
On Approximating Maximum Independent Set of Rectangles

Julia Chuzhoy

Toyota Technological Institute at Chicago
Chicago, IL, USA

Email: cjulia@ttic.edu

Alina Ene

Dept. of Computer Science, Boston University
Boston, MA, USA

Email: aene@bu.edu

Abstract—We study the Maximum Independent Set of Rectan-
gles (MISR) problem: given a set of n axis-parallel rectangles,
find a largest-cardinality subset of the rectangles, such that
no two of them overlap. MISR is a basic geometric optimiza-
tion problem with many applications, that has been studied
extensively. Until recently, the best approximation algorithm
for it achieved an O(log log n)-approximation factor. In a
recent breakthrough, Adamaszek and Wiese provided a quasi-
polynomial time approximation scheme: a (1−ε)-approximation
algorithm with running time nO(poly(logn)/ε). Despite this
result, obtaining a PTAS or even a polynomial-time constant-
factor approximation remains a challenging open problem. In
this paper we make progress towards this goal by providing
an algorithm for MISR that achieves a (1− ε)-approximation
in time nO(poly(log logn/ε)). We introduce several new technical
ideas, that we hope will lead to further progress on this and
related problems.

I. INTRODUCTION

In the Maximum Independent Set of Rectangles (MISR)

problem, the input is a set R of n axis-parallel rectangles,

and the goal is to find a maximum-cardinality subset of the

rectangles, such that no two of them overlap. MISR is a

fundamental geometric optimization problem with applica-

tions to map labeling [3], [10], resource allocation [20], and

data mining [18], [14], [19]. It is also a special case of

the classical Maximum Independent Set problem, where

the input is an n-vertex graph G, and the goal is to find

a maximum-cardinality subset S of its vertices, so that no

edge of G has both endpoints in S. Maximum Independent
Set is one of the most fundamental and extensively studied

problems in combinatorial optimization. Unfortunately, it is

known to be very difficult to approximate: the problem does

not have an n1−ε-approximation algorithm for any constant

ε unless NP = ZPP [16], and the best current positive

result gives an O(n/ log2 n)-approximation algorithm [5]. It

is therefore natural to focus on important classes of special

cases of the problem, where better approximation guarantees

may be achievable. This direction has proved to be especially

fruitful for instances stemming from geometric objects in

the plane. Results in this area range from Polynomial-Time

Approximation Schemes (PTAS) for “fat objects”, such as

disks and squares [11], to an nε-approximation for arbitrary

geometric shapes [13]. Unfortunately, the techniques used in

algorithms for fat geometric objects seem to break down for

other geometric shapes. Rectangles are among the simplest

shapes that are not fat, which puts MISR close to the

boundary of the class of geometric problems for which

PTAS is achievable with current techniques.

MISR is a basic geometric variant of Independent Set, and

rectangles seem to be among the simplest shapes that capture

several of the key difficulties associated with objects that are

not fat. It is then not surprising that MISR has attracted a

considerable amount of interest from various research com-

munities. Since the problem is known to be NP-hard [12],

[17], the main focus has been on designing approximation

algorithms. Several groups of researches have independently

suggested O(log n)-approximation algorithms for MISR [3],

[18], [22], and Berman et al. [4] showed that there is a

�logk n� approximation for any fixed k. More recently an

O(log logn)-approximation was shown [7], that remains the

best current approximation algorithm that runs in polynomial

time. The result of [7] also gives a matching upper bound

on the integrality gap of the natural LP relaxation for MISR.

The best current lower bound on the integrality gap of this

LP relaxation is a small constant, and understanding this gap

is a long-standing open question with a beautiful connection

to rectangle coloring; see [6] and references therein. In a

recent breakthrough, Adamaszek and Wiese [1] designed a

Quasi-Polynomial Time Approximation Scheme (QPTAS)

for MISR: namely, a (1− ε)1-approximation algorithm with

running time nO(poly(logn/ε)), using completely different

techniques. Their result can be seen as a significant evidence

that MISR may admit a PTAS. However, obtaining a PTAS,

or even an efficient constant-factor approximation remains

elusive for now.

In this paper, we make progress towards this goal, by

providing an algorithm for MISR that achieves a (1 − ε)-

approximation and runs in time nO((log logn/ε)4). We intro-

duce several new technical ideas that we hope will lead to

further progress on this and related problems.

The MISR problem seems to be central to understanding

1So far we have followed the convention that approximation factors
of algorithms are greater than 1, but for QPTAS-type results it is more
convenient for us to switch to approximation factors of the form (1− ε).

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.92

819

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.92

820

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.92

820

several other geometric problems. The work of [1] has been

very influential, and has lead to several new results, includ-

ing, for example, a QPTAS for Maximum Independent Set

of Polygons [2], [15], and QPTAS for several geometric Set

Cover problems [21].

Other related work. Several important special cases of

MISR have been studied extensively. In particular, there is

a PTAS for squares — and more generally, rectangles with

bounded aspect ratio [11] — and large rectangles whose

width or height is within a constant factor of the size of

the bounding box that encloses the entire input [1]. We note

that a more general weighted version of the MISR problem

has also been considered, where all input rectangles are

associated with non-negative weights, and the goal is to find

a maximum-weight subset of non-overlapping rectangles. As

mentioned earlier, there are several algorithms for MISR that

achieve an O(log n)-approximation, and these results hold

in the weighted setting as well. The long-standing O(log n)-
approximation was improved in the work of Chan and Har-

Peled that achieved an O(log n/ log logn)-approximation

for the weighted problem [8]. This result remains the best

polynomial-time approximation algorithm for the weighted

problem, as the O(log logn)-approximation algorithm of [7]

only applies to the unweighted version of MISR. The work

of Adamaszek and Wiese [1] extends to the weighted version

and provides a QPTAS for it as well. There seem to be

several technical difficulties in extending our results to the

weighted version of the problem, and we leave this as an

open problem.

Our Results and Techniques. Our main result is summa-

rized in the following theorem.

Theorem I.1 There is an algorithm for the MISR problem
that, given any set R of n axis-parallel rectangles and a
parameter 0 < ε < 1, computes a (1 − ε)-approximate
solution to instance R, in time nO((log log n/ε)4).

In order to put our techniques in context, we first give a high-

level overview of the approach of Adamaszek and Wiese

[1]. The description here is somewhat over-simplified, and

is different from the description of [1], though the algorithm

is essentially the same. Their approach is based on dynamic

programming, and uses the divide-and-conquer paradigm.

Starting with the initial set of rectangles, the algorithm

recursively partitions the input into smaller sub-instances. A

key insight is the use of closed polygonal curves to partition

the instances: given such a curve, one can discard the

rectangles that intersect the curve; the remaining rectangles

can be naturally partitioned into two sub-instances, one

containing the rectangles lying in the interior of the curve

and the other containing rectangles lying outside the curve2.

