
A PTAS for the Steiner Forest Problem in Doubling Metrics

T-H. Hubert Chan

Department of Computer Science
The University of Hong Kong

Email: hubert@cs.hku.hk

Shuguang Hu

Department of Computer Science
The University of Hong Kong

Email: sghu@cs.hku.hk

Shaofeng H.-C. Jiang

Department of Computer Science
The University of Hong Kong

Email: sfjiang@cs.hku.hk

Abstract—We achieve a (randomized) polynomial-time ap-
proximation scheme (PTAS) for the Steiner Forest Problem
in doubling metrics. Before our work, a PTAS is given only
for the Euclidean plane in [FOCS 2008: Borradaile, Klein and
Mathieu]. Our PTAS also shares similarities with the dynamic
programming for sparse instances used in [STOC 2012: Bartal,
Gottlieb and Krauthgamer] and [SODA 2016: Chan and Jiang].
However, extending previous approaches requires overcoming
several non-trivial hurdles, and we make the following technical
contributions.

(1) We prove a technical lemma showing that Steiner points
have to be “near” the terminals in an optimal Steiner tree. This
enables us to define a heuristic to estimate the local behavior
of the optimal solution, even though the Steiner points are
unknown in advance. This lemma also generalizes previous
results in the Euclidean plane, and may be of independent
interest for related problems involving Steiner points.

(2) We develop a novel algorithmic technique known as
“adaptive cells” to overcome the difficulty of keeping track
of multiple components in a solution. Our idea is based on but
significantly different from the previously proposed “uniform
cells” in the FOCS 2008 paper, whose techniques cannot be
readily applied to doubling metrics.

Keywords-Approximation algorithm; Doubling dimension;
Steiner forest problem; Polynomial time approximation
scheme.

I. INTRODUCTION

We consider the Steiner Forest Problem (SFP) in a metric

space (X, d). An instance of the problem is given by a

collection W of n terminal pairs {(ai, bi) : i ∈ [n]}
in X , and the objective is to find a minimum weight

graph F = (V,E) (where V is a subset of X and the edge

weights are induced by the metric space) such that every

pair in W is connected in F .

A. Problem Background

The problem is well-known in the computer science

community. In general metrics, Chlebı́k and Chlebı́ková [1]

showed that SFP is NP-hard to approximate with ratio better

than 96
95 . The best known approximation ratio achievable in

polynomial time is 2 [2], [3]. Recently, Gupta and Kumar [4]

gave a purely combinatorial greedy-based algorithm that also

achieves constant ratio. However, it is still an open problem

This research was funded partially by a grant from Hong Kong RGC
under the contract 17217716.

to break the 2-approximation barrier in general metrics for

SFP.

SFP in Euclidean Plane and Planar Graphs. In light of the

aforementioned hardness result [1], restrictions are placed on

the metric space to achieve (1+ε) approximation in polyno-

mial time. In the Euclidean plane, a randomized polynomial-

time approximation scheme (PTAS) was obtained in [5],

using the dynamic programming framework proposed by

Arora [6]. Later on, a simpler analysis was presented in [7],

in which a new structural property is proved and additional

information is incorporated in the dynamic programming

algorithm. It was only suggested that similar techniques

might be applicable to higher-dimensional Euclidean space.

Going beyond the Euclidean plane, a PTAS for planar

graphs is obtained in [8] and more generally, on bounded

genus graphs. As a building block, they also obtained a

PTAS for graphs with bounded treewidth.

Steiner Tree Problems. A notable special case of SFP is

the Steiner Tree Problem (STP), in which all terminals are

required to be connected. In general metrics, the MST on

the terminal points simply gives a 2-approximation. There is

a long line of research to improve the 2-approximation, and

the state-of-the-art approximation ratio 1.39 was presented

in [9] via an LP rounding approach. On the other hand, it is

NP-hard to approximate STP better than the ratio 96
95 [1].

For the group STP in general metrics, it is NP-

hard to approximate within log2−ε n [10] unless NP ⊆
ZTIME(npolylog(n)). On the other hand, it is possible to

approximate within O(log3 n) as shown in [11]. Restricting

to planar graphs, the group STP can be approximated within

O(log n poly log logn) [12], and very recently, this result is

improved to a PTAS [13].

For more related works, we refer the reader to a survey by

Hauptmann and Karpiński [14], who gave a comprehensive

literature review of STP and its variations.

PTAS’s for Other Problems in Doubling Metrics. Dou-

bling dimension captures the local growth rate of a metric

space. A k-dimensional Euclidean dimension has doubling

dimension O(k). A challenge in extending algorithms for

low-dimensional Euclidean space to doubling metrics is the

lack of geometric properties in doubling metrics. Although

QPTAS’s for various approximation problems in doubling

metrics, such as the Traveling Salesman Problem (TSP)

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.91

809

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.91

810

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.91

810

and STP, were presented in [15], a PTAS was only re-

cently achieved for TSP [16]. Subsequently, a PTAS is also

achieved for group TSP in doubling metrics [17]. Before this

work, the existence of a PTAS for SFP (or even the special

case STP) in doubling metrics remains an open problem.

B. Our Contribution and Techniques

Although PTAS’s for TSP (and its group variant) are

known, as we shall explain later, the nature of SFP and TSP-

related problems are quite different. Hence, it is interesting

to investigate what new techniques are required for SFP.

Fundamentally, it is an important question that whether the

notion of doubling dimension captures sufficient properties

of a metric space to design a PTAS for SFP, even without

the geometric properties that are crucially used in obtaining

approximation schemes for SFP in the Euclidean plane [5].

In this paper, we settle this open problem by giving a

(randomized) PTAS for SFP in doubling metrics. We remark

that previously even a PTAS for SFP in higher-dimensional

Euclidean space is not totally certain.

Theorem I.1 (PTAS for SFP in Doubling Metrics). For
any 0 < ε < 1, there is a (randomized) algorithm that takes
an instance of SFP with n terminal pairs in a metric space
with doubling dimension at most k, and returns a (1 + ε)-
approximate solution with constant probability, running in
time O(nO(1)k) · exp(√log n ·O(kε)

O(k)).

We next give an overview of our techniques. On a high

level, we use the divide and conquer framework that was

originally used by Arora [6] to achieve a PTAS for TSP
in Euclidean space, and was extended recently to doubling

metrics [16].

However, we shall explain that it is non-trivial to adapt

this framework to SFP, and how we overcome the difficulties

encountered. Moreover, we shall provide some insights

regarding the relationship between Euclidean and doubling

metrics, and discuss the implications of our technical lem-

mas.

Summary of Framework. As in [16], a PTAS is designed

for a class of special instances known as sparse instances.

Then, it can be shown that the general instances can be

decomposed into sparse instances. Roughly speaking, an

instance is sparse, if there is an optimal solution such that

for any ball B with radius r, the portion of the solution in B
has weight that is small with respect to r.

The PTAS for the sparse instances is usually based on a

dynamic program, which is based on a randomized hierar-

chical decomposition as in [15], [16]. This framework has

also been successfully applied to achieve a PTAS for group

TSP in doubling metrics [17]. Intuitively, sparsity is used

to establish the property that with high enough probability,

a cluster in the randomized decomposition cuts a (near)

optimal tour only a small number of times [16, Lemma 3.1].

