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Abstract
Background The spread of mosquito-transmitted diseases such as dengue is a major public health issue worldwide. 
The Aedes aegypti mosquito, a primary vector for dengue, thrives in urban environments and breeds mainly in 
artificial or natural water containers. While the relationship between urban landscapes and potential breeding sites 
remains poorly understood, such a knowledge could help mitigate the risks associated with these diseases. This study 
aimed to analyze the relationships between urban landscape characteristics and potential breeding site abundance 
and type in cities of French Guiana (South America), and to evaluate the potential of such variables to be used in 
predictive models.

Methods We use Multifactorial Analysis to explore the relationship between urban landscape characteristics derived 
from very high resolution satellite imagery, and potential breeding sites recorded from in-situ surveys. We then 
applied Random Forest models with different sets of urban variables to predict the number of potential breeding sites 
where entomological data are not available.

Results Landscape analyses applied to satellite images showed that urban types can be clearly identified using 
texture indices. The Multiple Factor Analysis helped identify variables related to the distribution of potential breeding 
sites, such as buildings class area, landscape shape index, building number, and the first component of texture 
indices. Models predicting the number of potential breeding sites using the entire dataset provided an R² of 0.90, 
possibly influenced by overfitting, but allowing the prediction over all the study sites. Predictions of potential 
breeding sites varied highly depending on their type, with better results on breeding sites types commonly found 
in urban landscapes, such as containers of less than 200 L, large volumes and barrels. The study also outlined the 
limitation offered by the entomological data, whose sampling was not specifically designed for this study. Model 
outputs could be used as input to a mosquito dynamics model when no accurate field data are available.
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Introduction
According to the World Health Organization, mosquito-
transmitted diseases, such as dengue, chikungunya, and 
Zika, have intensified during the past decades and are 
responsible for over 700,000 deaths each year. One of 
its main vectors, Aedes aegypti, is strongly adaptable to 
urban environments and thrives in urban settlements [1], 
favoring human dwellings and feeding almost exclusively 
on human blood [2]. Adult females get infected by feed-
ing on the blood from an infected human host and can in 
turn transmit the disease to another host after pathogen 
proliferation in the vector (extrinsic incubation period) 
[3]. After a blood meal, females lay eggs in containers of 
stagnant water and larvae develop in the water before 
becoming adult mosquitoes. Ae. aegypti breeds mainly in 
small artificial or natural water containers, such as water 
storage containers, used tires, plastic containers, clogged 
gutters, and ornamental plants [4]. The configuration of 
the urban landscape is known to impact the availabil-
ity and distribution of such containers, and therefore of 
potential Ae. aegypti breeding sites [5–7].

If the risk of introducing Ae. albopictus remains 
high in French Guiana, Ae. aegypti is currently the sole 
arboviruses vector for dengue, chikungunya, and zika 
viruses [8]. Ae. aegypti is present in nearly all inhabited 
regions, including smaller human settlements, and even 
in some wild areas [8]. The abundance of adult mosqui-
toes is strongly associated with building densities and 
is therefore higher in densely populated urban areas, in 
particular but not exclusively in the main cities, such 
as Saint-Laurent du Maroni, Kourou, Cayenne, Remire 
Montjoly, and Matoury [9]. In French Guiana, vector 
control mainly relies on indoor and outdoor insecticide 
spraying where human cases of any Aedes-borne disease 
have been identified, to control adult mosquitoes, and 
on routine mechanical or chemical elimination of larval 
breeding sites in urban areas (see paragraph 2.2 Entomo-
logical Data and [10]). Since the 1940s, the use of various 
insecticides for vector control in French Guiana has led 
to the development of resistance in Ae. aegypti popula-
tions, resulting in reduced efficacy in the territory [10, 
11]. Vector control strategies are therefore exploring 
alternative methods that could target adult mosquitoes, 
acknowledging the need for more precise larval con-
trol in time and space [11]. Several epidemics linked to 
arboviruses have occurred in recent decades (i.e., 2006, 
2009–2010, 2013, and 2020–2021). Since April 2023, 

French Guiana has been experiencing new dengue fever 
epidemics, mainly due to serotypes DEN-2 and DEN-3 
[12]. Unlike other Latin American countries (Brazil in 
particular), there are not many studies on dengue fever or 
its associated vector in French Guiana [13].

Reducing the risks associated with Aedes-borne dis-
eases can be achieved by a better understanding of the 
influence of urban environment factors on the distribu-
tion of Ae. aegypti breeding sites. If such a knowledge 
can be achieved by in-situ entomological data collec-
tion, especially data on potential breeding sites, such a 
task can be very time-consuming and challenging, given 
the complexities of obtaining exhaustive data in complex 
urban environments and is not done in many places.

Remote sensing proved its ability to help characterize 
urban environmental and climatic variables associated 
with the mosquito life cycle, including breeding sites [14, 
15]. Such an approach can hence provide an effective 
method to characterize urban landscapes, offering cost-
effective and reproducible approaches that can be used at 
different spatial and temporal resolutions [14, 16]. A wide 
range of information contributing to the urban land-
scape characterization can be derived from remote sens-
ing data, such as: land use or land cover [17, 18] and the 
landscape metrics that can be calculated from it [19, 20], 
spectral, thermal and texture indices [21–24], and eleva-
tion models [25].

Most studies using remote sensing data for modeling 
vector populations used entomological data associated 
with presence and/or abundance of adult mosquitoes 
(BG-Sentinel trap) or larvae (Ovitraps) [26–28]. Another 
approach consists of using remote sensing data to predict 
the distribution of potential mosquito breeding sites (i.e., 
recipients with larvae, with water but without larvae, or 
without water). Studies employing such approaches are 
rare, primarily due to the time and resources required for 
identifying and counting domestic and peridomestic con-
tainers by vector control efforts [29–33].

In these studies, input data and variables are usually 
satellite-derived land surface temperature, land use or 
land cover (LULC) classifications with few broad classes, 
in addition to radiometric indices like the normalized dif-
ference vegetation index (NDVI). Those are commonly 
used as predictors in models predicting the presence 
of Aedes breeding sites. However, urban features at fine 
spatial resolution have rarely been analyzed to inform 
those models. Arduino et al. [33] studied the impact of 

Conclusion This study offers a first use of routinely collected data on potential breeding sites in a research study. It 
highlights the potential benefits of including satellite-based characterizations of the urban environment to improve 
vector control strategies.
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micro-environments on positive breeding sites (posi-
tive to larvae) using very high resolution Ikonos satellite 
images, without considering the urban configuration in 
detail. Different approaches used Haralick texture indi-
ces [28] and landscape metrics (Shannon diversity index 
[34]) for urban space zoning, but not as direct predictors 
of the number and distribution of breeding sites. As far 
as we know, urban landscape characteristics at a fine spa-
tial scale have rarely been considered as input variables 
in mosquito-borne disease models [35], especially when 
modeling potential breeding sites of Aedes mosquitoes.

