
Zhao et al. 
International Journal of Health Geographics  (2024) 23:9 
https://doi.org/10.1186/s12942-024-00368-5

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

International Journal of 
Health Geographics

How do taxi drivers expose to fine 
particulate matter  (PM2.5) in a Chinese 
megacity: a rapid assessment incorporating 
with satellite-derived information and urban 
mobility data
Shuangming Zhao1, Yuchen Fan1, Pengxiang Zhao2*, Ali Mansourian2 and Hung Chak Ho3* 

Abstract 

Background Taxi drivers in a Chinese megacity are frequently exposed to traffic-related particulate matter  (PM2.5) 
due to their job nature, busy road traffic, and urban density. A robust method to quantify dynamic population expo-
sure to  PM2.5 among taxi drivers is important for occupational risk prevention, however, it is limited by data availability.

Methods This study proposed a rapid assessment of dynamic exposure to  PM2.5 among drivers based on satellite-
derived information, air quality data from monitoring stations, and GPS-based taxi trajectory data. An empirical study 
was conducted in Wuhan, China, to examine spatial and temporal variability of dynamic exposure and compare 
whether drivers’ exposure exceeded the World Health Organization (WHO) and China air quality guideline thresholds. 
Kernel density estimation was conducted to further explore the relationship between dynamic exposure and taxi driv-
ers’ activities.

Results The taxi drivers’ weekday and weekend 24-h  PM2.5 exposure was 83.60 μg/m3 and 55.62 μg/m3 respectively, 
3.4 and 2.2 times than the WHO’s recommended level of 25 µg/m3. Specifically, drivers with high  PM2.5 exposure had 
a higher average trip distance and smaller activity areas. Although major transportation interchanges/terminals were 
the common activity hotspots for both taxi drivers with high and low exposure, activity hotspots of drivers with high 
exposure were mainly located in busy riverside commercial areas within historic and central districts bounded 
by the “Inner Ring Road”, while hotspots of drivers with low exposure were new commercial areas in the extended 
urbanized area bounded by the “Third Ring Road”.

Conclusion These findings emphasized the need for air quality management and community planning to mitigate 
the potential health risks of taxi drivers.

Keywords Taxi drivers, PM2.5 exposure, Spatiotemporal analysis, Satellite-derived information, Urban mobility data

*Correspondence:
Pengxiang Zhao
pengxiang.zhao@nateko.lu.se
Hung Chak Ho
hungcho2@cityu.edu.hk
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12942-024-00368-5&domain=pdf


Page 2 of 15Zhao et al. International Journal of Health Geographics  (2024) 23:9

Introduction
Population exposure to air pollution is a concept regard-
ing how the local population can suffer from ambient 
pollution exposure during a particular length of time 
causing unfavorable health conditions [2, 6, 21, 36]. Based 
on the definition of the United Nations Office for Disas-
ter Risk Reduction (UNDRR), exposure is the “situation 
of people, infrastructure, housing, production capacities 
and other tangible human assets located in hazard-prone 
areas”, which implies that population exposure involves 
environmental quality as well as population distribu-
tion and mobility, especially in high-density areas with 
high-density living, such as China. Specifically, China has 
experienced high pollution levels due to urbanization and 
industrial development [14]. Even on a low air pollution 
day, the pollution level exceeds WHO’s air quality thresh-
olds or China air quality guidelines, inducing severe 
health risks across cities in China [5, 37]. Thus, previous 
studies have attempted to combine population datasets 
and urban mobility data (e.g., mobile phone data, bike 
trajectories) to estimate exposure to air pollution among 
various populations (e.g., general population, bike riders) 
in areas with high-density living [1, 3, 10, 19, 31].

PM2.5 (particulate matter with a diameter < 2.5  µm) is 
one of the riskiest air pollutants worldwide [9, 13, 27], 
especially in China [11]. Specifically,  PM2.5 is traffic-
related air pollution that results in long-term adverse 
effects on population health. Previous studies have mod-
elled traffic-related  PM2.5 pollution and related health 
impacts [16, 29, 31, 32]. For example, Tang et  al. [32] 
incorporated traffic behaviors with land use regression to 
estimate dynamic air pollution exposure in Hong Kong, 
showing that increased mobility led to a 13% and 3% 
higher population exposure level to  PM2.5 among work-
ing adults compared to the older adults and individuals 
aged < 18. These results indicated that robustly character-
izing the dynamic population exposure among vulnerable 
subpopulations is important for health management and 
urban planning.

