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Abstract 

Background  Early diagnosis, control of blood glucose levels and cardiovascular risk factors, and regular screening 
are essential to prevent or delay complications of diabetes. However, most adults with diabetes do not meet recom-
mended targets, and some populations have disproportionately high rates of potentially preventable diabetes-related 
hospitalizations. Understanding the factors that contribute to geographic disparities can guide resource allocation 
and help ensure that future interventions are designed to meet the specific needs of these communities. Therefore, 
the objectives of this study were (1) to identify determinants of diabetes-related hospitalization rates at the ZIP code 
tabulation area (ZCTA) level in Florida, and (2) assess if the strengths of these relationships vary by geographic location 
and at different spatial scales.

Methods  Diabetes-related hospitalization (DRH) rates were computed at the ZCTA level using data from 2016 
to 2019. A global ordinary least squares regression model was fit to identify socioeconomic, demographic, healthcare-
related, and built environment characteristics associated with log-transformed DRH rates. A multiscale geographi-
cally weighted regression (MGWR) model was then fit to investigate and describe spatial heterogeneity of regression 
coefficients.

Results  Populations of ZCTAs with high rates of diabetes-related hospitalizations tended to have higher propor-
tions of older adults (p < 0.0001) and non-Hispanic Black residents (p = 0.003). In addition, DRH rates were associated 
with higher levels of unemployment (p = 0.001), uninsurance (p < 0.0001), and lack of access to a vehicle (p = 0.002). 
Population density and median household income had significant (p < 0.0001) negative associations with DRH rates. 
Non-stationary variables exhibited spatial heterogeneity at local (percent non-Hispanic Black, educational attain-
ment), regional (age composition, unemployment, health insurance coverage), and statewide scales (population 
density, income, vehicle access).
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Background
In the United States, the prevalence of diabetes among 
adults is estimated to be as high as 14.7%, and is pro-
jected to increase to 17.9% by 2060 [1, 2]. Early diagnosis, 
control of blood glucose levels and cardiovascular risk 
factors, and regular screening for complications are key 
components of diabetes care to prevent or delay compli-
cations and reduce the risk of major clinical events that 
necessitate hospitalization [3–6]. However, fewer than 
1 in 4 US adults with diagnosed diabetes meet recom-
mended targets for glucose, blood pressure, and lipid 
levels [7]. Despite prior improvements in achieving these 
goals, the percentage of adults with diabetes meeting 
glycemic and blood pressure targets have declined since 
the early 2010s, while the percentage with lipid control 
has plateaued [7–9]. In addition, rates of lower extremity 
amputations due to diabetes and diabetes-associated hos-
pitalizations in the US have increased over the course of 
the past decade [10, 11]. In 2017, $69.7 billion in health-
care expenditures in the US were attributed to hospital 
inpatient stays by patients with diabetes [12].

There is evidence of geographic disparities in access 
and utilization of diabetes care, as well as burden of dia-
betes and diabetes-related complications in the United 
States [13–17]. A contiguous region in the Southeast-
ern US has been termed the Diabetes Belt due to the 

disproportionately high diabetes prevalence in this 
region compared to the rest of the country [13, 14]. How-
ever, despite the relatively high burden of the condition, 
those with diabetes in the Southern US have lower odds 
of receiving hemoglobin A1c (HbA1c) testing at recom-
mended intervals, and higher odds of foregoing neces-
sary medical care due to cost compared to other regions 
[15, 16]. In addition, patients with diabetes in the South 
have higher odds of experiencing hypoglycemic events, 
and higher odds of death during a diabetes-related hos-
pitalization compared to other parts of the country [15, 
17].

In Florida, the most populous state in the Southeastern 
US, over 2 million adults have been diagnosed with dia-
betes [18], and it is estimated that an additional 546,000 
Floridians have diabetes that is yet to be diagnosed [19]. 
Within the state, there is significant geographic varia-
tion in the distribution of diabetes prevalence [20–22]. In 
addition, recent research has identified local geographic 
hotspots of diabetes-related hospitalization (DRH) rates 
[23], indicating that some communities in the state bear a 
disproportionately high burden of potentially preventable 
diabetes complications. Communities in these hotspots 
also face a major financial burden; in 2018, the median 
cost of a hospital stay due to diabetes in Florida was 
$40,718 [24]. In order to reduce the observed disparities 

Conclusions  The findings of this study underscore the importance of socioeconomic resources and rurality in shap-
ing population health. Understanding the spatial context of the observed relationships provides valuable insights 
to guide needs-based, locally-focused health planning to reduce disparities in the burden of potentially avoidable 
hospitalizations.

Highlights 

•	 Diabetes-related hospitalization rates exhibited marked variation at  the  local level, which may be masked 
in investigations of larger geographic units. Hospitalization rates can be a useful indicator of diabetes outcomes 
at  the  local level, particularly in  states or  countries without  population-level data from  disease registries and/
or spatially representative health surveys.

•	 This is  the  first study to  use multiscale geographically weighted regression (MGWR) to  investigate determi-
nants of diabetes-related hospitalization rates at the local level. Strengths of associations between determinants 
and hospitalization rates varied based on geographic location within  the study area. This information is useful 
to guide targeted resource allocation and needs-based health planning, and MGWR can be employed in other 
study areas to investigate spatially-variable determinants of diabetes-related outcomes.

•	 Associations between  the  identified determinants and  diabetes-related hospitalization rates exhibited spatial 
heterogeneity at local, regional, and statewide levels. This information can serve policymakers and public health 
planners by suggesting the spatial scale at which a given intervention strategy should be implemented. Future 
ecological studies should consider spatial scale as well as geographic location when investigating determinants 
of diabetes and other chronic disease outcomes.

