU/SMP nodes to equalize the num-
ber of host processors in the @Oand CQV/SMP
conbgurations.
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Differences WWT WWTII
Host Plat- TMC CM-5 | Workstation, SMPCOW,
forms COW/SMP
Tamget CC-NUMA, S-COMA,
Architec- software DSM, SMPand
tures CC-NUMA | Tempest (actie messages
and shared memory)[13
Memory Contention- | Detailed simulation of a
Bus free coherent memoryus
Optional Net-| Network is not modeled
Network work Simula- | but network contention i
tion modeled at the netwk
interfaces
Source C C++ (primarily)
Language
Number of
non-blank,
non-com- ~16,000 ~30,000
ment lines
of simula-
tor source
code

TABLE 3. This table shawvs the difference betwee
WWT and WWTII. CC-NUMA Cache-Coheent
Non-Uniform Memory Ar chitecture. COMA = Cache:
Only Memory Architecture. DSM Distributed
Shared Memory. SMP = Symmetric Multiprocessol
The lines of souce code eported abore does no
include the lines of souce code ér the executable
editors, SAM, or the target benchmark.

a. A subset of these taat architectures will be
made &ailable in the Pnal distriiion of WWT II.

WWT II is the successor t&WT, but is more
detailed and 3able compared taVWT. Table3 lists
the diferences betweeWWT II and WWT. We have
already usedVWT II for several research fdrts [9,
14, 18, 16].

For this studywe hae chosen a 32-node S-COMA
[10] shared-memory machine as ourgdrarchitec-
ture. Each tayet node has a single processor and a
256 kilobyte processor cache. Haate coherence is
implemented through a full-map directory protocol.
Each host processor WWT II simulates one or more
target nodes. & example, for a 32-node @et, an 8-
processorWWT II conbguration simulates 4-ggt
nodes per host processor

Table2 shavs the two taiget benchmarks and cor-
responding input data sets we used for our stBdth
FFT and Radix are SPLASH2 applications [25].

In all our measurements in Sect®mve report the
time it took WWT II to execute only the parallel por-

Bench-| Number | K Slowdown
mark | of Host sMP | cow | cow/
Proces- SMP
sors
1 32 166 241 241
2 16 95 159 170
FFT
4 8 54 65 117
8 36 45 47
1 32 114 186 186
] 2 16 66 103 139
Radix

4 8 39 55 80
8 4 25 37 46

TABLE 4. This table shovs WWT Il @ slavdown. K =
number of target nodes simulated per host mrcessor
For all the above measuements, the taget size is
constant, i.e. 32 nodes (second column * third column

tion of each taget benchmark. Wassume SHRC V8
instruction set for our tget benchmarks so all of our
host processors are AIRC V8 compatible. Addition-
ally, since WWT II takes the same path through the
talget executable, all our tget executable runs report
exactly the same tget eecution gcles, irrespectie
of which of our three platforms ran thgperiments.
WWT II takes the same path through theeutable
because we impose a strict ordering wérgs. This
control over the &perimental framaork is essential
to efectively characterizeWWT IIG performance
across our three platforms.

6 Performance Results

This section describeWT 118 performance and
scalability on our three parallel machinese #harac-
terize WWT 1IQ performance using a metric called
slowdown. We debPne slwdown as follavs:

slowdann = Max; [host (ycles]’

I [target g/cles]
i =1 ... number of host processor:
j =1 ... number of t@et nodes

Thus, slevdown is the rate at which a host simulates
taiget node ycles (able4).

On our SMP WWTII@ slavdown is modest
(between 25-166), while on the @0and CQV/SMP,
WWT II@ slavdown is slightly worse (between 37-
241) compared to the SMPn the SMPWWT II@
slovdown is comparable to MIT ProteusOnglown
(between 35-100 on a uniprocessor host) [3JwHo
ever, such comparison of sl@own between dierent
simulators may not be insightful becausenslovn
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depends on the functionality andrdé of detail sup-
ported by a simulator

Figure4 provides further insight intoWVWTII@
scalability It shavs the breakden of the aerage
processing time, idle time, and global synchronization
time, as vas done qualitately in Figurel. The pro-
cessing time is the sum of threeution time for all
target processes. The idle time representsabethat
processing time is not uniformly distuted. Thus, it
is the number of host processors multiplied by the
critical path processing time minus the processing
time. The critical path processing time is the sum of
the maximum processing time across hosts for each
guantum. Measuring the global synchronization time
is more diPcult. This occurs because the synchroni-
zation at the end of each quantum does not imply that
all host processors lea SAM at the same time. An
efbcient softvare implementation of a barrier (syn-
chronization) is unlikly to cause all processors to
complete the barrier simultaneouslyrhe only
requirement is that no processed entil all proces-
sors hae entered the barrie€onsequentlyan actual
machine does not f1a the nice clean picture skio in
Figurel. The easiest ay to overcome these issues is
to debne the synchronization time to be thieddhce
between the total time and the critical path processing
time. This works since the measured processing times
are not dected by the ariation in barrier %t times.
This is hav the results presented here were calculated.

