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Abstract

Analysis of future parallel computers requires
rapid simulation of target designs running realistic
workloads. These simulations have been accelerated
by two techniques. direct execution and the use of a
parallel host. Historically, these techniques have been
considered to lack portability. We identify four key
operations necessary to make these simulations porta-
ble. This allows us to run the Wisconsin Wind Tunnel
I (WWT I1) readily on a wide range of SPARC plat-
forms from a workstation cluster to a symmetric mul-
tiprocessor (SVIP).

WWT |l has good performance and scalability as
shown on a range of benchmarks. WWT 1l achieves
speedups between 8.6 and 13.6 on a 16 host processor
SMP. Finally, we show that parallel simulation with
WWT 11 is cost-effective.

Keywords : architecture, simulation, parallel,
portable, cost-effectiveness
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1 Introduction

Simulationis an importanttechniquefor studying

computerarchitecturesangingfrom microprocessors

to parallel computers.Simulation speedsdesign by
enabling architectsto evaluate computerswithout
building hardware prototypes.However, simulating
large problems—parallel machines with realistic
workloads—requiresvast amounts of computation
and memory Two techniquesdirect execution and
parallel simulation, makthis approach feasible.

In directexecution[1], a programfrom the system
under study (the target) runs on an existing system
(the host). For example,atamet’s floating-pointmul-

tiply executesasa floating-pointmultiply instruction
onthe host. The hostcalculateghe target’s execution
time andonly simulatesoperationsunavailableon the
host. Direct execution can run ordersof magnitude
fasterthanpuresoftware simulation(which interprets
every targetinstruction).This approacttanaccurately
calculate the target execution time for statically
scheduled processors with blocking caches [1].

Parallel simulation of a parallel computerfurther
speedsimulationby exploiting the parallelisminher-
entin thetargetparallelcomputerandthe large mem-
ory in a parallelhostto hold the working set of the
simulatorwithout paging.The adwentof low-costpar-
allel computers,such as symmetric multiprocessors
(SMPs) and clustersof workstations(COWSs), make
parallel simulation very attractve. In contrast,Rice
RSIM and Stanford SimOS use uniprocessor hosts.

Unfortunately parallel, discrete-gent, direct-ee-
cution simulatorsare comple piecesof softwarethat
canbedifficult to build andport. In part,thesesimula-
tors are not portablebecausehey rely on machine-
specificfeatures.They aretied to specificinstruction
sets by the need to modify tamget executablesor
assemblycodeto calculatea tamget’s executiontime
andsimulatemissingfeaturesSomesimulatorg2, 3]
also modify the operating systemto detect target
cachemisses.In addition, parallel simulatorsoften
use machine-specifisynchronizatiorand communi-
cation features to achie good parallel performance.

As the authorsandusersof two generation®f par-
allel direct-execution simulators, we are painfully
aware of theselow-level dependenciesin building
our tools, we have identifiedfour key operationghat
underlieparallel,discrete-gent, direct-executionsim-
ulation:

* calculation of taget execution time,
 simulation of features of interest,



e communication of tajet messages, and
* synchronization of host processors.

We shaw that thesefour operationscan be imple-
mentedn afashionthatminimizesthedependencef
a parallel simulatoron host-specifideatures.This is
achieved with two tools, called Elsie and Synchro-
nized Active Messages (SAM), that encapsulat¢hese
operationsin a portableway. Elsie, which currently
runson SAARC instructionsets,is aneditorthatmod-
ifies executableso calculatetamgetexecutiontime and
simulatea parallelcomputers memorysystem.SAM
is a messagindibrary that supportsparallel simula-
tion.

Using the available and portableversionsof Elsie
and SAM, we ported the Wisconsin Wind Tunnel 11
(WWT II)—the successotto the original Wisconsin
Wind Tunnel (WWT) [2]—to a range of platforms,
including desktop workstations,a SUN Enterprise
sener, anda clusterof SFARCstationsAll platforms
currently usethe sameSFARC instructionsetarchi-
tecture.

