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Abstract
Analysis of future parallel computers requires

rapid simulation of target designs running realistic
workloads. These simulations have been accelerated
by two techniques: direct execution and the use of a
parallel host. Historically, these techniques have been
considered to lack portability. We identify four key
operations necessary to make these simulations porta-
ble. This allows us to run the Wisconsin Wind Tunnel
II (WWT II) readily on a wide range of SPARC plat-
forms from a workstation cluster to a symmetric mul-
tiprocessor (SMP).

WWT II has good performance and scalability as
shown on a range of benchmarks. WWT II achieves
speedups between 8.6 and 13.6 on a 16 host processor
SMP. Finally, we show that parallel simulation with
WWT II is cost-effective.

Keywords : architecture, simulation, parallel,
portable, cost-effectiveness
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1  Introduction

Simulationis an importanttechniquefor studying
computerarchitecturesrangingfrom microprocessors
to parallel computers.Simulation speedsdesignby
enabling architects to evaluate computerswithout
building hardware prototypes.However, simulating
large problems—parallel machines with realistic
workloads—requiresvast amounts of computation
and memory. Two techniques,direct execution and
parallel simulation, make this approach feasible.

In directexecution[1], a programfrom thesystem
understudy (the target) runs on an existing system
(the host). For example,a target’s floating-pointmul-

tiply executesasa floating-pointmultiply instruction
on thehost.Thehostcalculatesthe target’s execution
time andonly simulatesoperationsunavailableon the
host. Direct execution can run ordersof magnitude
fasterthanpuresoftwaresimulation(which interprets
every targetinstruction).Thisapproachcanaccurately
calculate the target execution time for statically
scheduled processors with blocking caches [1].

Parallel simulationof a parallel computerfurther
speedssimulationby exploiting theparallelisminher-
ent in thetargetparallelcomputerandthelargemem-
ory in a parallel host to hold the working set of the
simulatorwithoutpaging.Theadventof low-costpar-
allel computers,such as symmetricmultiprocessors
(SMPs)and clustersof workstations(COWs), make
parallel simulation very attractive. In contrast,Rice
RSIM and Stanford SimOS use uniprocessor hosts.

Unfortunately, parallel, discrete-event, direct-exe-
cutionsimulatorsarecomplex piecesof softwarethat
canbedifficult to build andport. In part,thesesimula-
tors are not portablebecausethey rely on machine-
specificfeatures.They aretied to specificinstruction
sets by the need to modify target executablesor
assemblycodeto calculatea target’s executiontime
andsimulatemissingfeatures.Somesimulators[2, 3]
also modify the operating system to detect target
cachemisses.In addition, parallel simulatorsoften
usemachine-specificsynchronizationand communi-
cation features to achieve good parallel performance.

As theauthorsandusersof two generationsof par-
allel direct-execution simulators, we are painfully
aware of theselow-level dependencies.In building
our tools,we have identifiedfour key operationsthat
underlieparallel,discrete-event,direct-executionsim-
ulation:

• calculation of target execution time,

• simulation of features of interest,



2

• communication of target messages, and

• synchronization of host processors.

We show that thesefour operationscanbe imple-
mentedin a fashionthatminimizesthedependenceof
a parallel simulatoron host-specificfeatures.This is
achieved with two tools, called Elsie and Synchro-
nized Active Messages (SAM), that encapsulatethese
operationsin a portableway. Elsie, which currently
runsonSPARC instructionsets,is aneditorthatmod-
ifiesexecutablesto calculatetargetexecutiontimeand
simulatea parallelcomputer’s memorysystem.SAM
is a messaginglibrary that supportsparallel simula-
tion.

Using the availableandportableversionsof Elsie
and SAM, we ported the Wisconsin Wind Tunnel II
(WWT II)—the successorto the original Wisconsin
Wind Tunnel (WWT) [2]—to a range of platforms,
including desktop workstations,a SUN Enterprise
server, anda clusterof SPARCstations.All platforms
currently usethe sameSPARC instructionset archi-
tecture.

Our analysishas shown several important results
including thatWWT II:

• achieves portability without sacrificing perfor-
mance,

• shows good parallel efficienciesacrossa rangeof
host platforms, and

• is a cost-effective parallel simulator.