Keywords  Diabetes, Hospitalizations, Multiscale geographically weighted regression, Geographic Information 
Systems
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in DRH rates, it is important to close gaps in adherence 
to preventive practices and utilization of diabetes care 
[7, 8]. Identifying predictors of hospitalization rates will 
provide useful information to guide public health plan-
ning and evidence-based interventions to address bar-
riers to achieving diabetes care targets. Furthermore, 
understanding the spatial context of these relationships 
can help guide resource allocation and ensure that future 
interventions are designed to meet the specific needs of 
these communities. Therefore, the objectives of this study 
were (1) to identify determinants of diabetes-related hos-
pitalization rates at the ZIP code tabulation area (ZCTA) 
level in Florida, and (2) assess if the strengths of these 
relationships vary by geographic location and at different 
spatial scales.

Methods
Study design and setting
This retrospective ecological study was conducted in the 
Southeastern US state of Florida. In 2019, the state had 
an estimated adult population of 16.7 million, 4.2 mil-
lion of whom were aged 65 and older [25]. There are 983 

ZIP code tabulation areas (ZCTAs), which are areal rep-
resentations of post office ZIP codes, in Florida (Fig.  1) 
[26]. In 2019, the estimated diabetes prevalence among 
Florida adults was 11.7%, compared to 9.3% for the US 
overall [27]. However, prevalence estimates at the ZCTA 
level in Florida ranged from 1.0% to 24.5% [28]. The main 
outcome measure in this study was ZCTA-level diabe-
tes-related hospitalization (DRH) rates among adults 
18 years of age and older during the period from 2016 to 
2019. Factors investigated for potential associations with 
DRH rates were socioeconomic, demographic, health-
care-related, and built environment characteristics.

Data sources
Hospital inpatient data files were provided by the Flor-
ida Agency for Health Care Administration through a 
Data Use Agreement with the Florida Department of 
Health. All other data used in the study were obtained 
from publicly available sources. Model-based small area 
estimates of diabetes prevalence were obtained from 
the Centers for Disease Control and Prevention (CDC) 
Population-Level Analysis and Community Estimates 

Fig. 1  Geographic distribution of counties and major cities and urban–rural classification of ZCTAs in Florida, USA
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(PLACES) project [29]. Population size, socioeconomic 
and demographic characteristics were obtained from 
the US Census Bureau American Community Survey 
5-year estimates [30–35]. Built environment variables 
assessed included food retailers and fitness/recreational 
facilities. Data on these variables were obtained from 
the 2016 US Census Bureau ZIP Code Business patterns 
[36]. Address ZIP codes for pharmacies and practices of 
internal medicine and family practice physicians were 
obtained from the Florida Department of Health, Divi-
sion of Medical Quality Assurance’s Florida Health-
care Practitioner Data Portal [37]. Locale assignments 
for rural–urban classification of ZCTAs were obtained 
from the National Center for Education Statistics [38]. 
Cartographic boundary shapefiles used for mapping 
were downloaded from the U.S. Census Bureau TIGER 
Geodatabase and the Florida Geographic Data Library 
[39, 40].

Data preparation
Diabetes‑related hospitalizations
Records of diabetes-related hospitalizations for patients 
aged 18 to 100  years with home address ZIP codes in 
Florida and admission dates between January 1, 2016 and 
December 31, 2019 were extracted from the hospital dis-
charge data. The inclusion criteria for diabetes-related 
hospitalizations for this study were based on the Agency 
for Healthcare Research and Quality (AHRQ) Prevention 
Quality Indicators, the Diabetes Complications Sever-
ity Index (DCSI), and reporting by the Florida Diabetes 
Advisory Council [24, 41–46]. Diabetes-related hospitali-
zations were defined as those with: a principal diagnosis 
code for diabetes with short-term complications, long-
term complications, or uncontrolled diabetes [41–43]; a 
procedure code for lower-extremity amputation (includ-
ing toe amputations) in any field and a diagnosis of Type 
1 or Type 2 diabetes mellitus in any field [24, 44]; or a 
principal diagnosis of a diabetes complication included in 
the DCSI and a diagnosis of Type 1 or Type 2 diabetes 
mellitus in any field [45, 46].

Patient address ZIP codes were joined to ZCTAs using 
the crosswalk table developed by John Snow, Inc., and 
aggregated to the ZCTA level [47]. Rates of diabetes-
related hospitalizations were computed by dividing 
the number of diabetes-related hospitalizations by the 
total number of person-years at risk. The median age of 
patients with diabetes-related hospitalizations for each 
ZCTA was also computed. After exclusion of ZCTAs 
with fewer than 10 diabetes-related hospitalizations or 
populations of fewer than 100 adult residents to mini-
mize disclosure risk and small number bias, 933 ZCTAs 
remained for further analysis.

Socioeconomic, demographic, healthcare‑related and built 
environment variables
The following socioeconomic and demographic vari-
ables were considered as potential predictor variables: 
population density, median age, median household 
income and household value, percent of the population 
that were 65  years or older, Hispanic or non-Hispanic 
Black, 25  years or older without a high school educa-
tion, 25 years or older with a bachelor’s degree or higher, 
percent of families with income below the poverty level, 
percent of unemployed residents, percent without health 
insurance coverage, and percent of households without a 
vehicle.

North American Industry Classification System 
(NAICS) codes were used to extract the number of 
businesses in each ZIP code classified as: conveni-
ence stores (NAICS code 445120), limited service res-
taurants (NAICS code 722211), supermarkets (NAICS 
code 445110), fruit and vegetable markets (NAICS code 
445230), warehouse clubs (NAICS 452910), and fitness 
and recreational sports centers (NAICS 713940). The 
John Snow, Inc. crosswalk was used to join ZIP codes of 
food retailers, fitness/recreational centers, pharmacies, 
and primary care practices to ZCTAs [47]. A ZCTA-
level version of the modified retail food environment 
index (mRFEI), which measures the percent of “healthy” 
food retailers in an area [48], was also computed. Busi-
nesses included in the category of healthy food retailers 
were supermarkets, produce markets, and warehouse 
clubs, while those included in the “less healthy” cate-
gory included limited service (fast food) restaurants and 
convenience stores. ZCTA-level densities of food retail-
ers, fitness/recreational facilities, and pharmacies were 
computed using land area from the ZCTA shapefile. The 
number of primary care practices per 10,000 population 
in each ZCTA was also computed.

