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Abstract—We consider the problem of finding a low
discrepancy coloring for sparse set systems where each
element lies in at most t sets. We give an efficient algorithm
that finds a coloring with discrepancy O((t log n)1/2),
matching the best known non-constructive bound for the
problem due to Banaszczyk. The previous algorithms only
achieved an O(t1/2 log n) bound. Our result also extends to
the more general Komlós setting and gives an algorithmic
O(log1/2 n) bound.

I. INTRODUCTION

Let (V,S) be a finite set system, with V = {1, . . . , n}
and S = {S1, . . . , Sm} a collection of subsets of V . For

a two-coloring χ : V → {−1, 1}, the discrepancy of

χ for a set S is defined as χ(S) = |∑i∈S χ(i)| and

measures the imbalance from an even-split for S. The

discrepancy of the system (V,S) is defined as

disc(S) = min
χ:V→{−1,1}

max
S∈S

χ(S).

That is, it is the minimum imbalance for all sets in S,

over all possible two-colorings χ.

Discrepancy is a widely studied topic and has ap-

plications to many areas in mathematics and computer

science. For more background we refer the reader to

the books [1]–[3]. In particular, discrepancy is closely

related to the problem of rounding fractional solutions

of a linear system of equations to integral ones [4], [5],

and is widely studied in approximation algorithms and

optimization.

Until recently, most of the results in discrepancy were

based on non-algorithmic approaches and hence were not

directly useful for algorithmic applications. However, in

the last few years there has been remarkable progress

in our understanding of the algorithmic aspects of dis-

crepancy [6]–[12]. In particular, we can now match or

even improve upon all known applications of the widely

used partial-coloring method [2], [13] in discrepancy.
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This has, for example, led to several other new results

in approximation algorithms [14]–[17].

Sparse Set Systems: Despite the algorithmic

progress, one prominent question that has remained

open is to match the known non-constructive bounds on

discrepancy for low degree or sparse set systems. These

systems are parametrized by t, that denotes the maxi-

mum number of sets that contain any element. Beck and

Fiala [18] proved, using an algorithmic iterated rounding

approach, that any such set system has discrepancy at

most 2t− 1. They also conjectured that the discrepancy

in this case is O(t1/2), and settling this has been an

elusive open problem.

The best known result in this direction is due to

Banaszczyk [19], which implies an O(
√
t log n) dis-

crepancy bound for the problem1. Unlike most results

in discrepancy that are based on the partial-coloring

method, Banaszczyk’s proof is based on a very different

and elegant convex geometric argument, and it is not

at all clear how to make it algorithmic. Prior to Ba-

naszczyk’s result, the best known non-algorithmic bound

was O(t1/2 log n) [20], based on the partial-coloring

method. This bound was first made algorithmic in [6],

and by now there are several different ways known to

obtain this result [8]–[11], [21]. However the question

of matching Banaszczyk’s bound algorithmically for the

problem and its variants has been open despite a lot of

attention in recent years [11], [21]–[23]. In particular, as

we discuss in Section I-B there is a natural algorithmic

barrier to improving the O(t1/2 log n) bound.

A substantial generalization of the Beck-Fiala conjec-

ture is the following:

Komlós Conjecture: Given any collection of vectors

v1, . . . , vn ∈ R
m such that ‖vi‖2 ≤ 1 for each i ∈

[n]2, there exist signs x1, . . . , xn ∈ {−1, 1} such that

‖∑n
i=1 xivi‖∞ = O(1).

This implies the Beck-Fiala conjecture by choosing

each vi as the column corresponding to element i in

1We assume here that t ≥ logn, otherwise the O(t) bound is better.
2We use [n] to denote the set {1, 2, . . . , n}.
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the incidence matrix of the set system scaled by t−1/2.

Again, the best known non-constructive bound here is

O(
√
log n) due to Banaszczyk and the previous algorith-

mic techniques can also be adapted to achieve O(log n)
constructively for the Komlós setting.

A. Our Results

In this paper we give the following algorithmic result

for the Beck-Fiala problem, which matches the non-

constructive bound due to Banaszczyk.

Theorem 1. Given a set system (V,S) with |V | = n
such that each element i ∈ V lies in at most t sets in S,
there is an efficient randomized algorithm that finds an
O(
√
t log n) discrepancy coloring with high probability.

Our result also extends to the Komlós setting with

some minor modifications.

Theorem 2. Given an m×n matrix A with all columns
of �2-norm at most 1, there is an efficient randomized
algorithm that finds x ∈ {−1, 1}n such that ‖Ax‖∞ =
O(
√
log n) with high probability.

Our algorithm gives a new constructive proof of Ba-

naszczyk’s result for the Beck-Fiala and Komlós setting.

While Theorem 2 implies Theorem 1, for better clarity

we first present the algorithm for the Beck-Fiala problem

in Sections II and III and then discuss the extension to

Theorem 2 in Section IV.

B. High-level Overview

The algorithm has a similar structure to the previ-

ous random walk based approaches [6], [8], [10]. It

starts with the coloring x0 = 0n at time 0, and at

each time step k, updates the color of element i by

adding a small increment to its coloring at time k − 1,

i.e. xk(i) = xk−1(i) +Δxk(i). If a variable reaches −1
or 1 it is frozen, and its value is not updated any more.

The increment is determined by solving an appropriate

SDP and projecting the resulting vectors in a random

direction.

However, all the previous approaches get stuck at the

O(t1/2 log n) barrier, and it is instructive to understand

why this happens before we present our algorithm.

The O(t1/2 log n) barrier: Roughly speaking, the

execution of the previous algorithms can be divided into

O(log n) phases (either implicitly or explicitly), where in

each phase about half the variables get frozen and each

set incurs an expected discrepancy of O(t1/2). This gives

an overall discrepancy bound of O(t1/2 log n).
Intuitively however, for a fixed set S, one should

expect an O(t1/2) discrepancy over all the phases for the

following reason. Assume that all sets are of size O(t).
This can be ensured using a standard linear algebraic

argument to ensure that sets incur zero discrepancy as

long as they have at least 2t uncolored elements3. After

i phases of partial coloring, one would expect that S
has about 2−i fraction of its elements left uncolored,

and hence it should incur about O((2−it)1/2) discrep-

ancy in the next phase, giving a total discrepancy of

O(
∑

i 2
−i/2t1/2) = O(t1/2).

