
Universal Simulation of Directed Systems in the abstract Tile Assembly Model
Requires Undirectedness

Jacob Hendricks

Dept of Computer Science and Information Systems
University of Wisconsin - River Falls

River Falls, WI, USA
jacob.hendricks@uwrf.edu

Matthew J. Patitz, Trent A. Rogers

Dept of Computer Science and Computer Engineering
University of Arkansas
Fayetteville, AR, USA

{patitz,tar003}@uark.edu

Abstract—As a mathematical model of tile-based self-
assembling systems, Winfree’s abstract Tile Assembly Model
(aTAM) has proven to be a remarkable platform for studying
and understanding the behaviors and powers of self-assembling
systems. Furthermore, as it is capable of Turing universal com-
putation, the aTAM allows algorithmic self-assembly, in which
the components can be designed so that the rules governing
their behaviors force them to inherently execute prescribed
algorithms as they combine. This power has yielded a wide
variety of theoretical results in the aTAM utilizing algorithmic
self-assembly to design systems capable of performing com-
plex computations and forming extremely intricate structures.
Adding to the completeness of the model, in FOCS 2012 the
aTAM was shown to also be intrinsically universal, which means
that there exists one single tile set such that for any arbitrary
input aTAM system, that tile set can be configured into a “seed”
structure which will then cause self-assembly using that tile
set to simulate the input system, capturing its full dynamics
modulo only a scale factor. However, the “universal simulator”
of that result makes use of nondeterminism in terms of the
tiles placed in several key locations when different assembly
sequences are followed. This nondeterminism remains even
when the simulator is simulating a system which is directed,
meaning that it has exactly one unique terminal assembly and
for any given location, no matter which assembly sequence is
followed, the same tile type is always placed there. The question
which then arose was whether or not that nondeterminism is
fundamentally required, and if any universal simulator must in
fact utilize more nondeterminism than directed systems when
simulating them.

In this paper, we answer that question in the affirmative:
the class of directed systems in the aTAM is not intrinsically
universal, meaning there is no universal simulator for directed
systems which itself is always directed. This result provides
a powerful insight into the role of nondeterminism in self-
assembly, which is itself a fundamentally nondeterministic
process occurring via unguided local interactions. Further-
more, to achieve this result we leverage powerful results of
computational complexity hierarchies, including tight bounds
on both best and worst-case complexities of decidable lan-
guages, to tailor design systems with precisely controllable
space resources available to computations embedded within
them. We also develop novel techniques for designing systems
containing subsystems with disjoint, mutually exclusive com-
putational powers. The main result will be important in the
development of future simulation systems, and the supporting
design techniques and lemmas will provide powerful tools for

the development of future aTAM systems as well as proofs of
their computational abilities.

I. INTRODUCTION

Self-assembly is the process by which relatively simple

components begin in a disorganized state and, without exter-

nal guidance but only by following local rules of interaction,

autonomously combine to form more complex structures.

Self-assembling systems are ubiquitous in nature, and self-

assembly processes govern the formation of everything from

ice crystals to cellular membranes, and despite the seemingly

random nature of these systems, they serve as a ratchet for

the generation of complexity on scales from the nano [1],

[2] to the macro [3]. The random motions of components

are leveraged to allow binding opportunities to growing

structures, and if the dynamics of interactions fall into ranges

which are restrictive enough, without being too restrictive,

ordered assemblies can form. Clearly, nondeterminism plays

key roles in such systems, and our main result helps to

elucidate one of them.

The abstract Tile Assembly Model (aTAM) is a mathemat-

ical abstraction of self-assembling systems based on square

“tile” components which have “glues” on their sides that

allow them to bind together when glues on abutting edges

of tiles have matching types. Despite being a very simplified

model which uses geometrically basic building blocks, the

aTAM is computationally universal [4] and a powerful

model allowing for very efficient algorithmic self-assembly

of shapes [5], [6]. Another noteworthy aspect of the model is

that it is intrinsically universal (IU) [7], meaning that there

exists a single tile set, U , such that given any arbitrary aTAM

system T , U can be given an initial configuration which will

cause it to faithfully simulate the full dynamics of T modulo

a constant scale factor (dependent on T). Since the result

of [7], several other results related to IU have been used

to examine and classify the relative powers of a variety of

models of self-assembly and classes of systems within them

[8]–[16], thus developing a complexity hierarchy which can

be used to categorize models and systems within them.

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.90

799

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.90

800

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.90

800

In this paper, we investigate the problem of characterizing

the role of nondeterminism within the aTAM, which has

previously been explored in a variety of different aspects

[17]–[19]. At its core, the aTAM is an asynchronous and

nondeterministic model in which tile attachments to a grow-

ing assembly, while constrained by the requirement that

sufficient matching glues must bind, are random with respect

to the sequence of locations and sometimes the particular

types of tiles which bind. The amount of nondeterminism

of different aTAM systems can vary wildly, with some

systems having uncountably infinite sets of producible, or

even terminal (i.e. those which cannot grow any further),

assemblies and/or sequences of assembly, to those having

exactly one producible assembly and even some with just

one possible assembly sequence. This leads to questions

about whether or not, and possibly how much, nondeter-

minism is required to give the aTAM its full power. In this

paper, we focus on this question from the perspective of

the “universal aTAM simulator” of [7], which by design has

several so-called “points of competition”, where different

assembly sequences of the simulator, as it simulates a system

T , race to grow paths to those points, with the first path to

arrive causing a tile type specific to that path to be placed.