Statistical analysis
Descriptive statistical analyses
Statistical analysis was performed using SAS version 9.4 
[49]. Normality of distribution of continuous ZCTA-
level characteristics was assessed using the Shapiro–Wilk 
test, and median and interquartile range (IQR) were 
used as measures of central tendency and dispersion 
for non-normally distributed variables. Characteristics 
of hospitalizations and ZCTAs included in the spatial 
analysis were compared with those that did not meet the 
inclusion criteria using the Wilcoxon rank sum test for 
continuous variables, and the Chi-square test for categor-
ical variables. Diabetes-related hospitalization rates were 
smoothed in GeoDa 1.18.0 using the spatial empirical 
Bayes approach with queen contiguity weights [50].
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Ordinary least squares regression model
An ordinary least squares (OLS) regression model was fit 
to the data to identify predictors of diabetes-related hos-
pitalization rates. Due to the highly skewed distribution 
of ZCTA-level DRH rates, natural log transformation 
of the outcome measure was performed. In addition, all 
continuous variables were standardized to have a mean 
of 0 and standard deviation of 1 to facilitate compari-
son with the results of the MGWR analysis described in 
the following section. To identify candidate variables for 
inclusion in the multivariable model-building process, 
univariable associations between potential predictors 
and log-transformed DRH rates were first assessed. A 
significance level of 0.15 was used to identify variables for 
consideration in the multivariable model.

To prevent problems with multicollinearity, Spearman’s 
rank correlation coefficient was used to identify pairs of 
highly correlated (|rs|≥ 0.7) variables, from which one 
variable was selected as a potential predictor for inclu-
sion in the model-building process. Variable selection for 
the multivariable OLS regression model was performed 
using manual backwards elimination, using a critical 
p-value of 0.05. During the model-building process, col-
linearity between explanatory variables was assessed 
using variance inflation factor (VIF), with VIF ≥ 10 
indicating multicollinearity [51]. Confounding was 
assessed using theoretical and empirical methods. Vari-
ables hypothesized to be confounders based on literature 
review were included in the model regardless of statisti-
cal significance. In addition, the magnitudes of changes 
in coefficient estimates were examined as each variable 
was removed from the model. A variable was considered 
for retention in the model regardless of statistical signifi-
cance as a potential confounder if its removal resulted 
in a 20% or greater change in the coefficient estimate of 
another variable in the model and its inclusion did not 
substantially worsen model fit. Univariable OLS regres-
sion was also used to assess for association between log-
transformed DRH rates and the median age of patients 
with diabetes-related hospitalizations.

Multiscale geographically weighted regression model
Global regression models assume that relationships 
between an outcome variable and its determinants do 
not vary by geographic location within a given study area 
[52]. However, violations of this assumption may occur 
with geographical data, resulting in model misspecifi-
cation. Therefore, a multiscale geographically weighted 
regression (MGWR) analysis was performed to assess 
for spatial variability in regression coefficients and deter-
mine the optimal model to assess these relationships 
[53–56]. Rather than computing a single coefficient that 
estimates the average association between an explanatory 

and outcome variable for the entire study area, geograph-
ically weighted regression models estimate a regression 
coefficient for each location in the study area [52]. Model 
parameters for each geographic unit are estimated using 
a local subset of observations that are weighted by their 
distance from that location [52]. The weight assigned 
to a given observation depends on the type of weight-
ing function selected, and its bandwidth determines the 
size of the local subset of observations used to estimate 
model parameters [52]. Multiscale GWR differs from 
standard and semiparametric GWR in that a unique ker-
nel bandwidth is computed for each explanatory variable 
in the model [53–56]. In standard GWR, a single band-
width is computed and used for all explanatory variables 
in the model [53–56]. Semiparametric GWR allows for 
specification of variables as either global (stationary) or 
local (spatially non-stationary), with a single bandwidth 
computed and used for all local variables in the model 
[53–56].

The multiscale GWR analysis was implemented using 
the mgwr package in Python, specifying the explanatory 
variables as those selected for the final global multivari-
able OLS model [57]. To enable comparison of band-
width values, continuous variables were standardized to 
have a mean of 0 and standard deviation of 1 [53–57]. 
An adaptive bi-square weighting kernel was selected as 
the weighting scheme. This method is useful when geo-
graphic units within the study area vary in size, because 
the radius of the kernel depends on a fixed number of 
nearest neighbors rather than a fixed distance [53, 58]. 
Therefore, the optimal bandwidth for each variable may 
be interpreted as the number of nearest neighbors used 
to estimate its local regression coefficient for each ZCTA 
in the study area [53, 58]. Optimal bandwidths were 
selected using the Golden section search method and 
the bias-corrected Akaike’s Information Criterion (AICc) 
as the optimization criterion. Covariate-specific critical 
t-values, corrected for multiple testing by adjusting for 
the effective number of parameters, were used to identify 
ZCTAs with statistically significant relationships between 
each explanatory variable and the dependent variable [54, 
57]. An explanatory variable was considered to exhibit 
significant spatial non-stationarity if the interquartile 
range of its coefficient estimates from the MGWR model 
was greater than twice the standard error of its coeffi-
cient estimate from the global OLS model [58].