Our analysishas shavn sereral importantresults
including thatWWT I1I:

* achieves portability without sacrificing perfor-
mance,

* shavs good parallel efficienciesacrossa range of
host platforms, and

* is a cost-dEctive parallel simulator

In summary WWT Il demonstrates technology
for parallelsimulationof target multiprocessorsvith
up to hundredsof in-orderprocessorgxecutinguser
level code.Other simulators,howvever, have evolved
to simulate richer parallel tamgets: Rice RSIM [4]
(userlevel out-of-orderprocessors)StanfordSimOS
[5] (user/systemout-of-order processors)and Vir-
tutechSimICS (user/systenin-order processors)6].
These simulators run on uniprocessorhosts, and,
therefore,are painfully slow simulating large target
multiprocessorsA future simulationchallengeis use
WWT lI-lik e parallelsimulationtechnologyfor accel-
eratingthe simulationof multiprocessorsvith out-of-
order processorsecuting user and system code.

2 Operations

In this sectionwe discussalternatve implementa-
tionsof four key operationghatunderlieparallel,dis-
crete-@ent, direct-execution simulation. These
operationshelp isolate host-specificfeatures,which
makesit easyto port andtunethe performanceof a
parallel simulator The first two operations—calcula-
tion of target executiontime and simulation of fea-
turesof interest—relateo directexecution,while the

lasttwo—communicatiorof targetmessageandsyn-
chronizationof host processors—relat® consera-
tive-windaw, parallel, discretexent simulation.

2.1 Calculation of Target Execution Time

To evaluatethe performanceof a proposedarchi-
tecture asimulatormustcalculateelapsedime onthe
target machineaswell asmimic the target's function.
In simulatorsthat interpret every target instruction,
calculating the tamet executiontime is simple: the
simulator updatesa clock variable after simulating
eachinstruction.However, directexecutionsimulators
derive their speedfrom directly executingblocks of
taiget instructions without simulator intervention.
Invoking the simulator to updatethe clock variable
afterevery targetinstructionwould nullify this perfor-
mance adantage.

The costof updatingthe target clock variablecan
bereducedn two ways.First, insteadof invoking the
simulator the tamgetitself canmaintainandupdateits
own target clock variable. This impliesthatthe target
codemustbe augmentedvith extra codethatupdates
thetargetclock. We call this target clock instrumenta-
tion. Second,we can updatethe variable less fre-
quently by combiningthe updatesfor a sequencef
instructions.

Target clock instrumentationcan be done at four
levels: sourcecode [1], assemblycode [7], object
code,andexecutablg?]. Unfortunatelythefirst three
approachesequiresource,assemblyor objectcode,
which may be hard to obtain for vendorprovided
libraries or commercialoperatingsystemsand data-
bases.Executablemodification removes this restric-
tion becausetarget clock instrumentationis added
directly to the executable However, executablemodi-
fication introducestwo problems First, it is comple
to implementbecauséhe executableaditor musthan-
dle machine-specifidetails(e.g.,fix branchaddresses
after the introductionof target clock instrumentation
code).Second|ike assemblyor objectcodemaodifica-
tion, executable modification makes the simulator
dependent on a specific instruction set.

Fortunately researcherdave recently developed
executableediting tools that allow usersto traverse
the control-flov graph of a tamget executableand
introduceforeigncodein analmostmachine-indepen-
dentfashion.Thesetoolsrelieve thewritersof execut-
able editorsfrom worrying aboutlow-level machine-
specific details. WWT Il usesone suchtool, called
EEL [8], to build anexecutableaditor, calledElsie, to
perform the target clock instrumentationon target
executablesElsieis described irsection 3.



2.2 Simulation of Features of Interest

Researcherduild simulatorsto study proposed
parallel architecturesHence, simulatorsmust allow
researcherso simulatefeatureswhich may or may
notbe currentlyavailablein a parallelhost.For exam-
ple, the original WWT simulateda hardware, cache-
coherent,shared-memorynachineon the Thinking
Machines(TMC) CM-5, which is a message-passing
parallel machine.

In direct execution, simulating missing features
requiresthe targetto jump into the simulatoron spe-
cific tarmget instructions.For example,to simulatethe
tagetmemorysystemthetargetmusttransfercontrol
to the simulator on some tgat loads and stores.