The fact that there are multiple assembly sequences, each

growing a different path first, causes nondeterminism in the

types of tiles placed in these locations. The use of such

locations is so fundamental to that universal simulator’s

design, allowing it to continue growth of portions of the

assembly without having to rely on future paths which may

or may not ever arrive, that even when it is simulating

directed aTAM systems, which are those that have exactly

one terminal assembly and only one possible tile type in any

location regardless of the assembly sequence, the simulator

itself must be undirected. It has remained unknown whether

or not such nondeterminism is fundamentally required by a

universal simulator, and in Theorem IV.1 we prove that it

is. That is, we prove that the class containing all directed

aTAM systems is not IU, meaning that there exists no tile

set U such that, given an arbitrary directed aTAM system,

U can be configured to create an aTAM system which

simulates it while itself being directed. Stated another way,

it means that any universal simulator for the aTAM must be

more nondeterministic than some of the systems which it

simulates.

While our main result presents key insights into the prop-

erties required of aTAM and other tile-based simulators, and

shows how nondeterminism with respect to the selection of

assembly sequences can force nondeterminism with respect

to assemblies produced by any universal simulator, other key

contributions of this paper include the development of sev-

eral new system design techniques and tools useful in prov-

ing properties about the computational resources available

to be harnessed by embedded algorithms, which themselves

provide additional insights into the computations possible

using static combinations of matter filling non-reusable

space. More specifically, we make use of computational

complexity results which combine extremely tight worst-

case and best-case space complexity bounds for decidable

languages [20], as well as novel techniques for controlling

the “input bandwidth” and geometries of carefully designed

subassemblies which perform complex computations that

are effectively hidden from each other. These designs are

likely to be useful in further tile-based self-assembly results,

especially impossibility results. Furthermore, we develop

several important and potentially very useful tools which can

be used to characterize properties of tile assembly systems

which are simulating others, e.g. Lemma III.2 which proves

that the space complexity of computations which can be

performed by a system simulating a type of system known

as a zig-zag system is asymptotically no greater than that

of the computations which can be performed by the original

system, despite the scale factor allowed the simulator.

Section II provides a set of preliminary definitions used

throughout the paper, including those of the aTAM, sim-

ulation, intrinsic universality, and zig-zag systems. The

following section provides a few more definitions specific

to some of our technical lemmas, and then provides the

statement of our main technical lemma. Section IV contains

the formal statement of our main result, and next are two

sections dedicated to a high-level overview of its proof. Due

to space constraints full technical details can be found in

[21].

II. PRELIMINARIES

In this section we provide an informal definition of the

aTAM and then define what it means for one tile assembly

system to simulate another, and the notion of intrinsic uni-

versality. We also provide the definition of zig-zag systems.

A. Informal description of the abstract Tile Assembly Model

This section gives a brief informal sketch of the abstract

Tile Assembly Model (aTAM). See [21] for a formal defi-

nition of the aTAM.

A tile type is a unit square with four sides, each consisting

of a glue label, often represented as a finite string, and

a nonnegative integer strength. A glue g that appears on

multiple tiles (or sides) always has the same strength sg .

There are a finite set T of tile types, but an infinite number

of copies of each tile type, with each copy being referred

to as a tile. An assembly is a positioning of tiles on the

integer lattice Z
2, described formally as a partial function

α : Z2 ��� T . Let AT denote the set of all assemblies of

tiles from T , and let AT
<∞ denote the set of finite assemblies

of tiles from T . We write α � β to denote that α is a

subassembly of β, which means that dom α ⊆ dom β and

α(p) = β(p) for all points p ∈ dom α. Two adjacent tiles

in an assembly interact, or are attached, if the glue labels

on their abutting sides are equal and have positive strength.

800801801

Each assembly induces a binding graph, a grid graph whose

vertices are tiles, with an edge between two tiles if they

interact. The assembly is τ -stable if every cut of its binding

graph has strength at least τ , where the strength of a cut is

the sum of all of the individual glue strengths in the cut.

A tile assembly system (TAS) is a triple T = (T, σ, τ),
where T is a finite set of tile types, σ : Z

2 ��� T is a

finite, τ -stable seed assembly, and τ is the temperature.

An assembly α is producible if either α = σ or if β is

a producible assembly and α can be obtained from β by the

stable binding of a single tile. In this case we write β →T
1 α

(to mean α is producible from β by the attachment of one

tile), and we write β →T α if β →T ∗
1 α (to mean α is

producible from β by the attachment of zero or more tiles).

When T is clear from context, we may write →1 and →
instead. We let A[T] denote the set of producible assemblies

of T . An assembly is terminal if no tile can be τ -stably

attached to it. We let A�[T] ⊆ A[T] denote the set of

producible, terminal assemblies of T . A TAS T is directed
if |A�[T]| = 1. Hence, although a directed system may be

nondeterministic in terms of the order of tile placements, it is

deterministic in the sense that exactly one terminal assembly

is producible (this is analogous to the notion of confluence
in rewriting systems).

B. Simulation

To state our main results, we must formally define what

it means for one TAS to “simulate” another. Our definitions

come from [13]. Intuitively, simulation of a system T by a

system S requires that there is some scale factor m ∈ Z
+

such that m ×m squares of tiles in S represent individual

tiles in T , and there is a “representation function” capable of

inspecting assemblies in S and mapping them to assemblies

in T .