However, the problem is that the size of sets may

not evolve in this ideal manner, as the partial coloring

phase does not give us a fine-grained control over how

the elements of each set get colored. For example,

even though half of the variables (globally) get colored

during a phase, it is possible that half the sets get

almost completely colored, while the other half only get

t/ log n of their elements colored (while still incurring

an Ω(t1/2) discrepancy). This imbalance between the

discrepancy incurred and “progress” made for each set is

the fundamental barrier in overcoming the O(t1/2 log n)
bound.

Our approach: The key idea of our algorithm is

to ensure that during the coloring updates the squared
discrepancy we add to a set is proportional to the

“progress” elements of that set make towards geting

colored. More formally, the updates Δxk(i) that we

choose at time k satisfy the following properties:

1) Zero Discrepancy for large sets: If a set S has more

than at unfrozen (alive) elements at time k, for

some constant a, we ensure that
∑

i∈S Δxk(i) = 0.

This is similar to the previous approaches and

allows us to not worry about the discrepancy of

a set until its size falls below at.
2) Proportional Discrepancy Property: This is the key

new property and (roughly speaking) ensures that

the squared discrepancy added to a set is propor-

tional to the “energy” injected into the set. That is,(∑
i∈S

Δxk(i)

)2

≤ 2

(∑
i∈S

Δxk(i)
2

)
.

Note that the left hand side is the square of the

discrepancy increment for set S, and the right hand

side is the sum of squares of the increments of the

elements of S.

Given a coloring xk, let us define the energy of set

S at time k as
∑

i∈S xk(i)
2. Clearly, the energy

of a set can never exceed its size |S|. As we can

assume that |S| = O(t) (by the Zero Discrepancy

Property above), this property suggests that if the

total energy injected (
∑

k(
∑

i∈S Δxk(i)
2)) into S

was comparable to its final energy (which is O(t))

3The reader may observe that if all sets were of size O(t), a simple
application of the Lovász Local Lemma already gives an O(

√
t log t)

discrepancy coloring, so this should an imply an O(
√
t log t) discrep-

ancy in general. However, the problem is that the Lovász Local Lemma
does not combine with the linear algebraic argument.
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and the increments were mean 0 random variables,

the squared discrepancy should be O(t).
3) Approximate Orthogonality Constraints to relate the

injected energy to actual energy: One big problem

with the above idea is that the total injected energy

into a constraint may be unrelated to its final energy.

For example, even for a single variable i if the

coloring xk(i) “fluctuates” a lot around 0 over time,

the injected energy
∑

k Δxk(i)
2 could be arbitrarily

large, while the final energy for i is at most 1. For

general sets S, other problems can arise beyond just

fluctuations due to correlations between the updates

of different elements of S.

To fix this we use the following idea. Suppose we

could ensure that for each set S the coloring update

at time k was orthogonal to the coloring at time

k − 1, i.e.
∑

i∈S xk−1(i)Δxk(i) = 0. Then, by

Pythagoras theorem, the increase in energy of S
would satisfy∑

i∈S
xk(i)

2 −
∑
i∈S

xk−1(i)
2

=
∑
i∈S

(
(xk−1(i) + Δxk(i))

2 − xk−1(i)
2
)

= 2
∑
i∈S

xk−1(i)Δxk(i) +
∑
i∈S

Δxk(i)
2

=
∑
i∈S

Δxk(i)
2 (1)

where the last equality follows from the orthogo-

nality constraint. As the expression in (1) is the

injected energy at time k, this would precisely make

the total injected equal to the final energy as desired.

However, we cannot add such constraints directly

for each small set as there might be too many of

them. So the idea is to add a weaker version of these

orthogonality constraints, where we only require

that(∑
i∈S

xk−1(i)Δxk(i)

)2

≤ 2

(∑
i∈S

Δxk(i)
2

)

and show that these suffice for our purpose.

4) Sufficient Progress Property: Of course, all the

properties above can be trivially satisfied by setting

Δxk(i) = 0 for each i. So the final step is to ensure

that a non-trivial update exists. To this end, we show

that there exist updates with the (unnormalized) sum∑
i Δxk(i)

2 = Ω(Ak), where Ak is the number of

alive variables at time k.

For this purpose, we write an SDP that captures

the above constraints and use duality to show the

existence of a large feasible solution.

A weaker version of these properties was used in the

unpublished manuscript [24] to get a more size-sensitive

discrepancy bound for each set, but it still only achieved

an O(t1/2 log n) discrepancy in the worst case.

We now describe the algorithm and the SDP we use

in Section II. The analysis consists of two main parts. In

Section III-A we show the sufficient progress property

mentioned above, and in Section III-B we show how this

gives an overall discrepancy bound of O((t log n)1/2).

II. ALGORITHM FOR THE BECK-FIALA PROBLEM

We will index time by k. Let xk ∈ [−1, 1]n denote the

coloring at the end of time step k. During the algorithm,

variables which get set to at least (1− 1/n) in absolute

value are called frozen and their values are not changed

anymore. The remaining variables are called alive. We

denote by Ak the set of alive variables at the beginning
of time step k. Initially all variables are alive. Let γ =
1/(n2 log n), T = (12/γ2) log n and a = 6.

We will call a set S ∈ S big at time k if it has at

least at variables alive at time k, i.e. |S ∩Ak| ≥ at and

small otherwise. We will use Bk to denote the collection

of big sets at time k and Lk to denote the collection of

small (little) sets.

Algorithm:
1) Initialize x0(i) = 0 for all i ∈ [n] and A1 =
{1, 2, ..., n}.

2) For each time step k = 1, 2, . . . , T repeat the

following:

a) Find a solution to the following semidefinite

optimization problem:

Maximize
∑
i∈Ak

‖ui‖22 subject to

‖
∑

i∈S∩Ak

ui‖22 = 0 ∀S ∈ Bk (2)

‖
∑

i∈S∩Ak

ui‖22 ≤ 2
∑

i∈S∩Ak

‖ui‖22 ∀S ∈ Lk

(3)

‖
∑

i∈S∩Ak

xk−1(i)ui‖22 ≤

2
∑

i∈S∩Ak

‖ui‖22 ∀S ∈ Lk

(4)

‖ui‖22 ≤ 1 ∀i ∈ Ak

b) Let rk ∈ R
n be a random ±1 vector, obtained

by setting each coordinate rk(i) independently to

−1 or 1 with probability 1/2.

For each i ∈ Ak, update xk(i) = xk−1(i) +
γ〈rk, ui〉. For each i �∈ Ak, set xk(i) = xk−1(i).

c) Initialize Ak+1 = Ak.