Researcherbave usedtwo approacheso simulate
featuresmissingin the host. The first approachuses
hardware and software mechanismsvailable in the
host to transfer control. For example, WWT and
Tapeworm Il [3] marked hostmemoryblocksthatare
absenin thetargetcacheor TLB (TranslationLooka-
side Buffer) with bad ECC. Accessesto memory
blocks with bad ECC generatedrapsthat were vec-
toredto the simulatorvia the operatingsystem.This
alloved WWT andTapeworm Il to simulatecacheand
TLB missesrespectiely. Unfortunately this method
is not easily portable becauseit requiresoperating
systemmodificationto catchthe ECCtraps.Addition-
ally, most dynamically-scheduledprocessorsare
unlikely to supportpreciseexceptionson ECC error.
Without preciseexceptions,a simulatorwill not be
able to correctly simulate @&t cache misses.

The secondapproachis to replacetarget instruc-
tions with code segmentsthat transfercontrol to the
simulator This approachs moregenerathanthepre-
vious approachbut canincur a performancepenalty
for its generality For example, to simulate tarmget
cachemissesall loadsandstoresmustcheckthetar-
get cachestate,unlike the WWT approachin which
the simulator checled the target cacheblock state
only on taget cache misses.

Replacing instructions with nev code seggments
introducesproblemssimilar to thosefacedby tamget
clock instrumentationHence,our solutionis similar.
We augmentElsie to replacetamet instructionsto
simulatefeaturesmissingin the host.In our case this
feature is the tget memory system.

2.3 Communication of Target M essages

Communicationis inherentin parallel simulation
becausetarget nodes exchangemessagesvith one
another However, the mostefficient methodof com-
municationdiffers radically acrossparallel comput-
ers. Typically, massiely parallel processor{MPPSs)
usea native messag@assindibrary, COWs usesock-
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ets, and SMPs use sharedmemory Consequently
communicationcodewritten for one machinecannot
beeasilyportedto anothemachine To overcomethis

problem, we have developed a simple messaging
library called Synchronized Active Messages (SAM),

which abstractsaway the communicationprimitives
from the mechanismsnd techniquesusedin imple-

mentation.SAM, which also handlesprocessorsyn-

chronization, is described in Sectién

2.4 Synchronization of Host Processor s

Parallel, discrete-gent simulation that uses the
conserative time bucket synchronizatiormethod[9]
must rapidly synchronizehost processors.In this
method,target executionis broken up into lock-step
intervals called quanta as shavn in Figurel. Tamget
messagesentduringonequantumcanonly affecttar-
get statein subsequenguanta.This is accomplished
by setting the quantumlength basedupon the time
necessaryor a messagdo be deliveredin the target
(this is a lower bound so it is conserative). Since
messagesire guaranteedo be delivered before the
start of the next quantum,the simulator makes sure
that the receving tamget is aware of the message
beforeit canhave ary effect on the outcomeof the
target program.

Conserative-window, parallel,discrete-gent sim-
ulation imposesthree synchronizationrequirements.
First, hostprocessorsnustbe ableto detectwhentar-
get executionreacheghe endof a quantum.Second,
when a guantumexpires, host processorsnust syn-
chronizeamongthemselesusinga barrierandcalcu-
late the duration of the next quantuminterval. The
durationof the next quantumintenal is often calcu-



latedasthe sumof the minimumtargetexecutiontime
acrossall host processorg(corventionally called a
reduction)andafixedquantumength(e.g.,100target
processocycles). The former representshe fact that
the simulatoroften knows that all targetswill not be
interactingfor a period of time so it can extend the
next quantumThelatterrepresenttheminimumtime
for messagdransmissiononce a messagehas been
sentandis the minimumtime for two targetsto inter-
act. Third, hostprocessorsnustensurethat all mes-
sagessentin a quantumare receved and processed
before the beginning of the next quantum.This is
shavn in Figurel by the fact that messagesentare
receved at the end of the synchronizationA global
reductionof the differencebetweenthe number of
messagesentandrecevedwill bezerooncedelivery
is complete.This allows a hostprocessoto complete
receptionof all target messagebeforebeginning the
next quantum.Thefollowing threeparagraphsliscuss
each of these three synchronization requirements.

Therearetwo waysto detectthe endof a quantum.
First, the simulatorcancheckfor quantumexpiration
on eachentryinto the simulator This approactworks
well if thetargetfrequentlyreturnscontrolto the sim-
ulator BecauseWWT |l simulatesevery load and
store,we usethis approachSecondjf thesimulatoris
invoked less frequently global synchronizationwill
be deferredand consequentlythertarget nodesmay
bedelayedIn this casewe canmodify thetametexe-
cutableto checkthe target executiontime more fre-
guently (e.g,on target clock updateslandinvoke the
simulatorif a quantumhas expired. This methodis
more rolust, lut introduces additionaverhead.