Among all vulnerable individuals, taxi drivers are 
one of the most understudied groups despite their 
high exposure risk due to their job nature. Some stud-
ies have applied a panel design with a small number of 
participants to quantify exposure levels among taxi driv-
ers in Europe and the United States [8, 44]. For example, 
Zagury et  al. [44] recruited 29 drivers in Paris to study 
their exposure level, reporting higher exposure level in 
taxis compared to the ambient air monitoring network 
and fixed stations nearby automobile traffic. Gany et  al. 
[8] conducted a study with a hundred drivers in New 
York and found that the concentration of fine particulate 
matter  (PM2.5) in taxis was higher than those in nearby 
central monitoring stations. Nonetheless, these studies 

were limited by data availability as air monitoring net-
works are usually sparsely distributed and cannot dem-
onstrate the moving vehicle’s dynamic exposure (e.g., 
taxi). Moreover, the estimation of population exposure 
was restricted by the number of samples and participants 
as well as the techniques to record air quality in a taxi. 
More importantly, the population exposure level of taxi 
drivers could vary over time [23].

Therefore, this study developed a new method to rap-
idly assess the population exposure of taxi drivers based 
on open datasets of air pollution and big data from urban 
mobility information. Specifically, this rapid assessment 
combined information from representative stations of 
the air monitoring network, satellite-derived informa-
tion from land use regression, and urban mobility data 
from taxi trajectories to estimate drivers’  PM2.5 expo-
sure in Wuhan, China. The research objectives were: (1) 
to estimate hourly  PM2.5 exposure of taxi drivers, (2) to 
compare whether representative monitoring stations may 
overestimate or underestimate the dynamic  PM2.5 expo-
sure of taxi drivers, and (3) to evaluate whether hourly 
exposure of taxi drivers in different scenarios (weekday, 
weekend) exceeded WHO’s and China (PRC)’s national 
guideline thresholds.

Data and methods
Study area
Wuhan, China was selected as our study area. This meg-
acity has a high-rise, high-density built environment in 
central China covering ~ 8494  km2 and a population of 
over 11 million people. Wuhan is also a major transporta-
tion hub and a key gateway to other parts of China. There 
are three railway stations in Wuhan, Wuchang Railway 
Station, Hankou Railway Station, and Wuhan Railway 
Station which Wuchang Railway Station provides train 
services to all provincial capitals in mainland China and 
is the largest general-speed railway terminal in central 
China. Hankou Railway Station is responsible for the pas-
senger transportation business of east–west trains origi-
nating and passing through the Wuhan hub. The three 
railway stations are all within the “Third Ring Road”, a 
91-km long ring expressway connecting the passenger 
and freight hubs and forming the extended urbanized 
areas in Wuhan. The high-rise, high-density environment 
as well as transportation patterns are key factors influ-
encing  PM2.5 in Chinese cities [30, 41].

Wuhan is also an economic, industrial, cultural, and 
educational center comprising 13 districts and the 
three main districts are Wuchang, Hankou, and Han-
yang. Wuchang is the cultural and educational center 
of Wuhan, home to several universities and museums, 
whereas Hankou is the commercial center known for 
its bustling streets and vibrant nightlife. Hanyang is an 
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industrial zone with many factories and manufactur-
ing facilities (Fig. 1). These main districts are connected 
by the “Inner Ring Road”, a 28-km long ring road form-
ing the most urbanized areas in Wuhan, which aims to 
provide rapid passenger transportation, thus increasing 
 PM2.5 emissions in the city.

Consequently, Wuhan has notable air pollution and 
related health impacts. For example, a previous study 
investigated hourly air pollutants including  PM2.5 in 
Wuhan between 2013 and 2014, suggesting that the aver-
age  PM2.5 concentration needed to be reduced by at least 
5% annually to achieve clean air quality by the end of 

2017 [39]. A local study reported that a 10 μg/m increase 
in daily  PM2.5 was associated with a 0.87% increase in 
cardiovascular hospital admissions between 2013 and 
2015 [38]. Furthermore, another local study investigated 
hospital admissions between 2016 and 2018 and found 
higher health impacts from daily  PM2.5 than the above 
study [29]. Specifically, this study found that a 10 μg/m3 
increase in  PM2.5 was associated with 1.23% and 1.95% 
increase in hospital admissions for cardiovascular and 
respiratory diseases in Wuhan. These results suggested 
that a study of  PM2.5 exposure among taxi drivers in 
Wuhan is essential as the local population has a high risk 

Fig. 1 Study area—Wuhan, China. Wuhan comprises 13 districts (Wuchang, Hongshan, Jianghan, Jiang’an, Hanyang, Qiaokou, Qingshang, Jiangxia, 
Xinzhou, Huangpi, Dongxihu, Caidian, and Hannan) and the three main districts are Wuchang, Hankou, and Hanyang
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of air pollution-related health issues, with traffic-related 
air pollutants being one of the major sources in Wuhan. 
Furthermore, the urban settings of Wuhan are similar 
to other megacities in China, thus this rapid assessment 
method could be applied in other locations.