The optimal bandwidths of the variables in the MGWR 
model were examined to determine whether a simpler, 
alternate GWR model should be considered [55, 56]. For 
example, spatial non-stationarity and similar bandwidths 
for all variables would suggest a standard GWR model 
may be appropriate [55, 56]. A subset of stationary vari-
ables, with the remainder exhibiting non-stationarity and 
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having similar bandwidths, would suggest a semipara-
metric GWR model should be considered [55, 56]. Model 
fit of the global and local models was compared using 
AICc values. Residual plots were generated to assess the 
distribution of the standardized residuals from the final 
model, assess for heteroskedasticity, and identify outliers.

Cartographic displays
Smoothed diabetes-related hospitalization rates and dia-
betes prevalence estimates obtained from CDC PLACES 
data were displayed in choropleth maps using ArcGIS 
[29, 59]. In addition, choropleth maps were generated to 
show the ZCTA-level distribution of explanatory vari-
ables from the final MGWR model and to display local 
coefficients for non-stationary variables. The class ranges 
used for display of continuous variables in map figures 
were determined using Jenks’ natural breaks classifica-
tion scheme, except for population density, which was 
displayed using a quantile map [60].

Results
Descriptive analyses
There were 554,679 diabetes-related hospitalizations 
in Florida between 2016 and 2019. A total of 546 hos-
pitalizations (0.098%) for patients from 50 ZCTAs that 
had fewer than 10 diabetes-related hospitalizations dur-
ing the study period and/or a population at risk of fewer 
than 100 adult residents during any year of the study 
period were excluded. Characteristics of excluded hospi-
talizations and ZCTAs and comparisons with those that 
met the inclusion criteria are listed in Additional file  1: 
Table  S1. In total, 554,133 diabetes-related hospitaliza-
tions from patients in 933 ZCTAs were included in the 
analysis. The median ZCTA-level diabetes prevalence 
was 12.5% (interquartile range [IQR] 10.6–14.3%), and 
the median rate of diabetes-related hospitalizations was 
8.4 per 1000 person-years (IQR 6.0–11.4) (Table 1). The 
ZCTA-level median age of patients with diabetes-related 
hospitalizations was 67  years (IQR 64–70  years), but 
tended to be lower in ZCTAs with higher hospitalization 
rates (β = − 0.027, SE = 0.003, exp(β) = 0.974, p < 0.0001).

The geographic distributions of diabetes prevalence 
and DRH rates are displayed in Fig. 2. Rural areas, such as 
the region surrounding Tallahassee, north-central Florida 
between Orlando and Jacksonville, and south-central 
Florida, tended to have relatively high diabetes preva-
lence. In addition, there were densely populated, urban 
ZCTAs in Miami, Fort Lauderdale, Tampa, Orlando, and 
Jacksonville that had relatively high diabetes prevalence. 
Similarly, rural ZCTAs in north-central Florida tended 
to have high DRH rates, as did many of the rural ZCTAs 
in south-central Florida. In addition, the central urban 
ZCTAs of Miami, Fort Lauderdale, and Jacksonville had 

relatively high DRH rates. Diabetes-related hospitali-
zation rates were comparatively lower in the suburban 
ZCTAs surrounding large metropolitan areas. There 
were some differences between the spatial patterns of 
diabetes prevalence and DRH rates. For example, many 
of the rural ZCTAs in Holmes and Jackson Counties to 
the east of Tallahassee had high diabetes prevalence, but 
relatively low rates of diabetes-related hospitalizations 
compared to the rest of the state.

Summary statistics of ZCTA-level characteristics are 
displayed in Table  1. The study area was largely com-
prised of ZCTAs classified as either rural (45.4%) or 
suburbs/towns (35.9%), with the remaining 18.7% clas-
sified as cities. The median percentage of older adults 
(those aged ≥ 65  years) was 19.3%. ZCTA populations 
had a median of 8.0% non-Hispanic Black residents, and 
10.4% Hispanic residents. Median household income at 
the ZCTA level was $53,988, but ranged from $13,375 to 
$170,673. The median percent of families with income 
below the poverty level was 8.9%, and the median unem-
ployment rate was 5.2%. The median percent of adults 
with educational attainment below the high school level 
was 10.4%, and a median of 25.4% of adults had a bach-
elor’s degree or higher. The median percent of the pop-
ulation without health insurance coverage at the ZCTA 
level was 11.7%, but ranged from 0% to 50.4%. Built envi-
ronment characteristics such as density of pharmacies, 
food retailers, and recreational centers were highly corre-
lated (|rs|> 0.7) with one another, and pharmacy and food 
retailer density were also highly correlated with popula-
tion density and rural–urban classification.

Predictors of diabetes‑related hospitalization rates
Global ordinary least squares regression model
Results of the final global multivariable ordinary least 
squares regression model are displayed in Table  2. 
Explanatory variables that had statistically significant, 
positive associations with log-transformed diabetes-
related hospitalization rates included the percent of the 
population aged 65 and older (p < 0.0001), percent of 
non-Hispanic Black residents (p = 0.003), unemployment 
(p = 0.001), percent without health insurance coverage 
(p < 0.0001), and percent of households without access 
to a vehicle (p = 0.002). Population density (p < 0.0001) 
and median household income (p < 0.0001) had signifi-
cant negative associations with DRH rates. Since eth-
nicity and educational attainment have previously been 
identified as predictors of self-management behaviors, 
access to healthcare, and diabetes-related outcomes in 
both individual-level and ecological studies, the percent 
of Hispanic residents and percent without a high school 
education were retained in the model despite their lack 
of statistically significant associations with the outcome 
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[9, 16, 61–71]. No evidence of confounding was identified 
based on percent change in coefficient estimates during 
backwards elimination.