Adamaszek and Wiese show that for every set R∗ of non-

overlapping rectangles and an integral parameter L, there

is a closed polygonal curve C, whose edges are parallel to

the axes, so that C has at most L corners; the number of

rectangles ofR∗ intersecting C is at most O(|R∗|/L); and at

most a 3/4-fraction of the rectangles of R∗ lie on either side

of the curve C. We call such a curve C a balanced L-corner
partitioning curve for set R∗. Given any subset R′ ⊆ R of

rectangles, we denote by OPT(R′) the optimal solution to

instance R′, and we denote OPT = OPT(R). Throughout

this exposition, all polygons and polygonal curves have all

their edges parallel to the axes. We sometimes refer to the

number of corners of a polygon as its boundary complexity.

The approach of [1] can now be described as follows. Let

L = Θ(log n/ε) and L∗ = Θ(L · log n). The algorithm

uses dynamic programming. Every entry of the dynamic

programming table T corresponds to a polygon P that

has at most L∗ corners. The entry T [P] will contain an

approximate solution to instance R(P), that consists of all

rectangles R ∈ R with R ⊆ P . We say that P defines

a basic instance if |OPT(R(P))| ≤ log n. We can check

whether P defines a basic instance, and if so, find an optimal

solution for it in time nO(logn) via exhaustive search. In

order to compute the entry T [P] where R(P) is a non-

basic instance, we go over all pairs P ′, P ′′ � P of polygons

with P ′ ∩ P ′′ = ∅, such that P ′ and P ′′ have at most

L∗ corners each, and we let T [P] contain the best solution

T [P ′]∪T [P ′′] among all such possible pairs of polygons. In

order to analyze the approximation factor achieved by this

algorithm, we build a partitioning tree, that will simulate

an idealized run of the dynamic program. Every vertex v
of the partitioning tree is associated with some polygon

P (v) that has at most L∗ corners, and stores some solution

to instance R(v) = R(P (v)), consisting of all rectangles

R ∈ R with R ⊆ P (v). For the root vertex of the tree,

the corresponding polygon P is the bounding box of our

instance. Given any leaf vertex v of the current tree, such

that the instance R(v) is non-basic, we add two children

v′, v′′ to v, whose corresponding polygons P ′ and P ′′

are obtained by partitioning P with the balanced L-corner

partitioning curve C for the set OPT(R(v)) of rectangles.

We terminate the algorithm when for every leaf vertex v,

R(v) is a basic instance. It is easy to verify that the height

of the resulting tree is O(log n). The polygon associated

with the root vertex of the tree has 4 corners, and for

every 1 ≤ i ≤ log n, the polygons associated with the

vertices lying at distance exactly i from the root have at

most 4 + iL corners. Therefore, every polygon associated

with the vertices of the tree has at most L∗ corners, and

2The sub-instances could have holes. In order to simplify the exposition,
instead of working with instances with holes, we later introduce what we
call “fake rectangles” and use them to partition the instance.

820821821

corresponds to some entry of the dynamic programming

table. Once the tree is constructed, we compute solutions

to sub-instances associated with its vertices, as follows. For

every leaf v of the tree, the solution associated with v is

the optimal solution to instance R(v); for an inner vertex v
of the tree with children v′ and v′′, the solution associated

with v is the union of the solutions associated with v′ and

v′′. Let R′ be the solution to the MISR problem associated

with the root vertex of the tree. Then it is easy to see

that the solution computed by the dynamic programming

algorithm has value at least |R′|. Moreover, from our choice

of parameters, |R′| ≥ |OPT(R)|(1 − ε). This is since

for every inner vertex v of the tree, with children v′ and

v′′, the loss incurred by the partitioning procedure at v,

λ(v) = |OPT(R(v))| − |OPT(R(v′))| − |OPT(R(v′′))| ≤
|OPT(R(v))|/L ≤ ε|OPT(R(v))|/ log n. It is then easy to

verify that the total loss of all vertices that lie within distance

exactly i from the root, for any fixed 0 ≤ i ≤ log n, is at

most ε|OPT(R)|/ log n, and the total loss of all vertices is

at most ε|OPT(R)|. It is also immediate to verify that the

value of the solution stored at the root vertex of the tree is

at least |OPT(R)| −∑
v λ(v), and so we obtain a (1− ε)-

approximation.

In order to bound the running time of the algorithm, it

is not hard to show by a standard transformation to the

problem input, that it is enough to consider polygons P
whose corners have integral coordinates between 1 and 2n.

The number of entries of the dynamic programming table,

and the running time of the algorithm, are then bounded by

nO(L∗) = nO(log2 n/ε). As a warmup, we show that this run-

ning time can be improved to nO(logn/ε3). The idea is that,

instead of computing a balanced L-corner partition of the

set OPT(R(P)) of rectangles, we can compute a different

partition that reduces the boundary complexities of the two

resulting polygons. If P has boundary complexity greater

than L, then we can compute a polygonal curve C, that

partitions P into polygons P ′ and P ′′, such that the number

of corners of each of the two polygons P ′ and P ′′ is smaller

than the number of corners of P by a constant factor, and

|OPT(R(P))| − |OPT(R(P ′))| − |OPT(R(P ′′))| ≤ f(L) ·
|OPT(R(P))|, where f(L) = O(1/L). In our partitioning

tree we can then alternate between computing balanced

L-corner curves, and computing partitions that reduce the

boundary complexities of the polygons, so that the number

of corners of the polygons does not accumulate as we go

down the tree. This allows us to set L∗ = L = Θ(logn/ε),
and obtain a running time of nO(logn/ε3).

The bottleneck in the running time of the above algorithm

is the number of entries in the dynamic programming table,

which is nO(L∗), where L∗ is the number of corners that we

allow for our polygons, and the term n appears since there

are Θ(n2) choices for each such corner. In order to improve

the running time, it is natural to try one of the following

two approaches: either (i) decrease the parameter L∗, or

(ii) restrict the number of options for choosing each corner.

The latter approach can be, for example, implemented by

discretization: we can construct an (N ×N)-grid G, where

N is small enough. We say that a polygon P is aligned
with G if all corners of P are also vertices of G. We can

then restrict the polygons we consider to the ones that are

aligned with G. Unfortunately, neither of these approaches

works directly. For the first approach, since the depth of the

partitioning tree is Θ(log n), we can only afford to lose an

O(ε/ log n)-fraction of rectangles from the optimal solution

in every iteration, that is, on average, for an inner vertex v
of the tree λ(v) ≤ O(ε/ log n) · |OPT(R(v))| must hold. It

is not hard to show that this constraint forces us to allow

the partitioning curve C to have as many as Ω(log n/ε)
corners, and so in general L∗ = Ω(log n/ε) must hold. For

the second approach, over the course of our algorithm, we

will need to handle sub-instances whose optimal solution

values are small relatively to |OPT|, and their corresponding

polygons have small areas. If we construct an (N ×N)-grid

G, with N << n, then polygons that are aligned with G
cannot capture all such instances.

In order to better illustrate our approach, we start by show-

ing a (1 − ε)-approximation algorithm with running time

nO(
√
logn/ε3). This algorithm already needs to overcome

the barriers described above, and will motivate our final

algorithm. Consider the divide-and-conquer view of the

algorithm, like the one we described in the construction

of the partitioning tree. We can partition this algorithm

into Θ(
√
log n) phases, where the values of the optimal

solutions |OPT(R(v))| of instances R(v) considered in

every phase go down by a factor of approximately 2
√
logn.