From this point on, let T be a tile set, and let m ∈ Z
+. An

m-block supertile over T is a partial function α : Z2
m ��� T ,

where Zm = {0, 1, . . . ,m − 1}. Let BT
m be the set of all

m-block supertiles over T . The m-block with no domain is

said to be empty. For a general assembly α : Z2 ��� T and

(x0, x1) ∈ Z
2, define αm

x0,x1
to be the m-block supertile

defined by αm
x0,x1

(i0, i1) = α(mx0 + i0,mx1 + i1) for

0 ≤ i0, i1 < m. For some tile set S, a partial function

R : BS
m ��� T is said to be a valid m-block supertile

representation from S to T if for any α, β ∈ BS
m such that

α � β and α ∈ dom R, then R(α) = R(β).
For a given valid m-block supertile representation func-

tion R from tile set S to tile set T , define the assembly rep-
resentation function1 R∗ : AS → AT such that R∗(α′) = α
if and only if α(x0, x1) = R

(
α′m
x0,x1

)
for all (x0, x1) ∈ Z

2.

For an assembly α′ ∈ AS such that R(α′) = α, α′ is said to

map cleanly to α ∈ AT under R∗ if for all non empty blocks

1Note that R∗ is a total function since every assembly of S represents
some assembly of T ; the functions R and α are partial to allow undefined
points to represent empty space.

α′m
x0,x1

, (x0, x1) + (u0, u1) ∈ dom α for some u0, u1 ∈ U2

such that u2
0 + u2

1 ≤ 1, or if α′ has at most one non-empty

m-block αm
0,0.

In other words, α′ may have tiles on supertile blocks

representing empty space in α, but only if that position is

adjacent to a tile in α. We call such growth “around the

edges” of α′ fuzz and thus restrict it to be adjacent to only

valid supertiles, but not diagonally adjacent (i.e. we do not

permit diagonal fuzz).

In the following definitions, let T = (T, σT , τT) be a

TAS, let S = (S, σS , τS) be a TAS, and let R be an m-

block representation function R : BS
m → T .

Definition II.1. We say that S and T have equivalent

productions (under R), and we write S ⇔ T if the following
conditions hold:

1) {R∗(α′)|α′ ∈ A[S]} = A[T].
2) {R∗(α′)|α′ ∈ A�[S]} = A�[T].
3) For all α′ ∈ A[S], α′ maps cleanly to R∗(α′).

Definition II.2. We say that T follows S (under R), and we
write T �R S if α′ →S β′, for some α′, β′ ∈ A[S], implies
that R∗(α′)→T R∗(β′).

Definition II.3. We say that S models T (under R), and
we write S |=R T , if for every α ∈ A[T], there exists
Π ⊂ A[S] where R∗(α′) = α for all α′ ∈ Π, such that,
for every β ∈ A[T] where α →T β, (1) for every α′ ∈ Π
there exists β′ ∈ A[S] where R∗(β′) = β and α′ →S β′,
and (2) for every α′′ ∈ A[S] where α′′ →S β′, β′ ∈ A[S],
R∗(α′′) = α, and R∗(β′) = β, there exists α′ ∈ Π such
that α′ →S α′′.

The previous definition essentially specifies that every

time S simulates an assembly α ∈ A[T], there must be

at least one valid growth path in S for each of the possible

next steps that T could make from α which results in an

assembly in S that maps to that next step.

Definition II.4. We say that S simulates T (under R) if
S ⇔R T (equivalent productions), T �R S and S |=R T
(equivalent dynamics).

C. Intrinsic Universality

Now that we have a formal definition of what it means

for one tile system to simulate another, we can proceed to

formally define the concept of intrinsic universality, i.e.,

when there is one general-purpose tile set that can be

appropriately programmed to simulate any other tile system

from a specified class of tile systems.

Let REPR denote the set of all supertile representation

functions (i.e., m-block supertile representation functions for

some m ∈ Z
+). Define C to be a class of tile assembly

systems, and let U be a tile set. Note that each element

of C, REPR, and AU
<∞ is a finite object, hence encoding

and decoding of simulated and simulator assemblies can be

801802802

represented in a suitable format for computation in some

formal system such as Turing machines.

Definition II.5. We say U is intrinsically universal for C
at temperature τ ′ ∈ Z

+ if there are computable functions
R : C → REPR and S : C → AU

<∞ such that, for each
T = (T, σ, τ) ∈ C, there is a constant m ∈ N such that,
letting R = R(T), σT = S(T), and UT = (U, σT , τ ′), UT
simulates T at scale m and using supertile representation
function R.

That is, R(T) outputs a representation function that

interprets assemblies of UT as assemblies of T , and S(T)
outputs the seed assembly used to program tiles from U to

represent the seed assembly of T .

Definition II.6. We say that U is intrinsically universal for
C if it is intrinsically universal for C at some temperature
τ ′ ∈ Z+.

Definition II.7. We say that C is intrinsically universal if
there exists some U that is intrinsically universal for C and
for every T ∈ C and UT which simulates it, UT ∈ C.

D. Zig-zag assembly systems

In [22], a system T = (T, σ, τ) is called a zig-zag

tile assembly system provided that (1) T is directed, (2)

there is a single sequence �α ∈ T with A�[T] = {�α},
and (3) for every �x ∈ dom α, (0, 1)
∈ IN�α(�x). We say

that an assembly sequences satisfying (2) and (3) is a zig-
zag assembly sequence. Intuitively, a zig-zag tile assembly

system is a system which grows to the left or right, grows

up some amount, and then continues growth again to the left

or right. Again, as defined in [22], we call a tile assembly

system T = (T, σ, τ) a compact zig-zag tile assembly system
if and only if A�[T] = {�α} and for every �x ∈ dom α and

every �u ∈ U2, strα(�x)(�u) + strα(�x)(−�u) < 2τ . Informally,

this can be thought of as a zig-zag tile assembly system

which is only able to travel upwards one tile at a time before

being required to zig-zag again. The assembly sequence

of a compact zig-zag system is called a compact zig-zag
assembly sequence. Figure 1 depicts a compact zig-zag

assembly sequence. As in the definition of a zig-zag system

and throughout this section, we assume that each row of a

zig-zag systems binds to the north of the previous row.