Various methodological approaches have been used 
for modeling the distribution of Aedes mosquitoes and 
their breeding sites, such as linear regression [29], spe-
cies distribution models [30] and more recently Boosted 
Regression Tree [31]. Machine learning models, such as 
Random Forest (RF), have already shown good results 
to study the relationship between ovitraps or adult mos-
quitoes data and environmental factors [26, 36–38]. 
However, RF models has never been applied to routinely 
acquired potential breeding sites data to investigate their 
complex relationships with urban landscapes.

Hence, using descriptive landscape variables such 
as texture, landscape metrics, buildings and vegeta-
tion heights, this paper proposes an original approach 
that aims to enhance the identification of relationships 
between urban landscapes and potential Ae. aegypti 
breeding sites at a fine spatial resolution. Our study 
analyzes the relationships between urban landscape 

variables, especially those derived from very high resolu-
tion (VHR) satellite imagery, and in-situ data on potential 
breeding sites in cities of French Guiana (South Amer-
ica), while evaluating the capability of these variables to 
be used in predictive models.

Materials and methods
Geographical context
The study area is the Cayenne Island, the largest urban 
region of French Guiana, a French overseas territory of 
83,800 km2 and 285,000 inhabitants (2020) located in 
the northeast of South America, sharing borders with 
Brazil and Suriname (Fig.  1a, b). ‘Cayenne Island’ is the 
name given to the peninsula surrounded by the estuaries 
of the Cayenne River to its west, the Mahury River to its 
east, and the Atlantic Ocean on its northeast. The penin-
sula is composed of the cities of Cayenne, Matoury, and 
Remire-Montjoly covering only 0.25% (i.e. 206.91  km²) 
of the French Guiana territory but hosting nearly half 
of the French Guiana population (126,223 inhabitants 
in 2020). French Guiana is covered by 95% of forest, and 
has an equatorial climate, characterized by year-round 
high temperatures and high humidity with an annual 
mean temperature of 26 °C, an annual mean humidity of 
80–90% and between 2000 and 4000 mm of annual pre-
cipitation. The year is divided into four seasons: a long 
rainy season from early April to mid-July, a lengthy dry 
season from mid-July to mid-November, a short rainy 
season from mid-November to mid-February, and a brief 

Fig. 1 Study Site: (a) French Guiana located in South America; (b) French Guiana, neighboring countries and Cayenne Island; (c) Number of potential 
breeding sites by prospected location during 2022. The three municipalities of the Cayenne Island (Cayenne, Rémire-Montjoly and Matoury) are delimited 
with solid white lines
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dry season from mid-February to early April called “little 
summer of March”. French Guiana regularly faces den-
gue outbreaks [8], with the latest one that lasted almost 
a year and a half, from January 2020 to June 2021. During 
this last epidemic event, nearly 10,900 clinically evoca-
tive cases seen in consultations were estimated, and 6195 
probable or confirmed cases were identified.

Entomological data
Various efforts are coordinated by government agen-
cies to prevent, monitor and address dengue outbreaks, 
including regular field surveys aiming to identify and 
characterize mosquito breeding sites. A dataset of Ae. 
aegypti breeding sites in French Guiana for 2022 was 
obtained from the ‘Direction de la Démoustication et des 
Actions Sanitaires’ (Direction of mosquito control and 
health actions) of the ‘Collectivité Territoriale de Guy-
ane’ (regional administration - CTG). Each month, ran-
domly selected addresses are inspected for the presence 
or absence of Ae. aegypti larvae. Containers that store 
water with larvae are recorded as being positive breeding 
sites, while negative breeding sites are containers with 
water but no larvae, or without water during the time 
of prospection but that could have water in the future. 
This survey is carried out throughout French Guiana, 
with the territory divided into geographical sectors, sub-
divided into ‘blocks’ used to plan the monthly field sur-
veys. Depending on the size of the blocks, the number of 
locations to be visited each month is determined. Only 
locations visited by agents with geographical coordinates 
located in Cayenne Island were included in the final data-
set. If a container is positive for larvae during a survey, 

mechanical control or biological treatment are applied 
and the control action is registered. To characterize the 
routine visits carried out by vector-control agents, a rep-
resentation of the number of locations prospected per 
block is provided in Fig. 3a.

The dataset included 56,985 records acquired from 
January 4, 2022 to December 30, 2022, 18,576 being 
located on the island of Cayenne, with 8775 locations 
actually visited by the agents. Indeed, 52.76% of the sites 
located on the Cayenne Island could not be inspected 
due to the absence of inhabitants or a refusal from the 
owners to conduct the survey. Then, 104 records, cor-
responding to tire sales zones, garages, and cemeteries, 
were excluded from the analyses as these places: (i) are 
known to structurally produce a very high quantity of 
potential breeding sites and undergo higher sampling 
efforts, introducing biases in the models; (ii) are not asso-
ciated with specific urban landscape types, introducing 
random noise in the modeling step. The effects of such 
biases and random noise have been revealed by pre-
liminary models that were tested on the entire dataset. 
As a result, 8.671 records were considered in the study. 
The number of potential breeding sites per location was 
obtained by adding positive and negative breeding sites 
(Fig.  1c). Breeding sites are classified by the CTG into 
one of 19 types: containers over 200 L, containers under 
200  L, small waste, large waste, tires, barrels, building 
materials, large volumes, manholes, gutters, troughs, 
green plants, other plants, wells, pits, watercraft, protec-
tion, canals, and others. These types were then grouped 
into larger categories based on their similarity and type 
of management based on experts’ knowledge (Table  1). 

Fig. 3 Entomological data sampling effort over (a) blocks, and (b) grid cells for 2022 on Cayenne Island
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Pre-processing of entomological data was carried out 
with the QGIS software (v. 3.16) [39].