Different parallel computers provide different
degreesof hardware supportfor barriersynchroniza-
tion and reductions.For example,the TMC CM-5
supportsboth hardware barriersand hardware reduc-
tions,while the Cray T3E supportonly hardwarebar-
riers. In contrastthe SUN EnterpriseE6000and our
COW connectedwith an off-the-shelfnetwork have
no hardwaresupportfor either;hencethesemachines
mustimplementboth in software.Lack of hardware
supportfor barriersand reductionscan degradethe
performanceof conserative-windav, parallel, dis-
crete-@entsimulation,particularlywhenthe quantum
intervals are short.

Most parallel computersdo not provide hardware
supportto determineif all messagesjectedinto a
hostnetwork have beendrained(the TMC CM-5 is a
notable exception). However, there are a variety of
ways of doing this in software. For example,we can
collect acknavledgmentsfor every messagenjected
into the network. Alternatively, we canconfirm mes-
sagedelivery at the end of the quantum,combining
this operationwith the barrier synchronization.The
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SAM packagedescribedn Sectiond, implementghe
necessary functionality while allong for portability

3 Else

Elsie modifies target executablesthat run on
VWWI II (Figure?2) to achieve the calculationof target
executiontime andsimulatefeaturesof interest.Like
other executableeditorsfor direct-executionsimula-
tors, Elsie addsinstrumentatiorto calculatethe tar-
get's execution time and to simulate the target’s
memorysystem.Surprisingly Elsie canbe written in
analmostmachine-independemashionfor threerea-
sons. First, Elsie usesthe EEL executableediting
library [8], which hides most details of modifying
executablesEEL providesoperationghat Elsie uses
to traverse a target executables control-flov graph
andto add code snippets. Snippetscontainmachine-
specificinstructions,which Elsie addsto edgesin a
control-flov graphto trackthetarget’s executiontime.
Elsie also replacestarget memory instructions(e.g.,
loadsandstores)with snippetghatjump into thesim-
ulator, which simulatesthe target memory system.
Second,there are few machine-dependergnippets
andthey are small. The eight mandatorysnippetsall
containfour or fewer instructionseach.Consequently
only smallportionsof machine-specificodemustbe
rewritten to port Elsie to a differentinstruction set.
The small number of machine-specifidnstructions
neededmake porting Elsie even easier The current
versionof Elsie only runson the SFARC V8 instruc-
tion set. Modification for other instruction sets
involves describingthe propertiesof the new proces-
sorandusingaversionof EEL aimedatthis machine.
For example,the detailedtimingsfor the new instruc-
tion set are needed.



The introductionof instrumentationcodeto jump
into the simulatorto simulateevery memoryinstruc-
tion increasesM\T II's overheadcomparedo WWT
or TapewormIl. WWT and Tapeworm Il have low
overhead becausethey directly execute memory
instructions that hit in the target cache (see
Section2.2). WWT |l reducesthis overheadby pro-
viding a fastpathfor loadsand storesthat hit in the
target cache[10]. Normally, on a load or store, the
simulatortranslateghe virtual addresgo the physical
addressusingthe target TLB, indexesinto the cache,
findstheappropriateeacheblock throughatag match,
checksthe stateof the cacheblock, and,on a cache
hit, loadsor storesa valuefrom or to the cacheblock.
Insteadjn thefastpath,WWT Il maintainspointersto
all valid targetcacheblocksin eachtarget TLB entry,
Thus, if a load or store hits in the tamet cache,
VWWT Il candirectly find the block on a target TLB
access.

