
Commutativity in the Algorithmic
Lovász Local Lemma

Vladimir Kolmogorov
IST Austria

Klosterneuburg, Austria

vnk@ist.ac.at

Abstract—We consider the recent formulation of the Algo-
rithmic Lovász Local Lemma [1], [2] for finding objects that
avoid “bad features”, or “flaws”. It extends the Moser-Tardos
resampling algorithm [3] to more general discrete spaces. At
each step the method picks a flaw present in the current state
and “resamples” it using a “resampling oracle” provided by the
user. However, it is less flexible than the Moser-Tardos method
since [1], [2] require a specific flaw selection rule, whereas [3]
allows an arbitrary rule (and thus can potentially be implemented
more efficiently).

We formulate a new “commutativity” condition, and prove
that it is sufficient for an arbitrary rule to work. It also enables
an efficient parallelization under an additional assumption. We
then show that existing resampling oracles for perfect matchings
and permutations do satisfy this condition.

Finally, we generalize the precondition in [2] (in the case of
symmetric potential causality graphs). This unifies special cases
that previously were treated separately.

Index Terms—component; formatting; style; styling;

I. INTRODUCTION

Let Ω be a (large) set of objects and F be a set of flaws,

where a flaw f ∈ F is some non-empty set of “bad” objects,

i.e. f ⊆ Ω. Flaw f is said to be present in σ if σ ∈ f . Let

Fσ = {f ∈ F |σ ∈ f} be the set of flaws present in σ. Object

σ is called flawless if Fσ = ∅.

The existence of flawless objects can often be shown via a

probabilistic method. First, a probability measure ω on Ω is

introduced, then flaws in F become (bad) events that should

be avoided. Proving the existence of a flawless object is now

equivalent to showing that the probability of avoiding all

bad events is positive. This holds if, for example, all events

f ∈ F are independent and the probability of each f is smaller

than 1. The well-known Lovász Local Lemma (LLL) [4] is a

powerful tool that can handle a (limited) dependency between

the events. Roughly speaking, it states that if the dependency

graph is sparse enough (e.g. has a bounded degree) and the

probabilities of individual bad events are sufficiently small

then a flawless object is guaranteed to exist.

LLL has been the subject of intensive research, see e.g. [5]

for a relatively recent survey. One of the milestone results was

the constructive version of LLL by Moser and Tardos [3]. It

applies to the variable model in which Ω = X1 × . . . × Xn

for some discrete sets Xi, event f depends on a small subset

of variables denoted as vbl(f) ⊆ [n], and two events f, g
are declared to be dependent if vbl(f) ∩ vbl(g) �= ∅. The

algorithm proposed in [3] is strikingly simple: (i) sample each

variable σi for i ∈ [n] according to its distribution; (ii) while

Fσ is non-empty, pick an arbitrary flaw f ∈ Fσ and resample

all variables σi for i ∈ vbl(f). Moser and Tardos proved

that if the LLL condition in [4] is satisfied then the expected

number of resampling is small (polynomial for most of the

known applications).

The recent development has been extending algorithmic

LLL beyond the variable model, and in particular to non-

Cartesian spaces. The first such work was by Harris and Srini-

vasan [6], who considered the space of permutations. Achliop-

tas and Iliopoulos [7] introduced a more abstract framework

where the behaviour of the algorithm is specified by a certain

multigraph. Harvey and Vondrák proposed a framework with

regenerating resampling oracles [1], providing a more direct

connection to LLL. Achlioptas and Iliopoulos [2] extended the

framework to more general resampling oracles.

In this paper we study this setting from [1], [2]. It does not

assume any particular structure on sets Ω and F . Instead, for

each object σ ∈ Ω and flaw f ∈ Fσ the user must provide a

“resampling oracle” specified by a set of actions A(f, σ) ⊆
Ω that can be taken to “address” flaw f , and a probability

distribution ρ(σ′|f, σ) over σ′ ∈ A(f, σ). At each step the

algorithm selects a certain flaw f ∈ Fσ , samples an action

σ′ ∈ A(f, σ) according to ρ(σ′|f, σ), and goes there. This

framework captures the Moser-Tardos algorithm [3], and can

also handle other scenarios such as permutations and perfect

matchings (in which case Ω cannot be expressed as a Cartesian

product).