Satellite-derived and geospatial data
Satellite imagery
Pléiades satellite images of the study area were acquired 
on July 20, 2022. Pléiades images consist of a panchro-
matic band (0.5  m resampled spatial resolution) and 4 
spectral bands (blue, green, red, and near-infrared bands 
at 2  m spatial resolution). The very high spatial resolu-
tion of Pléiades images allows for the observation of fine 
details within the defined area, including urban vegeta-
tion and building arrangement.

Textural indices
In this paper, image texture was used to help character-
ize the arrangement of the urban elements and therefore 
different urban types (e.g., dense housing, commercial 
areas, urban parks) [40]. The unsupervised FOTOTEX 
algorithm [41] has been applied to the Pléaides imagery 

panchromatic band with a 201-pixel (100.5  m) window 
size using a block method (each window is processed 
sequentially block by block in the image, see [42] for 
more details), generating textural indices indicative of 
different urban patterns, depending on the distribution 
and configuration of urban elements. The window size 
was considered large enough to include several repeti-
tions of patterns of interest and therefore, characterize 
different types of urban areas. The FOTOTEX algorithm 
[41] consists in applying a Fourier Transform (FT) to 
each window, then applying a principal component anal-
ysis (PCA), with the windows as statistical individuals, 
and the spatial frequencies from FT as variables. The first 
three components of the PCA were used as textural indi-
ces. This algorithm has been used in vegetation contexts 
[42–46], and has recently been applied to identify urban 
areas [41]. However, this algorithm has never been used 
in combination with breeding site data and our hypoth-
esis is that such an approach could enhance our knowl-
edge of the links between urban landscape and breeding 
site distribution, and therefore facilitate the remote sens-
ing-based prediction of breeding site distribution. In this 
study, the FOTOTEX algorithm was performed using the 
python package “fototex 1.5.9” [41].

Spectral indices
Normalized Difference Vegetation Index (NDVI) and 
Normalized Difference Water Index (NDWI) were derived 
from the Pléaides images. The NDVI is calculated using 
the equation NDV I = NIR− RED/NIR + RED  
where RED and NIR correspond to the reflectance mea-
sure in Bands 3 and 4, respectively [47]. The NDVI is 
widely used for identifying vegetation in remote sens-
ing [48], including green spaces in urban environments 
such as parks and gardens. These vegetated areas can 
create favorable conditions for Ae. aegypti breeding 
by retaining rainwater or offering shaded sites for rest 
[49, 50]. The NDWI is calculated using the equation 
NDWI = GREEN −NIR/GREEN +NIR  where 
GREEN corresponds to the reflectance measure in Band 
2 [51, 52]. The NDWI is effective in detecting water bod-
ies in urban environments [53], including stagnant water 
in basins, pools, and canals, providing insights into 
potential breeding sites for Ae. aegypti [30].

Vegetation and buildings
Urban vegetation presence was extracted using the NDVI 
calculated on the Pléaides image, applying a threshold of 
0.20 to keep only the vegetation [54]. The layer related to 
individual buildings was provided by the French national 
geographic agency IGN (BD TOPO® 2022), based on 
cadastre and satellite image photo-interpretation. A 
masking technique was applied to determine the heights 
of vegetation and buildings and thus provide information 

Table 1 Types and categories of breeding sites
Categories Types Comments Management
Containers containers 

over 200 L
containers with a 
volume of more than 
200 L

emptying / 
covering / 
insecticide 
treatmentcontainers 

under 200 L
containers with a 
volume of less than 
200 L
containers with a 
capacity smaller than 
barrels

barrels barrels of 200 L
well

Plants pots plants regular 
maintenance 
of pots and 
garden

other plants ground plants

Waste building 
materials

storage/
removal 
maintenancetires

watercraft
small waste can be removed 

manually
big waste can not be removed 

manually
protection tarpaulin, plastic, fab-

ric… used to cover an 
object

Water 
Management 
Infrastructure

gutters maintenance 
of water 
management 
infrastructures

canals
manholes
troughs
pit

Large Volume large 
volumes

pool, large water 
basin

emptying / 
covering

Others others unclassified types
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on the vertical structure of urban landscape elements. 
This involved overlaying the vegetation and building lay-
ers with a 2015 LIDAR-derived digital elevation model 
(1-meter spatial resolution) obtained from CTG. The 
process filtered out only the elevation information for 
areas where vegetation or buildings are present.

Extraction of analysis variables
Spatial units of analysis
The following analyses were carried out over a 200  m 
regular grid cell to ensure sufficient spatial resolution for 
capturing the diverse characteristics of the urban land-
scape. QGIS was used to create a regular grid and the R 
Stats software v. 4.2.1 [55] was used to generate breeding 
sites variables and urban landscape variables for each cell 
of the grid. This choice will be discussed in the Discus-
sion section.

Breeding site variables
For each grid cell, the absolute number of potential 
breeding sites (regardless of breeding site types and cat-
egories) was calculated by summing positive and nega-
tive sites. This was also done by considering separately 
the different types and categories of breeding sites. Using 
an analysis grid helps reduce the variations in sampling 
effort associated with the dataset [56]. A normalized 
number of potential breeding sites was also calculated by 
dividing the absolute number of potential breeding sites 
by the number of prospected locations per cell (Addi-
tional file 1). Only modeling performance using the abso-
lute number of potential breeding sites is presented in 
the Results section due to the similarity of the results.

Urban landscape variables
Summary statistics of urban landscape variables were 
computed within each grid cell: Mean NDVI, Mean 

NDWI, Mean Vegetation Heights, Mean Buildings 
Heights, Mean Textural component 1, 2, and 3. The 
building density (number of buildings per grid cell), and 
the average building size per cell (total building surface 
divided by the number of buildings in each cell) were 
computed using the building layer.

Landscape metrics have been calculated over vegeta-
tion and building layers within each grid cell to capture 
information about urban landscape composition and 
configuration. This helped quantify the spatial organiza-
tion of patterns within a defined geographic area. Spe-
cific landscape metrics (see Table  2) have been selected 
based on their potential to relate to the urban landscape 
and breeding sites of Aedes mosquitoes [7, 57]. Thus, by 
analyzing these several landscape metrics describing the 
configuration of urban landscape, we could identify links 
between description of urban landscapes and the spa-
tial repartition of potential breeding sites. For example, 
more fragmented vegetation could enhance the number 
of potential breeding sites. In this study, landscape met-
rics were calculated using the “landscapemetrics” R pack-
age [58]. Table 3 lists the satellite-derived and geospatial 
data, their sources, the methods used to create them and 
the urban landscapes variables derived from them in this 
study.