However, SFP brings new significant challenges when such

a framework is applied. We next describe the difficulties and

give an overview of our technical contributions.

Challenge 1: It is difficult to detect a sparse instance
because which Steiner points are used by the optimal
solution are unknown. Let us first consider STP, which

is a special case of SFP in which all (pairs of) terminals

are required to be connected. In other words, the optimal

Steiner tree is the minimum weight graph that connects all

terminals. Unlike TSP in which the points visited by a tour

are clearly known in advance, it is not known which points

will be included in the optimal Steiner tree.

In [16], a crucial step is to estimate the sparsity of a

ball B, which measures the weight of the portion of the

optimal solution restricted to B. For TSP tour, this can be

estimated from the points inside B that have to be visited.

However, for solution involving Steiner points, it is difficult

to analyze the solution inside some ball B, because it is

possible that there are few (or even no) terminals inside B,

but the optimal solution could potentially have lots of Steiner

points and a large weight inside B.

Our Solution: Analyzing the Distribution of Steiner
Points in an Optimal Steiner Tree in Doubling Metrics.
We resolve this issue by showing a technical characterization

of Steiner points in an optimal Steiner tree for doubling

metrics. This technical lemma is used crucially in our proofs,

and we remark that it could be of interest for other problems

involving Steiner points in doubling metrics.

Lemma I.1 (Formal version in Lemma III.1). For a terminal
set S with diameter D, if an optimal Steiner tree spanning S
has no edge longer than γD, then every Steiner point in
the solution is within O(

√
γ) ·D distance to some terminal

in S, where the big O hides the dependence on the doubling
dimension.

We observe that variants of Lemma I.1 have been consid-

ered on the Euclidean plane. In [18], [19], it is shown that if

the terminal set consists of n evenly distributed points on a

unit circle, then for large enough n, there is no Steiner points

in an optimal Steiner tree. To see how this relates to our

lemma, when n is sufficiently large, it follows that adjacent

points in the circle are very close to each other. Hence,

any long edge in a Steiner tree could be replaced by some

short edge between adjacent terminals in the circle. Our

lemma then implies that all Steiner points must be near the

terminals, which is a weaker statement than the conclusion

in [18], but is enough for our purposes. We emphasize that

the results in [18], [19] rely on the geometric properties of

the Euclidean plane. However, in our lemma, we only use

that the doubling dimension is bounded.

Implication of Lemma I.1 on Sparsity Heuristic. We next

demonstrate an example of how we use this technical lemma.

In Lemma III.3, we argue that our sparsity heuristic provides

an upper bound on the weight of the portion of an optimal

810811811

solution F within some ball B.

The idea is that we remove the edges in F within B
and add back some edges of small total weight to maintain

connectivity. We first add a minimum spanning tree H on

some net-points N within B of an appropriate scale γ ·D.

Using the property of doubling dimension, we argue that the

number of points in H is bounded and so is its weight. In one

of our case analysis, there are two sets S and T of terminals

that are far apart d(S, T) ≥ D, and we wish to argue that in

the optimal Steiner tree F connecting S and T , there is an

edge {u, v} of length at least Ω(γ) ·D. If this is the case,

we could remove this edge and connect u and v to their

corresponding net-points directly. For contradiction’s sake,

we assume there is no such edge, but Lemma I.1 implies

that every Steiner point must be close to either S and T .

Since S and T are far apart, this means that there is a long

edge after all.

Conversely, in Lemma III.4, we also use this technical

lemma to show that if the sparsity heuristic for some ball B
is large, then the portion of the optimal solution F inside B
is also large.

Challenge 2: In doubling metrics, the number of cells
for keeping track of connectivity in each cluster could
be too large. Unlike the case for TSP variants [16], [17],

the solution for SFP need not be connected. Hence, in the

dynamic programming algorithm for SFP, in addition to

keeping track of what portals are used to connect a cluster to

points outside, we need to keep information on which portals

the terminals inside a cluster are connected to. In previous

works [5], the notion of cells is used for this purpose.

Previous Technique: Cell Property. The idea of cell property
was first introduced in [5], which gave a PTAS for SFP
in the Euclidean plane using dynamic programming. Since

there would have been an exponential number of dynamic

program entries if we keep information on which portal is

used by every terminal to connect to its partner outside

the cluster, the high level idea is to partition a cluster

into smaller clusters (already provided by the hierarchical

decomposition) known as cells. Loosely speaking, the cell
property ensures that every terminal inside the same cell

must be connected to points outside the cluster in the same

way. More precisely, a solution F satisfies the cell property

if for every cluster C and every cell e inside C, there is

only one component in the portion of F restricted to C that

connects e to points outside C.

A great amount of work was actually needed in [5] and

subsequent work [7] to show that it is enough to consider

cells whose diameters are constant times smaller than that

of its cluster. This allows the number of dynamic program

entries to be bounded, which is necessary for a PTAS.

Difficulty Encountered for Doubling Metrics. When the

notion of cell is applied to the dynamic program for SFP

in doubling metrics, an important issue is that the diameters

of cells need to be about Θ(log n) times smaller than that

of its cluster, because there are around Θ(log n) levels in

the hierarchical decomposition. Hence, the number of cells

in a cluster is Ω(poly log n), which would eventually lead

to a QPTAS only. A similar situation is observed when

dynamic programming was first used for TSP on doubling

metrics [15]. However, the idea of using sparsity as in [16]

does not seem to immediately provide a solution.

Our Solution: Adaptive Cells. Since there are

around Θ(log n) levels in the hierarchical decomposition,

it seems very difficult to increase the diameter of cells

in a cluster. Our key observation is that the cells are

needed only for covering the portion of a solution inside

a cluster that touches the cluster boundary. Hence, we use

the idea of adaptive cells. Specifically, for each connected

component A in the solution crossing a cluster C, we define

the corresponding basic cells such that if the component A
has larger weight, then its corresponding basic cells (with

respect to cluster C) will have larger diameters. Combining

with the notion of sparsity and bounded doubling dimension,

we can show that we only need to pay attention to a small

number of cells.

Further Cells for Refinement. Since the dynamic program

entries are defined in terms of the hierarchical decomposition

and the entries for a cluster are filled recursively with respect

to those of its child clusters, we would like the cells to

have a refinement property, i.e., if a cluster C has some

cell e (which itself is some descendant cluster of C), then

the child C ′ containing e has either e or all children of e as

its cells.

At first glance, a quick fix may be to push down each basic

cell in C to its child clusters. Although we could still bound

the number of relevant cells, it would be difficult to bound

the cost to achieve the cell property. The reason is that the

basic cells from higher levels are too large for the descendant

clusters. When more than one relevant component intersects

such a large cell, we need to add edges to connect the

components. However, if the diameter of the cell is too

large compared to the cluster, these extra edges would be

too costly.