Figure4 shavs three interesting characteristics of
WWT Il First, WWTIIl scales similarly for the SMP
and the CQV. However, CON/SMP scales (and per-
forms) slightly worse than the C@ for the same
number of host processors. This is because the pro-
cessing time on the G&YSMP is worse than that on a
COW. We suspect this ddrence is caused by our
COW/SMP nodeOmemory systemwhich does not
scale as well with increasing processors due to the
particular memory s used within one node.

Second, the global synchronization time is a small
fraction of the total xeecution time (between 4-17%).
This implies that our implementation of SAM and the
synchronization layer is quite Bfient. Further
improvements in the synchronization layer can
improve performance only mainally.

Third, with increasing host processors, the idle
time introduced due to load imbalance within a quan-
tum is a dominantaictor of the total xecution time.
This idle time appears to be theyKimiting factor to
WWTII@ scalability For example, on 8 host proces-
sors, the idle time accounts for 33-46% of the total
execution time. ConsequentifyVWTIl achiees a
speedup of 4.1-5.4 on 8 host processors, which is
good, lut less than linea¥\e believe that the idle time

=
o

® [
£ Proce_ssing Time
= 08 Idle Time
c Global Synchronization
kel =
306 | ml
(7]
< L
L
2 04 r
N
©
€02 HH ]
zZ
0.0
— N NN SIS 0 00 ©
11l 11 1111 Il
aoQ [aIgalya oo [aigalya R
IIT ITT ITT IIT
o o o o o o o o
2%2 2%2 2%2 2%2
woQ woQ woQ oL
= = = 2
O (o] o] o
(] O] O] O]
() FFT
1.0 rpymrm
g Processing Time
= 0.8 I Idle Time
g ) - Global Synchronizatior]
3 06 |
b L
B3
Ll
3 04 r
N
g 0.2 7 HH H H
B H
2
0.0
o NN N <SS © 0 ©
L I I (L
[Ny alya [alyalya [alya e [aNya iy
ITT IITT IITT IITT
o o o o o o o o
E%E E%E E%E 2(;32
now noY noo noQY
= = = =
o] o o] (]
O (@] O O
(b) Radix

FIGURE 4. This bgure shavs hov WWT Il @ scalesdr
FFT (a) and Radix (b) on our three parallel machines
HP denotes the number of host prcessors in eac
conbguration. The ertical axis shavs the total
execution time br a particular conbguration divided
by the total execution time on one host mrcessor of the
corresponding machine. On a single host pcessor
WWTII runs on average 3.8 times faster on the SM
compared to the CON. The CON/SMP execution time
on a single host is identical to that of the C@. Each
execution time bar is further divided up into average
processing, idle, and global syncbnization times. The
global synchmonization time on a single host denote
the overhead of switching to a diffeent target node,
while that on multiple host processors denote both th
overhead of switching taiget nodes and synctonizing
with other host processors.

have a bed number of total tget nodes. This

increases with increasing host processors because wdNcrease occurs because theiggon of processing
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time from the gerage increases as the number of tar-

gets per host decreases. This implies that increasings

the number of tgjet nodes per host, i.e. agar simu-
lation, with increasing host processors, will reduce the
idle time and achiee better speedups [8].
AlthoughWWT Ildoes not achie linear speedup,
parallel simulation is still wrthwhile. This is because
such simulations are often memory-limited [26, 8].
Assume that (i) the goal is to maximize the rate at
which one can do simulations of altermatidesign
points, (ii) each simulation has awking set of M;,
and (iii) the machine has a y#ical memory size of
Mphysicat TO @oid thrashing, one can concurrently
run at mostS = [Mppysical/ Msim] simulations. If the
system has more th&host processors, parallel simu-
lation increases the rate of performing altengagim-
ulations wheneer speedup is greater than 1.0! This
combined with our speedups of 4.1-5.4 on (8 proces-
sors) maks parallel simulation @rthwhile.

7 Conclusions

This paper wamined four ky operations that
underlie parallel, discreterent, direct-gecution sim-
ulation. These four operations are: calculation of tar-
get &ecution time, simulation of features of interest,
communication of tayet messages, and synchroniza-
tion of host processors.

We encapsulated portable implementations of these
four operations in tev tools callecElsie andSyndiro-
nized Active Mesgas Using these tools, we easily
and successfully ported thdsconsin Wd Tunnelll
(WWTIl)Na parallel, discrete-gent, direct-gecu-
tion simulatorNacross a wide range of platforms,
including desktop wrkstations, a SUN Enterprise
sener, a cluster of wrkstations, and a cluster of sym-
metric multiprocessing nodes.

On two benchmarks, we found that tNeWT Il
achieved both good performance and good scalability
UniprocessoMVWT Il simulated one tget g/cle of a
32-node taget machine in 114 and 166 hostles
respectrely for the tvo benchmarks on an UltraS-
PARC. PRarallel WWTIIl achieved speedups between
4.1-5.4 on 8 host processors on a SUN Enterprise
E5000 serer, a cluster of wrkstations, and a cluster
of symmetric multiprocessing nodes.
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