Multiple factor analysis
Multiple Factor Analysis (MFA), a multivariate statisti-
cal technique, was performed to explore and analyze 
relationships among multiple quantitative and/or quali-
tative datasets [59]. The analysis consists of grouping 
variables, depending on study objectives, and in balanc-
ing the contribution of the groups in the analysis – i.e. 
in compensating the contribution differences due to 
variable contribution themselves and/or to the num-
ber of variables per group. This approach aims to favor 

Table 2 Landscape metrics used in this study [58]
Landscape metrics Information type Description Units Interpretation
Total class area (CA) Area and Edge 

metric
Dominance of one class over the defined area Hectare Absolute measure 

of composition
Largest patch index (LPI) Area and Edge 

metric
Percentage of the landscape covered by the corresponding 
largest patch of each class

Percentage Measure of 
dominance

Total class area percent-
age (CPLAND)

Core Area metric Percentage of the core area of class to the total landscape Percentage Relative measure 
of composition

Landscape shape index 
(LSI)

Aggregation 
metric

Compactness of the class based on the length of the class 
within the spatial unit

No units Patch distribu-
tion (compact or 
dispersed)

Patch density (PD) Aggregation 
metric

Number of patches of a class within the spatial unit Number for 100 
hectares

Fragmentation

Mean shape (SHAPE_MN) Shape metric Ratio between the actual perimeter and the hypothetical mini-
mum perimeter of the patch

No units Complexity of 
patch shapes

Mean of Contiguity 
(CONTIG_MN)

Shape metric Assigning an adjacency value to each pixel in a patch according 
to a nine-cell focal filter matrix. Larger and more connections 
between patch result in larger contiguity index values

No units Connectivity
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the identification of the links between variables, within 
groups (like a classical principal component analy-
sis (PCA) – if variables are quantitative, as it is the case 
here) but also between the different groups. As for PCA, 
the factorial axes represent the main orthogonal direc-
tions along which the data vary the most and the vari-
able contributions indicate to which extent each variable 
contributes to the factorial axes (the sum of the variable 
contributions for a given axis is equal to 1), while the 
squared cosines (cos²) measure to what extent the vari-
ables are well represented on each axis (the sum of the 
cos2 of a given variable over all factorial axes is equal to 
1). This analysis aims to identify variables characterizing 
urban landscapes that are the most discriminant regard-
ing variables characterizing Ae. aegypti breeding sites, 
and to select some of them for modeling purposes. This 
approach was applied to two groups of variables: one 
grouping the 24 breeding site variables (i.e., number of 
potential breeding sites, number of potential breeding 
sites of each type and regrouped category; Table 1) and 
another one grouping the 24 urban landscape variables 
(i.e., spectral indices, textural indices, landscape metrics 
over vegetation and landscape metrics over buildings, 
heights, and buildings information) (Table  3). In that 
way, we can identify if some types of breeding sites were 

associated with specific urban landscape variables. The 
selection of urban landscape variables for modeling relies 
on identifying variables with contribution values above 
the average contribution and squared cosine (cos²) values 
above 0.1, considering the first three factorial axes. Then 
a selection of one variable per group of explanatory vari-
ables was performed to do the prediction. In this study, 
MFA was conducted using R “FactorMineR” package [60].

Modeling and analysis
Non-linear models were used to establish the relation-
ships between different types of potential breeding sites 
(dependent variable) and urban landscape variables 
(independent variables). We applied Random Forest 
(RF), which combine multiple decision trees for regres-
sion [61]. RF can model complex relationships between 
explanatory variables and the target variable with great 
robustness, allowing to deal with non-linearly separable 
data (more precisely, it is a “piecewise linear model”). RF 
is a non-parametric model that imposes no limitations 
and makes no assumption about the distribution of the 
data, allowing greater flexibility [62]. It showed its effi-
ciency for regression and prediction applied to spatio-
temporal distribution or abundance of Ae. aegypti (see 
Introduction and [37, 38]). However, its application to 

Table 3 Geospatial data, source information, and variables extracted for urban landscape characterization
Satellite-Derived and 
Geospatial Data

Information source Method for layer 
creations

Remarks Variables extrated by grid cell Category 
of ex-
planatory 
variable

Pléaides Multispectral Multispectral Equations Mean NDVI Spectral 
IndicesMean NDWI

Pléiades Panchromatic Panchromatic Algorithm FOTOTEX Texture PC1 Textural 
IndicesTexture PC2

Texture PC3
Vegetation NDVI threshold Landscape metrics Class area Landscape 

metrics 
over 
vegetation

Percentage of class
Landscape Shape Index
Landscape Patch Index
Patch Density
Mean Shape Index

Masking With MNH from CTG Mean Height Vegetation Heights
Buildings BD TOPO Mean Height Buildings

Landscape metrics Class area Landscape 
metrics 
over 
buildings

Percentage of class
Landscape Shape Index
Landscape Patch Index
Patch Density
Mean Shape Index

Counting buildings 
over each grid cell

Number of buildings Buildings 
informa-
tionsTotal area of build-

ings divided by the 
number of buildings 
for each grid cell

Mean size of buildings
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potential breeding sites has not been explored yet. Differ-
ent RF models were built, considering different explana-
tory variables grouping: variable categories indicated in 
Table  3 (texture indices, spectral indices, heights, land-
scape metrics related to vegetation, landscape metrics 
related to buildings, building information); variables 
selected according to MFA (referred to as MFA variables 
hereafter); and the complete set of variables. A range of 
response variables were tested, which included all poten-
tial breeding sites, as well as all types and categories of 
potential breeding sites (cf. Table 1). Models were applied 
to grid cells that include a minimum of five home visits, 
resulting in a total of 417 grid cells (51% of the grid cells 
with at least one record) analyzed. This threshold of five 
home visits was chosen to ensure that the analyzed grid 
cells had a sufficient sample size for reliable and robust 
statistical analysis. In this study, RF models were com-
puted using R “randomForest” package [63].