For each i, if |xk(i)| ≥ 1− 1/n, update Ak+1 =
Ak+1 \ {i}.
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3) Generate the final coloring as follows. For the

frozen elements i /∈ AT+1, set xT (i) = 1 if

xT (i) ≥ 1 − 1/n and xT (i) = −1 otherwise. For

the alive elements i ∈ AT+1, set them arbitrarily to

±1.

Note that the SDP at time k uses the vectors ui

to generate the update Δxk(i) by projecting ui to the

random vector rk and scaling this by γ. If we think

of ui as one dimensional vectors (so Δxk(i) = γrui

where r is randomly ±1), constraints (2) will ensure that

a set incurs zero discrepancy as long as it is big. Con-

straints (3) require the updates to satisfy the proportional

discrepancy property mentioned earlier. Constraints (4)

require the updates to satisfy the approximate orthogo-

nality property mentioned earlier.

III. ANALYSIS

We begin with some simple observations.

Lemma 3. For any vector u ∈ R
n and a random vector

r ∈ {±1}n, E[〈r, u〉2] = ‖u‖22 and |〈r, u〉| ≤ √n‖u‖2.

Proof: Writing u in terms of its coordinates u =
(u(1), . . . , u(n)),

E[〈r, u〉2] = E[(
∑
i

r(i)u(i))2]

=
∑
i,j

E[r(i)r(j)]u(i)u(j) = ‖u‖22

where the last equality uses that E[r(i)r(j)] = 0 for

i �= j and E[r(i)2] = 1.

The second part follows by Cauchy-Schwarz inequal-

ity, as |〈r, u〉| ≤ ‖r‖2‖u‖2 =
√
n‖u‖2.

This implies the following.

Observation 4. The rounding of frozen elements in step
3 of the algorithm affects the discrepancy of any set by at
most n·(1/n) = 1. So we can ignore this rounding error.
Moreover, as ‖ui‖2 ≤ 1, |γ〈r, ui〉| ≤ γ

√
n‖ui‖2 ≤ 1/n,

which implies that no xk(i) goes out of the range [−1, 1]
during any step of the algorithm.

The rest of the analysis is divided into three parts.

In Section III-A, we show that the SDP is feasible and

has value at least |Ak|/3 at each time step k. In Section

III-B, we use the properties of the SDP to show that

each set in S has discrepancy O((t log n)1/2) after T
steps with high probability. Finally, in Section III-C we

show that there are no alive elements after T steps with

high probability. Together these will imply Theorem 1.

A. SDP is feasible and has value Ω(|Ak|)
To show that the SDP has value at least |Ak|/3 at

any time step k, we will consider the dual and show

that no solution with objective value less than |Ak|/3
can be feasible. By strong duality, this suffices as if the

optimum (primal) SDP solution was less than |Ak|/3,

there would also be some feasible dual solution with

that value (provided Slater’s conditions are satisfied).

It might be useful to point out here that the feasibility

of our SDP is incomparable to the main result in [21]; we

can ensure a zero discrepancy to a few rows, which was

not possible in the approach used in [21] but we can

only ensure a partial colouring (
∑

i ‖ui‖22 ≥ |Ak|/3),

whereas the SDP in [21] was feasible with the stronger

constraint ‖ui‖2 = 1 for all i.
To make it easier to write the dual, we rewrite the SDP

in the following matrix notation by setting X to be the

Gram matrix of vectors corresponding to alive elements

i.e. Xij = 〈ui, uj〉 for i, j ∈ Ak.

Maximize I •X subject to

vSv
T
S •X = 0 for each S ∈ Bk

(vSv
T
S − 2IS) •X ≤ 0 for each S ∈ Lk

(xSx
T
S − 2IS) •X ≤ 0 for each S ∈ Lk

(eie
T
i ) •X ≤ 1 ∀i ∈ Ak

X 
 0

Here vS is the indicator vector of set S ∩ Ak, xS is

the vector with ith entry equal to xk−1(i) if i ∈ S ∩Ak

and 0 otherwise and IS is the identity matrix restricted

to set S ∩ Ak, i.e. (IS)ii = 1 if i ∈ S ∩ Ak and 0
otherwise. • denotes the usual inner product on matrices

A •B = Tr(ATB) =
∑

ij AijBij .

We can write the dual of the above SDP (for reference,

see [25]), which is given by:

Minimize
∑
i∈Ak

bi subject to

∑
i∈Ak

bieie
T
i +

∑
S∈Bk

αSvSv
T
S+

∑
S∈Lk

(
βS(vSv

T
S − 2IS) + βx

S(xSx
T
S − 2IS)

) 
 I (5)

bi ≥ 0 ∀i ∈ Ak (6)

αS ∈ R ∀S ∈ Bk (7)

βS , β
x
S ≥ 0 ∀S ∈ Lk (8)

Here A 
 B denotes that the matrix A − B is positive

semi-definite. To show strong duality we use the follow-

ing result.

Theorem 5 (Theorem 4.7.1, [25]). If the primal program
(P ) is feasible, has a finite optimum value η and has
an interior point x̃, then the dual program (D) is also
feasible and has the same finite optimum value η.

Lemma 6. The SDP described above is feasible and has
value equal to its dual program.

Proof: We apply Theorem 5, with P equal to the

dual of the SDP. This would suffice as the dual D of P
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is our SDP.

We claim that bi = 1+ε for ε > 0 for all i ∈ Ak, αS =
0 for all S ∈ Bk and βS = βx

S = ε/(8n2) for all S ∈ Lk

is a feasible interior point for P . Clearly, this solution is

strictly in the interior of the constraints (6)-(8). That (5)

is satisfied and has slack in every direction follows as the

the number of sets S can be at most t|Ak| ≤ tn ≤ n2,

and that for any vector v, vvT is a rank one PSD matrix

with eigenvalue ‖v‖22 ≤ n, and thus all eigenvalues of

vSv
T
S − 2IS and xSx

T
S − 2IS lie in the range [−2, n].

As this point has objective value at most (1+ ε)n and

since bi are non-negative, P has a finite optimum value.

We wish to show that any feasible solution to the dual

must satisfy
∑

i bi ≥ |Ak|/3. To do this, we will show

that there is a large subspace W of dimension at least

|Ak|/3 where the operator∑
S∈Bk

αSvSv
T
S+

∑
S∈Lk

(
βS(vSv

T
S − 2IS) + βx

S(xSx
T
S − 2IS)

)
is negative semidefinite. This would imply that to satisfy

(5), bi’s have to be quite large on average. We first give

two general lemmas.