In summary, WWT II demonstratesa technology
for parallelsimulationof target multiprocessorswith
up to hundredsof in-orderprocessorsexecutinguser-
level code.Other simulators,however, have evolved
to simulate richer parallel targets: Rice RSIM [4]
(user-level out-of-orderprocessors),StanfordSimOS
[5] (user/systemout-of-order processors),and Vir-
tutechSimICS(user/systemin-orderprocessors)[6].
These simulators run on uniprocessorhosts, and,
therefore,are painfully slow simulating large target
multiprocessors.A future simulationchallengeis use
WWT II-lik eparallelsimulationtechnologyfor accel-
eratingthesimulationof multiprocessorswith out-of-
order processors executing user and system code.

2  Operations

In this sectionwe discussalternative implementa-
tionsof four key operationsthatunderlieparallel,dis-
crete-event, direct-execution simulation. These
operationshelp isolate host-specificfeatures,which
makes it easyto port and tune the performanceof a
parallelsimulator. The first two operations—calcula-
tion of target execution time and simulationof fea-
turesof interest—relateto directexecution,while the

lasttwo—communicationof targetmessagesandsyn-
chronizationof host processors—relateto conserva-
tive-window, parallel, discrete-event simulation.

2.1  Calculation of Target Execution Time

To evaluatethe performanceof a proposedarchi-
tecture,asimulatormustcalculateelapsedtimeon the
targetmachineaswell asmimic thetarget’s function.
In simulatorsthat interpret every target instruction,
calculating the target execution time is simple: the
simulator updatesa clock variable after simulating
eachinstruction.However, directexecutionsimulators
derive their speedfrom directly executingblocks of
target instructions without simulator intervention.
Invoking the simulator to updatethe clock variable
afterevery targetinstructionwouldnullify thisperfor-
mance advantage.

The costof updatingthe target clock variablecan
bereducedin two ways.First, insteadof invoking the
simulator, thetarget itself canmaintainandupdateits
own targetclock variable.This implies that the target
codemustbeaugmentedwith extra codethatupdates
thetargetclock.Wecall this target clock instrumenta-
tion. Second,we can updatethe variable less fre-
quently by combiningthe updatesfor a sequenceof
instructions.

Target clock instrumentationcan be doneat four
levels: sourcecode [1], assemblycode [7], object
code,andexecutable[2]. Unfortunately, thefirst three
approachesrequiresource,assembly, or objectcode,
which may be hard to obtain for vendor-provided
libraries or commercialoperatingsystemsand data-
bases.Executablemodification removes this restric-
tion becausetarget clock instrumentationis added
directly to theexecutable.However, executablemodi-
fication introducestwo problems.First, it is complex
to implementbecausetheexecutableeditormusthan-
dlemachine-specificdetails(e.g.,fix branchaddresses
after the introductionof target clock instrumentation
code).Second,likeassemblyor objectcodemodifica-
tion, executable modification makes the simulator
dependent on a specific instruction set.

Fortunately, researchershave recently developed
executableediting tools that allow usersto traverse
the control-flow graph of a target executableand
introduceforeigncodein analmostmachine-indepen-
dentfashion.Thesetoolsrelieve thewritersof execut-
ableeditorsfrom worrying aboutlow-level machine-
specific details. WWT II usesone such tool, called
EEL [8], to build anexecutableeditor, calledElsie, to
perform the target clock instrumentationon target
executables.Elsie is described inSection 3.
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2.2  Simulation of Features of Interest

Researchersbuild simulators to study proposed
parallel architectures.Hence,simulatorsmust allow
researchersto simulatefeatureswhich may or may
notbecurrentlyavailablein aparallelhost.For exam-
ple, the original WWT simulateda hardware,cache-
coherent,shared-memorymachineon the Thinking
Machines(TMC) CM-5, which is a message-passing
parallel machine.

In direct execution, simulating missing features
requiresthe target to jump into the simulatoron spe-
cific target instructions.For example,to simulatethe
targetmemorysystem,thetargetmusttransfercontrol
to the simulator on some target loads and stores.

Researchershave usedtwo approachesto simulate
featuresmissingin the host.The first approachuses
hardware and software mechanismsavailable in the
host to transfer control. For example, WWT and
Tapeworm II [3] markedhostmemoryblocksthatare
absentin thetargetcacheor TLB (TranslationLooka-
side Buffer) with bad ECC. Accessesto memory
blockswith badECC generatedtrapsthat werevec-
tored to the simulatorvia the operatingsystem.This
allowedWWT andTapeworm II to simulatecacheand
TLB misses,respectively. Unfortunately, this method
is not easily portable becauseit requiresoperating
systemmodificationto catchtheECCtraps.Addition-
ally, most dynamically-scheduledprocessors are
unlikely to supportpreciseexceptionson ECC error.
Without preciseexceptions,a simulator will not be
able to correctly simulate target cache misses.