III. SPACE COMPLEXITY OF ZIG-ZAG SYSTEMS IS

INVARIANT UNDER SIMULATION

In this section, we give a formal definition of a language

defined by a zig-zag system. We next show that such a

language can be computed in space on the order of the

maximal width of the zig-zag assembly grown to a finite

height. While this result is fairly straightforward, we include

it for the sake of completeness and because it serves as

the basis of the main result of this section (Lemma III.2).

We give a formal definition of a language defined by a

simulation of a zig-zag system. Lemma III.2 states that even

though such a language is defined in terms of a simulator of

a zig-zag system, such a language can be computed in space

on the order of the maximal width of the zig-zag assembly

grown to a finite height in the simulated system. In other

words, even though the system simulating a zig-zag system

does not have to follow the dynamics of a zig-zag system

as m-block supertiles assemble and as tiles assemble in fuzz

regions (see Section II), the defined language can still be

computed in space on the order of the maximal width of the

zig-zag assembly grown to a finite height in the simulated

system.

Here is some of the notation used in this section. Let

T = (T, σ, τ) be a temperature τ compact zig-zag system

with a seed σ consisting of a single tile, and let α be an

assembly in A[T]. Since all of the results in this section hold

regardless of the location of σ, without loss of generality,

throughout this section, we assume that the location of σ is

(0, 0).
Let T1 ⊆ T be a subset of T , and let r : N → {0, 1} be

the function defined as

r(n) =

{
1 (0, n) ∈ dom α and α((0, n)) ∈ T1

0 otherwise.

Now, let f : N → N be the function f(n) = max{wj |
wj is the width of the jth row of α for 0 ≤ j ≤ n}.

Finally, let Lr = {n ∈ N | r(n) = 1}. We call r the

characteristic function for T given T1 and Lr the language
defined by T given r. Notice that r is a computable function,

f is a proper function, and Lr is a computable set. See

Figure 1 for a description of how r(n) is computed.

Figure 1: An assembly with a zig-zag assembly sequence.

The assembly sequence is indicated with arrows. The tile

labeled S makes up the seed σ, and r(n) = 1 if and only if

the tile type of the tile labeled t is in T1.

The following lemma gives an upper bound on the space

complexity of a language defined by a zig-zag system.

Lemma III.1. Let T = (T, σ, τ) be a zig-zag system with
tile set T , seed assembly σ, and temperature τ . Let T1 be

802803803

some subset of T , let r be the characteristic function for T
given T1, and let Lr be the language defined by T given
r. Finally, let f(n) denote the width of the longest row of
the assembly of T consisting of n completed rows. Then,
Lr ∈ DSPACE(f(n)).

To generalize Lemma III.1, we require a definition of

a language defined by a simulation of a zig-zag system

which we describe here. Let S = (S, σS , τ
′) be a TAS

that simulates T with representation function R and scale

factor c. Since all of the results here hold upto translation

of assemblies in Z
2, without loss of generality, throughout

this section we assume that the bottom-right tile of σS

has location (0, 0). The following notation is similar to the

notation used for stating Lemma III.1, only it is generalized

to pertain to simulations of zig-zag systems. Let α′
n denote

the subassembly of α′ such that for all (i, j) ∈ dom (α′
n),

j ≤ n and for all (i, j) ∈ ∂τ ′
α′
n, j ≥ n + 1. For

some L ⊂ Z
2 such that |L| < ∞ and for �v ∈ Z

2, let

L�v denote {�l + �v | �l ∈ L}. Also, for �n = (0, n), let

Cn ⊆ {w | w : L�n → S is a partial function} be a subset

of configurations (i.e. partial functions from Z
2 to T) over

S with domain in L�n. Then we let r′ : N → {0, 1} be the

function

r′(n) =

{
1 α′

n|L�n
∈ Cn

0 otherwise.

Essentially, r′ is the function obtained by growing α′ to

the point where the next tile added must be at a location

above the line y = n, and then considering some finite

configuration (i.e. a partial functions from Z
2 to T with

finite domain) of this assembly. r′(n) = 1 if and only if

this configuration is in Cn. Finally, let L′
r = {n ∈ N |

r′(n) = 1}. As with zig-zag systems, we call Cn a set

of finite configurations, r′ the characteristic function for S
given Cn, and Lr′ the language defined by S given r′. Notice

that r′ is a computable function and Lr′ is a computable set.

Lemma III.2, which we refer to as the “No Cheating

Lemma”, states that a system which simulates a zig-zag

system, even though it is allowed a scale factor, is allowed to

place the individual tiles of macrotiles in varying orders, and

can perhaps utilize fuzz regions for additional communica-

tion and computation, nonetheless has the same asymptotic

upper bound on the space complexity of its language as the

original system which it is simulating.

Lemma III.2 (No Cheating Lemma). Let T = (T, σ, τ) be
a zig-zag system and let S = (S, σS , τ

′) be a system that
simulates T at temperature τ ′ with scale factor c. Let n be
in N, and let f(n) be the width of the longest row of the
assembly of T consisting of n completed rows. Moreover, let
Ccn be a set of finite configurations, let r′ be the character-
istic function for S given Ccn, and let Lr′ be the language
defined by S given r′. Then, Lr′ ∈ DSPACE(f(n)).