In other words, if we consider the partitioning tree, and

we call all vertices at distance exactly i from the root of

the tree level-i vertices, then every phase of the algorithm

roughly contains Θ(
√
log n) consecutive levels of the tree.

Therefore, the number of such phases is only O(
√
log n),

and so we can afford to lose an Θ(ε/
√
log n)-fraction of the

rectangles from the optimal solution in every phase. At the

end of every phase, for every polygon P defining one of

the resulting instances R(P) of the problem, we can then

afford to repeatedly partition P into sub-polygons, reducing

their boundary complexity to O(
√
log n/ε). This allows us

to use polygons with only L1 = Θ(
√
log n/ε) corners as the

“interface” between the different phases. Within each phase,

we still need to allow the polygons we consider to have

L2 = Θ(logn/ε) corners. However, now we can exploit the

second approach: since the values of the optimal solutions of

all instances considered within a single phase are relatively

close to each other - within a factor of 2Θ(
√
logn), we can

employ discretization, by constructing a grid with 2O(
√
logn)

vertical and horizontal lines, and requiring that polygons

considered in the phase are aligned with this grid.

821822822

To summarize, we use a two-level recursive construction.

The set of level-1 polygons (that intuitively serve as the

interface between the phases), contains all polygons whose

corners have integral coordinates between 1 and 2n, and

they have at most L1 = Θ(
√
log n/ε) corners. The num-

ber of such polygons is nO(L1) = nO(
√
logn)/ε. Given

a level-1 polygon P , we construct a collection C(P) of

level-2 polygons P ′ ⊆ P . We start by constructing a

grid GP that discretizes P , and has 2O(
√
logn) vertical

and horizontal lines. The grid has the property that for

every vertical strip S of the grid, the value of the op-

timal solution of the instance R(P ∩ S) is bounded by

|OPT(R(P))|/2Θ(
√
logn), and the same holds for the hor-

izontal strips. Set C(P) contains all polygons P ′ ⊆ P
that have at most L2 = Θ(log n/ε) corners, so that P ′ is

aligned with GP . The number of such polygons is bounded

by
(
2O(

√
logn)

)O(L2)

= 2O(log3/2 n/ε) ≤ nO(
√
logn/ε). The

final set C of polygons corresponding to the entries of the

dynamic programming table includes all level-1 polygons,

and for every level-1 polygon P , all level-2 polygons in

the set C(P). The algorithm for computing the entries of

the dynamic programming table remains unchanged. This

reduces the running time to nO(
√
logn/ε3).

In order to improve the running time to npoly(log logn/ε), we

extend this approach to O(log logn) recursive levels. As be-

fore, we partition the execution of the algorithm into phases,

where a phase ends when the values of the optimal solutions

of all instances involved in it decrease by a factor of roughly√
n. Therefore, the algorithm has at most 2 phases. At

the end of each phase, we employ a “clean-up” procedure,

that reduces the number of corners of every polygon to

L1 = Θ((log log n)3/ε), with at most 2|OPT| · f(L1) total

loss in the number of rectangles from the optimal solution,

where f(L) = O(1/L). These polygons, that we call level-1

polygons, serve as the interface between the different phases.

The set C1 of level-1 polygons then contains all polygons

whose corners have integral coordinates between 1 and 2n,

that have at most L1 corners. The number of such polygons

is bounded by nO(L1). Consider now an execution of a

phase, and let P be our initial level-1 polygon. Since the

values of the optimal solutions of instances considered in

this phase are at least |OPT(R(P))|/√n, we can construct

an (O(
√
n) × O(

√
n))-grid GP , that will serve as our

discretization grid. We further partition the execution of the

current phase (that we refer to as level-1 phase) into two

level-2 phases, where the value of the optimal solution inside

each level-2 phase goes down by a factor of roughly n1/4,

and we let L2 = 2L1. The total number of level-2 phases,

across the execution of the whole algorithm, is then at most

4, and at the end of each such phase, we again apply a

clean-up procedure, that decreases the number of corners

in each polygon to L2. The loss incurred in every level-

2 phase due to the cleanup procedure can be bounded by

|OPT| · f(L2) = |OPT| · f(L1)/2, and the total loss across

all level-2 phases is at most 2|OPT|f(L1). For every level-1

polygon P , we define a set C2(P) of level-2 polygons, that

contains all polygons P ′ ⊆ P with at most L2 corners, so

that P ′ is aligned with GP . We continue the same procedure

for Θ(log log n) recursive levels. For each level i, we let

Li = 2Li−1 = 2i−1L1, and we let ρi = n1/2i . In each level-

i phase, the values of the optimal solutions to the instances

defined by the corresponding polygons should decrease by

a factor of roughly ρi, so there are approximately 2i level-

i phases overall. At the end of each phase, we apply the

clean-up procedure, in order to decrease the number of

corners of each polygon to Li. The loss at the end of each

level-i phase in the number of rectangles from the optimal

solution is then at most f(Li)·|OPT| = f(L1)·|OPT|/2i−1,

and since the number of level-i phases is 2i, the total

loss due to the cleanup procedure in level-i phases is

bounded by 2f(L1)|OPT|. Summing up over all levels,

the total loss due to the cleanup procedure is bounded by

2|OPT|f(L1) log logn ≤ ε|OPT|/ log log n. Additional loss

is incurred due to the balanced Llog logn-corner partitions

of level-(log logn) instances, but this loss is analyzed as

before, since Llog logn = Ω(log n/ε). In order to define

level-i polygons, for every level-(i − 1) polygon P , we

compute a grid GP that has roughly O(ρi) vertical and

horizontal lines, so that for every vertical or horizontal strip

S of the grid GP , the value of the optimal solution of

instance R(S ∩ P) is roughy |OPT(R(P))|/ρi. We then

let Ci(P) contain all polygons P ′ ⊆ P that have at most

Li corners and are aligned with GP . The final set of level-i
polygons is the union of all sets Ci(P) for all level-(i− 1)
polygons P . Let Ci denote the set of all level-i polygons,

and let C be the set of all polygons of all levels. Then it is

immediate to verify that |Ci| ≤ |Ci−1| · ρO(Li)
i ≤ nO(L1),

and since we employ O(log logn) levels, overall |C| ≤
nO(L1 log logn) = nO((log log n)4/ε).

Future directions. Unlike the algorithm of [1], our algo-

rithm does not extend to the weighted setting where each

rectangle has a weight and the goal is to find a maximum

weight set of independent rectangles. The main technical

obstacle is the discretization procedure where we construct

a grid and we restrict the partitions into sub-instances to be

aligned with the grid. In the weighted setting, there may be

some heavy rectangles of the optimal solution that are not

aligned with the grid. The optimal solution uses only a small

number of such rectangles, but there may be many of them

present in the input instance, and we do not know beforehand

which of these rectangles are in the optimal solution and

thus which rectangles to remove to obtain the alignment

property. We leave the extension to the weighted setting, as

well as more general shapes such as rectilinear polygons, as

directions for future work.

