The European Laboratory for Gravitation and Atom-interferometric Research (ELGAR) Project

D. O. Sabulsky*, for the ELGAR Project

The partnership so far...

6 countries, 18 institutes.

Country	Institution
France	Institut d'Optique (IOGS/LP2N)
Germany	Leibniz Universitaet Hannover (LUH)
UK	University of Birmingham (UoB)
Spain	Consejo Superior de Investigaciones Científicas (CSIC)
Italy	Istituto Nazionale di Fisica Nucleare (INFN)
Greece	Foundation for Research and Technology Hellas (FORTH)

Outline

- The case for a design study
- The objective
- The history of ELGAR
- Moving forward
- Conclusion

The science case

The case for a design study

- How do we move from predictions and possibilities to working instruments?
- An incredible amount of work must be done to determine our methods, location, goals, funding, and community

The case for a design study

Challenge for atom optics

- « LMT » techniques
- High atom flux 10¹²/s

Technical noise reduction:

- Frequency noise
- Residual seismic noise
- Magnetic noise
- Wavefront, scattering

 Requires Advanced GGN rejection scheme

Phys. Rev. D 93, 021101(R) (2016)

A rough schematic

- A vertical arm, on site or at a distributed site is on our mind.
- Example of what we are thinking;
 - atomic flux for 1 μ rad sensitivity (think flux of 10^{12} atoms/s)
 - LMT ~ 1000 ħk
 - target band 100 mHz 1 Hz
 - T between 1 s and 10 s
 - ~100 sensors between the two arms
 - Total length of ~30 km with some 100s m between heads.

Target strain sensitivity: ~ 10⁻²²

Objective of the design study

- A major focus of the study is to coordinate various national initiatives that have been successfully funded to define a future European research infrastructure for gravitational wave observation with matter-wave interferometry.
- Define a roadmap for the construction and integration of pan-European effort into a future facility or distributed facilities.
- Gather all interested actors of the European and International community to contribute and/or act as users of the facility.
- Target applications/communities: geophysics, gravitational wave detection, fundamental physics.

What is a research infrastructure?

- Research Infrastructures: ... the term 'research infrastructures' refers to facilities, resources and related services that are used by the scientific community to conduct top-level research in their respective fields.
- ESFRI (European Strategy Forum on Research Infrastructures) proposes a similar definition: They are facilities, resources or services of a unique nature that have been identified by pan-European research communities to conduct top-level activities in all fields. Generally the Research Infrastructures are divided into the following groups:
 - single-sited
 - distributed
 - virtual

Outcome of the design study

- Definition of the design and architecture for the future infrastructure; leads to drafting of concepts, engineering plans, prototypes.
- Identification of the site and/or structure of the infrastructure; plans to integrate into existing facilities, identification of new facilities altogether.
- Definition and implementation of a cost model; estimated budget for construction and operation...
- **Definition of the coordination structure**; design workable legal and governing strategies and structures.

Framework details

- Duration; 36 months
- Budget; 3.5 X 10⁶ € (mostly for design/theory team)- Spread over partners

We will be answering H2020-INFRADEV-1-2019: Design Studies, due in November 2019.

We have 18 partners from 6 countries (France, Germany, Spain, Italy, UK, Greece).

The history of ELGAR

 In 2010 – MIGA design study was evaluated very positively by H2020, but not funded...oddly enough, MIGA was ranked #4 – four projects were supposed to be funded, but budget shortfalls allowed only 3 to be funded.

(H2020-INFRADEV-2014-15: Conceptual and technical design of new research infrastructure)

After, national initiatives received strong support at the ~ 10⁶€ level. Examples include:

MIGA (France)

MAGGIA (Italy)

HiTech (Germany)

The point – <u>As early as 2010</u>, atom interferometry was positively identified as a possible candidate technique for gravitational wave detection by H2020.

White paper preparation

- End of summer to early fall will see the completion of a white paper detailing the ELGAR proposal – this is where the design study begins.
- It will focus on the state-of-the-art and show that demonstrated techniques and present knowledge can move matter-wave interferometry towards gravitational wave detection.

Conclusions

- Various national initiatives strengthen the proposal, showing a large community.
- Look out for our white paper this fall!
- The ELGAR design study will be submitted to this year's H2020 call.