We resolve this issue by introducing non-basic cells for

a cluster: promoted cells and virtual cells. These cells are

introduced to ensure that every sibling of a basic cell is

present. Moreover, only non-basic cells of a cluster will

be passed to its children. We show in Lemma V.5 that the

total number of effective cells for a cluster is not too large.

Moreover, Lemma V.3 shows that the refinement property

still holds even if we only pass the non-basic cells down to

the child clusters. More importantly, we show that as long

as we enforce the cell property for the basic cells, the cell

property for all cells are automatically ensured. This means

that it is sufficient to bound the cost to achieve the cell

property with respect to only the basic cells.

811812812

Further Techniques: Global Cell Property. We note that

the cell property in [5] is localized. In particular, for each

cluster C, we restrict the solution inside C, which could

have components disconnected within C but are actually

connected globally. In order to enforce the localized cell

property as in [5], extra edges would need to be added for

these locally disconnected components. Instead, we enforce

a global cell property, in which for every cell e in a

cluster C, there is only one (global) connected component

in the solution that intersects e and crosses the boundary of

cluster C. A consequence of this is that if there are m com-

ponents in the solution, then at most m− 1 extra edges are

needed to maintain the global cell property. This implication

is crucially used in our charging argument to bound the cost

for enforcing the cell property for the basic cells. However,

this would imply that in the dynamic program entries, we

need to keep additional information on how the portals of a

cluster are connected outside the cluster.

Combining the Ideas: A More Sophisticated Dynamic
Program. Even though our approaches to tackle the encoun-

tered issues are intuitive, it is a non-trivial task to balance

between different tradeoffs and keep just enough information

in the dynamic program entries, but still ensure that the

entries can be filled in polynomial time.

II. PRELIMINARIES

We consider a metric space M = (X, d) (see [20], [21]

for more details on metric spaces). For x ∈ X and ρ ≥
0, a ball B(x, ρ) is the set {y ∈ X | d(x, y) ≤ ρ}. The

diameter Diam(Z) of a set Z ⊂ X is the maximum distance

between points in Z. For S, T ⊂ X , we denote d(S, T) :=
min{d(x, y) : x ∈ S, y ∈ T}, and for u ∈ X , d(u, T) :=
d({u}, T). Given a positive integer m, we denote [m] :=
{1, 2, . . . ,m}.

A set S ⊂ X is a ρ-packing, if any two distinct points

in S are of distance more than ρ. A set S is a ρ-cover for

Z ⊆ V , if for any z ∈ Z, there exists x ∈ S such that

d(x, z) ≤ ρ. A set S is a ρ-net for Z, if S is a ρ-packing

and a ρ-cover for Z. We assume that a ρ-net for any ball in

X can be constructed efficiently.

We consider metric spaces with doubling dimension [22],

[23] at most k; this means that for all x ∈ X , for all ρ > 0,

every ball B(x, 2ρ) can be covered by the union of at most

2k balls of the form B(z, ρ), where z ∈ X . The following

captures a standard property of doubling metrics.

Fact II.1 (Packing in Doubling Metrics [23]). Suppose in a
metric space with doubling dimension at most k, a ρ-packing
S has diameter at most R. Then, |S| ≤ (2Rρ)k.

Given an undirected graph G = (V,E), where V ⊂ X ,

E ⊆ (
V
2

)
, and an edge e = {x, y} ∈ E receives weight

d(x, y) from M . The weight w(G) or cost of a graph is the

sum of its edge weights. Let V (G) denote the vertex set of

a graph G.

We consider the Steiner Forest Problem (SFP). Given a

collection W = {(ai, bi) | i ∈ [n]} of terminal pairs in X ,

the goal is to find an undirected graph F (having vertex set

in X) with minimum cost such that each pair of terminals

are connected in F . The non-terminal vertices in V (F) are

called Steiner points.

Rescaling Instance. Fix constant ε > 0. Since we consider

asymptotic running time to obtain (1 + ε)-approximation,

we consider sufficiently large n > 1
ε . Suppose R > 0 is the

maximum distance between a pair of terminals. Then R is a

lower bound on the cost of an optimal solution. Moreover,

the optimal solution F has cost at most nR, and hence, we

do not need to consider distances larger than nR. Since F
contains at most 4n vertices, if we consider an εR

32n2 -net S
for X and replace every point in F with its closest net-

point in S, the cost increases by at most ε · OPT. Hence,

after rescaling, we can assume that inter-point distance is at

least 1 and we consider distances up to O(n
3

ε) = poly(n).
By the property of doubling dimension (Fact II.1), we can

hence assume |X| ≤ O(nε)
O(k) ≤ O(n)O(k).

Hierarchical Nets. As in [16], we consider some parameter

s = (log n)
c
k ≥ 4, where 0 < c < 1 is a universal constant

that is sufficiently small. Set L := O(logs n) = O(k logn
log logn).

A greedy algorithm can construct NL ⊆ NL−1 ⊆ · · · ⊆
N1 ⊆ N0 = N−1 = · · · = X such that for each i, Ni is an

si-net for X , where we say distance scale si is of height i.
Net-Respecting Solution. As defined in [16], a graph F is

net-respecting with respect to {Ni}i∈[L] and ε > 0 if for

every edge {x, y} in F , both x ∈ Ni and y ∈ Ni, where

si ≤ ε · d(x, y) < si+1.

Given an instance W , let OPT(W) be an optimal solution;

when the context is clear, we also use OPT(W) to denote

w(OPT(W)); similarly, OPTnr(W) denotes an optimal net-

respecting solution.

A. Overview

As in [16], [17], we achieve a PTAS for SFP by the

framework of sparse instance decomposition.

Sparse Solution and Dynamic Program. Given a graph

F and a subset S ⊆ X , F |X is the subgraph induced by

the vertices in V (F) ∩ X . A graph F is called q-sparse,

if for all i ∈ [L] and all u ∈ Ni, w(F |B(u,3si)) ≤ q · si.
We show that for SFP there is a dynamic program DP that

runs in polynomial time such that if an instance W has

an optimal net-respecting solution that is q-sparse for some

small enough q, DP(W) returns a (1 + ε)-approximation

with high probability (at least 1− 1
poly(n)).

Sparsity Heuristic. Since the optimal solution is unknown

in advance, we estimate the local sparsity with a heuristic.

For i ∈ [L] and u ∈ Ni, given an instance W , the heuristic

H
(i)
u (W) is supposed to estimate the sparsity of an optimal

net-respecting solution in the ball B′ := B(u,O(si)). We

shall see in Section III that the heuristic actually gives a

812813813

constant approximation to some appropriately defined sub-

instance W ′ in B′.
Generic Algorithm. We describe a generic framework that

applies to SFP. Similar framework is also used in [16],

[17] to obtain PTAS’s for TSP related problems. Given an

instance W , we describe the recursive algorithm ALG(W)
as follows.

1. Base Case. If |W | = n is smaller than some constant

threshold, solve the problem by brute force, recalling

that |X| ≤ O(nε)
O(k).

2. Sparse Instance. If for all i ∈ [L], for all u ∈ Ni,

H
(i)
u (W) is at most q0 ·si, for some appropriate thresh-

old q0, call the subroutine DP(W) to return a solution,

and terminate.