GPS‑based taxi trajectory data
GPS-based taxi trajectory data was obtained from a taxi 
company in Wuhan for academic purposes. The data was 
collected from > 8300 taxis between May 13, 2014 and 
May 31, 2014, a non-pandemic period with air pollution 
extremes in Wuhan, which helps justify the adaptability 
of our proposed rapid assessment to other Chinese meg-
acities with similar urban settings.

Each taxi’s GPS recorded several trajectory variables 
approximately every 10  s or 1  min including taxi ID, 
sampling timestamp, the geolocation in longitude and 
latitude, heading direction, and passenger status (e.g., 
empty or occupied) [45]. Due to potential data bias and 
noise (e.g., abnormal GPS device, signal loss), raw taxi 
trajectory data were preprocessed to eliminate outliers, 
including data cleaning, trip extraction, and map match-
ing. Trip extraction was conducted to recognize taxi trips 
based on passenger status information (occupied versus 
vacant). Map matching refers to the process of match-
ing GPS trajectory points to a specific road network [4] 
to locate the above-mentioned GPS trajectory points of 
the target vehicle more accurately on the correspond-
ing road segments, and to accurately obtain the vehicle’s 
movement trajectory. This study employed a map-match-
ing method based on the Hidden Markov Model (HMM) 
[26]. Figure  2 presents the map-matching results based 
on the trajectory points of representative trips.

Spatiotemporal variability of  PM2.5 exposure
A rapid assessment framework based on a previous study 
[43] was proposed to reproduce spatiotemporal data of 
 PM2.5 pollution to estimate dynamic exposure among 
taxi drivers. Specifically, this framework assumed that 
 PM2.5 data from an annual map had high spatial variabil-
ity but no temporal variations, whereas  PM2.5 informa-
tion from monitoring stations could have high temporal 
variability but not able to represent spatial variations due 
to a single location for each station. Thus, a combination 
of data from the annual  PM2.5 map and information from 
representative monitoring stations may be able to rapidly 
reproduce spatiotemporal data for further assessment.

An annual  PM2.5 map in 2014 covering all districts 
of Wuhan was applied in this study to represent spatial 
variability of air pollution (Fig.  3), which was retrieved 
from the open dataset [12, 35]. This open dataset was 
an annual  PM2.5 map (spatial resolution: 0.01° × 0.01°) 
derived by a land use regression (LUR) with satellite 

observations, chemical transport modelling, and ground-
based monitoring. LUR is a common mapping technique 
to estimate the spatial distribution of air pollution based 
on multiple factors such as urban landscape, transporta-
tion network, and terrain [30, 34]. The results of Hammer 
et  al. [12] were highly accurate  (R2 = 0.81; slope = 0.90), 
thus, this open dataset could represent the micro-scale 
spatial variability of  PM2.5 in Wuhan.

Hourly  PM2.5 data retrieved from nine monitoring sta-
tions (Table  1) covering the study period (May 13–May 
31, 2014), were applied to measure the temporal vari-
ability of ambient exposure. The following method based 
on the spatial varying data from the annual  PM2.5 map 
and temporal varying data from monitoring stations was 
proposed to calculate the spatiotemporal concentration 
of  PM2.5 at a certain location pi,j in Wuhan at different 
times. This method was adopted from a previous study 
to measure spatiotemporal exposure to  PM2.5 based on 
satellite-derived data, air quality monitoring stations, and 
GPS-based wearable devices [43]. Particularly,  PM2.5 con-
centration Ct

i,j at location pi,j and time t can be calculated 
with the following formula:

where Ct
base site is the temporal varying  PM2.5 concentra-

tion retrieved from the representative station at time t, 
Ci,j and Cbase site is the spatial varying  PM2.5 concentra-
tions at location pi,j and representative station retrieved 
from the annual  PM2.5 map. The representative station 
to calculate  PM2.5 concentration Ct

i,j at location pi,j and 
time t should meet the following requirements: (1) no 
obvious outliers during the study period; (2) a minimum 
difference between the real-time concentrations from the 

(1)Ct
i,j = Ct

base site + (Ci,j − Cbase site),

Fig. 2 Map matching results based on the trajectory points 
of representative trips. Black and red lines represent the road network 
and the trajectories after map matching, respectively. Green points 
represent raw taxi trajectory points
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monitoring station and the concentration of the corre-
sponding position in the annual  PM2.5 map. This Eq. (1) 
assumes that the spatial distribution of ambient  PM2.5 
exposure varied depending on multiple factors (e.g., 
built environment, urban structure), and the overall con-
centration is affected by temporal varying factors (e.g., 
weather condition of a day) and estimates the spatiotem-
poral variability of  PM2.5 exposure in high resolution 
across the study area.