Lemma 7. Given an h × n matrix M with columns
z1, z2, . . . , zn. If ‖zi‖2 ≤ 1 for all i ∈ [n], then there
exists a subspace W of Rn satisfying:

i) dim(W ) ≥ n
2 , and

ii) ∀y ∈W , ‖My‖22 ≤ 2‖y‖22
Proof: Let the singular value decomposition of M

be given by M =
∑n

i=1 σipiq
T
i , where 0 ≤ σ1 ≤ · · · ≤

σn are the singular values of M and {pi : i ∈ [n]}, {qi :
i ∈ [n]} are two sets of orthonormal vectors (if h < n,

some pi’s and the corresponding σi’s will be zero). Then,

n∑
i=1

σ2
i = Tr[

n∑
i=1

σ2
i qiq

T
i ] = Tr[MTM ] =

n∑
i=1

‖zi‖22 ≤ n

So at least �n2 � of the squared singular values σ2
i s have

value at most 2, and thus σ1 ≤ · · · ≤ σ�n
2 � ≤

√
2. Let

W = span{q1, . . . , q�n
2 �}. For y ∈W ,

‖My‖22 = ‖
n∑

i=1

σipiq
T
i y‖22 = ‖

�n
2 �∑

i=1

σipiq
T
i y‖22

≤
�n

2 �∑
i=1

σ2
i (q

T
i y)

2 (since pi are orthonormal)

≤ 2

�n
2 �∑

i=1

(qTi y)
2

= 2‖y‖22 (since qi are orthonormal)

This implies the following result.

Theorem 8. Let V be any finite collection of vectors
v1, . . . , vh in R

n, and for each v ∈ V , there is some
non-negative multiplier βv ≥ 0. Consider the operator

B =
∑
v∈V

βv

(
vvT − 2

n∑
i=1

〈v, ei〉2eieTi
)

where ei are the standard basis of Rn. Then there exists
a subspace W of dimension at least n/2 such that
〈y,By〉 ≤ 0 for every y ∈W , or equivalently yTBy ≤ 0
for every y ∈W .

Proof: Let vi denote 〈v, ei〉. We can express yTBy
as

B • yyT

=
∑
v

βv

(
vvT • yyT − 2(

∑
i

v2i eie
T
i ) • yyT

)

=
∑
v

βv

(
(
∑
i

viyi)
2 − 2

∑
i

v2i y
2
i

)

Construct a matrix M with rows indexed by v for each

v ∈ V and columns indexed by i ∈ [n]. The entries of

M are given by Mv,i = β
1/2
v vi. Then, we can write

∑
v

βv

(∑
i

viyi

)2

= ‖My‖22.

For each i ∈ [n], define β2
i =

∑
v βvv

2
i as the squared

�2-norm of column i of M , and let D be an n × n
diagonal matrix with entries Dii = βi. Then,∑

v

βv((
∑
i

viyi)
2 − 2

∑
i

v2i y
2
i )

= ‖My‖22 − 2‖Dy‖22 (9)

Let N ⊆ [n] be the set of coordinates with βi > 0. We

claim that it suffices to focus on the coordinates in N . Let

us first observe that if i /∈ N , i.e. β2
i = 0, then we can

set yi arbitrarily as (9) is unaffected. As the directions

ei for i ∈ N are orthogonal to the directions in [n] \N ,

it suffices to show that there is a |N |/2 dimensional

subspace W in span{ei : i ∈ N} such that ‖My‖22 −
2‖Dy‖22 ≤ 0 for each y ∈ W . The overall subspace we

desire is simply W ⊕ span{ei : i ∈ [n] \N} which has

dimension |N |/2 + (n− |N |) ≥ n/2.

So, let us assume that N = [n] (or equivalently restrict

M and D to columns in N ), which gives us that βi > 0
for all i ∈ N and hence that D is invertible.

Let M ′ = MD−1. The squared �2-norm of each

column in M ′ is
∑

v βvv
2
i /D

2
ii which equals 1, and by

Lemma 7, there is a subspace W ′ of dimension at least

791792792



|N |/2 such that ‖M ′y′‖22 ≤ 2‖y′‖22 for each y′ ∈ W ′.
Setting y = D−1y′ gives

‖My‖22 = ‖M ′y′‖22 ≤ 2‖y′‖22 = 2‖Dy‖22,

and thus W = {D−1y′ : y′ ∈ W ′} gives the desired

subspace since dim(W ) = dim(W ′).
Going back to the dual SDP, this gives the following.

Lemma 9. Let Bk =∑
S∈Lk

(
βS(vSv

T
S − 2IS) + βx

S(xSx
T
S − 2IS)

)
. Then,

there exists a subspace W ⊆ R
|Ak| of dimension at

least |Ak|/2 such that for all y ∈W , yTBky ≤ 0.

Proof: We apply Theorem 8 with vectors v as vS
and xS for each small set S ∈ Lk, with the multipliers

βS and βx
S . Then,

B =
∑
S∈Lk

[βS(vSv
T
S − 2

∑
i∈Ak

〈vS , ei〉2eieTi )+

βx
S(xSx

T
S − 2

∑
i∈Ak

〈xS , ei〉2eieTi )]

=
∑
S∈Lk

[βS(vSv
T
S − 2IS)+

βx
S(xSx

T
S − 2

∑
i∈S∩Ak

xk−1(i)
2eie

T
i )]



∑
S∈Lk

(
βS(vSv

T
S − 2IS) + βx

S(xSx
T
S − 2IS)

)
= Bk

Here we use that vS is the indicator vector for set S ∩
AK with entries 〈vS , ei〉 = 1 iff i ∈ S ∩ Ak and thus,∑

i∈Ak
〈vS , ei〉2eieTi = IS . Similarly for the vectors xS ,

〈xS , ei〉 = xk−1(i) for i ∈ S ∩Ak and 0 otherwise. The

last step uses that xk−1(i)
2 ≤ 1 and thus

−2
∑

i∈S∩Ak

xk−1(i)
2eie

T
i 
 −2IS .

By Theorem 8, there is a subspace W with dim(W ) ≥
|Ak|/2 such that yTBy ≤ 0 for each y ∈ W . As B 

Bk, it also holds that yTBky ≤ 0 for each y ∈W .

We now come to the main theorem of this subsection.

Theorem 10. At time step k, the dual program has value
at least |Ak|/3.

Proof: As element i in Ak appears in at most t sets,

the number of big sets |Bk| at time step k is at most

|Ak|t/at = |Ak|/a. Let W1 be the subspace orthogonal

to C = span{vS : S ∈ Bk}. Clearly, dim(C) ≤ |Bk| ≤
|Ak|/a.