822823823

Organization. We start with preliminaries in Section II, and

summarize the discretization and partitioning theorems that

we use in Section III. We then give a general outline of

the dynamic programming–based algorithm and its analysis

that we employ throughout the paper in Section IV. Sec-

tion V contains a recap of the algorithm of Adamaszek

and Wiese [1] in our framework; we also improve its

running time to nO(logn/ε3). In Section VI we show a

QPTAS with running time nO(
√
logn)/ε3 , using the two-level

approach. This approach is then extended in Section VII

to O(log logn) recursive levels, completing the proof of

Theorem I.1. Due to lack of space, most of the proofs are

omitted and can be found in the full version of the paper [9].

II. PRELIMINARIES

In the Maximum Independent Set of Rectangles (MISR)

problem, the input is a set R = {R1, R2, ..., Rn} of n open

axis-parallel rectangles in the 2-dimensional plane. We say

that two rectangles Ri and Rj intersect if Ri ∩ Rj �= ∅,
and we say that they are disjoint otherwise. The goal in

the MISR problem is to find a maximum-cardinality subset

R∗ ⊆ R of rectangles, such that all rectangles in R∗ are

mutually disjoint.

Canonical Instances. We say that a set R of rectangles

is non-degenerate, iff for every pair R,R′ ∈ R of distinct

rectangles, for every corner p = (x, y) of R and every corner

p′ = (x′, y′) of R′, x �= x′ and y �= y′. We say that an

input R to the MISR problem is canonical, iff R is a non-

degenerate set of rectangles, whose corners have integral

coordinates between 1 and 2n. Using standard techniques,

we can transform any input instance of the MISR problem

into an equivalent canonical instance (see full version of the

paper for more details). Therefore, we assume from now on

that our input instance R is a canonical one. Let B be the

rectangle whose lower left corner is (0, 0) and upper right

corner is (2n+ 1, 2n+ 1). We call B the bounding box of

R.

Sub-Instances. Over the course of our algorithm, we will

define sub-instances of the input instance R. Each such sub-

instance is given by some (not necessarily connected) region

S ⊆ B, and it consists of all rectangles R ∈ R with R ⊆
S. In [1], each such sub-instance was given by a polygon

S, whose boundary edges are parallel to the axes, and the

boundary contains at most poly log n/ε edges. We define

our sub-instances slightly differently. Each sub-instance is

defined by a family F of at most O(log n/ε) axis-parallel

closed rectangles that are contained in B (but they do not

necessarily belong to R), where every pair of rectangles in

F are mutually internally disjoint (that is, they are disjoint

except for possibly sharing points on their boundaries). We

call such rectangles F ∈ F fake rectangles. Let S(F) =
B\

(⋃
F∈F F

)
. The sub-instance associated with F , that we

denote by R(F), consists of all rectangles R ∈ R with R ⊆
S(F). In other words, we view the fake rectangles as “holes”

in the area defined by the bounding box B, and we only

consider input rectangles that do not intersect these holes.

Given a sub-instance R(F), we denote the optimal solution

to this sub-instance by OPTF . The boundary complexity of

the sub-instance R(F) is the number of the fake rectangles,

|F|. We denote by OPT = OPT∅ the optimal solution to the

original problem. For convenience, throughout the paper, we

denote by N the smallest integral power of 2 greater than

|OPT|, so N = Θ(|OPT|). We say that a set F of fake

rectangles is a valid set of fake rectangles iff F consists of

closed rectangles that are mutually internally disjoint, and

contained in B.

An O(log logN)-Approximation Algorithm. We need an

algorithm that can estimate the values of the optimal so-

lutions to various sub-instances of our problem instance.

In [7], an O(log logn)-approximation algorithm was shown

for MISR. This algorithm can be extended to achieve an

O(log logN)-approximation; we defer the details to the full

version of the paper. We denote this algorithm by A, and,

given any valid set F of fake rectangles, we denote by

A(F) the value of the solution returned by this algorithm

on instance R(F).
Decomposition Pairs and Triples. Our algorithm employs

the Divide-and-Conquer paradigm, similarly to the algorithm

of [1]. Intuitively, given a sub-instanceR(F) of the problem,

associated with the polygon S(F), we would like to partition

it into two (or sometimes three) sub-instances, associated

with polygons S1 and S2, respectively. We require that S1∩
S2 = ∅ and S1, S2 � S(F). Since we define the polygons in

terms of the fake rectangles, we will employ the following

definition.

Definition. Let F any valid set of fake rectangles. We say
that (F1,F2) is a valid decomposition pair for F if for
each i ∈ {1, 2}, Fi is a valid set of fake rectangles with
S(Fi) � S(F), and S(F1) ∩ S(F2) = ∅. Similarly, we say
that (F1,F2,F3) is a valid decomposition triple for F if
for each 1 ≤ i ≤ 3, Fi is a valid set of fake rectangles with
S(Fi) � S(F), and for all 1 ≤ i �= j ≤ 3, S(Fi)∩S(Fj) =
∅.

III. DISCRETIZATION AND PARTITIONING

In this section we introduce the main technical tools used in

our algorithms and their analysis. We start with grids that

we use in order to discretize our instances.

A grid G of size (z × z) is defined by a collection

V = {V0, . . . , Vz} of vertical lines, and a collection H =
{H0, . . . , Hz} of horizontal lines. Each vertical line starts

at the bottom of the bounding box and ends at the top of

the bounding box, and we assume that V0, . . . , Vz appear

823824824

in this left-to-right order, where V0 and Vz coincide with

the left and the right boundaries of the bounding box B
respectively. Similarly, each horizontal line starts at the left

boundary and terminates at the right boundary of B, with

H0, . . . , Hz appearing in this bottom-to-top order, where

H0, Hz coincide with the bottom and the top boundaries

of B respectively. Each consecutive pair Vi, Vi+1 of vertical

lines defines a vertical strip SV
i of the bounding box, and

each consecutive pair Hj , Hj+1 of horizontal lines defines

a horizontal strip SH
j .

Suppose we are given a grid G and a valid set F of fake

rectangles. We say that F is aligned with G, iff every corner

of every rectangle of F belongs to the set Z of the vertices

of the grid G. We need the following two definitions of ρ-

accurate grids, and a claim that allows us to construct them.

Definition. Given a valid set F of fake rectangles and a
parameter ρ ≥ 1, we say that a grid G = (V,H) is ρ-
accurate for F , iff (i) for each vertical strip SV

i , the value
of the optimal solution of the sub-instance defined by all
rectangles contained in SV

i ∩S(F) is at most �|OPTF |/ρ�,
and the same holds for each horizontal strip; and (ii) F is
aligned with the grid G.

Definition. Let G = (V,H), G′ = (V ′,H′) be two grids.
We say that G′ is aligned with G iff V ′ ⊆ V and H′ ⊆ H.

Claim III.1 Let F be any valid set of fake rectangles, and
let G be a ρ-accurate grid for F , for any parameter ρ ≥ 1.
Then for any 1 ≤ ρ′ ≤ ρ, we can efficiently construct a
ρ′-accurate grid G′ for F that is aligned with G, of size
(z × z), where z ≤ O(ρ′ log log(|OPTF |) + |F|).