3. Identify Critical Instance. Otherwise, let i be the

smallest height such that there exists u ∈ Ni with

critical H(i)
u (W) > q0 · si; in this case, choose u ∈ Ni

such that H
(i)
u (W) is maximized.

4. Decomposition into Sparse Instances. Decompose

(possibly using randomness) the instance W into appro-

priate sub-instances W1 and W2. Loosely speaking, W1

is a sparse enough sub-instance induced in the region

around u at distance scale si, and W2 captures the

rest. We note that H
(i)
u (W2) ≤ q0 · si such that the

recursion will terminate. The union of the solutions to

the sub-instances will be a solution to W . Moreover,

the following property holds.

(1− ε)E[OPT(W1)] ≤OPTnr(W)

− E[OPTnr(W2)], (1)

where the expectation is over the randomness of the

decomposition. Details for this step are supplied in

Section IV.

5. Recursion. Call the subroutine F1 := DP(W1), and

solve F2 := ALG(W2) recursively; return the union

F1 ∪ F2.

Approximation Ratio. We follow the inductive proof as

in [16] to show that with constant probability (where the

randomness comes from DP), ALG(W) returns a solution

of expected length at most 1+ε
1−ε ·OPTnr(W), where expec-

tation is over the randomness of decomposition into sparse

instances in Step 4.

As we shall see, in ALG(W), the subroutine DP is called

at most poly(n) times (either explicitly in the recursion

or the heuristic H(i)). Hence, with constant probability, all

solutions returned by all instances of DP have appropriate

approximation guarantees.

Suppose F1 and F2 are solutions returned by DP(W1)
and ALG(W2), respectively. Since we assume that W1

is sparse enough and DP behaves correctly, w(F1) ≤
(1 + ε) · OPT(W1). The induction hypothesis states

that E[w(F2)|W2] ≤ 1+ε
1−ε · OPTnr(W2). In Step 4,

equation (1) guarantees that E[OPT(W1)] ≤ 1
1−ε ·

(OPTnr(W) − E[OPTnr(W2)]). Hence, it follows that

E[w(F1) + w(F2)] ≤ 1+ε
1−ε · OPTnr(W) = (1 + O(ε)) ·

OPT(W), achieving the desired ratio.

Analysis of Running Time. As mentioned above, if

H
(i)
u (W) is found to be critical, then in the decomposed sub-

instances W1 and W2, H
(i)
u (W2) should be small. Hence, it

follows that there will be at most |X|·L = poly(n) recursive

calls to ALG. Therefore, as far as obtaining polynomial

running times, it suffices to analyze the running time of the

dynamic program DP. Details of the DP can be found in the

full version.

III. SPARSITY HEURISTIC FOR SFP

Suppose a collection W of terminal pairs is an instance

of SFP. For i ∈ [L] and u ∈ Ni, recall that we wish to

estimate OPTnr(W)|B(u,3si) with some heuristic H
(i)
u (W).

We consider a more general heuristic T
(i,t)
u associated with

the ball B(u, tsi), for t ≥ 1. The following auxiliary sub-

instance deals with terminal pairs that are separated by the

ball.

Auxiliary Sub-Instance. Fix δ := Θ(ε
k), where the constant

depends on the proof of Lemma IV.2. For i ∈ [L], u ∈ Ni

and t ≥ 1, the sub-instance W
(i,t)
u is induced by each pair

{a, b} ∈W as follows.

(a) If both a, b ∈ B(u, tsi), or if exactly one of them is in

B(u, tsi) and the other in B(u, (t+ δ)si), then {a, b}
is also included in W

(i,t)
u .

(b) Suppose j is the index such that sj < δsi ≤ sj+1. If

a ∈ B(u, tsi) and b /∈ B(u, (t + δ)si), then {a, a′} is

included in W
(i,t)
u , where a′ is the nearest point to a

in Nj .

(c) If both a and b are not in B(u, tsi), then the pair is

excluded.

Defining Heuristic. We define H
(i)
u (W) := T

(i,4)
u (W) in

terms of a more general heuristic, where T
(i,t)
u (W) is the

cost of a constant approximate net-respecting solution of

SFP on the instance W
(i,t)
u . To calculate T

(i,t)
u (W), one can

apply the 2-approximate algorithm in [2], and then make the

solution net-respecting. We have T
(i,t)
u (W) ≤ 2(1 +Θ(ε)) ·

OPT(W
(i,t)
u).

One potential issue is that OPTnr(W) might use Steiner

points in B(u, tsi), even if W
(i,t)
u is empty. We shall prove

a structural property of Steiner tree in Lemma III.1, and

Lemma III.1 implies Lemma III.2 which helps us to resolve

this issue. Recall that the Steiner tree problem is a special

case of SFP where the goal is to return a minimum cost tree

that connects all terminals.

Lemma III.1. Suppose S is a terminal set with Diam(S) ≤
D, and suppose F is an optimal Steiner tree with termi-
nal set S. If the longest edge in F has weight at most
γD (0 < γ ≤ 1), then for any Steiner point r in F ,
d(r, S) ≤ 4kγ log2

4
γ ·D.

813814814

Proof: Since F is an optimal solution, all Steiner points

in F have degree at least 3.

Fix any Steiner point r in F . Denote K :=
log2(γD)�.
Suppose we consider r as the root of the tree F . We shall

show that there is a path of small weight from r to some

terminal. Without loss of generality, we can assume that all

terminals are leaves, because once we reach a terminal, there

is no need to visit its descendants. For simplicity, we can

assume that each internal node (Steiner point) has exactly

two children, because we can ignore extra branches if an

internal has more than two children.

For i ≤ K, let Ei be the set of edges in F that have

weights in the range (2i−1, 2i], and we say that such an

edge is of type i. For each node u in F , denote Fu as the

subtree rooted at u. Suppose we consider Fu and remove

all edges in ∪j≥iEj from Fu; in the resulting forest, let

M
(i)
u be the number of connected components that contain

at least one terminal. We shall prove the following statement

by structural induction on the tree F̂ .

For each node u ∈ F , there exists a leaf x ∈ Fu such
that d(x, u) ≤∑

i≤K 2i log2 M
(i)
u .

Base Case. If u is a leaf, then the statement is true.

Inductive Step. Suppose u has children u1 and u2 such that

{u, u1} ∈ Ei and {u, u2} ∈ Ei′ , where i ≥ i′. Suppose x1

and x2 are the leaves in Fu1
and Fu2

, respectively, from the

induction hypothesis. Observe that M
(i)
u = M

(i)
u1 +M

(i)
u2 . We

consider two cases.

(1) Suppose M
(i)
u1 ≤ M

(i)
u2 . Then, we can pick x1 to be

the desired leaf, because the extra distance d(u1, u) ≤ 2i

can be accounted for, as 2M
(i)
u1 ≤ M

(i)
u , and M

(j)
u1 ≤

M
(j)
u for j �= i. More precisely, d(x1, u) ≤ d(x1, u1) +

d(u1, u) ≤ 2i · (1 + log2 M
(i)
u1) +

∑
j≤K:j �=i 2

j log2 M
(j)
u1 ≤∑

j≤K 2j log2 M
(j)
u , where the second inequality follows

from the induction hypothesis for u1.