Dynamic population exposure to  PM2.5 among taxi drivers
The daily trajectories for each taxi i were combined 
TRIPSi = {tripi

1, tripi
2, tripi

3,…} to measure the dynamic 
population exposure to  PM2.5 among taxi drivers. As 
depicted in “GPS-based taxi trajectory data”, all trips 
along the road network were generated after data pre-
processing and each trip consisted of the following attrib-
utes, the start and end time (timestart and timeend), trip 
distance, and the turning point coordinates. The dynamic 

population exposure to  PM2.5 among taxi drivers was 
estimated at the trip level, which can be expressed as:

where EI(tripi
n) is the population exposure level of taxi 

driver i during a trip tripi
n, which is the integral of  PM2.5 

exposure where the driver was located with respect to 
time, λ is the air pollutant filtration coefficient consid-
ering a difference in  PM2.5 exposure between the indoor 
environment of the taxi and the external environment. 
However, it was impossible to consider the internal and 
external protective measures (e.g., opening and clos-
ing windows, whether the driver wears a mask, whether 
there is air filtration equipment in the taxi). Given that 
this study assumed that all taxi drivers had similar air 
pollution filtering conditions in the working environ-
ment, λ was a fixed coefficient. Specifically, this study was 

(2)EI
(

tripni
)

= �

∫ timeend

timestart

Ce(t)dt,

Fig. 3 Annual  PM2.5 concentration in Wuhan in 2014
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based on a scenario in May 2014 when taxi drivers often 
opened windows when driving if the weather conditions 
were good, thus, this calculation was based on an open 
window scenario. Ce(t) is  PM2.5 exposure in the environ-
ment where the taxi was located at time t. Based on the 
spatiotemporal data of  PM2.5 concentration at the grid 
level estimated according to Eq. (1), the integral formula 
is transformed as follows:

where Ct
grid is  PM2.5 exposure of the grid at time t, Δt is 

the elapsed time of taxi in the corresponding grid and 
each trip is split according to its relationships with grids 
to calculate the summation of  PM2.5 exposure in each 
segment.

Subgroup analysis was conducted to evaluate the 
overall effect throughout the study period and week-
day/weekend effects. Hotspot analysis was imple-
mented to visualize and analyses the spatial–temporal 
variability of dynamic  PM2.5 exposure among the top 
1% of taxi drivers who experienced higher and lower 
levels of air pollution for each subgroup (e.g., weekdays, 
and weekends). Specifically, we chose the top 1% of taxi 
drivers with high and low  PM2.5 exposure and analyzed 
the spatiotemporal variations of their activities, respec-
tively. To guarantee the validity and robustness of the 

(3)

EI
(

tripni
)

= �

∫ timeend

timestart

Ce(t)dt = �

∑

grid

(

Ct
grid ×�t

)

,

results, only taxi drivers who operated at least ten 
weekdays or four weekends were analyzed.

Kernel density estimation (KDE) was applied to esti-
mate the hotspots for the above-mentioned two groups 
of taxi drivers based on their origins and destinations on 
weekdays and weekends. KDE is a method for smooth-
ing data that converts a set of recorded observations, 
presented as geographically referenced point data, into 
a continuous surface [17]. This surface reflects the inten-
sity of individual observations across space and is com-
monly used for hotspot analysis of air pollution exposure 
(e.g., [15]). In this study, ArcGIS 10.5 software was used 
to implement the hotspot analysis with a cell size of 
0.001° × 0.001°.

Results
Spatial and temporal variability of ambient  PM2.5 exposure
According to the current "Air Quality Standards" adopted 
in China, a  PM2.5 concentration below 35 μg/m3 is “good” 
air quality, a concentration ranging from 35  μg/m3 to 
75  μg/m3 is “moderate”, a concentration ranging from 
75 μg/m3 to 115 μg/m3 is “unhealthy for sensitive groups” 
and a concentration exceeding 115 μg/m3 is “poor” [25]. 
In addition, WHO’s air quality guideline recommends 
that the 24-h average  PM2.5 exposure should not exceed 
25 µg/m3 [40].

Based on the spatial varying information retrieved 
from the annual  PM2.5 map, the average  PM2.5 concen-
tration in Wuhan was 45.5  μg/m3, indicating an overall 