4 Synchronized Active M essages (SAM)

Synchronized Active Messages (SAM) provides an
architecture-neutrgdrogrammingmodelthatunifiesa
parallel hosts communicationand synchronization
operationsfor a quantum-basedparallel, discrete-
eventsimulation.This achiezesthe communicatiorof
target messageand synchronizatiorof hostproces-
sors in the simulator

SAM, by design,is very simple so that it can be
implementedeasily acrossa wide range of parallel
machines. SAM provides three main primitives:
SAM_Send Msg, SAM_Bcast Msg, and SAM_Sync.
Host processors communicate using
SAM_Send_Msg,calculatethe next quantumdura-
tion using SAM_Bcast_Msg(that is, via broadcast
messages)and synchronizeusing SAM_Sync. Like
Active Messagesa SAM messageontainsa virtual
addres®f ahandlerthatwill becalledatthereceving
host processar However, unlike actve messages,
SAM does not guaranteemessagereception until
SAM_Sync completes.When SAM_Sync returns,
SAM guaranteethatall messagebhave beenreceved
andprocessedsothatmessagekave beenscheduled
for the next quantum)by calling the corresponding
handlers By supplyingthe appropriatenandler SAM
canbe utilized to calculatethe next quantumduration
via messagebroadcastdor simplicity, and thereby
avoids a separateeductioninterface,suchasthe one
in the TMC CM-5.

Currently SAM runson threeplatforms:anSMP, a
Cluster of Workstations(COW), and a Cluster of
SMPs (COW/SMP). Each implementationis opti-
mized to the platform’s underlying communication
substrate.

The SAM SMP implementationis straightforvard
becauseour SMP (SUN E6000) supportsefficient
low-lateny communicationover the memory bus.
SAM allocatesa shared-memorgegmentandfor each
procesdn the parallelprogramSAM setsup two sets
of mailboxes in sharedmemory—destinatiormail-
boxes and sourcemailboxes. A process’destination
mailboxis usedby anothemprocesgo senda point-to-
pointmessageo this processEachmessagés explic-
itly copiedinto the destinationmailbox becauseéwo
process’only sharethe sggmentcontainingthe mail-
boxesandnot the entireaddresspace Mutual exclu-
sion of destinationmailbox is ensuredthrough an
atomic fetch-and-addoperation.A processusesits
own sourcemailbox to enqueuebroadcasmessages.
We do not enqueuea broadcastnessagén the desti-
nation mailboxes becausdhat would createmultiple
copiesof the samemessageFinally, whena process
callsSAM_Sync,SAM drainsa process'own destina-
tion mailboxes and checksall other process’source
mailboxes for broadcast messages.Subsequently
SAM calls the handlerscorrespondingo eachmes-
sage and returns control to the simulator

The COW implementationof SAM is more com-
plex. Analysisof the COW's communicatiorncharac-
teristics reveals that messageoverheadis high (26
psecsunderSunOS5.5 with Myricom switches- see
Tablel) so minimizing the number of messagess
very important. WWT |l sendsfew messagestwo or
less,perprocessorihataresmall (80 or fewer bytes)
in a quantum Multiple messagesccuron a hostdue
to having multiple tamgetson a hostand becausepro-
tocol processingn a singletarget caninvolve multi-
ple messages.

Taking these characteristicsinto account, we
implementSAM_Syncthrougha software butterfly-
stylemessagexchangepattern.Thenumberof stages
is logarithmic in the numberof processorsthereby
reducingthe numberof messagesn the critical path.
We further reducethe numberof messageby piggy-
backing thetargetmessagetom thecurrentquantum
and the dataneededto determinethe next quantum
length on the butterfly synchronizationAs WWT ||
sendsvery few shortmessages eachquantum,the
total costof the butterfly is not substantiallyincreased
over the synchronizatiorcost,eventhoughour piggy-
backingschemesendsall datato all hostprocessors
(Figure3).

The COW/SMP implementation combines the
COW andSMPimplementationsThe hostprocessors
within an SMP first exchangetheir messagesThen
one pre-designatetiostprocessoin eachSMP node
exchangesmessagesvith other host processordol-
lowing the samepiggybacled butterfly as shavn in
Figure3. Finally, hostprocessorsvithin an SMP syn-



FIGURE 3. SAM implementation for a COW. PO, P1,
P2, and P3 denote host processors. Dark boxes
representdata - here only PO sendsa messageSolid
lines representthe flow of synchronization message:
with data (piggybacking). Dotted lines representflow
of synchronization messages without data.