The secondapproachis to replacetarget instruc-
tions with codesegmentsthat transfercontrol to the
simulator. Thisapproachis moregeneralthanthepre-
vious approachbut can incur a performancepenalty
for its generality. For example, to simulate target
cachemisses,all loadsandstoresmustcheckthe tar-
get cachestate,unlike the WWT approachin which
the simulator checked the target cacheblock state
only on target cache misses.

Replacing instructions with new code segments
introducesproblemssimilar to thosefacedby target
clock instrumentation.Hence,our solutionis similar.
We augmentElsie to replacetarget instructionsto
simulatefeaturesmissingin thehost.In our case,this
feature is the target memory system.

2.3  Communication of Target Messages

Communicationis inherentin parallel simulation
becausetarget nodesexchangemessageswith one
another. However, the mostefficient methodof com-
municationdiffers radically acrossparallel comput-
ers. Typically, massively parallel processors(MPPs)
usea nativemessagepassinglibrary, COWs usesock-

ets, and SMPs use sharedmemory. Consequently,
communicationcodewritten for onemachinecannot
beeasilyportedto anothermachine.To overcomethis
problem, we have developed a simple messaging
library called Synchronized Active Messages (SAM),
which abstractsaway the communicationprimitives
from the mechanismsand techniquesusedin imple-
mentation.SAM, which also handlesprocessorsyn-
chronization, is described in Section4.

2.4  Synchronization of Host Processors

Parallel, discrete-event simulation that uses the
conservative time bucket synchronizationmethod[9]
must rapidly synchronizehost processors.In this
method,target executionis broken up into lock-step
intervals called quanta as shown in Figure1. Target
messagessentduringonequantumcanonly affect tar-
get statein subsequentquanta.This is accomplished
by setting the quantumlength basedupon the time
necessaryfor a messageto be deliveredin the target
(this is a lower bound so it is conservative). Since
messagesare guaranteedto be delivered before the
start of the next quantum,the simulatormakes sure
that the receiving target is aware of the message
beforeit can have any effect on the outcomeof the
target program.

Conservative-window, parallel,discrete-event sim-
ulation imposesthree synchronizationrequirements.
First,hostprocessorsmustbeableto detectwhentar-
get executionreachesthe endof a quantum.Second,
when a quantumexpires, host processorsmust syn-
chronizeamongthemselvesusinga barrierandcalcu-
late the duration of the next quantuminterval. The
durationof the next quantuminterval is often calcu-

Sync

Sync

Sync

Quantum

Quantum

FIGURE 1. Graphical representation of quantum and
messages sent for 4 processors. Blue regions are
synchronization time while green areas are simulator
processing times.
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latedasthesumof theminimumtargetexecutiontime
acrossall host processors(conventionally called a
reduction)andafixedquantumlength(e.g.,100target
processorcycles).The former representsthe fact that
the simulatoroften knows that all targetswill not be
interactingfor a period of time so it can extend the
next quantum.Thelatterrepresentstheminimumtime
for messagetransmissiononce a messagehas been
sentandis theminimumtime for two targetsto inter-
act. Third, hostprocessorsmustensurethat all mes-
sagessent in a quantumare received and processed
before the beginning of the next quantum.This is
shown in Figure1 by the fact that messagessentare
received at the end of the synchronization.A global
reductionof the differencebetweenthe numberof
messagessentandreceivedwill bezerooncedelivery
is complete.This allows a hostprocessorto complete
receptionof all target messagesbeforebeginning the
next quantum.Thefollowing threeparagraphsdiscuss
each of these three synchronization requirements.

Therearetwo waysto detecttheendof a quantum.
First, thesimulatorcancheckfor quantumexpiration
on eachentryinto thesimulator. This approachworks
well if thetargetfrequentlyreturnscontrolto thesim-
ulator. BecauseWWT II simulatesevery load and
store,weusethisapproach.Second,if thesimulatoris
invoked less frequently, global synchronizationwill
be deferredandconsequentlyothertarget nodesmay
bedelayed.In thiscase,wecanmodify thetargetexe-
cutableto checkthe target executiontime more fre-
quently (e.g,on target clock updates)andinvoke the
simulator if a quantumhasexpired. This methodis
more robust, but introduces additional overhead.