Table 1 PM2.5 stations in the monitoring network in Wuhan

Blue triangles represent the air quality monitoring stations

Monitoring station Latitude Longitude

Donghu Liyuan 30.578°N 114.384°E

Donghu Gaoxin 30.523°N 114.410°E

Wujia Mountain 30.637°N 114.142°E

Wuchang Ziyang 30.536°N 114.315°E

Hankou Jiangtan 30.597°N 114.313°E

Hankou Huaqiao 30.622°N 114.294°E

Hanyang Yuehu 30.591°N 114.264°E

Chenhu Qihao 30.302°N 113.863°E

Qingshan Ganghua 30.628°N 114.383°E
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moderate air quality in Wuhan with higher pollution 
level in some central areas such as Qiaokou, Jianghan, 
Jiang’an, Wuchang, and Qingshan districts (Fig. 3). There 
was also high ambient  PM2.5 exposure in the southwest of 
the Caidian and Hannan districts. However, a compari-
son of the temporal varying information retrieved from 
nine air pollution monitoring stations in Wuhan (Fig. 4) 
indicated that 13 days of the study period (May 13–May 
31, 2014) had a pollution level above the threshold of 
“unhealthy for sensitive groups” (> 75  μg/m3), including 
9  days with an ambient  PM2.5 level exceeding 115  μg/
m3. Furthermore, several days had pollution extremes. 
Ambient  PM2.5 levels were almost 300  μg/m3. The peak 
 PM2.5 pollution was between May 21, 2014 and May 27, 
2014. In contrast, there were no significant regional dif-
ferences between the nine monitoring stations in Wuhan, 
with a relatively consistent pattern of change over time 
observed. These results indicate that neither spatially 
varying data from the annual  PM2.5 map nor temporal 
varying data from monitoring stations could comprehen-
sively represent the spatiotemporal variability of  PM2.5 
exposure in line with our assumption to combine both 
datasets to better estimate population exposure.

Hourly dynamic exposure of  PM2.5 among taxi drivers
To identify a representative station for estimating spati-
otemporal variability of  PM2.5 exposure, the differences 

in the data from all monitoring stations and the annual 
 PM2.5 map, and the corresponding variances were calcu-
lated, as shown in Fig. 5 and Table 2. There was a large 
difference between May 21 and May 27, which was asso-
ciated with severe pollution in Wuhan. The data distribu-
tion of all monitoring stations in the remaining days of 
the study period conformed to the annual distribution 
of  PM2.5. The overall variances retrieved from Wuchang 
Ziyang (183.68 μg/m3) and Hankou Jiangtan (131.97 μg/
m3) stations were the lowest, indicating better fitting as 
the representative monitoring station, thus Wuchang 
Ziyang station was selected as the representative station.

Dynamic population  PM2.5 exposure among taxi drivers 
at the trip level was then estimated (Fig. 6a), showing that 
there was higher  PM2.5 exposure at midnight and in the 
morning (3:00–4:00 and 9:00–10:00 am). During these 
peaks, taxi drivers could be exposed to 86.61 μg/m3 (CI: 
86.36–86.86 μg/m3) and 83.60 μg/m3 (CI 83.33–83.88 μg/
m3) within an hour. These pollution levels were ~ 15.48% 
and 11.47% higher than the threshold for “unhealthy for 
sensitive groups”. However, the lowest average (11:00–
12:00 pm) was only 60.90 μg/m3 (CI 60.71–61.10 μg/m3).

Additionally,  PM2.5 exposure among taxi drivers during 
weekdays was generally higher than exposure at week-
ends (Fig.  6b, c). The peaks of weekday  PM2.5 exposure 
were at midnight and morning with drivers exposed to 
above 95 μg/m3 within an hour between 3 and 9 am. In 

Fig. 4 PM2.5 data collected from the monitoring stations in Wuhan. a Donghu Liyuan, b Donghu Gaoxin, c Wujia Mountain, d Wuchang Ziyang, e 
Hankou Jiangtan, f Hankou Huaqiao, g Hanyang Yuehu, h Chenhu Qihao, and i Qingshan Ganghua
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comparison, the peak hour of weekday  PM2.5 exposure 
among drivers was in the evening and midnight and was 
~ 59.79 μg/m3 (CI 59.51–60.06 μg/m3) at 7 pm during the 
weekend.

The hourly dynamic of  PM2.5 exposure was also 
highly varied by day (Fig. 7). Overall, the representative 
monitoring station overestimated the dynamic  PM2.5 
exposures of taxi drivers. For the days with higher pol-
lution levels retrieved from monitoring stations, hourly 

variations of  PM2.5 exposure among taxi drivers were 
larger than the other days. Specifically, the most polluted 
days (May 21 and May 27) had large variations, with aver-
ages of 156.45  μg/m3 and 101.14  μg/m3 and standard 
deviations of 11.79 μg/m3 and 7.99 μg/m3.