(2) Suppose M
(i)
u2 < M

(i)
u1 . Then, similarly we pick x2 to

be the desired leaf, because the extra distance is d(u2, u) ≤
2i

′ ≤ 2i. This completes the inductive step.

Next, it suffices to give an upper bound for each M (i) :=

M
(i)
r for root r. Suppose after removing all tree edges in

∪j≥iEj , P and Q are two clusters each containing at least

one terminal. Then, observe that the path in F connecting

P and Q must contain an edge e with weight at least

2i−1. It follows that d(P,Q) ≥ 2i−1; otherwise, we can

replace e in F with another edge of length less than 2i−1 to

obtain a Steiner tree with strictly less weight. It follows that

each cluster has a terminal representative that form a 2i−1-

packing. Hence, we have M (i) ≤ (4D2i)
k, by the packing

property of doubling metrics (Fact II.1).

Therefore, any Steiner point r in F̂ has a terminal within

distance k
∑

i≤K 2i log2
4D
2i ≤ 4kγD log2

4
γ .

Given a graph F , a chain in F is specified by a se-

quence of points (p1, p2, . . . , pl) such that there is an edge

{pi, pi+1} in F between adjacent points, and the degree of

an internal point pi (where 2 ≤ i ≤ l − 1) in F is exactly

2. Full proofs of the following lemmas can be found in the

full version.

Lemma III.2. Suppose S and T are terminal sets in a metric
space with doubling dimension at most k such that Diam(S∪
T) ≤ D, and d(S, T) ≥ τD, where 0 < τ < 1. Suppose
F is an optimal net-respecting Steiner tree connecting the
points in S ∪ T . Then, there is a chain in F with weight at
least τ2

4096k2 ·D such that any internal point in the chain is
a Steiner point.

Lemma III.3. Suppose F is an optimal net-respecting
solution for an SFP instance W . Then, for any i and u ∈ Ni

and t ≥ 1, w(F |B(u,tsi)) ≤ T
(i,t+1)
u (W) +O(sktε)O(k)si.

Proof: Given an optimal net-respecting solution F ,

we shall construct another net-respecting solution in the

following steps.

1. Remove edges in F |B(u,tsi).

2. Add edges corresponding to the heuristic T
(i,t+1)
u (W).

3. Add edges in a minimum spanning tree H of Nj ∩
B(u, (t + 2)si), where sj ≤ Θ(ε

(t+1)k2) · si < sj+1,

where the constant in Theta depends on Lemma III.2;

convert each added edge into a net-respecting path if

necessary. Observe that the weight of edges added in

this step is O(stkε)O(k) · si.
4. To ensure feasibility, replace some edges without in-

creasing the weight.

If we can show that the resulting solution is feasible for

W , then the optimality of F implies the result. We denote

B := B(u, tsi) and B̂ := B(u, (t+ 1)si).

Feasibility. Define V̂1 := {x : x ∈ B | ∃{x, y} ∈ F s.t. y /∈
B and y is connected in F |X\B to some point outside B̂},
and V̂2 := {x : x ∈ B̂ \B | x is connected in F |

̂B to some

point in V̂1, and ∃{x, y} ∈ F s.t. y /∈ B̂}. In Step 4, we

will ensure that all points in V̂1 ∪ V̂2 are connected to the

MST H .

If a pair {a, b} ∈ W has both terminals in B̂, then

they will be connected by the edges corresponding to

T
(i,t+1)
u (W). If a ∈ B̂ and b /∈ B̂, then edges for the

heuristic T
(i,t+1)
u (W) ensures that a is connected to H;

moreover, in the original tree F , if the path from a to b
does not meet any node in V̂2, then this path is preserved,

otherwise there is a portion of the path from a point in V̂2 to b
that is still preserved. If both a and b are outside B̂, then they

might be connected in F via points in V̂2; however, since

all points in V̂2 are connected to H , feasibility is ensured.

We next elaborate how Step 4 is performed. Consider a

connected component U in F |
̂V1∪(̂B\B) that contains a point

in V̂1. Let S1 := U ∩ V̂1 and S2 := U ∩ V̂2. If S2 = ∅, then

there is an edge connecting S1 directly to a point outside

B̂. This means that both its end-points are in Nj by the

net-respecting property, and hence S1 is already connected

814815815

to H .

Next, if there is a point z /∈ B̂ connected directly to

some point y ∈ S2 such that d(y, z) ≥ si

2 , then by the net-

respecting property, y ∈ Nj and so again U is connected to

H . Otherwise, we have d(S1, S2) ≥ si

2 . We next replace U

with an optimal net-respecting Steiner tree Û connecting

S1 ∪ S2. Since U itself is net-respecting, this does not

increase the cost.

Observing that Diam(S1 ∪ S2) ≤ 2(t+ 1)si, we can use

Lemma III.2 to conclude that there exists a chain in Û from

some point u to v such that its length is at least Θ(1
k2(t+1)) ·

si. Hence, we can remove this chain, and use its weight to

add a net-respecting path from each of u and v to its nearest

point in Nj . This does not increase the cost, and ensures that

both S1 and S2 are connected to H .

Therefore, we have shown that Step 4 ensures that all

points in V̂1 and V̂2 are connected to H .

Corollary III.1 (Threshold for Critical Instance). Suppose
F is an optimal net-respecting solution for an SFP instance
W , and q ≥ Θ(skε)

Θ(k). If for all i ∈ [L] and u ∈ Ni,
H

(i)
u (W) ≤ qsi, then F is 2q-sparse.

Lemma III.4. Suppose W is an SFP instance. Consider
i ∈ [L], u ∈ Ni, and t ≥ t′ ≥ 1. Suppose F is a net-
respecting solution for W

(i,t)
u . Then, T(i,t′)

u (W) ≤ 4(1+ ε) ·
w(F) +O(skt

′
ε)O(k)si.

IV. DECOMPOSITION INTO SPARSE INSTANCES

In Section III, we define a heuristic H
(i)
u (W) to detect a

critical instance around some point u ∈ Ni at distance scale

si. We next describe how the instance W can be decomposed

into W1 and W2 such that equation (1) in Section II-A is

satisfied. Full proofs can be found in the full version.

Since the ball centered at u with radius around si could

potentially separate terminal pairs in W , we use the idea

in Section III for defining the heuristic to decompose the

instance.

Decomposing a Critical Instance. We define a threshold

q0 := Θ(skε)
Θ(k) according to Corollary III.1. As stated in

Section II-A, a critical instance is detected by the heuristic

when a smallest i ∈ [L] is found for which there exists some

u ∈ Ni such that H
(i)
u (W) = T

(i,4)
u (W) > q0s

i. Moreover,

in this case, u ∈ Ni is chosen to maximize H
(i)
u (W).

To achieve a running time with an exp(O(1)k log(k)) de-

pendence on the doubling dimension k, we also apply the

technique in [17] to choose the cutting radius carefully.