Lemma III.2, an important tool in the proof of our

main theorem, implies that the constraints imposed by the

dynamics of correct simulation of a zig-zag system are such

that the simulating system cannot perform computations

which require asymptotically more space than the original

system. Intuitively, the proof, which can be found in [21],

shows that the requirement to form macrotiles in S which

map to tiles in T in the same order as tiles appear in T ,

while only growing allowable fuzz, forces the simulator to

use space which is restricted by the size of the rows in

T multiplied by the scale factor of the simulation, which

is a constant. Therefore, this lemma provides an important

tool for equating the computational power of simulators and

simulated zig-zag systems.

IV. THE DIRECTED ATAM IS NOT INTRINSICALLY

UNIVERSAL

Let D represent the class of all tile assembly systems

within the aTAM which are directed.

Theorem IV.1. D is not intrinsically universal.

Theorem IV.1 states that there exists no aTAM tile set

U such that, for any directed aTAM tile assembly system

D ∈ D, where D = (T, σ, τ), there exists a directed aTAM

system UD ∈ D, where UD = (U, σD, τ ′), scale factor m ∈
N, and representation function R : BU

m → T , such that

UD simulates D under m-block representation function R
at scale factor m. Essentially, there exists no “universal”

tile set such that for any directed aTAM system, that tile set

can be configured in a simulating system which simulates

the original and is itself directed too.

Our proof of Theorem IV.1 will be by contradiction.

Therefore, assume that such a universal tile set U , which

can be used to simulate any directed system while using a

directed system, exists. Given that U , we define an aTAM

system T = (T, σ, 2) which is directed and forms an infinite

terminal assembly, explain the growth of T , and verify that

it is directed. We provide a high-level overview of T in

Section V. We then show why there exists no directed aTAM

system S = (U, σT , τ ′) which simulates T . Section VI

contains a very high-level overview of that proof. Full details

of T and of the impossibility proof can be found in [21].

V. OVERVIEW OF THE DIRECTED ATAM SYSTEM T
At the highest level, T self-assembles an infinite structure,

starting from a single seed tile placed at the origin, and

growing from left to right. In well-defined intervals, as

the assembly grows eastward it initiates upward growths,

an infinite series of sets of three “modules” which are

subassemblies able to grow almost entirely independently

of each other once the main horizontal growing structure

has placed the tiles which serve as the “input” for the

growth of each. The aTAM is computationally universal

[4], and in fact it is quite straightforward to design a tile

assembly system which simulates the computation of an

803804804

Figure 2: A high-level schematic depiction of a portion of the infinite assembly produced by a directed aTAM system T
which cannot be simulated by any directed universal simulator.

arbitrary Turing machine M (e.g. [23], [24]) by growing

rows of tiles, one above the other, where each row represents

the full configuration of M at a given time step (i.e. the

tape contents, read/write head location, and state) in the

values of the glues encoded on their north sides, and the

row immediately above it represents the full configuration

of M at the next time step (by designing the tile types

appropriately so that the only tiles which can attach above

a given row ensure that the new northern glue above a

position which just had the read/write head encodes the value

that would have been output given the state of M and the

cell’s previous value, and depending on the direction the

head would have moved, either the tile representing the cell

to the left or write would have a glue encoding the new

state of M and the current value of that cell). To provide

a logically infinite tape, the tiles can be designed to grow

rows “on demand” by extending a row by one tile each time

the simulated read/write head attempts to move past the end

of the currently represented row.

The three modules which grow upward are logically

grouped so that there is one of each type in a set. These

three modules are designed so that they simulate three

computations which require asymptotically differing space

resources. As each set is initiated with inputs of increasing

values, and as the assembly grows infinitely to the right,

those space requirements ensure that the smallest module

cannot perform the computations of the larger two, and

the mid-sized module cannot perform the computations of

the largest. The computations carried out by each set of

grouped modules as well as the geometries to which they

are each constrained are carefully designed such that two

of the modules are necessarily completely “ignorant” of the

eventual outputs of the others. However, these two modules

are designed so that after performing their computations,

they grow assemblies representing bit strings corresponding

to the outputs of their computations in locations across a one

tile wide gap from each other, which we call the bitAlley.

In locations where output bits of the two computations

match, tiles attach between tiles for those bit positions.

The third module independently computes the results of

the computations of both other modules and if and only

if there will be no matching bits between them, it grows

an assembly which is a single tile wide path down through

the bitAlley (thus it is guaranteed not to crash into any

tiles in the bitAlley, regardless of the ordering of tile

attachments). As the overall assembly grows further right,

the inputs to the modules increase and the computations

simulated by the modules require more resources and the

bitAlleys become arbitrarily long. We are able to first

show that T is directed, and then that no simulating system

can be built using the tiles of a universal simulating tile set

U and be itself directed. This is because any such directed

simulator is forced by the dynamics of correct simulation,

the mutual obfuscation of computations across modules,

and geometric constraints, to effectively create bottlenecks

which do not allow enough information to be transmitted

to the growing assembly for correct growth and therefore

simulation. The intuition is that the simulator has to make

“guesses” about when it may need to place tiles which

cooperate across a bitAlley (i.e. glues from the tiles on

both sides of the gap are required to allow the attachment of

one between them) which, due to the fact that space cannot

be reused in the aTAM, doom it to failure. Furthermore,

these guesses are required not by nondeterminism about

which tiles can be placed in locations by T , since after all T
is directed, but rather due to the ordering of arrival of tiles

- the particular assembly sequence which may be followed.