The geographic distributions of the predictor vari-
ables included in the global OLS model are displayed in 
Fig. 3. Populations of ZCTAs along the Gulf Coast, south 
of the Tampa Bay area, and in the rural region to the 
north of Tampa and northeast of Orlando had the high-
est percentages of adults aged 65 and older, while the 
percentage of older adults in populations of major cities 
was relatively low. The percent of non-Hispanic Black 
residents tended to be highest in populations of ZCTAs 
surrounding Tallahassee, as well as in large cities such as 

Jacksonville, Orlando, Miami, and Fort Lauderdale. The 
percent of Hispanic residents was lowest in populations 
of ZCTAs in northern Florida and the panhandle, and 
tended to be higher in central and south Florida. There 
were similarities in the distribution of several socioeco-
nomic variables, including median household income, 
the unemployment rate, vehicle access, and educational 
attainment. Suburban and fringe rural ZCTAs adjacent 
to urban areas tended to have higher income, educational 
attainment, employment rates, and vehicle access, while 
these were often lower in distant or remote rural areas as 
well as some of the most densely populated urban ZCTAs 
in major cities such as Miami and Jacksonville.

Table 1  Summary statistics of characteristics of ZIP code tabulation areas in Florida, 2016–2019

*Percent and frequency presented for categorical variable
a Interquartile range; bDiabetes-related hospitalization; cFederal poverty level

Theoretical domains & variables Median IQRa n

Health outcomes

Diabetes prevalence 12.5 10.6–14.3 933

DRHb rate per 1000 person-years 8.4 6.0–11.4 933

Median age of DRHb patients 67.0 64.0–70.0 933

Rurality/urbanization*

Population density 471.4 83.3–1200.5 933

Rural/urban designation*

 Rural 45.4 – 424

 Suburban/town 35.9 – 335

 City 18.7 – 174

Demographic characteristics

Median age 42.5 37.8–50.5 933

Percent 65 years of age and older 19.3 14.2–26.9 933

Percent non-Hispanic Black 8.0 3.0–17.5 933

Percent Hispanic 10.4 5.1–23.6 933

Economic characteristics

Median household income $53,988 $44,239–68,382 929

Median household value $191,500 $135,400–274,100 919

Percent of families with income below FPLc 8.9 5.4–13.7 931

Percent unemployed 5.2 3.9–7.1 933

Percent of households without a vehicle 4.6 2.6–7.6 932

Educational attainment

Percent aged ≥ 25 years without a high school education 10.4 6.4–16.5 933

Percent aged ≥ 25 years with a bachelor’s degree or higher 25.1 16.2–37.7 933

Healthcare access

Percent without health insurance 11.7 8.4–15.7 933

Primary care physicians per 10,000 population 6.4 1.97–13.8 933

Pharmacies per 100 km2 13.4 1.1–52.8 933

Built environment resources

Healthy food retailers per 100 km2 6.6 0.6–24.8 933

Less healthy food retailers per 100 km2 26.5 2.4–105.3 933

Modified retail food environment index 20.0 11.8–27.5 933

Recreational facilities per 100 km2 2.4 0–12.3 933
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Multiscale geographically weighted regression model
Results of the multiscale geographically weighted 
regression model are displayed in Tables  3, 4, 5. The 
interquartile ranges of the local regression coefficients 
in the MGWR model were greater than twice the stand-
ard errors of the coefficients from the global model for 
all parameters except the percent of Hispanic residents 
(Table  3). These findings indicate that the coefficients 
for the intercept and all other explanatory variables in 
the model exhibited significant spatial non-stationarity, 
varying in strength based upon geographic location in 
the study area.

Since the bandwidths in an MGWR model control 
the number of local observations (i.e. number of near-
est neighbors) used to compute regression coefficients, 

their values indicate the spatial scale at which the 
associations between explanatory variables and the 
outcome vary within the study area [53–55]. A vari-
able with a small bandwidth relative to the number of 
units in the study area has a large effective number of 
parameters (ENP) and greater spatial heterogeneity, 
while a bandwidth approaching the total number of 
observations and ENP close to 1 indicate little spatial 
variation in the strength of the association [53–55]. 
The optimal bandwidths identified in this study var-
ied, suggesting that simpler standard or semiparamet-
ric GWR models would not adequately describe the 
spatial variation in the observed associations (Table 4). 
Comparison of the AICc values from the global OLS 
model (AICc = 1951.469) and the MGWR model 

Fig. 2  Geographic distribution of ZCTA-level diabetes prevalence estimates and smoothed diabetes-related hospitalization rates in Florida, 
2016–2019

Table 2  Predictors of log-transformed ZCTA-level diabetes-related hospitalization rates in Florida, 2016–2019

a Regression coefficient; bStandard error; cVariance inflation factor

Parameter βa (SEb) exp(βa) p-value VIFc

Intercept − 0.010 (0.023) 0.990 0.664 0

Population density − 0.240 (0.031) 0.787 < 0.0001 1.850

Percent 65 and older 0.125 (0.027) 1.133 < 0.0001 1.436

Percent non-Hispanic Black 0.085 (0.029) 1.089 0.003 1.636

Percent Hispanic − 0.020 (0.031) 0.980 0.518 1.879

Median household income − 0.458 (0.034) 0.633 < 0.0001 2.242

Percent without a high school education 0.041 (0.036) 1.042 0.253 2.535

Unemployment rate 0.092 (0.027) 1.096 0.001 1.207

Percent without health insurance 0.118 (0.032) 1.125 < 0.0001 1.962

Percent without access to a vehicle 0.097 (0.032) 1.102 0.002 2.020
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(AICc = 1414.473) indicated that the MGWR model 
had better fit to the data than the global model.