Let W0 be the subspace guaranteed by Lemma 9 for

matrix Bk such that dim(W0) ≥ |Ak|/2 and for all y ∈
W0, yTBky ≤ 0. Define the subspace W = W1 ∩W0.

Then,

dim(W ) ≥ dim(W0)− dim(C)

≥ |Ak|/2− |Ak|/a
= |Ak|/3

Let PW be the projection operator on the subspace

W . Projecting the dual constraint (5) on to W , we get

PW

(∑
i∈Ak

bieie
T
i +

∑
S∈Bk

αSvSv
T
S +Bk

)

 PW

By linearity of PW and as PW (vSv
T
S ) = 0 for each

S ∈ Bk, this implies

PW

(∑
i∈Ak

bieie
T
i

)
+ PW (Bk) 
 PW

Taking trace on both the sides and noting that

Tr[PW (Bk)] ≤ 0 since yTBky ≤ 0 for all y ∈ W ,

we get

Tr

[
PW

(∑
i∈Ak

bieie
T
i

)]
≥ Tr[PW ] = dim(W )

As bi ≥ 0 for all i ∈ Ak, the operator
∑

i∈Ak
bieie

T
i

is positive semi-definite. As taking the projection of

a positive semi-definite operator can only decrease its

trace, we can lower bound the dual objective as

∑
i∈Ak

bi = Tr

[∑
i∈Ak

bieie
T
i

]

≥ Tr

[
PW

(∑
i∈Ak

bieie
T
i

)]

≥ Tr[PW ] = dim(W ) ≥ |Ak|/3
which completes the proof.

B. Bounding the discrepancy

Let DS(k) denote the signed discrepancy of set S ∈ S
at end of time step k i.e. DS(k) =

∑
i∈S xk(i).

We now show the following key result.

Theorem 11. Fix a set S ∈ S . Then, for any λ ≥ 0, the
discrepancy of S at time step T satisfies

Pr
[
|DS(T )| ≥ λ

√
t
]
≤ 8 exp(−λ2/(100a)).

Setting λ = O(log1/2 n) would imply that with high

probability every set has discrepancy O((t log n)1/2) at

time T .

Among other things, the proof of Theorem 11 will use

a powerful concentration inequality for martingales due

to Freedman that we describe below.
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Martingales and Freedman’s inequality: Let

X1, X2, . . . , Xn be a sequence of independent random

variables on some probability space, and let Yk be a func-

tion of X1, . . . , Xk. The sequence Y0, Y1, Y2, . . . , Yn

is called a martingale with respect to the sequence

X1, . . . , Xn if for all k ∈ [n], E[|Yk|] is finite and

E[Yk|X1, X2, ..., Xk−1] = Yk−1. We will use Ek−1[Z]
to denote E[Z|X1, X2, ..., Xk−1] where Z is any random

variable.

Theorem 12 (Freedman [26]). Let Y0, . . . , Yn be a
martingale with respect to X1, . . . , Xn such that |Yk −
Yk−1| ≤M for all k, and let

Wk =
k∑

j=1

Ej−1[(Yj − Yj−1)
2]

=

k∑
j=1

Var[Yj |X1, . . . , Xj−1].

Then for all λ ≥ 0 and σ2 ≥ 0, we have

Pr[|Yn − Y0| ≥ λ and Wn ≤ σ2]

≤ 2 exp

(
− λ2

2(σ2 +Mλ/3)

)
.

Observe crucially that the above inequality is much

more powerful than the related Azuma-Hoeffding or

Bernstein’s inequality. In particular, the term Wn is the

variance encountered by the martingale on the particular

sample path it took, as opposed to a worst case bound

on the variance over all possible paths.

Simple Observations: We now get back to the proof

of Theorem 11 and begin with a few simple observations.

Fix a set S ∈ S . Let the vector solution returned by the

SDP at time k be given by vectors uk
i for i ∈ [n] where

we take uk
i = 0 if i �∈ Ak. We say that S becomes active

at time k if k is the first time step when |S ∩Ak| ≤ at.

Observation 13. Before a set S ∈ S is active, it incurs
zero discrepancy.

Proof: Suppose S becomes active at time kS . Then,

DS(kS−1) =
∑kS−1

k=1 γ〈rk,
∑

i∈S∩Ak
uk
i 〉 = 0, since by

SDP constraint (2),
∑

i∈S∩Ak
uk
i = 0 for k < kS .

Observation 14. As a set has no more than at alive vari-
ables when it becomes active, Observation 13 implies
that the maximum discrepancy any set can have is 2at,
which gives Theorem 11 for λ > 2at1/2. So henceforth
we can assume that λ ≤ 2at1/2.

Define the energy of set S at end of time step k as

ES(k) =
∑

i∈S xk(i)
2 and change in energy of S at

time step k as ΔkES = ES(k)− ES(k − 1). Then,

ΔkES =
∑
i∈S

xk(i)
2 −

∑
i∈S

xk−1(i)
2

=
∑
i∈S

(
(xk−1(i) + γ〈rk, uk

i 〉)2 − xk−1(i)
2
)

= γ2
∑
i∈S
〈rk, uk

i 〉2 + 2γ〈rk,
∑
i∈S

xk−1(i)u
k
i 〉

(10)

The following is a simple but crucial observation.

Observation 15. Once a set S ∈ S becomes active, its
energy can increase overall by at most at.

Proof: When S becomes active, it has at most at
alive variables. Moreover, a frozen variable is never

updated by the algorithm and can never become alive

again. As the energy of a single variable is bounded by

1, the energy of S can increase by at most at after it

becomes active.

Remark: Note that the energy of a set S does not

necessarily increase monotonically over time. It evolves

randomly and can also decrease. So, even though the

overall increase is at most at, the total energy “injected”∑
k≥kS

|ΔkES | can be arbitrarily larger than at. Here

kS denotes the time when S becomes active.

By Observation 13, we only need to bound the dis-

crepancy of S after it becomes active. For notational

convenience, let us call the time S becomes active

as time 0. So, DS(k) and ES(k) will be the signed

discrepancy and energy of S respectively, k time steps

after it becomes active.

Observation 16. After S becomes active, DS(k) be-
haves like a martingale with variance of increment at
time step k bounded by

Ek−1[(DS(k)−DS(k − 1))2] ≤ 2γ2
∑

i∈S∩Ak

‖uk
i ‖22

Proof: The discrepancy update of S at time k
is γ〈rk,

∑
i∈S∩Ak

uk
i 〉. This has expectation 0 (averag-

ing of rk) and by Lemma 3 this variance is exactly

γ2‖∑i∈S∩Ak
uk
i ‖22, which by SDP constraint (3) is

upper bounded by 2γ2
∑

i∈S∩Ak
‖uk

i ‖22.