To assess the RF models’ performance, a cross-vali-
dation procedure was applied, by performing a random 
selection of 70% of the 417 grid cells to build the training 
set and keeping 30% of the cells to test the model. Such 
a procedure was repeated 100 times, with replacement 
of the cells for the random selection (bootstrapping). 
For relatively rare breeding site types that are only pres-
ent in a few cells of the study area, such a procedure can 
lead to building models with too few cells. Consequently, 
we made sure that each individual model was based on 
enough cells with a presence of the specific type This was 
done by removing cross-validation iterations that used, 
for training, less than 70% of the cells where the consid-
ered breeding site type or category was observed.

The Normalized Root Mean Square Error (NRMSE) 
was computed to evaluate the prediction quality while 
reducing the impact of extreme values and consider-
ing the overall distribution of values in the data. As the 
response variables did not follow a normal distribution, 
the NRMSE based on a min-max range was used to 
incorporate a measure of spread of the data. The NRMSE 
provides a relative measure of the model’s effectiveness, 
where a low NRMSE value indicates a more accurate fit 
of the model. The coefficient of determination (R²), was 
used to assess the performance of regression models over 
observations and results of predictions made on each 
validation sample [64]. Figure 2 summarizes the method-
ological framework of this study.

Results
Descriptive analysis of entomological data
Sampling effort
The number of locations visited by vector-control agents, 
when aggregated by survey block, ranged from 0 to 364, 
with an average of 30 homes (Fig. 3a). When aggregated 
by grid cells (Fig.  3b) excluding cells with no visited 

houses, sampling effort ranges from 1 to 114 houses, with 
an average of 10 homes.

Potential breeding sites
Analyses revealed a strongly positively skewed distribu-
tion of potential breeding site numbers, with a mean and 
a median of 2.68 and 1 sites per house, respectively. On 
Cayenne Island, 5 of the 19 breeding site types, account 
for 78.4% of all breeding sites: green plants (36.4%), con-
tainers under 200  L (18.0%), small waste (10.0%), tires 
(7.4%), and barrels (6.6%) (Fig. 4a). Both the median and 
the third quartile of the logarithmic number of potential 
breeding sites are very low, ranging from 0 to 1.4 and 0 
to 1.95, respectively, regardless of the type. Building 
materials or green plants present the highest maximum 
values of potential breeding sites (Fig.  4b). The num-
ber of potential breeding sites per grid cell also display 
a strongly positively skewed distribution (Fig.  5a), with 
a mean absolute value of 28, a maximum of 372, and a 
median of 13. The spatial representation of the number 
of potential breeding sites per grid cell (Fig.  5b) shows 
higher values over residential areas in Cayenne, Matoury, 
and Remire Montjoly in contrast with lower values in 
peri-urban areas of these towns.

Extraction of analysis variables
All extracted variables are represented geographically in 
Additional files 2, 3, 4 and their histogram is provided in 
Additional file 5.

Textural indices
FOTOTEX analyses resulted in three principal com-
ponent analysis (PCA) axes, accounting for 87.03% of 
the total variance of the image (i.e., 69%, 18% and 0.03% 
respectively). Frequencies are concentrated along the 
value 1 of the first axis (Fig. 6a). The second axis displays 
frequencies ranging from intermediate to high values, 
even reaching very high frequencies (996 cycles.km-1). 
The relationship between specific urban landscapes and 
their position along the two PCA axes is illustrated in 
Fig. 6b. By analyzing the windows with the most extreme 
values along the bisector in each angular sector (cor-
responding to a section of a given angle of the factorial 
plan), we observe that windows with urban patterns are 
present close to values of 1 on the Axis 1 and along the 
Axis 2. FOTOTEX RGB composite (Fig.  7a, b) allows 
for a rapid assessment and overview of the spatial orga-
nization of urban landscapes based on Pléaides imagery. 
Different types of urban areas are well-discriminated, 
especially with dense or very dense urban areas in pink/
red, areas gathering houses with gardens in purple/blue, 
and peri-urban areas with isolated houses dominated by 
the presence of vegetation in green (Fig. 7b).
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Landscape metrics
Vegetation
When applied to vegetation, the total class area, percent-
age of the class area, and the largest patch index metrics 
all collectively show an increasing surface of vegetation 
from the center of Cayenne towards the neighboring 
towns of Remire-Montjoly and Matoury, closer to for-
ested areas (Fig. 8a). Landscape shape index suggests that 
Cayenne’s vegetation has a higher connectivity between 

patches than the south of Matoury (Fig. 8b). Patch den-
sity indicates higher fragmentation, especially in Cay-
enne’s center, north of Remire-Monjoly, and in four 
clusters in Matoury (Fig.  8c). Mean shape shows that 
Remire Montjoly and Matoury have on average higher 
values per grid, indicating a higher diversity of patch 
shapes than in Cayenne.

Fig. 2 Methodological framework of this study
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Buildings
Class area, and percentage of class show a greater pres-
ence of the building class in Cayenne and in the residen-
tial areas of Matoury than in Remire Montjoly and in 
the peri-urban areas bordering the forests in Matoury 
(Fig.  8d). Largest patch index indicates a pronounced 
presence of largest patches of buildings in Cayenne, 
north of Matoury and in peri-urban areas in South 
Matoury. Landscape shape index shows more compact-
ness of buildings, in Cayenne and the residential areas of 
Matoury. Then patch density shows a greater fragmenta-
tion in Matoury and Remire Montjoly than in Cayenne. 
Mean shape indicates higher diversity of patch shapes, 
especially in Cayenne and residential areas of Matoury 
(Fig. 8e).

Finally, mean of contiguity shows strong heterogeneity 
of values across the landscape, indicating a challenge in 
identifying clear connectivity patterns among grid cells 
for vegetation and buildings (Fig. 8f ).

Multiple factor analysis
MFA three principal axes account for 40.8% of the total 
variance (21.9%, 12.4%, and 6.5% respectively for Axes 1, 
2, and 3). Variables considered as significantly contribu-
tory to the first three axes (i.e. with contributions above 
the mean contribution of all variables for each axis) are 
presented in Fig. 9.

Axis 1
Landscape variables with the most influence on vari-
ance are total building class area and landscape shape 
index (vegetation and buildings), along with the number 
of buildings and the percentage of vegetation (Fig.  9a). 
NDVI, largest patch index, NDWI and the first compo-
nent of texture indices (texture PC1) also significantly 
contribute to the first axis. In contrast, for breeding site 
variables, the potential breeding sites is the most con-
tributory variable, followed by potential breeding sites of 
the categories containers and plants. These are followed 

Fig. 4 (a) Proportion of breeding sites per type in Cayenne Island; (b) Logarithmic count of potential breeding sites, categorized by types and ordered 
by median value
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by three specific types of breeding sites: containers under 
200 L, green plants and small waste.