Inter-Host
Communication
Parallel Host Memory | Network N| P
Machine Proces-| pys
sor
SMP 250MHz | 83.5 N/A 1|16
(16-processorUltraS- MHz,
SUN E6000) [PARC 256-bit
wide
split-
transac-
tion
cow 66 MHz N/A  |First genert16| 16
(uniprocessorHyper- ation \er-
SFARC- SFARC sion 2
sener20) Myricom
Myrinet
switches
COW/SMP |66 MHz | 50 MHz, |First genert 8 | 16
(dual-proces-{Hyper- [64-bits | ation \er-
sor SRRC- |SFARC |wide sion 2
sener20) sequen- | Myricom
tial Myrinet
switches

TABLE 1. The hostsystemsused.N is number of nodes
and P is the total number of host pocessors.

chronizelocally to ensurethatthe pre-designategro-
cessor has drained all messages from theanktw

5 Methodology

This section describesour experimental frame-
work, WWT |1, andthe target architectureand bench-
markswe usefor this study Tablel shaws our three
different parallel machine configurations. Figure4
shows a graphicalrepresentationf the threetypesof
machinesused. The COW/SMP is the sameas the
COW, except that each node has two processors,
insteadof one.We usel6 COW nodesand8 dual-pro-
cessorCOW/SMP nodesto equalizethe number of

@ cow

COW/SMP

o) (o) [o
59) [69)

|

\ \ \ \
O 0 O o} SuP
FIGURE 4. Graphical representationof the differ ent

machine configurations for 4 processors. Green
represents a bis and blue epresents a netwrk.

Benchmark | Source |Description InpuéeDtata
FFT SPLASH-2 |comple 216 points
Fast Fou-
rier Trans-
form
LU SPLASH-2 |LU factor- |order 512
ization matrix, order
16 blocks
radix SPLASH-2 |Integer sort 256K keys,
1K radix
tomcatv WWT paral-|Mesh Gen-|order 512
lelizationof |erationwith |matrices,
SPEC Thomp- 4 iterations
son’s soher
watersp SPLASH-2 |water mole-{4K molecules,
cule simula;3 steps
tion

TABLE 2. Targetbenchmarksand the corresponding
input data sets we useddr our experiments.

hostprocessorén the COW and COW/SMP configu-
rations.

For this study we have chosenan S-COMA [11]
shared-memorymachine as our target architecture.
Eachtarget node has a single processorand a 256
kilobyte processorcache. Hardware coherenceis
implementedthrough a full-map directory protocol.
Eachhostprocessom WWT Il simulatesoneor more
targetnodes For example for a256-noddarget,an8-
processoMMWT |1 configurationsimulates32-taget
nodes per host processor

Table2 shaws the five tamget benchmarksand cor-
responding input data sets we used for our study

In all our measurementae reportthetime it took
WWT |l to executeonly the parallel portion of each



Bench- Number Speedup
mark of Host Ccow/
Proces- SMP Cow SMP
sors
1 1 1 1
2 1.8 1.7 1.6
LU 4 3.1 2.6 2.5
8 4.7 3.5 3.4
16 5.4 3.6 3.5
1 1 1 1
2 1.8 1.8 1.6
tomcatv 4 3.3 2.9 2.7
8 5.1 4.0 3.8
16 5.8 4.3 4.1

TABLE 3. Paralld speedups across platforms for
WWT Il on a 32 node target system.

tagetbenchmarkWe assumeSFARC V8 instruction
setfor our target benchmarksso all of our host pro-
cessorsare SFARC V8 compatible. Additionally,
sinceWWT |l takesthe samepaththroughthe tamget
executable, all our target executable runs report
exactly the sametarget executioncycles, irrespectve
of which of our threeplatformsran the experiments.
WWT Il takesthe samepath throughthe executable
becausewne imposea strict ordering of events. This
control over the experimentalframenork is essential
to effectively characterize WWT II's performance
across our three platforms.

6 Performance Analysis

We now presentresults obtained from running
WWT |1. First we shaw its parallel performanceand
then we discuss its costfeftiveness.

6.1 Parallel Performance

This sectiondescribeghe performanceof WAWT 1
by looking at the hosts parallel speeduguniproces-
sortime / paralleltime). This metric shows the effec-
tivenesf utilizing the parallelsimulationcapability
of WWT II.

We first look, in Table3, at how the performance
comparesacrossour three parallel hosts. We only
showv selectedbenchmarksand a limited number of
tamgets becausethey exemplify the results and are
small enoughto avoid virtual-memorythrashingon a
single COW node. The data shavs that WWT I
achievesreasonablspeedupsgor this modestnumber
of taigetsacrossall threeplatforms.As will be shovn
below, the performanceincreasesas larger simula-
tions are performed.To give an idea of the absolute
run times of WWT I, the 16 hostprocessorun time
for tomcatvis 1.8 and 9.4 minutesfor the SMP and
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FIGURE 5. Simulator speedups on SMP across
benchmarksfor 256 targets.