Moreover, the 24-h average  PM2.5 exposure among taxi 
drivers was calculated for each day (Fig.  8). During the 
weekdays, average 24-h  PM2.5 exposure among taxi driv-
ers was 83.60 μg/m3 (SD: 6.65 μg/m3), which was 234.4% 

Fig. 5 Concentration difference for each station in Wuhan. a Donghu Liyuan, b Donghu Gaoxin, c Wujia Mountain, d Wuchang Ziyang, e Hankou 
Jiangtan, f Hankou Huaqiao, g Hanyang Yuehu, h Chenhu Qihao, and i Qingshan Ganghua

Table 2 The related variance for each station (μg/m3)

Station a b c d e f g h i

Variance 308.04 355.41 657.53 183.68 131.97 253.47 238.32 747.47 358.51

Fig. 6 Hourly dynamics of  PM2.5 exposure among taxi drivers in all days, weekdays and weekends across Wuhan during the study period. Mean 
represents the mean of exposure, upper and lower represent the 95% confidence interval of the exposure
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higher than the WHO recommendation and 11.5% higher 
than the cutoff for “unhealthy for sensitive groups” noted 
in China’s guideline. During the weekend, 24-h average 
 PM2.5 exposure among taxi drivers was 55.62 μg/m3 (SD: 
4.72 μg/m3), which was approximately 25.8% lower than 
the pollution level during the weekdays. Although this 
pollution level did not reach the cutoff for “unhealthy for 
sensitive groups” noted in China’s guideline, it was still 
2.2 times the WHO recommendation.

Spatio‑temporal analysis of taxi drivers’ activities
Before the comparison of the spatiotemporal varia-
tions of activities between taxi drivers with high and 

Fig. 7 Hourly dynamic of  PM2.5 exposure in each day between May 13–May 31. Mean represents the mean of exposure, upper and lower represent 
the 95% confidence interval of the exposure, site means the exposure based on the monitoring stations

Fig. 8 The daily 24-h average  PM2.5 exposure among taxi drivers
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low  PM2.5 exposure, the distribution of the 24-h average 
 PM2.5 exposure on weekdays and weekends was explored 
(Fig.  9), showing a normal distribution on both week-
days and weekends. On weekdays, the 24-h average  PM2.5 
exposure ranged from 16.44  μg/m3 to 162.74  μg/m3, 
whereas the 24-h average  PM2.5 exposure ranged from 
16.57 μg/m3 to 91.70 μg/m3 on weekends.

We further explored the difference among taxi driv-
ers with different levels of  PM2.5 exposure based on their 
travel patterns using KDE analysis. As shown in Fig. 10, 
the two groups presented a similar distribution of hot-
spots on weekdays and weekends respectively, while the 
patterns of the two groups differed on both weekdays and 
weekends. Specifically, taxi drivers with high  PM2.5 expo-
sure had smaller major activity areas but a longer average 
trip distance than those with low exposure. For taxi driv-
ers with high  PM2.5 exposure, the average trip distances 
on weekdays and weekends were 12.26 km and 12.12 km, 
respectively compared to 4.82  km and 4.84  km for the 
taxi drivers with low  PM2.5 exposure.

The activity hotspots of the taxi drivers with high  PM2.5 
exposure were mainly in (1) busy riverside commercial 
areas within historic and central districts bounded by the 
“Inner Ring Road”, such as Jianghan Road (the marked 
red area in Fig. 10a, c) and Xudong, and (2) major trans-
portation interchange/terminals (e.g., Hankou Railway 
Station). Specifically, Jianghan Road is a famous century-
old commercial street in Wuhan located in the center of 
Hankou District with a total length of 1600 m. Jianghan 
Road and Xudong are also close to the Wuhan Yang-
tze River Tunnel and the Second Yangtze River Bridge, 
respectively, which are major roads with high traffic flow.

For the taxi drivers with low  PM2.5 exposure, despite 
activity hotspots near major transportation interchange/
terminals (e.g., Wuchang Railway Station), more hotspots 

overlapped with the new commercial areas in Wuhan, 
such as Optics Valley International Plaza (the marked 
red area in Fig. 10b, d) and Optical Valley Software Park 
within the “Third Ring Road”. These results suggested 
that the dynamic population exposure to  PM2.5 among 
taxi drivers was related to their travel behavior.

Discussion
Interpretations of results
This study developed a method to rapidly assess dynamic 
population exposure among taxi drivers. An empirical 
study was conducted in Wuhan, China and subgroup 
analyses were performed to quantify population expo-
sure in different scenarios (e.g., weekday/weekend effect). 
Our results indicated that neither spatially varying data 
from the annual  PM2.5 map nor temporal varying data 
from monitoring stations could represent spatiotempo-
ral variability of  PM2.5 exposure independently. Based on 
the established equation to quantify dynamic population 
exposure among taxi drivers, it was found that taxi driv-
ers are usually exposed to higher  PM2.5 during the morn-
ing (3:00 am to 4:00 am). Furthermore, the peak hours 
of weekday  PM2.5 exposure were at midnight and in the 
morning, while the peak hours of weekday  PM2.5 expo-
sure were during the evening and midnight. Addition-
ally, taxi drivers with high  PM2.5 exposure were typically 
clustered in commercial areas among central districts 
bounded by the “Inner Ring Road” and major transpor-
tation interchange/terminals, while taxi drivers with low 
 PM2.5 exposure usually drove further in each trip with 
activity hotspots in new commercial areas bounded by 
the “Third Rind Road”, indicating a high spatiotemporal 
variability.