The geographic distributions of coefficient estimates 
for explanatory variables with significant spatial non-
stationarity from the final MGWR model are presented 

in Figs. 4 and 5. For each model parameter, the map on 
the left shows the distribution of coefficient estimates for 
all ZCTAs in the study area, while the map on the right 
shows only statistically significant estimates, with correc-
tion for multiple hypothesis testing. Parameter estimates 

Fig. 3  Geographic distribution of predictors of ZCTA-level diabetes-related hospitalization rates in Florida, 2016–2019

Table 3  Assessment of spatial non-stationarity of regression coefficients in MGWR model predicting log-transformed diabetes-related 
hospitalization rates

a Standard error; bGlobal ordinary least squares regression model; cInterquartile range; dMultiscale geographically weighted regression model

Parameter SEa (OLSb) IQRc (MGWR​d) IQRc–2(SEa)

Intercept 0.023 0.489 0.443

Population density 0.031 0.287 0.225

Percent 65 and older 0.027 0.190 0.136

Percent non-Hispanic Black 0.029 0.257 0.199

Percent Hispanic 0.031 0.010 − 0.052

Median household income 0.034 0.157 0.089

Percent without a high school education 0.036 0.362 0.290

Unemployment rate 0.027 0.177 0.123

Percent without health insurance 0.032 0.343 0.279

Percent without access to a vehicle 0.032 0.108 0.044
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with the lowest bandwidths relative to the number of 
units in the study area, implying regression coefficients 
with the most spatial heterogeneity, included the inter-
cept (BW = 25), percent of non-Hispanic Black resi-
dents (BW = 27), and educational attainment (BW = 54) 
(Table  4). This spatial heterogeneity is apparent in the 
maps of the regression coefficients, which exhibited a 
great deal of local variation and were only significant in a 
subset of ZCTAs in the study area (Figs. 4 and 5).

Another subset of explanatory variables had associa-
tions with DRH rates that varied at a more regional spa-
tial scale, as evidenced by their bandwidth values and the 
geographic distribution of their regression coefficients. 
These included population age composition (BW = 146), 
the unemployment rate (BW = 199), and percent with-
out health insurance coverage (BW = 81) (Table  4). The 
percent of adults aged 65 and older was significantly 

associated with DRH rates in 82.1% of the ZCTAs in the 
study area, with the strongest associations in the pan-
handle, the Orlando area, and south of Fort Lauderdale 
(Fig. 4). Significant associations between the unemploy-
ment rate and DRH rates occurred primarily in southern 
Florida, and were also observed in southwest Orange 
County, including part of the Orlando area (Fig.  5). 
Health insurance coverage was significant predictor of 
DRH rates in about one-third (32.4%) of ZCTAs, with the 
strongest associations in the Jacksonville and Orlando 
areas (Fig. 5).

Non-stationary variables with the largest bandwidths, 
implying less heterogeneity of regression coefficients, 
included population density (BW = 315), median income 
(BW = 275), and vehicle access (BW = 446) (Table 4). The 
variation in the strengths of their associations with DRH 
rates occurred at a larger spatial scale, with less hetero-
geneity within the study area. For instance, the negative 
association between population density and DRH rates, 
which was significant in most of the study area, was 
strongest in northern Florida and gradually decreased in 
magnitude toward the southern and western parts of the 
state (Fig.  4). Median household income was also nega-
tively associated with DRH rates in most of the state, with 
the strongest associations observed in Southwest Florida 
(Fig. 4). The percent of households that lacked access to 
a vehicle was a significant predictor of DRH rates across 
central Florida (Fig. 5).

Discussion
This study identified determinants of local (ZCTA-level) 
geographic disparities of diabetes-related hospitaliza-
tion rates in Florida. Identified significant determinants 
included population demographic composition, socio-
economic characteristics, and rurality. This study also 

Table 4  Summary of MGWR model predicting log-transformed ZCTA-level diabetes-related hospitalization rates

a Effective number of parameters

Parameter Bandwidth ENPa Critical t-value Number (%) of ZCTAs 
with significant 
coefficients

Intercept 25 83.657 3.445 148 (15.9)

Population density 315 4.052 2.507 739 (79.5)

Percent 65 and older 146 10.034 2.815 763 (82.1)

Percent non-Hispanic Black 27 63.952 3.370 111 (12.8)

Percent Hispanic 920 1.114 2.009 0 (0)

Median household income 275 5.040 2.584 739 (79.5)

Percent without a high school education 54 30.521 3.158 207 (22.3)

Unemployment rate 199 7.805 2.732 207 (22.3)

Percent without health insurance 81 20.167 3.034 301 (32.4)

Percent without access to a vehicle 446 3.703 2.475 421 (45.3)

Table 5  Distribution of local coefficients from MGWR model 
predicting log-transformed ZCTA-level diabetes-related 
hospitalization rates

Parameter Local coefficients

Minimum Median Maximum

Intercept − 0.713 0.038 0.756

Population density − 0.577 − 0.244 − 0.093

Percent 65 and older 0.022 0.294 0.590

Percent non-Hispanic Black − 1.035 0.186 1.118

Percent Hispanic − 0.006 0.008 0.013

Median household income − 0.449 − 0.341 − 0.057

Percent without a high school 
education

− 0.355 0.195 0.649

Unemployment rate − 0.112 0.068 0.234

Percent without health insurance − 0.170 0.075 0.714

Percent without access to a vehicle 0.011 0.075 0.188
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Fig. 4  Distribution of all (left) and significant (right) local coefficients of predictors of diabetes-related hospitalization rates
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demonstrated the use of multiscale geographically 
weighted regression as a tool for describing the spatial 
variation in the associations between these determinants 
and DRH rates. The observed associations differed in 
both strength and direction based on geographic location 
within the state, and exhibited differing levels of spatial 
heterogeneity.