Finally, we state the main partitioning theorems used by our

algorithms. These theorems extend and generalize similar

theorems that were used in [1], [15].

Theorem III.2 There is a universal constant c̃ > 10, such
that the following holds. For any parameter L∗ > c̃, for
any valid set F of fake rectangles, with |F| = L ≤ L∗

and |OPTF | ≥ 512(L∗)2, given any ρ-accurate grid G
for F , where ρ ≥ 32(L∗)2, there is a valid decomposition
triple (F1,F2,F3) for F , such that for all 1 ≤ i ≤ 3,
|Fi| ≤ 3L∗/4 and |OPTFi

| ≤ 3|OPTF |/4. Moreover,∑3
i=1 |OPTFi

| ≥ |OPTF | ·
(
1− c̃

L∗
)
, and the rectangles

in F1 ∪ F2 ∪ F3 are aligned with the grid G.

Theorem III.3 For any valid set F of fake rectangles with
|F| = L > c̃ and |OPTF | ≥ 512L2, given any ρ-accurate
grid G for F , where ρ ≥ 32L2, there is a valid decom-
position pair (F1,F2) for F , such that |F1|, |F2| ≤ 3L/4;
|OPTF1 |+|OPTF2 | ≥ |OPTF |·

(
1− c̃

L

)
; and the rectangles

in F1 ∪ F2 are aligned with the grid G, where c̃ is the
constant from Theorem III.2.

IV. ALGORITHM OUTLINE

All our algorithms follow the same general outline, that we

describe here. We define a family C of important sets of fake
rectangles, that contains ∅, so that every element of C is a

valid set of fake rectangles. As an example, C may contain

all valid sets F of fake rectangles with |F| ≤ L∗ for some

bound L∗, such that all corners of all rectangles in F have

integral coordinates. Additionally, we define a family C′ ⊆ C
of basic sets of fake rectangles. Intuitively, for each F ∈ C′,
the corresponding instance R(F) is “simple” in some sense.

We assume that we are given an algorithm A′, that, given

a set F ∈ C of fake rectangles, tests whether F ∈ C′, and

an algorithm A′′ that can compute a (1− ε/2)-approximate

solution to each instance R(F) with F ∈ C′. We discuss the

running times of these algorithms later. We will ensure that

{B} ∈ C′ (the set of fake rectangles containing the bounding

box only). This guarantees that for every set F ∈ C \ C′
there is always a valid decomposition pair (F1,F2) with

F1,F2 ∈ C - for example, where F1 = F2 = {B}.
Once the families C, C′ of sets of fake rectangles, and

algorithms A′,A′′ are fixed, our algorithm is also fixed, and

proceeds via simple dynamic programming. The dynamic

programming table T contains, for every important set

F ∈ C of fake rectangles, an entry T [F], that will store an

approximate solution to the corresponding instance R(F).
In order to initialize T , for every important set F ∈ C of

fake rectangles, we test whether F ∈ C′ using algorithm

A′, and if so, we apply algorithm A′′ to compute a valid

(1− ε/2)-approximate solution to instance R(F), which is

then stored at T [F]. Once we finish the initialization step,

we fill out the entries T [F] for F ∈ C \ C′ from smaller to

larger values of the area of S(F).
Consider now some set F ∈ C \ C′ of fake rectangles,

and assume that for all F ′ ∈ C with S(F ′) � S(F), we

have processed the entry T [F ′]. Entry T [F] is computed

as follows. For every triple F1,F2,F3 ∈ C of important

sets of fake rectangles, such that (F1,F2,F3) is a valid

decomposition triple for F , we consider the solution X =
T [F1] ∪ T [F2] ∪ T [F3]. We do the same for every pair

F1,F2 ∈ C of important sets of fake rectangles, such that

(F1,F2) is a valid decomposition pair for F . Among all

such solutions X , let X ∗ be the one of maximum value.

We then store the solution X ∗ in T [F]. Note that since we

ensure that every set F ∈ C \ C′ has a valid decomposition

pair (F1,F2) with F1,F2 ∈ C, this step is well defined. This

finishes the description of the algorithm. The final solution is

stored in the entry T [∅]. Notice that the choice of C, C′, and

the algorithms A′,A′′ completely determine our algorithm.

The running time depends on |C|, the time required to

construct C, and the running times of the algorithms A′ and

A′′.

824825825

It is immediate to see that every entry T [F] of the dynamic

programming table contains a feasible solution to instance

R(F). We only need to show that the value of the solution

stored in T [∅] is close to |OPT|. This is done by constructing

a partitioning tree, that we define below.

Definition. Suppose we are given an instance R of the
MISR problem, a family C of important sets of fake rect-
angles, and a subset C′ ⊆ C of basic sets of fake rectangles.
Assume also that we are given a set F ∈ C of fake
rectangles. A partitioning tree T (F) for F is a tree, whose
every vertex v ∈ V (T) is labeled with a set F(v) ∈ C
of fake rectangles, such that: (i) if v is the root of the
tree, then F(v) = F; and (ii) if v is an inner vertex of
the tree, and {v1, . . . , vr} are its children, then r ∈ {2, 3},
and {F(vi)}ri=1 is either a valid decomposition pair or a
valid decomposition triple for F(v). We say that T (F) is
a complete partitioning tree for F , if additionally for every
leaf vertex v of T (F), F(v) ∈ C′. The loss of the tree T (F),
denoted by Λ(T (F)), is |OPTF |−

∑
v∈L(T (F)) |OPTF(v)|,

where L(T (F)) denotes the set of leaves of T (F).

A full partitioning tree for instance R is a complete parti-

tioning tree T (F) for F = ∅. For every vertex v of T , we

associate a value μ(v) with v, as follows. If v is a leaf of T ,

then μ(v) is the value of the (1− ε/2)-approximate solution

to instance R(F(v)) computed by the algorithm A′′. If v
is an inner vertex of T , then μ(v) is the sum of values

μ(v′) for all children v′ of v. We denote by μ(T) the value

μ(v) of the root vertex v of T . The following observation

connects the value of the solution computed by the dynamic

programming algorithm to μ(T).
Observation IV.1 For every vertex v of the full partitioning
tree T , the entry T [F(v)] of the dynamic programming table
contains a solution to instance R(F(v)), whose value is at
least μ(v).

We use the following observation to analyze the approxima-

tion factors achieved by our algorithms.

Observation IV.2 Suppose we are given an instance R of
the MISR problem, a family C of important sets of fake
rectangles, and a subset C′ ⊆ C. Assume further that there
exists a full partitioning tree T for R, whose loss Λ(T) ≤
ε|OPT|/2. Then the dynamic programming-based algorithm
described above computes a (1− ε)-approximate solution to
R.

Notice that in order to analyze our algorithm, we now only

need to show the existence of a suitable partitioning tree.

We do not need to provide an efficient algorithm to construct

such a tree, and so we can assume that we know the optimal

solution OPT to our instance R when constructing the tree.