COW, respectrely. Theseshav that parallel execu-
tion of simulationscanperformin time frameswhich
make their usage practical for mary applications.
Whencomparingbetweerplatforms,thespeedupsare
betteron the SMP asthe numberof hostprocessors
increasesThis indicatesthe fastercommunicatioron
the SMP yields better parallel performance.

We now turn to SMP results becausethe large
memory available for ary number of processors
allows for running large memory targets acrossthe
full rangeof hostprocessorswWithout this ability we
could not run the large paralleljobs on a single pro-
cessoto determinespeedupdgrigure5 shovsthesim-
ulator achieres good speedupsfor up to 16 hosts
acrossall benchmarkswith 256 targets. At 16 hosts
the speedupsangefrom 8.6 to 13.6 for an efficiency
of 54%to 85%.Also notethatthe speedupgcurvesare
monotonicallyincreasingso that greaterparallelism
reducesthe time for a given simulation. Figure6
shaws the effect of varying the numberof tamgets.As
can been seen, increasing the number of tamets
increaseghe simulatorspeedupsThis effect is seen
on all the benchmarksand tomcatv was shavn
becauset hasthe largesteffect. This trendis helpful
sincelargersimulationswhich requiregreatemunipro-
cessorrun times, will achieve better parallel perfor-
manceAn importantfactorin theincreasecfficiency
is thereductionin idle time dueto improvedloadbal-
ancingasthe numberof targetsper hostis increased.
Oncea hosthasfinishedwork for all of its tamgetsin
the currentquantum,this hostidles until the slovest
host completesand enters the synchronizationas
shavn in Figurel. As the numberof targetsper host
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FIGURE 6. Simulator speedupson SMP for tomcatv
for varying number of targets.

increasesthe deviation from the averagedecreaseso
the idle time is decreased [12].

6.2 Cost-Effectiveness

The previous section shovs that parallelism
improves simulatorrun timesfor a given simulation.
However, this doesnot demonstratehat the use of
parallelismis cost-efective, i.e., it is cheapeto runa
parallelsimulationon N hostnodesthanN sequential
simulations. To evaluate this questionwe needto
specifythe costof the varioushostsystemaused.We
definethe costto bethe purchaserice of the smallest
systemthat could run the simulation in question.
Thus, a simulation run on 4 hosts that needs 1
Gigabyteof memorywould bethe costof the smallest
box thathas4 processorand1 Gigabyteof memory
A general discussionof cost-efectivenesscan be
found in [13].

An importantcomponenin the costof a computer
is the memory As partof our analysisof WWT Il we
determinedhe memoryusagg(in Mbytes)of the sim-
ulator which is gien by

Mgim = 1.260(# hosts) + 1.97)(# tagets)
Mtarget = taiget memory (# tagets)
M = Mgjm *+ Miaget

whereMyg;, is the memorytaken up by the simulator
on all hostswithout the target program,Mg et is the

memory for all targets,and M is the total memory
usedin all hosts.Thecostof the SMP systemin thou-
sands of US dollars is\gn by

C = base + 9[(max[@P/2ZJM/5120)]
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FIGURE 7. Reative cost-effectiveness across
benchmarks for 64 targets and 64 Megabytes/
tar get

+160P + 0.01741M

whereP is thenumberof hostprocessorsbaseis 17.5
if P<6,48.5if 7<P<14,and181.5if 15< P < 30.
Thesecost figureswere taken from a Sun price list
dated20 May 1997.Fromthecostandruntime of the
simulation we can define the costeetiveness to be
CE(P) = C(PJtime(P)
wherea lower value of cost-efectivenesss better To
determinethe cost-efectivenessf a parallel simula-
tor it is usefulto definethe relative cost-efectiveness
of running the simulationon P processorsrersusl
processarThis is gven by
RCE(P) = CE(P) / CE(1)