These results demonstrate how daily travel behaviors 
could affect the air pollution exposure of taxi drivers. 

Fig. 9 Distribution of the 24-h average  PM2.5 exposure on weekdays and weekends across Wuhan in the study period
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For example, commercial areas in historic and central 
districts usually have high  PM2.5 exposure due to the 
co-effects of road traffic and population mobility. These 
commercial areas are associated with  PM2.5 pollution due 
to poor ventilation from high-rise, high-density urban 
morphology [28] and local emissions from buildings and 
electrics [22] with frequent road transit (e.g., bus, car) 

to/from commercial areas increasing the level of traffic-
related  PM2.5 exposure within a short period (e.g., in 
an hour). As a result, taxi drivers who frequently drive 
within commercial areas in central districts during high 
traffic volume and major commercial activities would 
be exposed to urban canyons with poor design and low 
ventilation that trap traffic- and building-related  PM2.5. 

Fig. 10 Hotspots of taxi drivers with high and low  PM2.5 exposure on weekdays and weekends. As shown in a–d, where the dark red depicts 
the high-density areas, the high-density areas could correspond to the pollution hotspots
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This hypothesis is supported by local evidence, for exam-
ple, Jianghan Road (Fig. 11a) and Xudong are two major 
activity hotspots for taxi drivers with high exposure, 
Jianghan Road is a major commercial area in Wuhan 
with pedestrian zones covering facilities and landmarks 
for social, leisure, and tourist activities. According to the 
annual report on passenger flow in Wuhan (http:// www. 
jiang han. gov. cn/ mljh/ zsyz/ zsdt/ 201908/ t2019 0816_ 3743. 
shtml), Jianghan Road had a high daily passenger flow 
(e.g., average passenger flow per day until 2019 = 400,000 
people). Xudong is a central business district (CBD) in 
Wuhan with multiple hospitals, schools, and universi-
ties, as well as connections to various major roads (e.g., 
Heping Road, Youyi Road, the Second Yangtze River 
Bridge in Wuhan). These results may also explain the 
high  PM2.5 exposure among taxi drivers in the morning 
during the weekday and in the evening during the week-
end, i.e., peak working hours and peak times for social, 
leisure, and tourist activities, respectively.

In comparison, activity hotspots of taxi drivers with 
low exposure were in new commercial areas in extended 
urbanized areas such as Optics Valley International Plaza 
(Fig. 11b). Although these areas also have frequent road 
transit that can increase traffic-related  PM2.5 exposure, 
they are better designed with better ventilation and a 
lower building density. Furthermore, these drivers need 
to drive further and pass through nearby districts for 
work which are usually residential areas or suburbs with 
more greenery and less traffic leading to lower  PM2.5 
exposure.

For major transportation interchanges/terminals, taxi 
drivers may be frequently exposed to  PM2.5 pollution 
from both nearby road traffic and railway systems. Spe-
cifically, Hankou Railway Station and Wuchang Railway 

Station are two major train stations in Wuhan responsi-
ble for the departure or transit of northbound and south-
bound passengers every day. Thus, trains frequently pass 
through the railway systems near these stations daily. 
More importantly, there are several nearby bus terminals 
with a large flow of people and vehicles including interur-
ban coaches and local buses as well as cars and taxis. This 
population dynamic potentially increases taxi drivers’ 
exposure to traffic-related  PM2.5 during the peak hour of 
transit and partially explains why taxi drivers could also 
be exposed to high  PM2.5 exposure at midnight on both 
weekdays and weekends, as they might serve customs to 
connect to intracity trains and coaches.

The pollution episode between May 21—27 matched 
with the local news from China, for example, the People’s 
Daily reported that Wuhan had the second worst air pol-
lution among 161 Chinese cities (http:// env. people. com. 
cn/n/ 2014/ 0521/ c1010- 25044 033. html), possibly due to 
regional climate but this requires further exploration.

Health and policy implications
Based on the results, taxi drivers who work in urban 
areas could be at risk, especially those who frequently 
drive to commercial areas in central districts and major 
transportation interchanges. Specifically, the average 
 PM2.5 exposure among taxi drivers during weekdays was 
already 11.5% higher than the WHO’s threshold and cut-
off for “unhealthy for sensitive groups” noted in China’s 
guideline. Those who frequently drive to central districts 
and major transportation interchanges may be exposed 
to a higher level of  PM2.5, thus taxi drivers in urban China 
could be at risk of severe health risks due to their high 
 PM2.5 exposure during working hours.