Claim IV.1 (Choosing Radius of Cutting Ball). Denote
T(λ) := T

(i,4+2λ)
u (W). Then, there exists 0 ≤ λ < k such

that T(λ+ 1) ≤ 30k · T(λ).
Cutting Ball and Sub-Instances. Suppose λ ≥ 0 is picked

as in Claim IV.1, and sample h ∈ [0, 1
2] uniformly at random.

Recall that δ := Θ(ε
k). Define B := B(u, (4 + 2λ + h)si)

and B̂ := B(u, (4 + 2λ+ h+ δ)si). The instances W1 and

W2 are induced by each pair {a, b} ∈W as follows.

(a) If a ∈ B and b ∈ B̂, then include {a, b} in W1.

(b) If a ∈ B and b /∈ B̂, then include {a, a′} in W1 and

{a′, b} in W2, where a′ is the closest point in Nj to a
and sj ≤ δ · si < sj+1.

(c) If both a and b are not in B, then include {a, b} in W2.

Lemma IV.1 (Sub-Instances Are Sparse). The sub-instances
W1 and W2 satisfy the following.

(i) If F1 is feasible for W1 and F2 is feasible for W2, then
the union F1 ∪ F2 is feasible for W .

(ii) The sub-instance W2 does not have a critical instance
with height less than i, and H

(i)
u (W2) = 0.

(iii) H
(i)
u (W1) ≤ O(s)O(k) · q0 · si.

Lemma IV.2 (Combining Costs of Sub-Instances). Suppose
F is an optimal net-respecting solution for W . Then, for
any realization of the decomposed sub-instances W1 and
W2 as described above, there exist net-respecting solutions
F1 and F2 for W1 and W2, respectively, such that (1− ε) ·
E[w(F1)]+E[w(F2)] ≤ w(F), where the expectation is over
the randomness to generate W1 and W2.

Proof: Let B and B̂ be defined as above, and denote

B := B(u, (4 + 2λ+ 1) · si). Hence, B ⊂ B̂ ⊂ B.

We start by including F |B in T1, and including the

remaining edges in F in F2. We will then show how to

add extra edges with expected weight at most ε · E[w(F1)]
to make F1 and F2 feasible. This will imply the lemma.

Define N to be the subset of Nj that cover the points in B,

where sj < δsi ≤ sj+1. We include a copy of a minimum

spanning tree H of N in each of F1 and F2, and make it net-

respecting. This costs at most |N |·O(k)·si ≤ O(ksε)
O(k) ·si.

We next include the edges of F in the annulus B̂ \B (of

width δ) into F1. This has expected cost at most δ ·w(F |B).
Connecting Crossing Points. To ensure the feasibility of

F1, we connect the following sets of points to N . We denote:

V1 := {x ∈ B | ∃y ∈ B̂ \ B, {x, y} ∈ F}, V2 := {y ∈
B̂ \B | ∃x ∈ B, {x, y} ∈ F}, and

V3 := {x ∈ B̂ | ∃y /∈ B̂, {x, y} ∈ F}.
We shall connect each point in V1 ∪V2 ∪V3 to its closest

point in N . Note that if such a point x is incident to some

edge in F with weight at least si

4 , then the net-respecting

property of F implies that x is already in N . Otherwise, this

is because some edge {x, y} in F is cut by either B or B̂,

which happens with probability at most O(d(x,y)si). Hence,

each edge {x, y} ∈ F |B has an expected contribution of

δsi ·O(d(x,y)si) = O(δ) · d(x, y).
Similarly, to ensure the feasibility of F2, we ensure each

point in the following set is connected to N . Denote V̂1 :=
{x ∈ B | ∃y /∈ B, {x, y} ∈ F}. By the same argument, the

expected cost to connect each point to N is also at most

O(δ) · w(F |B).

815816816

Charging the Extra Costs to F1. Apart from using edges

in F , the extra edges come from two copies of the minimum

spanning tree H , and other edges with cost O(δ) ·w(F |B).
We charge these extra costs to F1.

Since T
(i,4)
u (W) > q0 · si and F1 is a net-respecting

solution for W
(i,4+2λ+h)
u , by Lemma III.4, w(F1) ≥

1
4(1+ε) (T

(i)(u, 4) − O(skε)
O(k) · si) > q0

8 · si, by choosing

large enough q0.

Therefore, the cost for the two copies of the minimum

spanning tree H is at most O(ksε)
O(k) · si ≤ ε

2 · w(F1).
We next give an upper bound on w(F |B), which is at

most T
(i,4+2(λ+1))
u (W) + O(skε)

O(k) · si, by Lemma III.3.

By the choice of λ, we have T
(i,4+2(λ+1))
u (W) ≤

30k · T
(i,4+2λ+1)
u (W). Moreover, by Lemma III.4,

T
(i,4+2λ+1)
u (W) ≤ 4(1+ ε) ·w(F1)+O(skε)

O(k) ·si. Hence,

we can conclude that w(F |B) ≤ O(k) · w(F1).
Hence, by choosing small enough δ = Θ(ε

k), we can

conclude that the extra costs O(δ) · w(F |B) ≤ ε
2 · w(F1).

Therefore, we have shown that E[w(F1)] + E[w(F2)] ≤
w(F) + ε · w(F1), where the right hand side is a random

variable. Taking expectation on both sides and rearranging

gives the required result.

V. A PTAS FOR SPARSE SFP INSTANCES

Our dynamic program follows the divide and conquer

strategy as in previous works on TSP [6], [15], [16] that

are based on hierarchical decomposition. A review of the

hierarchical decomposition techniques as well as full proofs

in this section can be found in the full version.

However, to apply the framework to SFP, we need a

version of the cell property (Definition V.11) that is more

sophisticated than previous works [5], [7]. We shall define

our cell property precisely, and also prove that there exist

good solutions that satisfy the cell property (in Lemma V.6).

Notations and Parameters. Let ht(C) denote the height of

a cluster C, des(C) denote the collection of all descendant

clusters of C (including C), and par(C) denote the parent

cluster of C. For x ∈ R+, let �x�s denote the largest power

of s that is at most x, and
x�s denote the smallest power

of s that is at least x. Define γ̂0 := Θ(ε
ks2L), and define

γ̂1 := Θ(ε
s2). Define γ0 such that 1

γ0
:=
 1

γ̂0
�s, and define

γ1 such that 1
γ1

:= � 1
γ̂1
�s. We note that γ0 < γ1.

Definition V.1 (Cell). Suppose C is a cluster of height i. A
p-cell of C is a height-logs p sub-cluster of C.

Definition V.2 (Crossing Component). Suppose C is some
cluster, and F is a solution for SFP. We say that a subset A
crosses C, if there exists points x, y ∈ A such that x ∈
C and y /∈ C. A component A in F is called a crossing
component of C if A crosses C.

The cell property is defined with respect to the effective

cells (Definition V.7), where the effective cells are carefully

chosen to implement our adaptive cells idea which is dis-

cussed in Section I. In the following, we shall introduce the

notions of the basic cells, owner of basic cells, promoted

cells, virtual cells, non-basic cells, and effective cells. All

of these are defined with respect to some feasible solution

to SFP. We assume there is an underlying feasible solution

F when talking about these definitions.