Axis 2
The potential number of breeding sites is also the 
most contributory variable, followed directly by NDVI 
(Fig. 9b). The next four contributory variables are breed-
ing site-related variables (i.e. all potential breeding sites, 
containers, barrels, containers under 200  L). Variables 
associated to vegetation, buildings and the breeding sites 
“waste”, “small waste” and “plants” are less contributory. 
The first component of texture is in the 9th position for 

urban landscape variables. Notably, vegetation height is 
part of the most contributory variables on Axis 2.

Axis 3
Mean building size and number of buildingsare the most 
contributory urban variables (Fig. 9c).

The representation of the variables on the factorial 
plans allows identifying positive correlations when vari-
ables are clustered within the same quadrant and negative 
correlations when variables are positioned in opposite 
quadrants relative to the axes’ origins (Fig. 10a). Conse-
quently, three groups can be distinguished: one made of 
urban landscape variables positively correlated with Axis 

Fig. 6 (a) Representation of the spatial frequencies (expressed in cycles.km− 1) on the 1st factorial plane defined by the first two factorial axes; (b) Analysis 
window projections on the first factorial plane defined by the first two factorial axes. Pléiades © CNES 2022 Distribution Airbus DS

 

Fig. 5 Number of potential breeding sites per grid cell as (a) a histogram and (b) geographically
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1, another made of urban landscape variables positively 
correlated with Axis 2, and a third group containing 
breeding site variables, perpendicular to the urban vari-
able groups. On the correlation circle with Axes 2 and 3, 
potential breeding sites appear to be correlated with the 
percentage of vegetation, but with low representational 
quality (Fig. 10a).

Consequently, for RF models, the selected variables 
were building class area, number of buildings, vegetation 
landscape patch index, NDVI, NDWI, the first compo-
nent of texture, and the height of vegetation.

Modeling results
Random Forest (RF) models provided mean R² val-
ues ranging from 0 to 0.20 for the categories of breed-
ing sites (Fig.  11a) and from 0 to 0.33 for the types of 
breeding sites (Fig.  11b). The average NRMSE between 
observations and predictions is 0.14 (range: 0.05–0.65). 
Detailed analysis of the RF models for potential breed-
ing sites shows that the “large volume” breeding sites 
type has the highest average prediction result with 
“MFA variables’’, with an R² of 0.33 and an NRMSE of 
0.13 (Fig.  11a). When using the variables selected from 
the MFA, the R² for “all potential breeding sites” is 0.15, 
while it is 0.18 when using only “buildings informa-
tion”, with the NRMSE both at 0.14. “Containers of less 
than 200 liters” have a R² of 0.16 and an NRMSE of 0.11 
with “MFA variables” and with only “buildings informa-
tion” a R² of 0.14 and NRMSE of 0.12. Next, the category 

of “Containers” grouping several types of breeding sites 
provide an R² of 0.20 and an NRMSE of 0.11 (Fig. 11b). 
The categories of explanatory variables with the highest 
R² are “building information” and “MFA variables”, except 
for category “Water Management Infrastructure” and 
for types “gutters”, “canals”, “tires”, “troughs”, “buildings 
materials”, “watercraft”, “pit”, and “other plants”. Texture, 
heights and landscape metrics, when taken individually, 
provide low predictive powers (R² below 0.10). Some 
types of breeding sites like “gutters”, “canals”, and “tires” 
have higher R² values with “landscape metrics for vegeta-
tion” variables but these values remain low (between 0.05 
and 0.10). Many types of breeding sites have very low R² 
values (below 0.02) and rather higher NRMSE values: 
“others plants”, “protection”, “pit”, “watercraft”, and “build-
ings materials”. Overall, there is considerable variability 
in model performance across breeding sites types and 
categories, with both low R² values and NRMSE values. 
When analyzing the maximum performance values of the 
RF models (Additional file 6), for “large volumes” the R² 
is 0.94 with “buildings information”, closely followed by 
MFA variables, although NRMSE are higher (around 3). 
For “all potential breeding sites” or “barrels”, the maxi-
mum R² is 0.35 with “buildings information” and NRMSE 
values are under 1, regardless of the predictor variables 
considered.

When a model was trained on the complete data-
set with the set of variables selected based on MFA, the 
number of potential breeding sites can be predicted for 

Fig. 7 (a) Panchromatic band of the Pléiades image where built-up areas have been delineated and FOTOTEX has been applied. (b) Textural indices 
produced by FOTOTEX: RGB composite images with the first three Principal Components (PC) - Component 1 in the red band (69% of variance), C2 in the 
green band (18%), and C3 in the blue band (0.03%). Pléiades © CNES 2022 Distribution Airbus DS
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the entire urbanized area of the Cayenne Island (Fig. 12a). 
In this case, the R² between the observed values used for 
the model and the predicted values is 0.90 (Fig.  12d). 
Residential areas with high densities of buildings are the 
areas where predicted potential breeding sites are higher 
(over 43 per grid cell) while commercial areas concen-
trate less predicted potential breeding sites (under 22 per 
grid cell). Peri-urban areas with isolated houses show val-
ues between 7 et 22, with some areas exhibiting numbers 
of potential breeding sites above 43. The model did not 
predict any cells with zero potential breeding sites.

Discussion
This study aimed to better understand how the distribu-
tion of Aedes aegypti mosquitoes’ potential breeding sites 
relates to urban landscapes, with the goal to assess to 
what extent urban environmental variables can spatially 
predict the number of breeding sites. Targeting specifi-
cally potential breeding sites, our study tries to assess the 
number of available breeding sites in a given territory. In 
fact, as the presence of larvae depends on many factors 

and is not always easy to establish in the field, predict-
ing positive breeding sites only can result in underesti-
mating the actual capacity of charge of the environment, 
i.e. the capacity of the territory to “produce” mosquitoes. 
We consider that to improve vector control strategies, it 
is interesting to focus on potential breeding sites rather 
than positive ones to better estimate breeding sites avail-
ability and target priority areas during inter-epidemic 
periods, or optimize efforts and resources during epi-
demic periods. Moreover, mechanistic models like the 
one developed by Tran et al. [65] require the capacity of 
charge of the environment as an input, corresponding, 
in practice, to the number of potential breeding sites per 
surface unit (e.g., per ha).