One intriguing difference between the methods of [3]

and [7], [1], [2] is that [3] allows an arbitrary rule for selecting

a flaw f ∈ Fσ , whereas [7], [1], [2] require a specific rule

(which depends on a permutation π of F chosen in advance)1.

We will say that a resampling algorithm is flexible if it is

guaranteed to work with any flaw selection rule. We argue

that flexibility can lead to a much more efficient practical

implementation: it is not necessary to examine all flaws in

Fσ , the first found flaw will suffice. If the list of current

flaws is updated dynamically then flexibility could potentially

eliminate the need for a costly data structure (such as a priority

queue) and thus save a factor of Θ(log n) in the complexity.

1The papers [7], [2] actually allowed more freedom in the choice of
permutation π, e.g. it may depend on the iteration number. However, once
π has been chosen, the algorithm should still examine some “current” set of
flaws and pick the lowest one with respect to π.

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.88

779

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.88

780

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.88

780

The rule may also affect the number of resamplings in practice;

experimentally, the selection process matters, as noted in [5].

Achlioptas and Iliopoulos discuss flaw selection rules in [7,

Section 4.3], and remark that they do not see how to accommo-

date arbitrary rules in their framework. It is known, however,

that in special cases flexible rules can be used even beyond the

variable model. Namely, through a lengthy and a complicated

analysis Harris and Srinivasan [6] managed to show the

correctness of a resampling algorithm for permutations, and

did not make assumptions on the flaw selection rule in their

proof. They also proved a better bound for the parallel version

of the algorithm.

This paper aims to understand which properties of the

problem enable flexibility and parallelism. Our contributions

are as follows.

• We formulate a new condition that we call “commutativ-

ity”, and prove that it is sufficient for flexibility.

• We prove that it gives a better bound on the number of

rounds of the parallel version of the algorithm. In par-

ticular, we show how to use commutativity for handling

“partial execution logs” instead of “full execution logs”

(which is required for analyzing the parallel version).

• We show that existing resampling oracles for permuta-

tions [6] and perfect matchings in complete graphs [1]

are commutative. (In fact, we treat both cases in a

single framework). Thus, we provide a simpler proof

of the result in [6] and generalize it to other settings,

in particular to perfect matchings in certain graphs (for

which existing algorithms require specific rules).

• We generalize the condition in [2] for the algorithmic

LLL to work (in the case of symmetric potential causality

graphs). The new condition unifies special cases that were

treated separately in [2].

To our knowledge, our commutativity condition captures all

previously known cases when the flaw selection rules was

allowed to be arbitrary.

Other related work Applications that involve non-Cartesian

spaces Ω (such as permutations, matchings and spanning trees)

have often been tackled via the Lopsided LLL [8]; we refer

to [9], [10] for a comprehensive survey. On the level of

techniques there is some connection between this paper and a

recent work by Knuth [11]; we discuss this in Section III.

II. BACKGROUND AND PRELIMINARIES

First, we give a formal description of the algorithm from [1],

[2]. Assume that for each object σ ∈ Ω and each flaw f ∈ Fσ

there is a non-empty set of actions A(f, σ) ⊆ Ω that can

be taken for “addressing” flaw f at σ, and a probability

distribution ρ(σ′|f, σ) over σ′ ∈ A(f, σ). Note, by definition

A(f, σ) is the support of distribution ρ(·|f, σ). The collection

of all resampling oracles will be denoted as ρ. We fix some

probability distribution ω on Ω with ω(σ) > 0 for all σ ∈ Ω
(it will be used later for formulating various conditions). Note

that our notation is quite different from that of Harvey and

Vondrák [1].2 The algorithm can now be stated as follows.

Algorithm 1 Random walk. Input: initial distribution ωinit

over Ω, strategy Λ.