Different parallel computers provide different
degreesof hardwaresupportfor barriersynchroniza-
tion and reductions.For example, the TMC CM-5
supportsboth hardwarebarriersandhardwarereduc-
tions,while theCrayT3Esupportsonly hardwarebar-
riers. In contrast,the SUN EnterpriseE6000andour
COW connectedwith an off-the-shelfnetwork have
no hardwaresupportfor either;hence,thesemachines
must implementboth in software.Lack of hardware
support for barriersand reductionscan degradethe
performanceof conservative-window, parallel, dis-
crete-eventsimulation,particularlywhenthequantum
intervals are short.

Most parallel computersdo not provide hardware
supportto determineif all messagesinjected into a
hostnetwork have beendrained(theTMC CM-5 is a
notableexception). However, there are a variety of
waysof doing this in software.For example,we can
collect acknowledgmentsfor every messageinjected
into the network. Alternatively, we canconfirm mes-
sagedelivery at the end of the quantum,combining
this operationwith the barrier synchronization.The

SAM package,describedin Section4, implementsthe
necessary functionality while allowing for portability.

3  Elsie

Elsie modifies target executables that run on
WWT II (Figure2) to achieve thecalculationof target
executiontime andsimulatefeaturesof interest.Like
other executableeditors for direct-executionsimula-
tors, Elsie addsinstrumentationto calculatethe tar-
get’s execution time and to simulate the target’s
memorysystem.Surprisingly, Elsie canbe written in
analmostmachine-independentfashionfor threerea-
sons. First, Elsie uses the EEL executableediting
library [8], which hides most details of modifying
executables.EEL providesoperationsthat Elsie uses
to traverse a target executable’s control-flow graph
andto addcode snippets. Snippetscontainmachine-
specific instructions,which Elsie addsto edgesin a
control-flow graphto trackthetarget’sexecutiontime.
Elsie also replacestarget memory instructions(e.g.,
loadsandstores)with snippetsthatjump into thesim-
ulator, which simulatesthe target memory system.
Second,there are few machine-dependentsnippets
andthey aresmall. The eight mandatorysnippetsall
containfour or fewer instructionseach.Consequently,
only smallportionsof machine-specificcodemustbe
rewritten to port Elsie to a different instruction set.
The small number of machine-specificinstructions
neededmake porting Elsie even easier. The current
versionof Elsie only runson the SPARC V8 instruc-
tion set. Modification for other instruction sets
involvesdescribingthe propertiesof the new proces-
sorandusingaversionof EEL aimedat thismachine.
For example,thedetailedtimingsfor thenew instruc-
tion set are needed.

Target Source Code

Standard C Compiler

Target Executable

Elsie

Instrumented Target Executable

Wisconsin Wind Tunnel II

Target output
Target execution time

WWT II statistics

Host
Configuration(WWT II)

FIGURE 2. Relationship of Elsie to WWT II.
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The introductionof instrumentationcodeto jump
into the simulatorto simulateevery memoryinstruc-
tion increasesWWT II’s overheadcomparedto WWT
or Tapeworm II. WWT and Tapeworm II have low
overhead because they directly execute memory
instructions that hit in the target cache (see
Section2.2). WWT II reducesthis overheadby pro-
viding a fastpath for loadsandstoresthat hit in the
target cache[10]. Normally, on a load or store, the
simulatortranslatesthevirtual addressto thephysical
addressusingthe target TLB, indexesinto the cache,
findstheappropriatecacheblock througha tagmatch,
checksthe stateof the cacheblock, and,on a cache
hit, loadsor storesa valuefrom or to thecacheblock.
Instead,in thefastpath,WWT II maintainspointersto
all valid targetcacheblocksin eachtargetTLB entry.
Thus, if a load or store hits in the target cache,
WWT II can directly find the block on a target TLB
access.

4  Synchronized Active Messages (SAM)

Synchronized Active Messages (SAM) provides an
architecture-neutralprogrammingmodelthatunifiesa
parallel host’s communicationand synchronization
operationsfor a quantum-based,parallel, discrete-
eventsimulation.This achievesthecommunicationof
target messagesand synchronizationof host proces-
sors in the simulator.