Proof of Theorem 11: The plan of the proof is

the following. Freedman’s inequality allows us to bound

the discrepancy at time T as a function of the variance∑T
k=1 Ek−1[(DS(k) − DS(k − 1))2] which is at most

2γ2
∑T

k=1

∑
i∈S∩Ak

‖uk
i ‖22 by Observation 16. As we

will see, this term is expected total energy injected into

S.

As the overall energy increase of S can be at most at
(Observation 15), it would suffice to show that the total

injected energy into S is comparable to at. To do this,
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we will use the approximate orthogonality constraints (4)

and apply Freedman’s inequality again to show that the

injected energy is tightly concentrated around the energy

increase. We now give the details.

Recall that by (10), the energy change at time k is a

random variable given by

ΔkES = γ2
∑
i∈S
〈rk, uk

i 〉2 + 2γ〈rk,
∑
i∈S

xk−1(i)u
k
i 〉

Denote the first term above as

ΔkQS = γ2
∑
i∈S
〈rk, uk

i 〉2

which we will call the change in quadratic energy of S
at time step k and let QS(k) =

∑k
j=1 ΔjQS , the total

quadratic energy of S till time k.

Similarly, denote the second term as

ΔkLS = 2γ〈rk,
∑
i∈S

xk−1(i)u
k
i 〉

which we will call the change in linear energy of S at

time step k, and let LS(k) =
∑k

j=1 ΔjLS , the total

linear energy of S till time k. The energy of S at time

k is given by ES(k) = QS(k) + LS(k).

Define Q′S(k) as

Q′S(k) =
k∑

j=1

Ej−1[ΔjES ] =
k∑

j=1

Ej−1[ΔjQS ].

By lemma 3,

Q′S(k) =
k∑

j=1

γ2
∑
i∈S

‖uj
i‖22

We are now ready to prove the tail bound on discrep-

ancy. The probability that discrepancy of S at time T
exceeds λ

√
t can be written as

Pr
[
|DS(T )| ≥ λ

√
t
]

≤ Pr
[
|DS(T )| ≥ λ

√
t, Q′S(T ) ≤ 16at

]
+

Pr [Q′S(T ) > 16at] (11)

We now bound each of the terms in (11) separately.

Bounding the first term. Recall that DS(k) is a mar-

tingale. To apply Freedman’s inequality(Theorem 12) we

bound M and Wk as follows. By Lemma 3,

M ≤ |DS(k)−DS(k − 1)| = |γ〈rk,
∑
i∈S

uk
i 〉|

≤ γ
√
n‖
∑
i∈S

uk
i ‖2 ≤ γn3/2

Similarly from Lemma 3 and the SDP constraint (3),

Wk =
k∑

j=1

Ej−1[(DS(j)−DS(j − 1))2]

=

k∑
j=1

Ej−1[γ
2〈rj ,

∑
i∈S

uj
i 〉2]

=
k∑

j=1

γ2‖
∑
i∈S

uj
i‖22

≤
k∑

j=1

2γ2
∑
i∈S

‖uj
i‖22 = 2Q′S(k)

Freedman’s inequality now gives,

Pr
[
|DS(T )| ≥ λ

√
t and Q′S(T ) ≤ 16at

]
≤ Pr

[
|DS(T )| ≥ λ

√
t and WT ≤ 32at

]
≤ 2 exp

( −λ2t

2[32at+ γn3/2λ
√
t/3]

)

≤ 2 exp

(−λ2

100a

)
(using λ ≤ 2a

√
t) (12)

Bounding the second term. We can write

Pr [Q′S(T ) > 16at]

=
∞∑
j=0

Pr
[
2j+4at < Q′S(T ) ≤ 2j+5at

]
≤ Pr [QS(T ) ≤ Q′S(T )− 8at] +
∞∑
j=0

Pr
[
Q′S(T ) ≤ 2j+5at,QS(T ) ≥ 2j+3at

]
(13)

The inequality above holds as the event {Q′S(T ) >
16at} is contained in the union of the two events in

(13).

As the energy ES(T ) of S cannot exceed at, we have

ES(T ) = LS(T )+QS(T ) ≤ at. Thus, QS(T ) ≥ 2j+3at
implies LS(T ) ≤ at− 2j+3at ≤ −7 · 2jat, giving

Pr[Q′S(T ) > 16at] ≤ Pr[QS(T ) ≤ Q′S(T )− 8at]+
∞∑
j=0

Pr[LS(T ) ≤ −7 · 2jat,Q′S(T ) ≤ 2j+5at] (14)

To bound the second term on the right hand side of

(14), we will crucially use the approximate orthogonality

constraints in the SDP (4) and use Freedman’s inequality.

To this end, note that LS(k) is a martingale whose

difference sequence can be bounded by

M ≤ |LS(k)− LS(k − 1)| = |2γ〈rk,
∑
i∈S

xk−1(i)u
k
i 〉|

≤ 2γ
√
n‖
∑
i∈S

xk−1(i)u
k
i ‖2 ≤ 2γn3/2 (15)
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where we used Lemma 3 in the first inequality and the

fact that |xk−1(i)| ≤ 1.

By Lemma 3 and SDP constraint (4),

Wk =
k∑

j=1

Ej−1[|LS(j)− LS(j − 1)|2]

=
k∑

j=1

Ej−1[4γ
2〈rj ,

∑
i∈S

xj−1(i)u
j
i 〉2]

=
k∑

j=1

4γ2‖
∑
i∈S

xj−1(i)u
j
i‖22

≤
k∑

j=1

8γ2
∑
i∈S

‖uj
i‖22 = 8Q′S(k)

Applying Freedman’s inequality now with these bound

on M and Wk, we obtain

Pr
[|LS(T )| ≥ 7 · 2jat and Q′S(T ) ≤ 2j+5at

]
≤ Pr

[|LS(T )| ≥ 7 · 2jat and WT ≤ 2j+8at
]

≤ 2 exp

( −49 · 22ja2t2
2[2j+8at+ 2γn3/2 · 7 · 2jat/3]

)

≤ 2 exp

(−2jat
20

)

Together with λ ≤ 2a
√
t (by our assumption), this

gives

∞∑
j=0

Pr[LS(T ) ≤ −7 · 2jat,Q′S(T ) ≤ 2j+5at]

≤ 4 exp

(−at
20

)
≤ 4 exp(

−λ2

100a
) (16)

It remains to bound Pr[QS(T ) ≤ Q′S(T ) − 8at], the

first term in (14). We use Freedman’s inequality in a

simple way (even Azuma-Hoeffding would suffice here).