1: sample σ ∈ Ω according to ωinit

2: while Fσ non-empty do
3: select flaw f ∈ Fσ according to Λ
4: sample σ′ ∈ A(f, σ) according to distribution

ρ(σ′|f, σ), set σ ← σ′.
5: end while

Clearly, if the algorithm terminates then it produces a flaw-

less object σ. The works [7], [1], [2] used specific strategies

Λ. As stated in the introduction, our goal is to understand

when an arbitrary strategy can be used. This means that flaw

f in line 3 is selected according to some distribution which

is a function of the entire past execution history3. Note that if

flaw f ∈ Fσ in line 3 depends only on σ then the algorithm

can be viewed a random walk in a Markov chain with states Ω,

while in a more general case the walk can be non-Markovian.

A. Walks and the potential causality graph

We say that σ
f→ σ′ is a (valid) walk if it is possible to

get from state σ to σ′ by “addressing” flaw f as described in

the algorithm, i.e. if two conditions hold: f ∈ Fσ and σ′ ∈
A(f, σ). Whenever we write σ

f→ σ′, we mean that it is a

valid walk.

In many applications resampling oracles satisfy a special

condition called atomicity [7].

Definition 1. ρ is called atomic if for any f ∈ F and σ′ ∈ Ω
there exists at most one object σ ∈ Ω such that σ

f→ σ′.

Next, we need to describe “dependences” between flaws in

F . Let ∼ be some symmetric relation on F (so that (F,∼)
is an undirected graph). It is assumed to be fixed throughout

the paper. For a flaw f ∈ F let Γ(f) = {g ∈ F | f ∼ g}
be the set of neighbors of f . Note, we may or may not have

f ∼ f , and so Γ(f) may or may not contain f . We will

denote Γ+(f) = Γ(f) ∪ {f}, and also Γ(S) =
⋃

f∈S Γ(f)
and Γ+(S) =

⋃
f∈S Γ

+(f) for a subset S ⊆ F .

Definition 2. Undirected graph (F,∼) is called a potential

causality graph for ρ if for any walk σ
f→ σ′ there holds

Fσ′ ⊆ (Fσ − {f}) ∪ Γ(f).
In other words, Γ(f) must contain all flaws that can appear

after addressing flaw f at some state. Also, Γ(f) must contain

f if addressing f at some state can fail to eradicate f .

2“Flaws” f correspond to “bad events” Ei in [1]. The distribution over Ω
was denoted in [1] as μ, the states of Ω as ω, and the resampling oracle for
the bad event Ei at state ω ∈ Ω as ri(ω).

3The description of the algorithm in [3] says “pick an arbitrary violated
event”. This is consistent with our definition of an “arbitrary strategy”: in the
analysis Moser and Tardos mention that this selection must come from some
fixed procedure (either deterministic or randomized), so that expected values
are well-defined.

780781781

Note that in Definition 2 we deviated slightly from [7], [2]:

in their analysis the potential causality graph was directed
and therefore in certain cases could capture more information

about D. While directed graphs do matter in some applica-

tions (see examples in [7], [2]), we believe that in a typical

application the potential causality relation is symmetric. Using

an undirected graph will be essential for incorporating com-

mutativity.

A subset S ⊆ F will be called independent if for any dis-
tinct f, g ∈ S we have f � g. (Thus, loops f ∼ f in the graph

(F,∼) do not affect the definition of independence). For a sub-

set S ⊆ F we denote Ind(S) = {T ⊆ S | T is independent}.
B. Commutativity

We now formulate new conditions that will allow an arbi-

trary flaw selection rule to be used.

Definition 3. (ρ,∼) is called weakly commutative if there
exists a mapping SWAP that sends any walk σ1

f→ σ2
g→ σ3

with f � g to another valid walk σ1
g→ σ′2

f→ σ3, and this
mapping is injective.

Note that in the atomic case the definition can be simplified.

Namely, (ρ,∼) is weakly commutative if and only if it satisfies

the following condition:

• For any walk σ1
f→ σ2

g→ σ3 with f � g there exists state
σ′2 ∈ Ω such that σ1

g→ σ′2
f→ σ3 is also a walk.

Indeed, by atomicity the state σ′2 is unique, and so mapping

SWAP in Definition 3 is constructed in a natural way. This

mapping is reversible and thus injective.

For several results we will also need a stronger property.