A. Overview of modules of T
Figure 2 shows a schematic depiction of a portion of the

terminal assembly of T . We now give a very high-level

description of each of the main modules, and full details

can be found in [21].

Beginning from the seed, the module which grows hori-

zontally and initiates growth of sets of modules to its north

is called the planter. The planter grows in a zig-

zag, up and down manner, growing one column at a time.

Essentially, its job is to manage a set of nested counters,

whose values are used to (1) determine the correct spacing

between the modules to the planter’s north, and (2) serve

as input to those modules. The outermost of the nested

counters counts 0 < i < ∞, with each i being what

we call an iteration. For each value of i that it counts, it

holds that counter constant while it increments an inner

804805805

Figure 3: A high-level schematic depiction of one possible ordering of growth of the modules of an empty subiteration.

(Bottom) The planter lays out the inputs for the modules at the necessary spacings to prevent them from colliding, (Second)

The left, right, and top modules begin growth, (Top) Once the top completes it initiates the growth of the arm which

grows down through the bitAlley. Note that an arm only grows in the bitAlley of an empty subiteration, unlike the

bitAlley in Figure 4 which shows tiles cooperatively binding across the bitAlley of a non-empty subiteration. Also,

empty subiterations occur exponentially more rarely than non-empty ones.

805806806

counter from 0 to (approximately) 2i. For each value of

j it initiates the growth of what we call a subiteration.

See Figure 3 for a high-level overview of one type of

subiteration. For each subiteration, the planter counts

out a sequence of spacing columns (i.e. columns whose

sole purpose is to put horizontal space between modules)

while also computing the value log(i) and then rotating the

values of the bits representing log(i) upward so that they

are encoded in a row of glues on the north sides of the

northern tiles of the planter2. From these, a left module

begins growth. This module performs a stacked up series of

i Turing machine simulations on progressively increasing

input values, with each simulation outputting a 0 (for a

rejecting computation) or a 1 (accepting). At the top of the

stack of computations, the string of output bits is rotated

to the right and then grown downward to the right of the

left module. Once that growth reaches a specially marked

location, the values of those bits are rotated to the right

where they are presented as the eastern glues of the tiles

forming the bitAlley. (See Figure 4 for a depiction of a

southern portion of a bitAlley.)

After growing a few spacing columns past the initiation

point of the left module, the planter rotates the value

of j to its north side to initiate growth of a right module.

This module simply rotates the values of the bits of j to the

left so they can be presented across the bitAlley from the

bits output by the left. Note that as the iteration number i
increases, so does the number of bits presented on each side

of the bitAlley, as the left performs (approximately)

i Turing machine simulations, and right actually receives

the value of j in binary padded with 0’s as necessary to be

the same length.

The final module to be initiated by the planter in each

subiteration is the top module. This module receives as

input both the values log(i) and j. It first performs the

same i simulations that the left performs, generating the

same output bits. It then compares those bits to the bits

of j to determine if there are any locations where the bits

are the same. If there are, then in the bitAlley there

will be tiles which attach between them across the gap in

those locations, and the top module halts its growth (in this

subiteration). It is guaranteed that in exactly one subiteration

of each iteration that there will be no matching bits, since

each subiteration performs the same left computations

on the same input and there is a unique subiteration for

every possible bit string of length i, exactly one of which

can be the complement of left’s output on that input. In

this special subiteration of the iteration, which we call the

empty subiteration (because the bitAlley will be empty

of tiles cooperating across the gap), the top performs a new

set of computations to determine which of a large number

2Note that throughout this paper, log means log2, and we use the
shorthand log(i) to mean �log(i)�.

Figure 4: Example bitAlley portion between left and

right modules of a non-empty subiteration.

(relative to the number of tile types in the claimed universal

simulator U) of arm modules to grow. The arm module

grows over to a position directly above the bitAlley,

then grows a single tile wide column of tiles down through

the bitAlley until it crashes into the planter, with the

specific type of tile used for the arm determined by the final

computations performed by the top module. This completes

the growth of a subiteration, and the growth of subiterations

and iterations occurs for infinite numbers of each.

B. Directedness of T
The system T is directed because there are no locations

where tiles of multiple types might be placed during dif-

ferent assembly sequences, and this is ensured by carefully

dictating the growth of each module (all grow in zig-zag

manners), and the amount of space required for each is

carefully computed and accounted for by the planter
so none of them can collide. Finally, the arm will only

grow in empty subiterations, which can be assured by the

top module performing the computations of left and

comparing the output bits to j, so it will never collide with

tiles in the bitAlley. Thus, despite the fact that there are

an infinite number of unique assembly sequences in T , they

all result in the exact same terminal assembly in the limit.

VI. OVERVIEW OF IMPOSSIBILITY OF SIMULATION

In this section is a high-level overview of the proof that

S does not simulate T . More details can be found in [21].