V. A QPTAS WITH RUNNING TIME nO(logN/ε3)

In this section, we use the approach described in Section IV

to obtain a QPTAS with running time nO(logN/ε3). Let L∗ =
2c̃ logN/ε, where c̃ is the constant from Theorem III.2, and

let τ = 512 (L∗)2 = Θ(log2 N/ε2). Let ρ∗ = N , and

let G be the ((2n + 1) × (2n + 1))-grid, whose vertical

and horizontal lines correspond to all integral x- and y-

coordinates, respectively, between 0 and 2n + 1. Since we

assumed that our instance R is canonical, it is immediate to

verify that G is a ρ∗-accurate grid for set F = ∅. Moreover,

for any valid set F ′ of fake rectangles aligned with G, grid

G remains ρ-accurate for F ′, for ρ = |OPTF ′ |.
We let the family C of important sets of fake rectangles

contain all valid sets F of fake rectangles with |F| ≤ L∗,
such that all rectangles in F are aligned with G. Notice that

any set F ∈ C with |OPTF | > τ and |F| ≤ L∗ satisfies

the conditions of Theorem III.2 for grid G and value ρ =
|OPTF |.
It is immediate to verify that |C| = nO(L∗) = nO(logN/ε).

The family C′ ⊆ C of basic sets of fake rectangles contains

all sets F with |OPTF | ≤ τ . We can verify whether F ∈ C′,
and if so, we can find the optimal solution to instance R(F)
in time nO(τ) = nO(log2 N/ε2) via exhaustive search. This

defines the algorithms A′ and A′′, and we can now employ

the dynamic programming-based algorithm, described in

Section IV. In order to analyze the running time of the

algorithm, observe that the initialization step takes time

O(|C|)·nO(log2 N/ε2) = nO(log2 N/ε2), and the remaining part

of the algorithm takes time O(|C|4poly(n)) = nO(logN/ε),

so overall the running time is nO(log2 N/ε2). We later show

how to improve the running time to nO(logN/ε3) by replacing

algorithms A′ and A′′ with more efficient algorithms.

It now remains to show that the value of the solution

computed by the algorithm is at least (1 − ε)|OPT|. We

do so by the constructing a full partitioning tree T for

R. We start with the tree T containing a single vertex

v, with F(v) = ∅. While there is a leaf vertex v ∈ T
with F(v) ∈ C \ C′ we add three children v1, v2 and v3
to vertex v. Applying Theorem III.2 to F(v) with the grid

G, we obtain a decomposition triple (F1,F2,F3) for F(v),
and we associate each of the three new vertices v1, v2, v3
with the sets F1,F2 and F3, respectively. Notice that for

i ∈ {1, 2, 3}, |Fi| ≤ L∗, and if F(v) ∈ C, then all rectangles

in Fi are aligned with G, so F1,F2,F3 ∈ C. The algorithm

terminates when for every leaf vertex v of T , F(v) ∈ C′. We

then prove that the loss of the tree T is at most ε|OPT|/2.

We defer the proofs to the full version of the paper.

So far, we have shown an algorithm that computes a (1−ε)-
approximate solution in time nO(log2 N/ε2). We can also use

it to compute, for any instance R(F) defined by any valid

set F of fake rectangles, a (1−ε/2)-approximate solution for

825826826

R(F), in time nO(log2 |OPTF |/ε2). We denote this algorithm

by A∗.
We now describe a slightly modified version of the algo-

rithm, whose running time becomes nO(logN/ε3). We assume

that ε > 1/ log2 N , since otherwise algorithm A∗ provides

an (1 − ε)-approximation in time nO(logN/ε3). The family

C of important sets of fake rectangles remains the same as

before, but the family C′ ⊆ C of basic sets of fake rectangles

is defined slightly differently: it contains all sets F ∈ C of

fake rectangles, such that the O(log logN)-approximation

algorithm A returns a solution of value at most τ to instance

R(F). We then let A′ be the algorithm A. Notice that

if F ∈ C′, then |OPTF | ≤ O(A(R(F)) log logN) =
O(log2 N log logN/ε2) = O(poly logN). We can now

use algorithm A∗ to compute a (1 − ε/2)-approximate

solution for every instance R(F) with F ∈ C′, in time

nO(log2 |OPTF |/ε2) = nO((log logN)2/ε2). The rest of the

algorithm remains unchanged, except that we now use the

algorithm A∗ instead of A′′. It is immediate to verify that

the running time of the algorithm becomes nO(logN/ε3).

For every set F ∈ C \ C′ of fake rectangles, we now

have |OPTF | ≥ A(F) ≥ τ , and so F is a valid input

to Theorem III.2, together with grid G and ρ = |OPTF |.
We use the same construction of the partitioning tree as

before, to show that the value of the solution returned by

the algorithm is at least (1− ε)|OPT|.

VI. A QPTAS WITH RUNNING TIME nO(
√
logN/ε3)

In this section, we summarize our (1 − ε)-approximation

algorithm with running time nO(
√
logN/ε3). The algorithm

follows the high-level overview provided in the Introduction,

and it uses the framework introduced in Section IV. We use

the following parameters: L∗1 = 100c̃
√
logN
ε , L∗2 = 100c̃ logN

ε ,

and ρ =
(
4
3

)2√logN
, where c̃ is the parameter from The-

orem III.2. All logarithms in this section are to the base

of 4/3. Let δ = �log(L∗2/L∗1)� = Θ(log logN), and let

η = 512(L∗2)
δ+3 · (4/3)2

√
logN = 2Θ(

√
logN). Let ρ′ = N ,

and let G be the ((2n+1)× (2n+1))-grid, whose vertical

and horizontal lines correspond to all integral x- and y-

coordinates, respectively, between 0 and 2n + 1. It is easy

to verify that G is ρ′-accurate for F = ∅. The family C
of important sets of fake rectangles is the union of two

subsets, C1 and C2. Family C1 contains all valid sets F of

fake rectangles, such that |F| ≤ L∗1, and all rectangles in F
are aligned with G. Clearly, |C1| = nO(

√
logN/ε).

Consider now any important set F ∈ C1 of fake rectangles.

We define a collection C2(F) of sets of fake rectangles, and

we will eventually set C2 =
⋃
F∈C1 C2(F). In order to define

the family C2(F), we apply Claim III.1 to construct a ρ-

accurate grid G′ for F , that is aligned with G. The size of

the grid is (z × z), where z = O(ρ log logN + |F|) ≤
O(ρ log logN +

√
logN/ε) ≤ 2O(

√
logN). We then let

C2(F) contain all valid sets F ′ of fake rectangles, with

S(F ′) ⊆ S(F) and |F ′| ≤ L∗2, such that F ′ is aligned

with G. Clearly, |C2(F)| ≤ zO(L∗2) = 2O(log3/2 N/ε) =
nO(

√
logN/ε), and we can compute the family C2(F) in

time nO(
√
logN/ε). Finally, we set C2 =

⋃
F∈C1 C2(F), and

C = C1∪C2. Then |C2| ≤ |C1| ·nO(
√
logN/ε) ≤ nO(

√
logN/ε)

and thus |C| ≤ nO(
√
logN/ε).