SAM, by design,is very simple so that it can be
implementedeasily acrossa wide rangeof parallel
machines. SAM provides three main primitives:
SAM_Send_Msg, SAM_Bcast_Msg, and SAM_Sync.
Host processors communicate using
SAM_Send_Msg,calculatethe next quantumdura-
tion using SAM_Bcast_Msg(that is, via broadcast
messages),and synchronizeusing SAM_Sync.Like
Active Messages,a SAM messagecontainsa virtual
addressof ahandlerthatwill becalledat thereceiving
host processor. However, unlike active messages,
SAM does not guaranteemessagereception until
SAM_Sync completes.When SAM_Sync returns,
SAM guaranteesthatall messageshave beenreceived
andprocessed(sothatmessageshave beenscheduled
for the next quantum)by calling the corresponding
handlers.By supplyingthe appropriatehandler, SAM
canbeutilized to calculatethenext quantumduration
via messagebroadcastsfor simplicity, and thereby
avoids a separatereductioninterface,suchasthe one
in the TMC CM-5.

Currently, SAM runson threeplatforms:anSMP, a
Cluster of Workstations(COW), and a Cluster of
SMPs (COW/SMP). Each implementationis opti-
mized to the platform’s underlying communication
substrate.

The SAM SMP implementationis straightforward
becauseour SMP (SUN E6000) supportsefficient
low-latency communicationover the memory bus.
SAM allocatesashared-memorysegmentandfor each
processin the parallelprogramSAM setsup two sets
of mailboxes in sharedmemory—destinationmail-
boxes and sourcemailboxes. A process’destination
mailboxis usedby anotherprocessto senda point-to-
pointmessageto thisprocess.Eachmessageis explic-
itly copiedinto the destinationmailbox becausetwo
process’only sharethe segmentcontainingthe mail-
boxesandnot theentireaddressspace.Mutual exclu-
sion of destinationmailbox is ensuredthrough an
atomic fetch-and-addoperation.A processusesits
own sourcemailbox to enqueuebroadcastmessages.
We do not enqueuea broadcastmessagein the desti-
nationmailboxesbecausethat would createmultiple
copiesof the samemessage.Finally, whena process
callsSAM_Sync,SAM drainsa process’own destina-
tion mailboxes and checksall other process’source
mailboxes for broadcast messages.Subsequently,
SAM calls the handlerscorrespondingto eachmes-
sage and returns control to the simulator.

The COW implementationof SAM is more com-
plex. Analysisof the COW’s communicationcharac-
teristics reveals that messageoverheadis high (26
µsecsunderSunOS5.5 with Myricom switches- see
Table1) so minimizing the numberof messagesis
very important.WWT II sendsfew messages(two or
less,perprocessor)thataresmall (80 or fewer bytes)
in a quantum.Multiple messagesoccuron a hostdue
to having multiple targetson a hostandbecausepro-
tocol processingon a singletarget caninvolve multi-
ple messages.

Taking these characteristics into account, we
implementSAM_Syncthrougha software butterfly-
stylemessageexchangepattern.Thenumberof stages
is logarithmic in the numberof processors,thereby
reducingthenumberof messageson thecritical path.
We further reducethe numberof messagesby piggy-
backing thetargetmessagesfrom thecurrentquantum
and the dataneededto determinethe next quantum
length on the butterfly synchronization.As WWT II
sendsvery few shortmessagesin eachquantum,the
total costof thebutterfly is not substantiallyincreased
over thesynchronizationcost,eventhoughour piggy-
backingschemesendsall datato all host processors
(Figure3).

The COW/SMP implementation combines the
COW andSMPimplementations.Thehostprocessors
within an SMP first exchangetheir messages.Then
onepre-designatedhostprocessorin eachSMP node
exchangesmessageswith other host processorsfol-
lowing the samepiggybacked butterfly as shown in
Figure3. Finally, hostprocessorswithin anSMPsyn-
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chronizelocally to ensurethatthepre-designatedpro-
cessor has drained all messages from the network.

5  Methodology

This section describesour experimental frame-
work, WWT II, andthe targetarchitectureandbench-
markswe usefor this study. Table1 shows our three
different parallel machine configurations.Figure4
shows a graphicalrepresentationof the threetypesof
machinesused.The COW/SMP is the sameas the
COW, except that each node has two processors,
insteadof one.Weuse16COW nodesand8 dual-pro-
cessorCOW/SMP nodesto equalizethe numberof

hostprocessorsin theCOW andCOW/SMPconfigu-
rations.