Define the martingale Zk = QS(k) −∑k
j=1 Ej−1[ΔjQS ] = QS(k) − Q′S(k) (this is the

standard Doob decomposition of ΔkQS). By Lemma 3,

M ≤ |Zk − Zk−1| = |ΔkQS − Ek−1[ΔkQS ]|
≤ 2|ΔkQS | ≤ 2γ2n

∑
i∈S

‖uk
i ‖22 ≤ 2γ2n2

Using the trivial bound Ej−1[(Zj − Zj−1)
2] ≤M2, we

obtain that

WT =
T∑

j=1

Ej−1[(Zk − Zk−1)
2]

≤ 4Tγ4n4 = 48γ2n4 log n.

As QS(T ) ≤ Q′S(T )− 8at is the same as ZT ≤ −8at,
by Freedman’s inequality we get

Pr[QS(T ) ≤ Q′S(T )− 8at] ≤ Pr[|ZT | ≥ 8at]

≤ 2 exp

( −64a2t2
2[WT + 16γ2n2at/3]

)

≤ 2 exp

( −a2t2
2γ2n4 log n

)

≤ 2 exp(−a2t2) ≤ 2 exp(
−λ2

100a
) (17)

In the last step we use that γ = 1/(n2 log n), and

Observation 14.

Combining equations (11),(12),(14),(16) and (17), we

obtain the desired bound

Pr[|DS(T )| ≥ λ
√
t] ≤ 8 exp

(−λ2

100a

)
C. Termination and finishing the proof

To finish the proof, we show that the last rounding

step at time T + 1 does not cause problems.

Theorem 17. After time T , there are no alive variables
left with probability at least 1−O(n−2).

Proof: Given the coloring xk at time k, define

Gk =
∑

i∈Ak
(1− xk(i)

2). Clearly G1 ≤ n. As xk(i) =

xk−1(i) + γ〈rk, uk
i 〉, we have that Ek−1[xk(i)

2] =
xk−1(i)

2 + γ2‖uk
i ‖22. It follows

Ek−1[G(k)] = Ek−1

[∑
i∈Ak

(1− xk(i)
2)

]

=
∑
i∈Ak

(
1− xk−1(i)

2
)− γ2

∑
i∈Ak

‖uk
i ‖22

≤
∑
i∈Ak

(
1− xk−1(i)

2
)− γ2|Ak|/3

≤ (1− γ2/3)
∑
i∈Ak

(1− xk−1(i)
2)

≤ (1− γ2/3)
∑

i∈Ak−1

(1− xk−1(i)
2)

= (1− γ2/3)Gk−1

Thus by induction,

E[GT+1] ≤ (1− γ2/3)TG1 ≤ e−γ2T/3n

= n−4 · n = 1/n3.

Thus by Markov’s inequality, Pr[GT+1 ≥ 1/n] ≤ 1/n2.

However, GT+1 ≤ 1/n implies that AT+1 = 0 as each

alive variable contributes at least 1− (1− 1/n)2 > 1/n
to GT+1.

Theorem 1 now follows directly. Applying Theo-

rem 11 with λ = c log1/2 n for c a large enough constant

and taking a union bound over the at most nt ≤ n2 sets,

we get that |DS(T )| = O((t log n)1/2) with probability
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at least 1−1/poly(n) for all sets S. By Theorem 17 with

probability at least 1−O(n−2), all variables are frozen

by time T and hence at most an additional discrepancy

of 1 is added by rounding the frozen variables to ±1.

IV. EXTENSION TO THE KOMLÓS SETTING

The algorithm also extends to the more general

Komlós setting with some additional modifications. Re-

call that in the Komlós setting, we are given an m × n
matrix B with arbitrary real entries bji such that for each

column i, it holds that
∑

j b
2
ji ≤ 1. Let rj denote the j-

th row of B and let a be the constant as in the previous

section. We will show the following result.

Theorem 18. Fix any row rj of matrix B. Then, for any
λ ≥ 0, the discrepancy of rj at time step T (the end of
the algorithm) satisfies

Pr [|DT (rj)| ≥ λ] ≤ 8 exp(−λ2/(1000a))

where |DT (rj)| is the discrepancy of row j after time
step T .

The previous argument does not work directly when

the entries bji are arbitrary as we may not get strong

concentration if some entries bji are too large. So we

consider the following modified algorithm.

Algorithm: Given a matrix B, for any λ > 0 we

denote by rλj the λ-truncation of row j containing only

the entries bji that are at most 4a/λ in absolute value

i.e. rλj only contains those entries i of row j for which

|bji| ≤ 4a/λ and 0 otherwise.

As previously, let Ak denote the set of alive variables

at beginning of time step k, and we set γ = 1/n6 and

T = (12/γ2) log n. A row j is called big at time step k
if
∑

i∈Ak
b2ji > a, and small otherwise. As the �2-norm

of columns of B is at most 1, there at most |Ak|/a big

rows at any time step k.

The modified SDP: The SDP is modified as follows.

Similar to (2) we still require the discrepancy of big rows

to be zero. That is,

‖
∑
i∈Ak

bjiui‖22 = 0 for each big row j (18)

For a small row rj at time k, we add proportional

discrepancy and approximate orthogonality constraints

for every λ-truncation rλj of rj i.e., for every λ > 0, we

add the proportional discrepancy constraint (3) (same as

before, we just multiply the ui’s by bji’s)

‖
∑

i∈Ak,|bji|≤4a/λ

bjiui‖22 ≤ 2
∑

i∈Ak,|bji|≤4a/λ

b2ji‖ui‖22
(19)

and the approximate orthogonality constraints (4)

‖
∑

i∈Ak,|bji|≤4a/λ

b2jixk−1(i)ui‖22

≤ 2
∑

i∈Ak,|bji|≤4a/λ

b4ji‖ui‖22. (20)

Notice that as stated, for each small row we add two

SDP constraints for every value of λ > 0. However it

suffices to add at most 2n constraints in total for each

active row: just sort the entries of a row in increasing

order of absolute value and add the proportional discrep-

ancy and orthogonality constraints in the SDP for every

prefix of this sorted row (alternatively, one could also

consider geometrically increasing values of λ). Thus the

SDP has a polynomial number of constraints at any time

step.