Adaptive Cells. For each cluster C, we shall define its basic
cells whose heights depend on the weights l of the crossing

components of C in the solution F .

Define I1(l) := {i | �l�s ≥ si}, I2(l) := {i | γ0

γ1
si ≤

�l�s < si} and I3(l) := {i | i ≤ L, �l�s < γ0

γ1
si}. Define a

function h : [L]× R+ → R+, such that

h(i, l) =

⎧⎪⎨
⎪⎩
γ1s

i, for i ∈ I1(l)

γ1�l�s, for i ∈ I2(l)

γ0s
i, for i ∈ I3(l)

Lemma V.1. h(i+1,l)
s ≤ h(i, l) ≤ h(i+ 1, l).

Definition V.3 (Basic Cell). Suppose C is a cluster of
height i, and A is a crossing component of C. Define the
basic cells of A in C, BasA(C), to be the collection of the
h(i, w(A))-cells of C that intersect A. Define the basic cells
of C, Bas(C), to be the union of BasA(C) for all crossing
components A of C.

Definition V.4 (Owner of a Basic Cell). For some cluster C,
define the owner of e ∈ Bas(C) to be the minimum weight
crossing component A such that e ∈ BasA(C).

Definition V.5 (Promoted Cell and Virtual Cell). Suppose
C is a cluster of height i. Let S be the set of sub-clusters
of C that is not in Bas(C) but has a sibling in Bas(C).

Consider each e ∈ S.
• If there exists a sub-cluster C ′ of C such that e ∈
Bas(C ′), then define Proe(C) := des(e) ∩ Bas(C ′),
and define Vire(C) := ∅, where C ′ ⊂ C is any one
that satisfies e ∈ Bas(C ′).

• Otherwise, define Proe(C) := ∅ and Vire(C) := e.
Finally, Pro(C) :=

⋃
e∈S Proe(C), and Vir(C) :=⋃

e∈S Vire(C), and elements in Pro(C) and Vir(C) are
called promoted cells and virtual cells respectively.

Lemma V.2. For any cluster C, if e ∈ Vir(C), then for any
cluster C ′ ⊂ C (C ′ may equal C), e\{e′ ∈ Bas(C ′) | e′ �
e} has no intersection with any crossing component of C ′.

Definition V.6 (Non-basic Cell). We define the non-basic
cells NBas(C) for a cluster C. If C is the root cluster, then
NBas(C) = Pro(C)∪Vir(C)\Bas(C). For any other cluster
C, define NBas(C) := {e ∩ C | e ∈ Pro(C) ∪ Vir(C) ∪
NBas(par(C))\Bas(C)}.
Definition V.7 (Effective Cell). The effective cells of a
cluster C is defined as Eff(C) := Bas(C) ∪ NBas(C).

816817817

Definition V.8 (Refinement). Suppose S1 and S2 are col-
lections of clusters. We say S1 is a refinement of S2, if for
any e ∈ S2, either e ∈ S1, or all child clusters of e are in
S1.

Lemma V.3. Suppose C is a cluster that is not a leaf. Define
{Ci}i to be the collection of all the child clusters of C. Then⋃

i Eff(Ci) is a refinement of Eff(C).

Definition V.9 (Candidate Center). Suppose C is a cluster
of height i. The set of candidate centers of C, denoted as
Can(C), is the subset of

⋃i
j=logs γ2

0s
i Nj that may become a

center of C’s child cluster in the hierarchical decomposition.

Lemma V.4. For any cluster C, the centers of clusters in
Eff(C) are chosen from Can(C), and |Can(C)| ≤ κ, where
κ := O(1

γ0
)O(k).

Lemma V.5. Suppose Eff is defined in terms of a solution
that is (m, r)-light. Then for each cluster C, |Eff(C)| ≤ ρ,
where ρ := O(logs

1
γ0
) · r2 ·O(s

γ1
)O(k).

Definition V.10 (Disjointification). For any collection of
clusters S, define Dis(S) := {e\⋃e′∈S:e′�e e

′}e∈S . We say
e is induced by u in S, if u ∈ S and e = u\⋃e′∈S:e′�u e

′,
and the height of e is defined as the height of u.

Definition V.11 (Cell Property). Suppose F is an SFP
solution, and suppose f maps a cluster C to a collection of
sub-clusters of C. We say that f satisfies the cell property
in terms of F if for all clusters C, for all e ∈ Dis(f(C)),
there is at most one crossing component of C in F that
intersects e.

Lemma V.6 (Structural Property). Suppose an instance has
a q-sparse optimal net-respecting solution F . Moreover,
for each i ∈ [L], for each u ∈ Ni, point u samples
O(k log n) independent random radii as in the hierarchical
decompostion framework. Then, with constant probability,
there exists a configuration from the sampled radii that
defines a hierarchical decomposition, under which there
exists an (m, r)-light solution F ′ that includes all the points
in F , and Eff defined in terms of F ′ satisfies the cell
property, where
• E[w(F ′)] ≤ (1 +O(ε)) · w(F),
• m := O(skLε)k and r := O(1)k ·q logs log n+O(kε)

k+
O(sε)

k.

Proof: We observe that the argument in [16, Lemma

3.1] readily gives an (m, r)-light solution F̂ with the desired

m and r, and also satisfies E
[
w(F̂)

]
≤ (1 + ε) · w(F).

We shall first show additional steps with additional cost

at most εw(F) in expectation, so that Bas defined in terms

of the resultant solution satisfies the cell property. And then,

we shall show that this implies Eff defined in terms of the

resultant solution also satisfies the cell property (hence no

more additional cost caused).

Maintaining Cell Property: Basic Cells. For i := L,L −
1, L − 2, . . . , 0, for each height-i cluster C, we examine

e ∈ Dis(Bas(C)) in the non-decreasing order of its height.

If there are at least two crossing components that intersect

e, we add edges in e to connect all crossing components

that intersect e. We note that each added edge connects two

components in F , and edges added are of length at most

Diam(e). At the end of the procedure, we define the solution

as F ′. We observe that Bas defined in terms of F ′ satisfies

the cell property.

For each added edge, we charge its weight to one of the

components that it connects to. Then after a rearrangement

(at the end of the procedure), we can make sure each edge

is charged to one of the components it connects to and each

component is charged at most once.

Bounding The Cost. We shall show that for a fixed com-

ponent A, the expected cost it takes charge of is at most

ε ·w(A). Define l := w(A). The expected cost that A takes

is at most the following (up to constant)

L∑
i=1

Pr[A takes an edge in a cell of height i] · si+1.

Define pi := Pr[A takes an edge in a cell of height i].
Then,

L∑
i=0

pi · si+1 ≤
∑

i:si≤2γ1l

si+1 +
∑

i:si>2γ1l

pis
i+1

≤ O(γ1s) · l +
∑

i:si>2γ1l

pis
i+1

≤ O(ε) · l +
∑

i:si>2γ1l

pis
i+1.

Fix an i such that si > 2γ1l, and we shall upper bound pi.
Suppose in the event corresponding to pi, A takes charge of

an edge inside a cell e that is a basic cell of some height-h
cluster. Note that h and e are random and recall that the edge

is inside a cell of height i. We shall give a lower bound of

h.