For this study, we have chosenan S-COMA [11]
shared-memorymachineas our target architecture.
Each target node has a single processorand a 256
kilobyte processorcache. Hardware coherenceis
implementedthrough a full-map directory protocol.
Eachhostprocessorin WWT II simulatesoneor more
targetnodes.For example,for a256-nodetarget,an8-
processorWWT II configurationsimulates32-target
nodes per host processor.

Table2 shows the five target benchmarksandcor-
responding input data sets we used for our study.

In all our measurementswe reportthe time it took
WWT II to executeonly the parallel portion of each

P0 P1 P2 P3

FIGURE 3. SAM implementation for a COW. P0, P1,
P2, and P3 denote host processors. Dark boxes
representdata - here only P0 sendsa message.Solid
lines represent the flow of synchronization messages
with data (piggybacking). Dotted lines representflow
of synchronization messages without data.

T
im

e

Parallel
Machine

Host
Proces-

sor

Inter -Host
Communication

N PMemory
Bus

Network

SMP
(16-processor
SUN E6000)

250MHz
UltraS-
PARC

83.5
MHz,

256-bit
wide
split-

transac-
tion

N/A 1 16

COW
(uniprocessor
SPARC-
server20)

66 MHz
Hyper-
SPARC

N/A First gener-
ation ver-

sion 2
Myricom
Myrinet
switches

16 16

COW/SMP
(dual-proces-
sor SPARC-
server20)

66 MHz
Hyper-
SPARC

50 MHz,
64-bits
wide
sequen-
tial

First gener-
ation ver-

sion 2
Myricom
Myrinet
switches

8 16

TABLE 1. The host systemsused.N is number of nodes
and P is the total number of host processors.

COW/SMP

SMP

COW

FIGURE 4. Graphical representationof the differ ent
machine configurations for 4 processors. Green
represents a bus and blue represents a network.

Benchmark Source Description
Input Data

Set

FFT SPLASH-2 complex
Fast Fou-
rier Trans-
form

216 points

LU SPLASH-2 LU factor-
ization

order 512
matrix, order
16 blocks

radix SPLASH-2 Integer sort 256K keys,
1K radix

tomcatv WWT paral-
lelizationof
SPEC

Mesh Gen-
erationwith
Thomp-
son’s solver

order 512
matrices,
4 iterations

water-sp SPLASH-2 water mole-
cule simula-
tion

4K molecules,
3 steps

TABLE 2. Target benchmarksand the corresponding
input data sets we used for our experiments.
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targetbenchmark.We assumeSPARC V8 instruction
set for our target benchmarksso all of our hostpro-
cessorsare SPARC V8 compatible. Additionally,
sinceWWT II takes the samepath throughthe target
executable, all our target executable runs report
exactly the sametarget executioncycles, irrespective
of which of our threeplatformsran the experiments.
WWT II takes the samepath through the executable
becausewe imposea strict orderingof events.This
control over the experimentalframework is essential
to effectively characterizeWWT II’s performance
across our three platforms.

6  Performance Analysis

We now present results obtained from running
WWT II. First we show its parallel performanceand
then we discuss its cost-effectiveness.

6.1  Parallel Performance

This sectiondescribesthe performanceof WWT II
by looking at the host’s parallel speedup(uniproces-
sor time / paralleltime). This metricshows theeffec-
tivenessof utilizing the parallelsimulationcapability
of WWT II.

We first look, in Table3, at how the performance
comparesacrossour three parallel hosts. We only
show selectedbenchmarksand a limited numberof
targets becausethey exemplify the results and are
small enoughto avoid virtual-memorythrashingon a
single COW node. The data shows that WWT II
achievesreasonablespeedupsfor this modestnumber
of targetsacrossall threeplatforms.As will beshown
below, the performanceincreasesas larger simula-
tions are performed.To give an idea of the absolute
run timesof WWT II, the 16 hostprocessorrun time
for tomcatvis 1.8 and9.4 minutesfor the SMP and

COW, respectively. Theseshow that parallel execu-
tion of simulationscanperformin time frameswhich
make their usagepractical for many applications.
Whencomparingbetweenplatforms,thespeedupsare
betteron the SMP as the numberof host processors
increases.This indicatesthefastercommunicationon
the SMP yields better parallel performance.