Analysis: First, exactly as before the SDP is feasi-

ble and has a solution with value at least |Ak|/3. This

follows from Theorem 8, which shows that there is a

subspace W of dimension at least |Ak|/2 where the

corresponding operator is negative semidefinite on W ,

and then applying the argument in Theorem 10. In fact,

this would be true even if (20) was replaced by the

stronger constraint

‖
∑

i∈Ak,|bji|≤4a/λ

b2jixk−1(i)ui‖22

≤ 2
∑

i∈Ak,|bji|≤4a/λ

b4jixk−1(i)
2‖ui‖22.

Let Dk(rj) denote the signed discrepancy of row j at

the end of time step k,

Dk(rj) =
∑
i∈[n]

bjixk(i).

We also extend this definition to truncations of rows:

Dk(r
λ
j ) =

∑
i∈[n],|bji|≤4a/λ

bjixk(i).

We now show Theorem 18. Fix a row rj and a λ ≥ 0.

Call an entry bji large if |bji| > 4a/λ. We first make

the following key observation.

Observation 19. When a row becomes small, the �1-
norm of the alive variables in that row that are large
can be at most λ/4.

Proof: Each large entry is at least 4a/λ in absolute

value. As a row rj becomes small when
∑

i∈Ak
b2ji ≤ a,

there can be at most a/(4a/λ)2 = λ2/16a alive variables

with bji large. By Cauchy-Schwarz inequality,⎛
⎝ ∑

i∈Ak,|bji|>4a/λ

|bji|
⎞
⎠ ≤

(∑
i∈Ak

b2ji

)1/2(
λ2

16a

)1/2

≤ λ/4.
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The above observation implies that when a row be-

comes small, the large entries in it can change discrep-

ancy by at most λ/2. Thus to prove Theorem 18, it

suffices to show

Pr
[|DT (r

λ
j )| ≥ λ/2

] ≤ 8 exp(−λ2/(1000a)).

This follows similarly to the analysis as before, using

the proportional discrepancy (19) and approximate or-

thogonality constraints (20) for rλj and noting that (20)

implies that

‖
∑

i∈Ak,|bji|≤4a/λ

b2jixk−1(i)ui‖22

≤ 2
∑

i∈Ak,|bji|≤4a/λ

b4ji‖ui‖22

≤ 32a2

λ2

∑
i∈Ak,|bji|≤4a/λ

b2ji‖ui‖22 (21)

as |bji| ≤ 4a/λ for all entries in the truncated row rλj .

Let us define the energy of λ-truncation of row j at time

k as

Ek(r
λ
j ) =

∑
i∈[n],|bji|≤4a/λ

b2jixk(i)
2.

As previously, once the row becomes small, its energy

can rise by at most a.

The analysis in Section III-B had two main ideas:

1) First we showed that the expected squared discrep-

ancy of a set S at time T was O(1) times the energy

injected into the set QS(T ) (using constraints (3)).

This argument works exactly as before using con-

straints (19) and we sketch the details below.

For ease of notation we will denote the entries of

the truncated row rλj as bji where it is understood

that we are setting bji = 0 if bji was large in the

original matrix. The change in energy at time k is

a random variable given by

ΔkE(rλj )

= γ2
∑
i∈[n]

b2ji〈rk, uk
i 〉2 + 2γ〈rk,

∑
i∈[n]

b2jixk−1(i)u
k
i 〉

Denote the first term above as ΔkQ(rλj ), the change

in quadratic energy of rλj at time step k and let

Qk(r
λ
j ) =

∑k
k′=1 Δk′Q(rλj ), the total quadratic

energy of rλj till time k.

Similarly, denote the second term as ΔkL(r
λ
j ), the

change in linear energy of rλj at time step k, and let

Lk(r
λ
j ) =

∑k
k′=1 Δk′L(r

λ
j ), the total linear energy

of rλj till time k.

Define Q′k(r
λ
j ) =

∑k
k′=1 Ek′−1[Δk′E(rλj )] =∑k

k′=1 Ek′−1[Δk′Q(rλj )]. By lemma 3,

Q′k(r
λ
j ) =

k∑
k′=1

γ2
∑
i∈[n]

b2ji‖uk′
i ‖22

Just as before, discrepancy Dk(r
λ
j ) behaves as

a martingale with the variance Wk bounded by

2Q′k(r
λ
j ). Freedman’s inequality then gives,

Pr
[|DT (r

λ
j )| ≥ λ/2 and Q′T (r

λ
j ) ≤ 16a

]
≤ 2 exp

( −λ2

1000a

)
(22)

Next we showed that Q′S(T ) was essentially the

same as QS(T ) (shown in (17)). In fact this differ-

ence can be made arbitrarily small by reducing γ
and the argument works exactly as before here. In

particular, we get

Pr[QT (r
λ
j ) ≤ Q′T (r

λ
j )− 8a]

≤ 2 exp

( −λ2

1000a

)
(23)

2) The second part was to show that the linear term

does not cause problems. In particular, the crucial

argument was that QS(T ) cannot be much more

than at as (i) the total rise in energy LS(T )+QS(T )
cannot exceed at and (ii) L(T ) was a martingale

with squared deviation comparable to QS(T ) and

hence cannot be much larger than Q
1/2
S (T ). This

step used the constraints (4).

This argument also works similarly in our setting

here. For a truncated row rλj , QT (r
λ
j ) cannot be

much more than a as (i) the total rise in energy

LT (r
λ
j )+QT (r

λ
j ) cannot exceed a and (ii) LT (r

λ
j )

is a martingale with squared deviation comparable

to 32a2

λ2 Q′T (r
λ
j ) (by (20) and (21)). Proceeding ex-

actly as before and applying Freedman’s inequality

we obtain that,

∞∑
�=0

Pr
[
LT (r

λ
j ) ≤ −7 · 2�a, Q′T (r

λ
j ) ≤ 2�+5a

]

≤ 4 exp(
−λ2

1000a
). (24)

Theorem 18 now follows by combining (22),(23),(24)

as before and using Observation 19.

Theorem 2 now follows easily, by observing that m
can be assumed to be polynomially bounded in n and

applying a union bound. Indeed, we can discard all

rows of �1-norm less than
√
log n since they can only

ever have discrepancy at most
√
log n. The remaining
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rows have squared �2-norm at least logn
n , as by Cauchy-

Schwarz inequality

√
log n ≤

∑
i∈[n]

|bji| ≤
⎛
⎝∑

i∈[n]
b2ji

⎞
⎠

1/2

(n)1/2.

As
∑

i,j b
2
ji ≤ n, there can be at most n2/ log n such

rows. We now set λ = O(
√
log n) in Theorem 18 and

take a union bound over all these rows.
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