The general idea behind the proof that S cannot simulate

T is based around creating a situation in T where there is a

one tile wide gap between two tiles such that, depending on

their types, they may or may not cooperate to place a tile

806807807

in between them (i.e. a tile may bind using one glue from

each of them). However, if and only if all of these tiles in

the bitAlley do not cooperate to place a tile between

them, another assembly will grow between them without

binding to either of their glues. In T , the gap is exactly

one tile wide and so is the assembly that may grow down

through it. Since we are proving by contradiction, assume

that such an S exists and that it has tile set U with size

|U | = t. We design T such that the number of unique arm
module tiles (which are the ones that grow between the two

tiles if they do not cooperate) is exponentially larger than

t. This forces the simulation scale factor m used by S to

be larger than 1 because any macrotile created from tiles

in U must have enough tiles to uniquely identify any of

the tile types in T . Then we also note that geometrically,

the only way to get two tiles to cooperate to place a tile

in between them is for them to grow to positions with less

than or equal to a single tile wide gap between them, which

is not enough room for the macrotile of an arm module,

with m > 1, to pass through if necessary. While the general

idea seems simple, first, care must be taken in designing T
so that an arm module will be grown if and only if the

tiles will not cooperate across the gap, with no chance for a

disagreement and collision since T must be directed, so the

portion of the assembly which initiates the growth of the

arm must be able to compute the tiles which will appear

across the gap from each other. Then, it must be shown that

S is forced to grow all the way to a single tile wide gap

even when cooperation won’t be necessary, thus blocking

the arm. The main difficulties arise with the realization that

the simulating system could attempt to compute in advance if

cooperation will occur and, if so, grow to the one tile wide

gap which allows for cooperation, but if not, stop growth

short of that to leave enough room for the arm module to

grow through. The resulting complexity of T arises from

the need to create a system which is “confusing” enough

for the simulator that the modules growing the macrotiles

representing the tiles which may cooperate across the gap

are unable to pre-compute the answer to whether or not

cooperation will be necessary. Essentially, the fact that S
cannot both cooperate and/or grow a full tile-representing

assembly through a single tile wide gap dooms it to failure,

but extensive machinery is required to force the situation.

A key tool in the proof is that in an arbitrary subiteration

j of an arbitrary iteration i, the output of the left module

is impossible to compute from within either the planter
or the right modules, and the output of the right is

impossible to compute from within the left. The reason for

this is that (1) the Turing machines being simulated within

the left modules are deciding languages which cannot

be recognized in infinitely often best-case space complexity

[20] which is greater than the space resources available to

the planter and right modules, and thus the outputs

of left modules cannot be computed by them, and (2) the

input j passed to the right module is asymptotically much

greater in size than the amount of information which can

be input to the left module through the only log(log(i))
macrotiles allowed in the bottom row of the left mod-

ule to encode the value log(i), making it unable to get

asymptotically more than a log size chunk of the right
module’s input. It is also important to note the languages

being decided within the left are recognized in almost

everywhere worst case space complexity which is accounted

for by the spacing columns of the planter, guaranteeing

that for all but a finite number of computations, the left
will be able to successfully complete its computations. It will

prematurely abort any computations which attempt to run

beyond those space bounds, but since there are guaranteed to

be only a finite number of those, the goals of the construction

and correctness of the proof aren’t compromised. It is

important that these essentially arbitrarily tight bounds on

the space complexities of languages is shown to be possible

by Theorem 4.1 of [20], which allows for the computations

embedded within the modules to be designed with great

precision. In a similar manner, the computations performed

by the upper portion of the top module require space

complexity greater that that available to either the planter
or left of the same subiteration. We note that Lemma 9.14
(see [21]) is instrumental in proving the above facts, and

is also an important tool which can be used in future

simulation-based results in the aTAM, as it proves that an

assembly performing a simulation of a system growing in

a zig-zag manner, despite its arbitrarily large (but constant)

scale factor, has asymptotically no greater space resources

available than the orignal system. The technical tools we

have developed for this proof, as well as the incorporation

of results from complexity theory allowing for precisely

defined languages in terms of space complexity, provide a

host of new construction and proof techniques which we feel

will be useful for a variety of future results.

To prevent the simulator from being seeded with answers

to the necessary computations, the assembly of T must grow

infinitely many iterations and subiterations. To prevent other

types of “cheating”, rather than having potential locations

of cooperation across a single gap between two tiles, the

bitAlley becomes arbitrarily long, between an arbitrarily

large set of pairs of tiles. To prove all of the necessary

properties of the simulator S requires many more details

and the use of several additional technical lemmas which

may possibly be of independent interest and utility. Please

see [21] for full details.

ACKNOWLEDGEMENTS

The authors would like to thank Jack Lutz for helpful

guidance while searching for much needed computational

complexity results. This research was supported in part

by National Science Foundation Grants CCF-1117672 and

807808808

CCF-1422152, and Graduate Research Fellowship Grant

DGE-1450079.

REFERENCES

[1] Y. Ke, L. L. Ong, W. M. Shih, and P. Yin, “Three-dimensional
structures self-assembled from dna bricks,” Science, vol. 338,
no. 6111, pp. 1177–1183, 2012.

[2] P. W. Rothemund, N. Papadakis, and E. Winfree, “Algorithmic
self-assembly of dna sierpinski triangles,” PLoS biology,
vol. 2, no. 12, p. e424, 2004.

[3] G. M. Whitesides and M. Boncheva, “Beyond molecules:
Self-assembly of mesoscopic and macroscopic components,”
Proceedings of the National Academy of Sciences,
vol. 99, no. 8, pp. 4769–4774, 2002. [Online]. Available:
http://www.pnas.org/content/99/8/4769.abstract

[4] E. Winfree, “Algorithmic self-assembly of DNA,” Ph.D. dis-
sertation, California Institute of Technology, June 1998.

[5] D. Soloveichik and E. Winfree, “Complexity of self-
assembled shapes,” SIAM Journal on Computing, vol. 36,
no. 6, pp. 1544–1569, 2007.