Recall that for a valid set F of fake rectangles, A(F) is

the value of the solution returned by the O(log logN)-
approximation algorithm A on input R(F). We now define

the family C′ ⊆ C of basic sets of fake rectangles, and the

corresponding algorithms A′ and A′′. Family C′ contains

all sets F ∈ C with A(F) < η, and we use the algorithm

A in order to identify the sets F ∈ C′. Notice that if

F ∈ C′, then |OPTF | ≤ O(η log logN) = 2O(
√
logN). We

can compute an (1−ε/2)-approximate solution to each such

instance R(F) in time nO(
√
logN/ε3), using the algorithm

from Section V, whose running time is nO(log |OPTF |/ε3) =
nO(

√
logN/ε3). We employ this algorithm as A′′.

We can now use the dynamic programming-based algorithm

from Section IV. The initialization step takes time at most

|C| · nO(
√
logN/ε3) = nO(

√
logN/ε3), and the rest of the

algorithm runs in time O(|C|4) = nO(
√
logN/ε), so the

total running time is nO(
√
logN/ε3). It now remains to show

that the algorithm computes a solution of value at least

(1 − ε)|OPT|. We do so using partitioning trees. We defer

the details to the full version of the paper.

VII. A QPTAS WITH RUNNING TIME nO((log logN)4/ε4)

We start with an intuitive high-level overview of the algo-

rithm. This overview is over-simplified and imprecise, and it

is only intended to provide intuition. A natural way to further

improve the running time of the QPTAS from Section VI is

to use more levels of the recursion, namely: instead of just

two sets C1, C2 ⊆ C, we will have h = Θ(log logN) such

sets, where we refer to the sets F ∈ Ci as level-i sets, and to

corresponding instances R(F) as level-i instances. We will

also use parameters L1, . . . , Lh associated with the instances

of different levels. As before, family C1 will contain all

valid sets F of fake rectangles, whose corners have integral

coordinates, and |F| ≤ L1. For each 1 < i ≤ h, for every

set F ∈ Ci−1 of fake rectangles, we will define a family

Ci(F) of sets of fake rectangles, as follows. We compute a

ρi−1-accurate grid Gi−1 for F , for an appropriately chosen

parameter ρi−1, and we let Ci(F) contain all valid sets F ′
of fake rectangles that are aligned with Gi−1, and have

|F ′| ≤ Li. We then set Ci =
⋃
F∈Ci−1

Ci(F). Notice that

the same set F ′ of fake rectangles may belong to several

families Ci(F). It will be convenient in our analysis to view

each such set as a separate set (though the algorithm does not

distinguish between them), and to keep track of the sets of

fake rectangles from C1, . . . , Ci−1, and their corresponding

826827827

grids G1, . . . , Gi−1, that were used to create the set F ′.
In order to do so, we will denote each level-i instance by

F(i) = (F1, G1, . . . ,Fi−1, Gi−1,Fi), where for 1 ≤ i′ < i,
Gi′ is a ρi′ -accurate grid for Fi′ , though only the set Fi is

added to Ci.
All logarithms in this section are to the base of 2. For

convenience of notation, we denote exp(i) = 2i. We assume

that ε > 1/ logN , since otherwise the (1−ε)-approximation

algorithm with running time nO(logN/ε3) from Section V has

running time nO(1/ε4).

We start with h∗ = log logN . For each 1 ≤ i ≤ h∗, we

define a parameter Li =
c̃·(log logN)3·2i

ε , that will serve as the

bound on the number of fake rectangles in each set F ∈ Ci.
Notice that L1 < L2 < · · · < Lh∗ = c̃ logN(log logN)3

ε .

We let η = 32L2δ+4
h∗ . Since we have assumed that ε >

1/ logN and N is large enough, it is easy to verify that

η = logΘ(1) N .

For 0 ≤ i ≤ h∗, we define ρi = N1/2i . Clearly, for all

1 ≤ i ≤ h∗, ρi =
√
ρi−1. We let h be the largest integer, so

that ρh > η320. The number of the recursive levels in our

construction will be h. Finally, we define the value τ∗ =
ρ3h−1 = (logN)Θ(1).

Set C of important families of fake rectangles will eventually

be a union of h subsets C1, . . . , Ch. The execution of the

algorithm at every level is partitioned into a number of

phases. The optimal solution value in each phase of level

i goes down by the factor of at least (ρi)
1/160. We then

reduce the boundary complexities of the resulting level-

(i+ 1) instances from Li+1 to Li.

Let G0 be the ((2n + 1) × (2n + 1))-grid, whose vertical

and horizontal lines correspond to all integral x- and y-

coordinates, respectively, between 0 and 2n + 1. It is easy

to see that G0 is ρ0 = N -accurate grid for F = ∅. For all

1 ≤ i ≤ h, it will be convenient to denote the level-i sets

of fake rectangles by F(i) = (F1, G1, . . . , Gi−1,Fi), where

for 1 ≤ i′ < i, Gi′ is a ρi′ -accurate grid for Fi′ , and all

rectangles in Fi′+1 are aligned with Gi′ . We also require

that for all 1 ≤ i′ < i, grid Gi′ is aligned with Gi′−1, and

that for all 1 < i′ ≤ i, S(Fi′) ⊆ S(Fi′−1).

Level-1 Instances. We let C1 denote all valid sets F of

fake rectangles with |F| ≤ L1, such that all rectangles

in F are aligned with G0. For each F ∈ C1, we define

the level-1 set F(1) = (F) of fake rectangles to be con-

sistent with our notation for higher-level sets. We denote

C̃1 =
{
F(1) = (F) | F ∈ C1

}
. Notice that |C1| ≤ nO(L1) =

nO((log logN)3/ε).

Level-i instances. Fix some 1 < i ≤ h. For every level-

(i−1) instance F(i−1) ∈ C̃i−1, we define a set C̃i(F(i−1)) of

level-i instances, and we let C̃i =
⋃

F(i−1)∈C̃i−1
C̃i(F(i−1)).

We now describe the construction of the set C̃i(F(i−1)).

We assume that F(i−1) =
(F1, G1,F2, G2, . . . , Gi−2,Fi−1) ∈ C̃i−1 is a level-

(i−1) set of fake rectangles, where for each 1 ≤ i′ < i−1,

Gi′ is a ρi′ -accurate grid for Fi′ , and that grid Gi′ is

aligned with grid Gi′−1. Moreover, for all 1 < i′ ≤ i − 1,

set Fi′ contains at most Li′ fake rectangles, that are aligned

with the grid Gi′−1.

If i > 2 and A(Fi−1) < A(Fi−2)/ρ
1/10
i−2 , then we set

C̃(F(i)) = ∅. Assume now that i > 2 and A(Fi−1) ≥
A(Fi−2)/ρ

1/10
i−2 . We use Claim III.1 to compute a ρi−1-

accurate grid Gi−1 for Fi−1, so that Gi−1 is aligned with

Gi−2. If i = 2, then we simply compute any ρ1-accurate

grid G1 for F1, that is aligned with G0. In either case, the

size of the grid is (z × z), where z = O(ρ2i−1).