Lemma V.7. sh ≥ si

2γ0
.

Since the event that the edge is taken by A automatically

implies that A is cut by a height-h cluster, and the proba-

bility that A is cut at a height-j cluster is at most O(k) · l
sj

for j ∈ [L], we conclude that

pi ≤
∑

j:sj≥ si

2γ0

Pr[A is cut at height j]

≤ O(k) ·
∑

j:sj≥ si

2γ0

l

sj
≤ O(γ0k) · l

si
.

Hence
∑

i:si>2γ1l
pis

i+1 ≤ O(γ0ksL) · l ≤ O(ε) · l.

817818818

Maintaining Cell Property: Effective Cells. Next we show

that Bas defined in terms of F ′ satisfies the cell property

implies that Eff defined in terms of F ′ also satisfies the cell

property.

Fix a cluster C and fix e ∈ Dis(Eff(C)). We shall prove

that there is at most one crossing component of C that

intersects e in F ′. Suppose e is induced by u in Eff(C).

Lemma V.8. If there is no cluster Ĉ such that C ⊂ Ĉ
and u ∈ Vir(Ĉ), then there exists cluster C ′ such that u ∈
Bas(C ′), ht(C ′) ≤ ht(C) and Eff(C) is a refinement of
des(u) ∩ Bas(C ′).

If there exists cluster Ĉ such that u ∈ Vir(Ĉ) and C ⊂ Ĉ,

then by Lemma V.2, there is no crossing component of C
in F ′ that intersects e. Otherwise, there is no cluster Ĉ such

that u ∈ Vir(Ĉ) and C ⊂ Ĉ. By Lemma V.8, there exists

a cluster C ′ such that u ∈ Bas(C ′), ht(C ′) ≤ ht(C) and

Eff(C) is a refinement of des(u)∩Bas(C ′). We pick any one

of such C ′. Define e′ ∈ Dis(Bas(C ′)) as the one induced

by u in Bas(C ′). Since Bas defined in terms of F ′ satisfies

the cell property, there is at most one crossing component

of C ′ that intersects e′.

Lemma V.9. e ⊂ e′.

Since ht(C) ≥ ht(C ′), any crossing component of C is

also a crossing component of C ′. Moreover, Lemma V.9

implies that e ⊂ e′. Hence, if there are two crossing

components A1, A2 of C that intersect e, then A1 and A2 are

also crossing components of C ′ and both of them intersect

e′. However, this cannot happen since Bas satisfies the cell

property, and there is at most one crossing component in C ′

that intersects e′. Therefore, there is at most one crossing

component of C that intersects e.

REFERENCES

[1] M. Chlebı́k and J. Chlebı́ková, “The steiner tree problem on
graphs: Inapproximability results,” Theor. Comput. Sci., vol.
406, no. 3, pp. 207–214, 2008.

[2] M. X. Goemans and D. P. Williamson, “A general approxi-
mation technique for constrained forest problems,” SIAM J.
Comput., vol. 24, no. 2, pp. 296–317, 1995.

[3] A. Agrawal, P. N. Klein, and R. Ravi, “When trees collide: An
approximation algorithm for the generalized steiner problem
on networks,” SIAM J. Comput., vol. 24, no. 3, pp. 440–456,
1995.

[4] A. Gupta and A. Kumar, “Greedy algorithms for steiner
forest,” in STOC. ACM, 2015, pp. 871–878.

[5] G. Borradaile, P. N. Klein, and C. Mathieu, “A polynomial-
time approximation scheme for euclidean steiner forest,” in
FOCS. IEEE Computer Society, 2008, pp. 115–124.

[6] S. Arora, “Polynomial time approximation schemes for eu-
clidean traveling salesman and other geometric problems,” J.
ACM, vol. 45, no. 5, pp. 753–782, 1998.

[7] M. Bateni and M. Hajiaghayi, “Euclidean prize-collecting
steiner forest,” Algorithmica, vol. 62, no. 3-4, pp. 906–929,
2012.

[8] M. Bateni, M. T. Hajiaghayi, and D. Marx, “Approximation
schemes for steiner forest on planar graphs and graphs of
bounded treewidth,” J. ACM, vol. 58, no. 5, p. 21, 2011.

[9] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità, “An
improved lp-based approximation for steiner tree,” in STOC.
ACM, 2010, pp. 583–592.

[10] E. Halperin and R. Krauthgamer, “Polylogarithmic inapprox-
imability,” in STOC. ACM, 2003, pp. 585–594.

[11] N. Garg, G. Konjevod, and R. Ravi, “A polylogarithmic
approximation algorithm for the group steiner tree problem,”
J. Algorithms, vol. 37, no. 1, pp. 66–84, 2000.

[12] E. D. Demaine, M. T. Hajiaghayi, and P. N. Klein, “Node-
weighted steiner tree and group steiner tree in planar graphs,”
ACM Trans. Algorithms, vol. 10, no. 3, pp. 13:1–13:20, 2014.

[13] M. Bateni, E. D. Demaine, M. Hajiaghayi, and D. Marx, “A
PTAS for planar group steiner tree via spanner bootstrapping
and prize collecting,” in STOC. ACM, 2016, pp. 570–583.

[14] M. Hauptmann and M. Karpiński, A compendium on steiner
tree problems. Inst. für Informatik, 2013.

[15] K. Talwar, “Bypassing the embedding: algorithms for low
dimensional metrics,” in STOC. ACM, 2004, pp. 281–290.

[16] Y. Bartal, L. Gottlieb, and R. Krauthgamer, “The traveling
salesman problem: low-dimensionality implies a polynomial
time approximation scheme,” in STOC. ACM, 2012, pp.
663–672.

[17] T. H. Chan and S. H. Jiang, “Reducing curse of dimen-
sionality: Improved PTAS for TSP (with neighborhoods) in
doubling metrics,” in SODA. SIAM, 2016, pp. 754–765.

[18] D. Du, F. Hwang, and S. Chao, “Steiner minimal tree for
points on a circle,” Proceedings of the American Mathemati-
cal Society, vol. 95, no. 4, pp. 613–618, 1985.

[19] D.-Z. Du, F. K. Hwang, and J. Weng, “Steiner minimal trees
for regular polygons,” Discrete & Computational Geometry,
vol. 2, no. 1, pp. 65–84, 1987.

[20] M. M. Deza and M. Laurent, Geometry of cuts and metrics,
ser. Algorithms and Combinatorics. Berlin: Springer-Verlag,
1997, vol. 15.

[21] J. Matoušek, Lectures on discrete geometry, ser. Graduate
Texts in Mathematics. New York: Springer-Verlag, 2002,
vol. 212.

[22] P. Assouad, “Plongements lipschitziens dans Rn,” Bull. Soc.
Math. France, vol. 111, no. 4, pp. 429–448, 1983.

[23] A. Gupta, R. Krauthgamer, and J. R. Lee, “Bounded ge-
ometries, fractals, and low-distortion embeddings,” in FOCS.
IEEE Computer Society, 2003, pp. 534–543.

818819819