Definition 4. (ρ,∼) is called strongly commutative (or just
commutative) if for any walk τ = σ1

f→ σ2
g→ σ3 with f � g

and SWAP(τ) = σ1
g→ σ′2

f→ σ3 there holds

ρ(σ2|f, σ1)ρ(σ3|g, σ2) = ρ(σ′2|g, σ1)ρ(σ3|f, σ′2) (1)

It is straightforward to check that strong commutativity

holds in the variable model of Moser and Tardos. In fact, an

additional property holds: for any σ1
f→ σ2

g→ σ3 with f � g

there exists exactly one state σ′2 ∈ Ω such that σ1
g→ σ′2

f→ σ3.

Checking strong commutativity for non-Cartesian spaces Ω is

more involved; we refer to the full version of the paper [12]

for details.

C. Parallel version

We will also consider the following version of the algorithm

(see Algorithm 2). It is equivalent to the parallel algorithm

of Moser and Tardos [3] in the case of the variable model,

and to the parallel algorithm of Harris and Srinivasan [6]

in the case of permutations. It is also closely related to

the “MaximalSetResample” algorithm of Harvey and

Vondrák [1] (see below).

Lines 3-8 will be called a round. In some cases each

round admits an efficient parallel implementation (with a

polylogarithmic running time). For example, this holds in

Algorithm 2 Parallel random walk.

1: sampe σ ∈ Ω according to distribution ωinit

2: while Fσ non-empty do
3: set I = ∅

4: while set Fσ − Γ+(I) is non-empty do
5: pick some f ∈ Fσ − Γ+(I)
6: sample σ′ ∈ A(f, σ) according to

ρ(σ′|f, σ), set σ ← σ′.
7: set I ← I ∪ {f}
8: end while
9: end while

the variable model of Moser and Tardos [3]. Also, Harris

and Srinivasan [6] presented an efficient implementation for

permutations. Accordingly, we will be interested in the number

of rounds of the algorithm.

Note, during round r set Fσ − Γ+(I) in line 5 shrinks

from iteration to iteration (and so flaw f in line 5 satisfies

f ∈ Fσr
, where σr is the state in the beginning of round

r). This property can be easily verified using induction and

Definition 2.

π-stable strategy Let us fix a total order
π on F defined by

some permutation π of F . Consider a version of Algorithm 2

where flaw f in line 5 is selected as the lowest flaw in Fσ −
Γ+(I) (with respect to
π). This corresponds to Algorithm 1

with a specific strategy Λ; this strategy will be called π-stable.

It coincides with the MaximalSetResample algorithm of

Harvey and Vondrák [1].

Although we focus on the commutative case, we will

also state results for π-stable strategies since they follow

automatically from the proof (which is based on the analysis

of π-stable walks).

D. Algorithmic LLL conditions

In this section we formulate sufficient conditions under

which a flawless object will be guaranteed to exist. The

conditions involve two vectors, λ and μ. Roughly speaking,

λ characterizes resampling oracles and μ characterizes graph

(F,∼).
Definition 5. The pair (ρ,∼) is said to satisfy Algorithmic
LLL conditions if there exist vectors λ, μ ∈ R

|F | such that

λf ≥
∑

σ∈f :σ′∈A(f,σ)
ρ(σ′|f, σ) ω(σ)

ω(σ′)
∀f ∈ F, σ′ ∈ Ω (2a)

λf

μf

∑
S∈Ind(Γ(f))

μ(S) ≤ θ ∀f ∈ F (2b)

where θ ∈ (0, 1) is some constant and μ(S) =
∏

g∈S μg .