The French Guiana entomological data proved to be 
heterogeneous, with a high variety of breeding site types 
and categories over the study area (Figs. 4 and 5, Addi-
tional file 8). MFA performed using quantitative variables 
did not reveal strong linear relationships between urban 
and potential breeding site variables. However, the facto-
rial plane defined by the axes 2 and 3 of the MFA shows 

Fig. 8 Landscape metrics applied to vegetation and buildings (a) Largest Patch Index (LPI); (b) Landscape Shape Index (LSI); (c) Patch Density (PD); (d) 
Percentage of class (CPLAND); (e) Mean Shape (SHAPE_MN); and (f) Mean of Contiguity (CONTIG_MN)
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a more contrasted distribution of variables than the one 
defined by the axes 1 and 2 (Fig. 10), which led us to use 
the MFA to select the most contributory variables to 
build the prediction model. Moreover, to take advantage 
of the non-linear relationships between variables related 
to breeding sites and environmental variables, a RF algo-
rithm was implemented to see if potential breeding sites 

could be predicted. We showed that the selected vari-
ables from MFA and the set of variables related to build-
ings resulted in the best performances of the RF models 
for predicting the number of all potential breeding sites 
(Fig.  11a). This can be explained by the fact that these 
models integrate the number of buildings and the mean 
building size, variables which have a strong link with the 

Fig. 9 Contributions of quantitative variables above the mean contribution of each axis (red dashed line) to (a) Axis 1 (b) Axis 2 and (c) Axis 3. CA: Total 
Class Area, CPLAND: Total class area percentage, LPI: Largest patch index, LSI: Landscape shape index, PD: Patch density, SHAPE: Mean shape, CONTIG: 
Mean of Contiguity
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number of potential breeding sites [66]. In the present 
study, the other environmental variables did not appear 
significantly linked to potential breeding sites (as a whole 
or considered by type or category). The low performance 
values   of RF models over several types of potential breed-
ing sites could be explained by the strong variability in 
the data. Even when applying a 70/30 split with boot-
strapping for cross-validation, and by taking into account 
a minimum of non-null cells for training, the quantity of 
data used by the models is very variable depending on the 
types of breeding sites. Among the 417 cells used in the 
modeling process, only 20 have canals, 23 with protec-
tion devices (like tarpaulin), 39 with watercraft, 50 with 
pits, and 21 with “other plants” (not in pots). Even with a 

greater availability in the study area, some types of breed-
ing sites still have model performances that remain very 
low (small waste, green plants, tires) thus demonstrating 
the difficulty of identifying predictive variables relevant 
for all types of breeding sites. We compared the modeling 
performance using absolute versus normalized number 
of potential breeding sites (absolute number of poten-
tial breeding sites divided by the number of houses vis-
ited in each cell) to take into account the sampling effort. 
We found that no matter the type of breeding sites con-
sidered, both R² and NRMSE consistently yielded lower 
values for normalized (mean range from 0 to 0.17) (Addi-
tional file 7) than for absolute number of potential breed-
ing sites.

Our study suggests that although satellite image tex-
ture analysis can discriminate between neighborhood 
types [41], among the texture variables, the first FOTO-
TEX principal component was the only one significantly 
contributory, according to the MFA. The first component 
of FOTOTEX concentrates the majority of the informa-
tion related to urban texture, accounting for 69% of the 
variance. It corresponds to a high building densities (red 
band in Fig.  7), and consequently can be considered as 
equivalent to the number or buildings derived from BD 
TOPO database. As such, a variable derived from remote 
sensing can be produced in any city, making the pre-
diction method presented in this paper reproducible, 
whereas topographic databases such as BD TOPO are 
not available in every country. Even though the first com-
ponent of texture is used in RF models as one of the MFA 
selection variables and shows one of the best average pre-
diction performances on test sets, performance of texture 
variables, when considered as one group of explanatory 
variables, was found to be insufficient.

In our study, unlike in Espinosa et al. [67] and Ardu-
ino et al. [33], we focused on the direct relationship 
between potential breeding sites and landscape descrip-
tors through the use of a regular grid, avoiding the need 
for a previous segmentation of the urban space based on 
its characteristics, which is a complex task. We consider 
that a more detailed and fine-resolution description of 
urban areas better captures the complexity and heteroge-
neity of the landscape hence allowing a better estimation 
of potential breeding site distribution. Albrieu-Llinàs 
et al. [34] seem to be the only paper that tried to inte-
grate the urban landscape diversity in relation to positive 
breeding sites, using it to segment the urban areas. In 
our study, the landscape patch index (LPI) used on veg-
etation data and the percentage of building class per grid 
cell, were amongst the most contributory variables, being 
well represented in the MFA to use in modeling poten-
tial breeding site distribution (Fig.  9a). This shows that 
in urban areas, not only buildings but also urban vegeta-
tion contributes to explain the number and distribution 

Fig. 10 Variables, with quality of the representation (cos2) represented 
by the arrow color, and correlation circle, for factorial plans defined by (a) 
Axes 1 and 2 and (b) Axes 2 and 3
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of potential breeding sites. This can be explained by the 
fact that vegetation can support the creation of poten-
tial breeding sites, like tree hollows or plants creating 
water retention [68, 69], and more generally by the fact 

that vegetation is a key element of the urban landscape 
characterization. Landscape metrics associated with 
fragmentation (PD), complexity (SHAPE) and contin-
gency (CONTIG) did not appear to be linked to potential 

Fig. 12 (a) Predicted values of potential breeding sites per grid cell for Cayenne Island; (b) Observed vs. predicted values of potential breeding sites from 
the RF model using MFA variables for the full dataset

 

Fig. 11 RF models mean R² and NRMSE values when considering different response variables and different groups of explanatory variables for (a) types 
of potential breeding sites, and (b) categories of potential breeding sites
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breeding sites in the MFA analysis and also as explana-
tory predictors in the RF models. Landscape metrics 
related to composition (CA, CPLAND), dominance (LPI) 
and compactness (LSI) show more significant relation-
ships with potential breeding site distribution. This study 
brings the first responses regarding the influence of com-
position of urban landscapes on the distribution of Aedes 
aegypti breeding sites.