Populations with high DRH rates tended to have higher 
proportions of older adults, an association that was sig-
nificant in most of the state. At the individual level, age 
is a risk factor for diabetes as well as macrovascular 

complications such as stroke and myocardial infarc-
tion, so this finding was not surprising [72, 73]. To some 
extent, the positive association between DRH rates and 
the percent of adults over the age of 65 may also reflect 
utilization of hospital services, because this popula-
tion has fewer gaps in health insurance coverage due 
to Medicare eligibility [74, 75]. The strength and statis-
tical significance of the association between popula-
tion age composition and DRH rates varied based upon 
geographic location. Weak and/or no associations, 
particularly in areas with relatively high incomes and 

Fig. 5  Distribution of all (left) and significant (right) local coefficients of predictors of diabetes-related hospitalization rates
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percentages of older adults, may, in part, reflect the pres-
ence of active retirement communities and self-selecting 
populations of healthy older adults. It is also worth not-
ing that earlier age of onset of type 2 diabetes is a pre-
dictor of adverse diabetes-related outcomes, independent 
of duration of disease [9, 76–78], and patients with dia-
betes-related hospitalizations in this study tended to be 
younger in areas with high DRH rates, consistent with 
previous research [71]. Thus, it is possible that the asso-
ciation between population age composition and DRH 
rates was attenuated in some parts of the state, particu-
larly those with disproportionately high DRH rates, 
due to the elevated risk profile of younger patients with 
diabetes.

Significant, ZCTA-level associations between house-
hold income and DRH rates were observed across most 
of the study area. This finding may be due to a combina-
tion of individual- and area-level processes, and is con-
sistent with previous research. Patients with diabetes 
who report lower income levels are more likely to forego 
medical care due to cost, and less likely to receive routine 
HbA1c testing, cholesterol testing, and eye examinations 
[16, 68, 79]. Furthermore, neighborhood-level income 
and poverty are associated with heart disease, renal dis-
ease, and lower extremity amputations [80, 81], and per-
ceived neighborhood safety is a predictor of treatment 
nonadherence among adults with diabetes [82]. County-
level associations between socioeconomic status and the 
burden of diabetes complications and ambulatory care 
sensitive hospitalizations have also been reported in the 
US [83–85].

In this study, significant local associations between 
median household income and DRH rates  were not 
observed in northern Florida and the panhandle. Median 
income tended to be low in many of the ZCTAs in this 
region, with a more homogenous distribution than that 
of central and southern Florida. Therefore, the observed 
finding may, at least in part, be due to a lack of vari-
ability in median income between ZCTAs in this region. 
Interestingly, most of the ZCTAs with significant local 
associations between insurance coverage and diabe-
tes-related hospitalizations were located in this area of 
northern Florida, where income was not significantly 
associated with DRH rates. The observed association 
between health insurance coverage and DRH rates is not 
surprising; at the individual level, health insurance is a 
predictor of linkage to care, diagnostic testing, screen-
ing for complications, and glycemic control among 
patients with diabetes [9, 68, 79]. Furthermore, patients 
without health insurance are at higher risk of diabetes-
related hospital deaths than those with insurance [17]. 
The regional variation in the magnitude of local coef-
ficients for health insurance coverage was consistent 

with findings of a study that used MGWR to investi-
gate determinants of mortality rates in the US [86]. This 
regional variation could reflect differences in the avail-
ability of resources for uninsured individuals within the 
state, such as county health programs and services and/
or community health centers [87]. For instance, health 
insurance coverage could be a more important determi-
nant of potentially avoidable hospitalization rates in areas 
with fewer providers of low-cost primary care services. In 
some areas, access to affordable services may be a more 
relevant predictor of receipt of preventive care than the 
supply of primary care physicians. This could explain the 
observed lack of association between DRH rates and pri-
mary care physicians per capita in this study. The find-
ing that income was a stronger determinant of DRH rates 
than insurance coverage in much of the state may also 
reflect cost barriers to healthcare access and effective 
self-management experienced by many patients despite 
having health insurance coverage. While the underlying 
cause of the observed spatial heterogeneity remains to be 
determined, findings of this study suggest that efforts to 
expand health insurance coverage and access to afford-
able care for those without coverage will be particularly 
important in the regions where insurance was a signifi-
cant determinant of DRH rates.

Population-level educational attainment and unem-
ployment were associated with DRH rates in smaller 
subsets of the study area after controlling for income and 
the other variables in the model. Among those with dia-
betes, educational attainment below the high school level 
has previously been associated with healthcare quality 
and utilization in global models [16, 62, 66]. Educational 
attainment and unemployment may also be associated 
with other factors such as income and health insurance 
[87], which may explain the lack of association observed 
in many parts of the study area.

Population density, which was used as a measure of 
rurality in this study, was significantly associated with 
DRH rates, with more densely populated areas tending 
to have lower rates of hospitalizations. In the present 
study, the association between population density and 
DRH rates was strongest in northern Florida, where spa-
tial clusters of pre-diabetes and diabetes prevalence [20, 
22, 88], as well as stroke prevalence [89] and myocardial 
infarction mortality [90] have been identified. Previous 
research suggests that rural residents are more likely to 
report delaying health care due to cost than urban resi-
dents [91]. Furthermore, there is evidence that quality 
of care is worse for rural patients with diabetes than for 
those living in metropolitan areas [68]. In Florida, rural 
populations also tend to have lower rates of participation 
in diabetes self-management education programs [21]. In 
the current study, ZCTAs along the south-central Gulf 



Page 14 of 18Lord and Odoi ﻿International Journal of Health Geographics            (2024) 23:1 

Coast of Florida that did not have significant associations 
between population density and DRH rates had some of 
the strongest relationships between this outcome and 
median income. This could suggest that rural–urban dis-
parities are driven by socioeconomic disparities in some 
areas; however, further research is necessary to support 
this hypothesis.