We now turn to SMP results becausethe large
memory available for any number of processors
allows for running large memory targets acrossthe
full rangeof hostprocessors.Without this ability we
could not run the large parallel jobs on a singlepro-
cessorto determinespeedups.Figure5 showsthesim-
ulator achieves good speedupsfor up to 16 hosts
acrossall benchmarkswith 256 targets.At 16 hosts
the speedupsrangefrom 8.6 to 13.6for an efficiency
of 54%to 85%.Also notethatthespeedupcurvesare
monotonicallyincreasingso that greaterparallelism
reducesthe time for a given simulation. Figure6
shows theeffect of varying thenumberof targets.As
can been seen, increasing the number of targets
increasesthe simulatorspeedups.This effect is seen
on all the benchmarksand tomcatv was shown
becauseit hasthe largesteffect. This trendis helpful
sincelargersimulations,whichrequiregreaterunipro-
cessorrun times, will achieve betterparallel perfor-
mance.An importantfactorin theincreasedefficiency
is thereductionin idle time dueto improvedloadbal-
ancingasthenumberof targetsperhostis increased.
Oncea hosthasfinishedwork for all of its targetsin
the currentquantum,this host idles until the slowest
host completesand enters the synchronizationas
shown in Figure1. As the numberof targetsper host

Bench-
mark

Number
of Host
Proces-

sors

Speedup

SMP COW
COW/
SMP

1 1 1 1
2 1.8 1.7 1.6

LU 4 3.1 2.6 2.5
8 4.7 3.5 3.4
16 5.4 3.6 3.5
1 1 1 1
2 1.8 1.8 1.6

tomcatv 4 3.3 2.9 2.7
8 5.1 4.0 3.8
16 5.8 4.3 4.1

TABLE 3. Parallel speedups across platforms for
WWT II on a 32 node target system.

2 4 6 8 10 12 14 16
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tomcatv 
FFT     
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water−sp
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linear  

Number of Host Processors
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u
la
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S
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e
e
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u
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FIGURE 5. Simulator speedups on SMP across
benchmarks for 256 targets.
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increases,thedeviation from theaveragedecreasesso
the idle time is decreased [12].

6.2  Cost-Effectiveness

The previous section shows that parallelism
improvessimulatorrun timesfor a given simulation.
However, this doesnot demonstratethat the use of
parallelismis cost-effective, i.e., it is cheaperto run a
parallelsimulationon N hostnodesthanN sequential
simulations.To evaluate this question we need to
specifythecostof thevarioushostsystemsused.We
definethecostto bethepurchasepriceof thesmallest
system that could run the simulation in question.
Thus, a simulation run on 4 hosts that needs 1
Gigabyteof memorywouldbethecostof thesmallest
box thathas4 processorsand1 Gigabyteof memory.
A general discussionof cost-effectivenesscan be
found in [13].

An importantcomponentin thecostof a computer
is thememory. As partof our analysisof WWT II we
determinedthememoryusage(in Mbytes)of thesim-
ulator which is given by

Msim = 1.26∗ (# hosts) + 1.97∗ (# targets)
Mtarget = target memory∗ (# targets)

M = Msim + Mtarget

whereMsim is thememorytakenup by thesimulator
on all hostswithout the target program,Mtarget is the
memory for all targets,and M is the total memory
usedin all hosts.Thecostof theSMPsystemin thou-
sands of US dollars is given by
C = base + 9∗ [(max(P/2,Μ/512)]

+ 16∗ P + 0.0174∗ M

wherePis thenumberof hostprocessors.baseis 17.5
if P ≤ 6, 48.5if 7 ≤ P ≤ 14, and181.5if 15 ≤ P ≤ 30.
Thesecost figureswere taken from a Sun price list
dated20May 1997.Fromthecostandrun time of the
simulation we can define the cost-effectiveness to be

CE(P) = C(P)∗ time(P)

wherea lower valueof cost-effectivenessis better. To
determinethe cost-effectivenessof a parallelsimula-
tor it is usefulto definetherelative cost-effectiveness
of running the simulation on P processorsversus1
processor. This is given by

RCE(P) = CE(P) / CE(1)

wherevalueslessthanonemeanit is cheaperto run
on P processors than 1 processor.