We construct the set C̃i(F(i−1)) as follows. For every

valid set F ′ of fake rectangles, with S(F ′) ⊆ S(Fi−1),
and |F ′| ≤ Li, such that the rectangles in F ′ are

aligned with the grid Gi−1, we add a level-i set F(i) =
(F1, G1,F2, G2, . . . , Gi−2,Fi−1, Gi−1,F ′) to C̃i(F(i−1)).
Notice that (F1, G1, . . . ,Fi−1, Gi−1,Fi−1) ∈ C̃i(F(i−1)),
and:

|C̃i(F(i−1))| = zO(Li) ≤ ρ
O(exp(i)(log logN)3/ε)
i

= (N1/ exp(i))O(exp(i)(log logN)3/ε)

= NO((log logN)3/ε).

We set C̃i =
⋃

F(i−1)∈C̃i−1
C̃i(F(i−1)), and we let Ci contain

all sets F of fake rectangles, such that for some F(i) =
(F1, G1, . . . , Gi−1,Fi) ∈ C̃i, F = Fi. Finally, we set C =⋃h

i=1 Ci.
We say that F ∈ C is a basic set of fake rectangles, and

add it to C′, iff A(F) ≤ τ∗. We can use the algorithm

A to determine, for each set F ∈ C, whether F is a

basic set. If F is a basic set, then |OPTF | ≤ A(F) ·
O(log logN) ≤ τ∗ · O(log logN) = (logN)O(1), and

we can use the algorithm from Section VI to compute a

(1 − ε/2)-approximate solution to instance R(F) in time

nO(
√

log |OPTF |/ε3) = nO(log logN/ε3). We use this algorithm

as algorithm A′′ for the initialization step of the dynamic

program. This completes the definition of the family C of

important sets of fake rectangles, the family C′ ⊆ C of basic

sets of fake rectangles, and the algorithms A′ and A′′. We

then use the dynamic programming-based algorithm from

Section IV to solve the problem. In order to analyze the

running time of the algorithm, we first need to bound |C|.
As we showed above,

|C̃1| ≤ O
(
nL1

)
= nO((log logN)3/ε),

and for all 1 < i ≤ h,

827828828

|C̃i| =
∑

F(i−1)∈C̃i−1

|C̃(F(i−1))| ≤ |C̃i−1| ·NO((log logN)3/ε).

Since h < log logN , it is immediate to verify that |C| =
O(|C̃h|) ≤ nO((log logN)4/ε). The initialization step then

takes time |C| · nO(log logN/ε3) = nO((log logN)4/ε3), and the

remainder of the algorithm runs in time |C|O(1). Therefore,

the total running time of the algorithm is bounded by

nO((log logN)4/ε3).

It now remains to show that the algorithm computes a (1−
ε)-approximate solution. In order to do so, we construct a

complete partitioning tree and show that its loss is suitably

bounded.

The remaining details of the algorithm and its analysis

appear in the full version of the paper [9].

Acknowledgements. The work of the first author is sup-

ported in part by NSF grant CCF-1318242. This work was

done in part while the second author was with the Computer

Science department at Princeton University and University

of Warwick, and a visitor at the Simons Institute for the

Theory of Computing and the Toyota Technological Institute

at Chicago.

REFERENCES

[1] Anna Adamaszek and Andreas Wiese. Approximation
schemes for maximum weight independent set of rectangles.
In IEEE Foundations of Computer Science (FOCS), pages
400–409. IEEE Computer Society, 2013.

[2] Anna Adamaszek and Andreas Wiese. A QPTAS for maxi-
mum weight independent set of polygons with polylogarith-
mically many vertices. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 645–656. SIAM, 2014.

[3] Pankaj K Agarwal, Marc Van Kreveld, and Subhash Suri.
Label placement by maximum independent set in rectangles.
Computational Geometry, 11(3):209–218, 1998.

[4] Piotr Berman, Bhaskar DasGupta, S. Muthukrishnan, and
Suneeta Ramaswami. Improved approximation algorithms for
rectangle tiling and packing. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 427–436. SIAM, 2001.

[5] Ravi Boppana and Magnús M Halldórsson. Approximating
maximum independent sets by excluding subgraphs. BIT
Numerical Mathematics, 32(2):180–196, 1992.

[6] Parinya Chalermsook. Coloring and maximum independent
set of rectangles. In International Workshop on Approxi-
mation Algorithms for Combinatorial Optimization Problems
(APPROX), pages 123–134. Springer, 2011.

[7] Parinya Chalermsook and Julia Chuzhoy. Maximum indepen-
dent set of rectangles. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 892–901. SIAM, 2009.

[8] Timothy M. Chan and Sariel Har-Peled. Approximation
algorithms for maximum independent set of pseudo-disks.
Discrete & Computational Geometry, 48(2):373–392, 2012.

[9] Julia Chuzhoy and Alina Ene. On approximating maximum
independent set of rectangles. arXiv preprint 1608.00271,
2016.

[10] Jeffrey S Doerschler and Herbert Freeman. A rule-based
system for dense-map name placement. Communications of
the ACM, 35(1):68–79, 1992.

[11] Thomas Erlebach, Klaus Jansen, and Eike Seidel.
Polynomial-time approximation schemes for geometric
intersection graphs. SIAM Journal on Computing (SICOMP),
34(6):1302–1323, 2005.

[12] Robert J Fowler, Michael S Paterson, and Steven L Tanimoto.
Optimal packing and covering in the plane are NP-complete.
Information Processing Letters, 12(3):133–137, 1981.

[13] Jacob Fox and János Pach. Computing the independence
number of intersection graphs. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1161–1165. SIAM, 2011.

[14] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita,
and Takeshi Tokuyama. Data mining with optimized
two-dimensional association rules. ACM Transactions on
Database Systems (TODS), 26(2):179–213, 2001.

[15] Sariel Har-Peled. Quasi-polynomial time approximation
scheme for sparse subsets of polygons. In ACM Symposium
on Computational Geometry (SoCG), page 120. ACM, 2014.

[16] Johan Håstad. Some optimal inapproximability results. Jour-
nal of the ACM (JACM), 48(4):798–859, 2001.

[17] Hiroshi Imai and Takao Asano. Finding the connected
components and a maximum clique of an intersection graph
of rectangles in the plane. Journal of Algorithms, 4(4):310–
323, 1983.

[18] Sanjeev Khanna, S. Muthukrishnan, and Mike Paterson. On
approximating rectangle tiling and packing. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), volume 95, page
384. SIAM, 1998.

[19] Brian Lent, Arun Swami, and Jennifer Widom. Clustering
association rules. In International Conference on Data
Engineering, pages 220–231. IEEE, 1997.

[20] Liane Lewin-Eytan, Joseph Seffi Naor, and Ariel Orda.
Routing and admission control in networks with advance
reservations. Springer, 2002.

[21] Nabil H Mustafa, Raghu Raman, and Sambaran Ray. Settling
the APX-hardness status for geometric set cover. In IEEE
Foundations of Computer Science (FOCS), pages 541–550.
IEEE, 2014.

[22] Frank Nielsen. Fast stabbing of boxes in high dimensions.
Theoretical Computer Science, 246(1):53–72, 2000.

828829829