It is worth noting that population density was selected 
from a group of highly correlated variables, which 
included pharmacy and food retailer densities, for inclu-
sion in the modeling process. Thus, the observed asso-
ciation between rurality and DRH rates, particularly 
in northern Florida, may reflect the availability of built 
environment resources to some extent. Several counties 
in northern Florida are part of the Diabetes Belt [13, 14], 
where predictors of diabetes prevalence were reported 
to differ from the rest of the United States [92]. These 
included recreational facility density and natural ameni-
ties, predictors that were unique to the Diabetes Belt [92].

Transportation barriers may also contribute to 
rural–urban disparities in health outcomes by creating 
additional time demands for patients. Patients who expe-
rience transportation barriers to health care tend to uti-
lize emergency department services more frequently and 
tend to have worse self-rated health status compared to 
those who do not report such barriers [91, 93]. A review 
of transportation barriers to healthcare access found that 
access to a vehicle was consistently identified as a predic-
tor of access to care, while there was less evidence in sup-
port of distance to providers as a barrier to receiving care 
[94]. This is in line with the findings of our study, which 
identified vehicle access, but not density of primary care 
physicians, as a significant predictor of diabetes-related 
hospitalization rates. Regional differences in transporta-
tion barriers to health care have previously been reported 
in the US, with residents of the South and Midwest being 
more likely to report such barriers than those from other 
parts of the country [93]. The geographic variation in 
the association between vehicle access and DRH rates 
observed in the present study could reflect differences in 
the availability of alternate forms of transportation. Vehi-
cle access was a significant determinant of DRH rates in 
central Florida in a region that included both rural and 
urban ZCTAs. Interestingly, however, significant local 
associations were not observed in northern Florida, 
which is largely rural, or in southern Florida. In some 
areas, residents of urban areas may also face transporta-
tion barriers to healthcare access; a North Carolina study 
reported that the odds of reporting delayed care due to 
transportation difficulties did not differ between older 
adults from rural and urban counties [91]. Concerns 
with safety, cost, and convenience may affect the use of 
public transportation to access healthcare services and 

health-promoting resources, which may contribute to the 
relevance of vehicle access in urban as well as rural areas 
[94].

Despite controlling for population-level socioeconomic 
characteristics, the percent of non-Hispanic Black resi-
dents remained a significant predictor of DRH rates in 
certain parts of the state, with most of these associations 
being positive. At the individual level, previous studies 
have reported that Black patients with diabetes are less 
likely than White patients to receive recommended diag-
nostic testing and examinations [66, 68, 79] and more 
likely to forego necessary medical care due to cost [16]. 
Furthermore, non-Hispanic Black patients with diabetes 
are less likely to achieve diabetes management targets [9], 
and tend to have more severe complications [64]. Ecolog-
ical studies in the US, which have investigated burdens 
of end-stage renal disease, stroke, and diabetes-related 
lower extremity amputations, have reported similar find-
ings [80, 83, 85]. The degree of spatial heterogeneity in 
the association observed in the current study highlights 
the importance of locally-focused interventions to close 
gaps in access, quality, and utilization of diabetes-related 
care in order to reduce inequities in diabetes outcomes.

The map of significant local intercept parameter esti-
mates from the MGWR model indicates that there are 
elevated DRH rates, mostly in ZCTAs in the central and 
northeastern part of the state, as well as a few ZCTAs in 
the panhandle, with lower DRH rates than expected after 
controlling for the explanatory variables in the model. In 
the central and northeast Florida ZCTAs that had signifi-
cant, positive intercept parameter estimates, there may 
be additional drivers of excess DRH rates that were not 
identified in this study.

Strengths and limitations
To our knowledge, this is the first study to investigate 
determinants of geographic disparities of diabetes-related 
hospitalization rates at the sub-county level using multi-
scale geographically weighted regression. Multiscale geo-
graphically weighted regression provides a more detailed 
understanding of the spatial heterogeneity of these asso-
ciations than standard GWR, which assumes that all 
processes operate at the same spatial scale within the 
study area [53–57]. Understanding the spatial context of 
the observed relationships provides valuable insights to 
guide health planning aimed at improving diabetes man-
agement and outcomes at the population level. However, 
this study is not without limitations. While populations 
of  ZCTAs that did not meet the inclusion criteria  were 
similar to those included in the study in terms of  age, 
gender, and income, they differed with respect to charac-
teristics such as racial composition, health insurance cov-
erage, and educational attainment (Table S1). Therefore, 
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study  findings may not be generalizable to populations 
of  excluded ZCTAs.  In addition, relatively small sample 
sizes in some ZCTAs may have reduced statistical power 
to detect significant local associations, particularly for 
variables that had a high degree of spatial heterogeneity 
and large effective number of parameters. Models pre-
dicting diabetes-related hospitalization rates were not 
adjusted for underlying diabetes prevalence, comorbidi-
ties, or health behaviors, since direct estimates of these 
measures are not available at the ZCTA level, and the use 
of small area estimates could have introduced bias into 
the analysis [95]. Despite these limitations, the findings 
of this study are useful for guiding evidence-based inter-
ventions by identifying determinants of diabetes-related 
hospitalization rates, which have been shown to reflect 
population-level glycemic control [96].

Conclusions
Addressing barriers to diabetes-related care and effective 
management of the condition, particularly in communi-
ties disproportionately burdened by adverse outcomes, 
is essential for reducing disparities. The findings of this 
study underscore the importance of socioeconomic 
resources and rurality in shaping population health. In 
addition, this study highlights the usefulness of multi-
scale geographically weighted regression as a tool for 
investigating spatially variable determinants of diabetes-
related hospitalizations, which exhibited different levels 
of heterogeneity within the study area. Knowledge of the 
determinants most strongly associated with DRH rates 
in a given location can help guide the development of 
needs-based policies and interventions that address bar-
riers to achieving diabetes care targets in order to reduce 
the burden of potentially avoidable hospitalizations.
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