While studies found that Aedes mosquitoes can be 
found on all floors of buildings [70, 71], mosquito density 
tends to decrease with increasing building levels [72]. We 
found no study that examined the relationship between 
the number of potential breeding sites and building or 
vegetation height. In our study, while vegetation height 
was contributory and represented in MFA analysis, the 
height of buildings did not prove significant in explaining 
or predicting potential breeding sites. This may be attrib-
uted to either the absence of a meaningful relationship 
between them, or too small variations in building heights 
in the area to have an impact on potential breeding site 
distribution (value of buildings between 0 and 18.4 m) or 
to the mismatch between the 2015 digital terrain model 
data and the 2022 breeding site data.

Climatic variables such as temperature, precipitation 
and relative humidity were not included in this study for 
three reasons. First, there is no compelling evidence in 
the literature of a clear link between those variables and 
the distribution of potential breeding sites, when com-
pared to variables that characterize urban landscapes 
[73, 74]. Second, small spatial heterogeneity in tempera-
ture and rainfall across the study area would not impact 
population practices (e.g., water storage, plant watering) 
and the subsequent potential breeding site presence and 
abundance. Finally, the spatial resolution of existing cli-
matic data would have been much lower than the resolu-
tion of the urban variables that were used in our analyses.

The present study shows that relationships between 
urban landscapes and potential breeding sites are diffi-
cult to identify and characterize, in particular due to the 
difficulty of extracting variables that effectively capture 
the heterogeneity of the urban landscapes. The determi-
nation of the suitable scale of analysis and of the spatial 
units for urban landscape variable calculation is another 
reason why this question is difficult [75]. For potential 
breeding site data, the 200 m grid appeared to be effec-
tive at reducing the influence of outliers and sampling 
effects. It also helps reduce spatial autocorrelation that 
occurs when buffers are used around each sampled 
house. Such a grid is relevant as it permits to work with 
spatial units (cells) presenting uniform size and form, at 
a spatial resolution that both permits to work at a local 
scale, while identifying repetitions of urban patterns. The 
blocks (i.e. the division of the territory used by vector 
control agents) (Fig.  3) were considered as spatial units 

of analysis, but appeared less relevant than grid cells due 
to strong heterogeneity in block size and shape. Despite 
the importance of the spatial nature of response and 
predictor variables (geospatial data), models used in the 
study did not explicitly incorporate the spatial locations 
of the grid cells or any other explicit spatial structures 
(which can be considered through spatial random effect). 
The explicit integration of variables on spatial structure 
or potential neighborhood effects could ameliorate the 
results [76, 77].

Finally, this entomological dataset made of data rou-
tinely acquired by vector control services was not 
designed specifically for such a study. Using this data-
set may have introduced biases as they were collected 
for immediate and efficient operational needs, leading 
to oversampling or undersampling over specific geo-
graphic areas and/or in specific environmental contexts. 
Despite the relatively low predictive power (R²) of the 
RF model, the model demonstrated a high goodness of 
fit (R²=0.9) when using the entire dataset for Cayenne 
Island. Such a high R² value, compared to the relatively 
low R² obtained with cross-validation, may however con-
firm the model over-fitting and its poor transferability to 
new (“unknown”) contexts. Such an issue is common in 
regression models [78]. A complementary cross-valida-
tion, exploiting additional field data on the cells that were 
predicted and not used for the model training, could be 
carried out. Although RF is applicable when the number 
of variables is high, due to its potential for prediction, 
some studies highlighted the importance of selecting a 
limited number of predictors before making a prediction 
[79]. This was the purpose of selecting variables using 
MFA in this study. For future studies, other methods of 
variable selection could be tested to improve our results. 
However, the predictions appear coherent and are prom-
ising for further analysis. This kind of prediction could be 
directly used as an input (environmental charge capac-
ity) of the mechanistic model based on the bio-ecology 
of Aedes mosquitoes to model population dynamics [65]. 
This would significantly objectivize the environmental 
charge capacity estimation which is, in practice, mainly 
estimated by expertise in order to implement such a 
mechanistic model. Unlike previous studies using posi-
tive breeding sites, the originality of this study lies in the 
direct use of potential breeding sites. In French Guiana, 
potential breeding sites data were used in research work 
for the first time, and the protocol must be adapted to 
the specific needs of this study in terms of predictive 
modeling. We expect that vector control will benefit 
from this research, helping update the design of ento-
mological sampling to improve vector control strategies 
based on house prospections, by integrating knowledge 
about urban landscapes. The recent study by Rodri-
guez Conzalez et al. [57] confirms that combining Very 
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High-Resolution (VHR) imagery and landscape metrics 
has the potential to improve vector control surveillance 
strategies, determining an optimal spatial repartition 
of ovitraps in complex urban environments. A similar 
approach could be carried out to improve sampling strat-
egies in surveillance based on house prospection.

Conclusion
We investigated the relationships between urban 
landscapes descriptors and potential breeding site 
distribution with a focus on the composition and three-
dimensional structure of urban environments at a fine 
spatial scale, avoiding prior application of classification 
methods to better capture the complexity and heteroge-
neity of the landscape. The originality of this study is also 
to focus on the relevance of considering potential breed-
ing sites for a more comprehensive understanding of the 
capacity of the territory to “produce” Aedes mosquitoes. 
We used a multifactorial analysis to explore relationships 
between potential breeding sites and urban landscape 
variables and select the most discriminatory variables. 
Such variable selection yielded improved performances 
in Random Forest models for predicting potential breed-
ing sites. However, the challenge of predicting breeding 
site number as a function of their type persists, particu-
larly due to the wide disparity in the numbers of breed-
ing sites observed from one type of site to another. The 
study also highlighted the difficulty of identifying predic-
tive variables relevant to all breeding site types. While 
texture variables alone did not exhibit sufficient perfor-
mance, they proved valuable when combined with other 
variables extracted from remote sensing, showing the 
importance of both buildings and urban vegetation in 
explaining the distribution of potential breeding sites. 
The RF model achieved an excellent goodness of fit, but 
also overfitting, suggesting a difficulty in its generaliza-
tion to new situations. This could be addressed by test-
ing other cross-validation methods, finding better ways 
of filtering data (to minimize noise such as the errors in 
breeding site categorization and geolocalisation) and 
selecting predictors, and by enriching the learning set 
with data provided by different contexts. Although this 
research has limitations, it offers a first approach in the 
use of routinely collected data on breeding sites by vector 
control agencies in a research framework highlighting the 
need to include an objective remotely sensed character-
ization of the urban environment to improve vector con-
trol strategies.
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