Figure7 shows the relative cost-effectiveness
acrossthe benchmarks.In theseresultsit is assumed
that eachtarget uses64 Mbytes of memoryand the
speedupsare those achieved when the datasetsin
Table2 wererun.We chosetheseparametersbecause
they clearly demonstratethe tradeoff involved. It is
seenin Figure7 thatparallelsimulationis cost-effec-
tive for thesebenchmarks,simulator, andcostparam-
etersuntil 16 host CPUs. At this point all but one
benchmarkis no longercost-effective. The minimum
at 4 host processorsshows the point of lowest cost.
Thus,for theseparameters,thecheapestsimulationis
on 4 hostsfor all of thebenchmarks.At this point the
costof parallelsimulationis 48% to 59% of the cost

FIGURE 6. Simulator speedups on SMP for tomcatv
for varying number of targets.
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of the uniprocessorsimulation.This meansthat not
only is parallelsimulationfasterbut it is aroundhalf
the cost.

Figure8 shows the effect on cost-effectivenessof
varying the numberof targetsandmemoryper target
for thetomcatvapplication.Again we assumethatthe
speedupsmeasuredfrom the actualbenchmarksare
unchangedas the amountof memoryis varied. It is
seenthatasthenumberof targetsis increasedtherel-
ativecost-effectivenessis improved.This is consistent
with thepreviousresultthatspeedupsareimprovedas
numberof targetsincreases.It is alsoseenthatasthe
memory per target (and thus total memory) is
increased,the relative cost-effectivenessis improved.
Both of thesetrends,seenacrossthebenchmarks,are
consistentwith previous results[12,13]. For the larg-
est benchmarkconsideredin Figure8—256 targets
and64 Megabytesper target—therelative cost-effec-
tivenessdecreasesasthenumberof hostprocessorsis
increased.For this simulation,16 host processorsis
themostcost-effective with a costof 12%of theuni-
processorandit is anopenquestionwheretheoptimal
numberof hostprocessorslies. At the otherextreme
of 32 targetsand0.5 Megabytesper target the graph
looks similar to thoseseenin Figure7. Here 4 host
processorsis mostcost-effective andfor 16 hoststhe
cost-effectivenessis worsethantheuniprocessorcase.
Theseresultsclearly show that parallelsimulationis
cost-effective including sufficiently large simulations
for large numbers of host processors.

7  Conclusions

This paper examined four key operations that
underlieparallel,discrete-event,direct-executionsim-
ulation.Thesefour operationsare:calculationof tar-
get executiontime, simulationof featuresof interest,
communicationof target messages,andsynchroniza-
tion of host processors.

Weencapsulatedportableimplementationsof these
four operationsin two toolscalledElsie andSynchro-
nized Active Messages. Using thesetools, we easily
andsuccessfullyportedtheWisconsin Wind Tunnel II
(WWT II)—a parallel, discrete-event, direct-execu-
tion simulator—acrossa wide rangeof SPARC plat-
forms, including desktop workstations, a SUN
Enterpriseserver (SMP), a cluster of workstations
(COW), and a clusterof symmetricmultiprocessing
nodes(COW/SMP).The speedupsmaintainedacross
the SMP, COW, and COW/SMP demonstratethe
effectiveness of our techniques for portability.

Analysisof WWT II shows it hasgoodparallelper-
formanceand is cost-effective. Specifically, WWT II
obtainedspeedupsbetween8.6 and13.6 for 256 tar-
getson 16 SMP host processorson the benchmarks
studied. Furthermore, we showed that speedups
improveasthenumberof targetsperhostis increased.
In termsof cost-effectiveness,we saw large simula-
tionsusingall 16 SMPhostprocessorsminimizedthe
costto 12%of theuniprocessorcost.For smallersim-
ulationsusing4 SMP hostprocessorsminimizedthe
costandreducedit to 48%to 59%of theuniprocessor
cost.

In summary, WWT II demonstratesa technology
for parallelsimulationof target multiprocessorswith
up to hundredsof in-orderprocessorsexecutinguser-
level code. Other simulatorseschew parallelism in
favor of sequentialsimulationbut canevaluatericher
targets,suchasmultiprocessorswith out-of-orderpro-
cessorsexecutinguserandsystemcode.A futuresim-
ulation challenge is use WWT II-lik e parallel
simulationtechnologyfor acceleratingthesimulation
of these richer targets. Information on obtaining
WWT II is available at the URL http://
www.cs.wisc.edu/~wwt/wwt2/.
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