Fig. 11 Two main hotspots: a Jianghan Road (Open-source photo from government site: http:// www. jiang han. gov. cn/) and (b) Optics Valley 
International Plaza (Open-source photo from local newspaper: http:// www. cnhub ei. com/)

http://www.jianghan.gov.cn/mljh/zsyz/zsdt/201908/t20190816_3743.shtml
http://www.jianghan.gov.cn/mljh/zsyz/zsdt/201908/t20190816_3743.shtml
http://www.jianghan.gov.cn/mljh/zsyz/zsdt/201908/t20190816_3743.shtml
http://env.people.com.cn/n/2014/0521/c1010-25044033.html
http://env.people.com.cn/n/2014/0521/c1010-25044033.html
http://www.jianghan.gov.cn/
http://www.cnhubei.com/
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It is important to note that long-term exposure to 
 PM2.5 can induce lung cancer among the urban Chinese 
population. For example, a study of the Yangtze River 
Delta (YRD) region [36] found that ~ 12,574–14,504 lung 
cancer deaths were attributable to  PM2.5 in YRD, and the 
deaths in urban areas could be 7–13 times higher than 
those in rural areas. Guo et al. [11] also found that long-
term exposure to  PM2.5 could result in a much higher 
incidence rate and mortality risk among urban males 
than rural males across 353 counties in China. Long-term 
exposure to  PM2.5 in China is also associated with cardio-
vascular and respiratory diseases [20, 42]. Furthermore, 
frequently driving a taxi might also affect the driver’s 
physical activity and diet resulting in comorbidities such 
as obesity, hypertension, diabetes, and related chronic 
diseases that could further increase the risk of  PM2.5 
exposure.

Thus, it is important to provide community health 
training (e.g., program to enhance knowledge, attitude, 
and practice) to increase the health awareness of taxi 
drivers [24]. Taxi drivers should also enhance their envi-
ronmental awareness, such as knowledge to install of 
air purifiers and attitude regarding frequently checking 
air filters. Additionally, knowledge to enhance healthy 
behaviors should also be provided to minimize potential 
risks from comorbidity. Raising such awareness among 
taxi drivers about the risks of  PM2.5 exposure and provid-
ing guidance on protective measures can contribute to 
their well-being.

Additionally, strategies to improve urban design should 
also be applied to reduce the risk of long-term  PM2.5 
exposure. For example, urban greening should be applied 
along the major roads to remove air pollutants [18] and 
future major roads could be built along wind corridors to 
enhance urban ventilation so that less  PM2.5 is trapped in 
the high-rise, high-density environment [7].

Limitations
Several limitations need to be noted in this study for 
future research: (1) the representative station was near 
major traffic spots and although these stations were more 
statistically stable for mapping and analysis, the pollution 
level was much higher than the average dynamic expo-
sure. Therefore, other types of monitoring stations should 
be used for comparison to quantify the local risk and dif-
ferentiate different local scenarios (e.g., air pollution level 
in residential areas). (2) Our base map that represents 
spatial variability of  PM2.5 exposure was from a nation-
wide model (spatial resolution: 1 km) and although this 
model is representative of the China scenario, enhanced 
results for local scale with finer resolution should also be 
applied to enhance the estimation. Specifically, it is rec-
ommended to use real-time traffic volume data and data 

from various emission sources for local modelling and 
validation in the future. (3) This study followed previous 
studies [43] to use the difference between the monitor-
ing data and reference data for the temporal adjustment. 
However, for temporal adjusting spatially rich data, the 
ratio between the monitoring data and reference data 
in the background or the nearest monitoring site may 
also be appropriate, and different methods may yield 
the results. Future studies should compare the differ-
ences and uncertainties between various types of tempo-
ral adjustment. (4) As the data on taxi driver’s behaviors 
were retrieved from GPS information, we were not able 
to obtain sociodemographic information on each driver 
for further analysis, so future studies should consider 
using multiple sources of big data (e.g., taxi apps with 
drivers’ information) to enhance the data analysis.

Conclusion
Understanding  PM2.5 exposure is of significant impor-
tance due to its potential adverse effects on human 
health and the environment. Taxi drivers, due to their 
job nature, spend a significant amount of time on the 
road and may be exposed to varying levels of  PM2.5. Con-
cerns about population exposure to  PM2.5 are particu-
larly pertinent for taxi drivers, especially in urban and 
densely populated regions characterized by prevalent 
traffic-related pollution and other emission sources. Con-
sequently, this study proposed a rapid assessment frame-
work to estimate dynamic population exposure to  PM2.5 
among taxi drivers based on the annual  PM2.5 concentra-
tion map, monitoring station data, and GPS-based taxi 
trajectory data. An empirical study in Wuhan, China was 
conducted to validate the proposed framework, showing 
that taxi drivers could be at risk of high  PM2.5 exposure, 
especially those who frequently drove to major transpor-
tation terminals and within central districts. The research 
findings are beneficial for promoting air quality manage-
ment and occupational risk prevention to mitigate poten-
tial health risks of taxi drivers.
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