wherevalueslessthan one meanit is cheapetto run
on P processors than 1 processor

Figure7 shavs the relatve cost-efectiveness
acrossthe benchmarkslin theseresultsit is assumed
that eachtarget uses64 Mbytes of memoryandthe
speedupsare those achieved when the datasetsin
Table2 wererun. We chosetheseparameterdecause
they clearly demonstratehe tradeof involved. It is
seenin Figure7 thatparallelsimulationis cost-efec-
tive for thesebenchmarkssimulator andcostparam-
etersuntil 16 host CPUs. At this point all but one
benchmarkis no longercost-efective. The minimum
at 4 host processorshaws the point of lowest cost.
Thus,for theseparametersghe cheapessimulationis
on 4 hostsfor all of the benchmarksAt this pointthe
costof parallelsimulationis 48% to 59% of the cost
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of the uniprocessosimulation. This meansthat not
only is parallelsimulationfasterbut it is aroundhalf
the cost.

Figure8 shaws the effect on cost-efectivenessof
varying the numberof targetsand memoryper target
for thetomcatvapplication. Again we assumehatthe
speedupsneasuredrom the actual benchmarksare
unchangeds the amountof memoryis varied. It is
seenthatasthe numberof targetsis increasedherel-
ative cost-efectivenesss improved. This is consistent
with the previousresultthatspeedupareimprovedas
numberof targetsincreasesilt is alsoseenthatasthe
memory per target (and thus total memory) is
increasedthe relative cost-efectivenesss improved.
Both of thesetrends,seenacrosshe benchmarksare
consistenwith previousresults[12,13]. For the larg-
est benchmarkconsideredin Figure8—256 tamgets
and 64 Megabytesper taget—therelative cost-efec-
tivenesgdecreaseasthe numberof hostprocessorss
increasedFor this simulation, 16 host processorss
the mostcost-efective with a costof 12% of the uni-
processoandit is anopenquestiorwheretheoptimal
numberof hostprocessordies. At the otherextreme
of 32 targetsand 0.5 Megabytesper tarmget the graph
looks similar to thoseseenin Figure7. Here 4 host
processorss mostcost-efective andfor 16 hoststhe
cost-efectivenesss worsethanthe uniprocessocase.
Theseresultsclearly shav that parallel simulationis
cost-efective including sufiiciently large simulations
for large numbers of host processors.

7 Conclusions

This paper examined four key operationsthat
underlieparallel,discrete-gent, direct-executionsim-
ulation. Thesefour operationsare: calculationof tar-
getexecutiontime, simulationof featuresof interest,
communicationof target messagesand synchroniza-
tion of host processors.

We encapsulatedortableimplementation®f these
four operationsn two tools calledElsie and Synchro-
nized Active Messages. Using thesetools, we easily
andsuccessfullyportedthe Wisconsin Wind Tunnel |1
(WWT Il)—a parallel, discrete-gent, direct-execu-
tion simulator—across wide rangeof SFARC plat-
forms, including desktop workstations, a SUN
Enterprisesener (SMP), a cluster of workstations
(COW), and a clusterof symmetricmultiprocessing
nodes(COW/SMP). The speedupsnaintainedacross
the SMP COW, and COW/SMP demonstratethe
effectiveness of our techniques for portability

Analysisof WWT |l shawvs it hasgoodparallelper-
formanceand is cost-efective. Specifically WWT I
obtainedspeedupdetween8.6 and 13.6 for 256 tar-
getson 16 SMP host processor®n the benchmarks
studied. Furthermore, we shaved that speedups
improve asthe numberof targetsperhostis increased.
In termsof cost-efectivenesswe saw large simula-
tionsusingall 16 SMP hostprocessorsninimizedthe
costto 12%of the uniprocessocost.For smallersim-
ulationsusing4 SMP hostprocessorsninimizedthe
costandreducedt to 48%to 59% of theuniprocessor
cost.

In summary WWT Il demonstrates technology
for parallel simulationof target multiprocessorsvith
up to hundredsof in-orderprocessorgxecutinguser
level code. Other simulatorsescha parallelismin
favor of sequentiakimulationbut canevaluatericher
taigets,suchasmultiprocessorsvith out-of-orderpro-
cessorgxecutinguserandsystemcode.A futuresim-
ulation challenge is use WWT ll-like parallel
simulationtechnologyfor acceleratinghe simulation
of these richer tamets. Information on obtaining
WWT Il is available at the URL http://
WWW.CS.wisc.edu/~wwt/wwt2/.
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