[6] P. W. K. Rothemund and E. Winfree, “The program-size
complexity of self-assembled squares (extended abstract),”
in STOC ’00: Proceedings of the thirty-second annual ACM
Symposium on Theory of Computing. Portland, Oregon,
United States: ACM, 2000, pp. 459–468.

[7] D. Doty, J. H. Lutz, M. J. Patitz, R. T. Schweller, S. M.
Summers, and D. Woods, “The tile assembly model is intrin-
sically universal,” in Proceedings of the 53rd Annual IEEE
Symposium on Foundations of Computer Science, ser. FOCS
2012, 2012, pp. 302–310.

[8] E. D. Demaine, M. J. Patitz, T. A. Rogers, R. T. Schweller,
S. M. Summers, and D. Woods, “The two-handed assembly
model is not intrinsically universal,” in 40th International
Colloquium on Automata, Languages and Programming,
ICALP 2013, Riga, Latvia, July 8-12, 2013, ser. Lecture Notes
in Computer Science. Springer, 2013.

[9] J. Hendricks, M. J. Patitz, T. A. Rogers, and S. M. Summers,
“The power of duples (in self-assembly): It’s not so hip to
be square,” in Computing and Combinatorics - 20th Inter-
national Conference, (COCOON) 2014, Atlanta, GA, USA,
August 4-6, 2014. Proceedings, 2014, pp. 215–226.

[10] T. Fochtman, J. Hendricks, J. E. Padilla, M. J. Patitz, and
T. A. Rogers, “Signal transmission across tile assemblies: 3d
static tiles simulate active self-assembly by 2d signal-passing
tiles,” Natural Computing, vol. 14, no. 2, pp. 251–264, 2015.

[11] J. Hendricks, M. J. Patitz, and T. A. Rogers, “Doubles
and negatives are positive (in self-assembly),” Natural
Computing, vol. 15, no. 1, pp. 69–85, 2016. [Online].
Available: http://dx.doi.org/10.1007/s11047-015-9513-6

[12] ——, “The simulation powers and limitations of higher tem-
perature hierarchical self-assembly systems,” in 7th Interna-
tional Conference on Machines, Computations and Universal-
ity (MCU’15), (9-11 September, 2015, Eastern Mediterranean
University, Famagusta, North Cyprus), pp. 149–163.

[13] P.-E. Meunier, M. J. Patitz, S. M. Summers, G. Theyssier,
A. Winslow, and D. Woods, “Intrinsic universality in tile
self-assembly requires cooperation,” in Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms (SODA 2014),
(Portland, OR, USA, January 5-7, 2014), 2014, pp. 752–771.

[14] O. Gilber, J. Hendricks, M. J. Patitz, and T. A. Rogers,
“Computing in continuous space with self-assembling polyg-
onal tiles,” in Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2016),
Arlington, VA, USA January 10-12, 2016, pp. 937–956.

[15] S. P. Fekete, J. Hendricks, M. J. Patitz, T. A. Rogers, and R. T.
Schweller, “Universal computation with arbitrary polyomino
tiles in non-cooperative self-assembly,” in Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2015), San Diego, CA, USA
January 4-6, 2015, pp. 148–167. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/1.9781611973730.12

[16] E. D. Demaine, M. L. Demaine, S. P. Fekete, M. J. Patitz,
R. T. Schweller, A. Winslow, and D. Woods, “One tile to rule
them all: Simulating any tile assembly system with a single
universal tile,” in Proceedings of the 41st International Collo-
quium on Automata, Languages, and Programming (ICALP
2014), IT University of Copenhagen, Denmark, July 8-11,
2014, ser. LNCS, vol. 8572, 2014, pp. 368–379.

[17] N. Bryans, E. Chiniforooshan, D. Doty, L. Kari, and S. Seki,
“The power of nondeterminism in self-assembly,” in SODA
2011: Proceedings of the 22nd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. SIAM, 2011, pp. 590–602.

[18] D. Doty, “Randomized self-assembly for exact shapes,” in
Proceedings of the 50th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS). IEEE, 2009, pp. 85–94.

[19] M.-Y. Kao and R. T. Schweller, “Randomized self-assembly
for approximate shapes,” in ICALP (1), ser. Lecture Notes
in Computer Science, L. Aceto, I. Damgård, L. A. Goldberg,
M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, Eds.,
vol. 5125. Springer, 2008, pp. 370–384.

[20] J. D. P. Rolim and S. A. Greibach, “A note on the best-case
complexity,” Inf. Process. Lett., vol. 30, no. 3, pp. 133–138,
1989. [Online]. Available: http://dx.doi.org/10.1016/0020-
0190(89)90131-2

[21] J. Hendricks, M. J. Patitz, and T. A. Rogers, “Universal
simulation of directed systems in the abstract tile
assembly model requires undirectedness,” Computing
Research Repository, Tech. Rep. 1608.03036, 2016. [Online].
Available: http://arxiv.org/abs/1608.03036

[22] M. J. Patitz, R. T. Schweller, and S. M. Summers, “Exact
shapes and turing universality at temperature 1 with a single
negative glue,” in Proceedings of the 17th international
conference on DNA computing and molecular programming,
ser. DNA’11, 2011, pp. 175–189.

[23] M. J. Patitz and S. M. Summers, “Self-assembly of decidable
sets,” Natural Computing, vol. 10, no. 2, pp. 853–877, 2011.

[24] J. I. Lathrop, J. H. Lutz, M. J. Patitz, and S. M. Summers,
“Computability and complexity in self-assembly,” Theory
Comput. Syst., vol. 48, no. 3, pp. 617–647, 2011.

808809809