Of course, vector λ can be easily eliminated from (2). How-

ever, it is convenient to have it explicitly since in many cases

it has a natural interpretation. Achlioptas and Iliopoulos [2]

called λ flaw charges, though instead of (2a) they used slightly

stronger conditions. Namely, they considered the following

781782782

cases; it is straightforward to check that in each one of them

vector λ satisfies (2a):

• The case from their earlier work [7], which in the

current terminology can be described as follows: ω is

a uniform distribution over Ω, ρ(·|f, σ) is a uniform

distribution over A(f, σ), and ρ is atomic. They then

defined λf = 1/minσ∈f |A(f, σ)|.
• Regenerating resampling oracles of Harvey and

Vondrák [1] specified by the equation

1

ω(f)

∑
σ∈f

ρ(σ′|f, σ)ω(σ) = ω(σ′) ∀f ∈ F, σ′ ∈ Ω

where ω(f) =
∑

σ∈f ω(σ). In this case Achlioptas and

Iliopoulos [2] defined λf = ω(f).
• In the general case, [2] defined flaw charges via

λf = bf max
σ∈f,σ′∈A(f,σ)

{
ρ(σ′|f, σ) ω(σ)

ω(σ′)

}

where bf = max
σ′∈Ω

|{σ ∈ f : σ′ ∈ A(f, σ)}|.
Remark 1. An alternative condition that appeared in the
literature (for certain λ’s) is

λf

μf

∑
S⊆Γ(f)

μ(S) =
λf

μf

∏
g∈Γ(f)

(1 + μg) ≤ θ (3)

Clearly, (2b) is weaker than (3). We mention that (3) is
analogous to the original LLL condition in [4], while (2b)

corresponds to the cluster expansion improvement by Bissacot
et al. [13] (with the matching algorithmic version by Ped-
gen [14] who considered the variable model of Moser and
Tardos). It is known that the cluster expansion version can
give better results for some applications, see e.g. [15], [16],
[1].

Shearer’s condition Shearer [17] gave a sufficient and

necessary condition for a general LLL to hold for a given

dependency graph. Kolipaka and Szegedy [18] showed that

this condition is sufficient for the Moser-Tardos algorithm,

while Harvey and Vondrák [1] generalized the analysis to

regenerating resampling oracles. We will show that the same

analysis holds for the framework considered in this paper.

Consider vector p ∈ R
|F |. For a subset S ⊆ F denote

pS =
∏

f∈S pf ; this is a monomial in variables {pf | f ∈ F}.
Also, define polynomial qS as follows:

qS = qS(p) =
∑

I:S⊆I∈Ind(F)
(−1)|I|−|S|pI (4)

Definition 6. Vector p is said to satisfy the Shearer’s condition
if qS(p) ≥ 0 for all S ⊆ F , and q∅(p) > 0.

The pair (ρ,∼) is said to satisfy Shearer’s condition if
there exist vector p satisfying Shearer’s condition, vector λ
satisfying (2a), and a constant θ ∈ (0, 1) such that λf ≤ θ ·pf
for all f ∈ F .

III. OUR RESULTS

First, we state our results for the sequential version (Al-

gorithm 1). Unless mentioned otherwise, the flaw selection

strategy and the initial distribution ωinit are assumed to be

arbitrary.

Theorem 7. Suppose that (ρ,∼) satisfies either condition (2)

or the Shearer’s condition, and one of the following holds:

(a) Algorithm 1 uses a π-stable strategy.
(b) (ρ,∼) is weakly commutative and atomic.
(c) (ρ,∼) is strongly commutative.

Define

γinit = max
σ∈Ω

ωinit(σ)

ω(σ)
,

Indinit =

{⋃
σ∈supp(ωinit) Ind(Fσ) in cases (a,b)

Ind(F) in the case (c)

where supp(ωinit) = {σ ∈ Ω | ωinit(σ) > 0} is the support
of ωinit. The probability that Algorithm 1 produces a flawless
object in fewer than T + r steps is at least 1− θr where

T =
1

log θ−1

⎛
⎝log γinit + log

∑
R∈Indinit

μ(R)

⎞
⎠ (5)

and μ(R) =
∏

f∈R μf (in the case of condition (2)) or
μ(R) = qR(p)

q∅(p)
(in the case of the Shearer’s condition).

Note that part (a) of Theorem 7 is a minor variation of

existing results [1], [2] (except that our precondition (2a)

unifies conditions in previous works - see Section II-D):

• Harvey and Vondrák [1] proved Theorem 7(a) in the case

of regenerating oracles and distributions ωinit = ω, with

a slightly different expression for T .

• Achlioptas and Iliopoulos [2] proved the result for the

“RecursiveWalk” strategy in the special cases de-

scribed in Section II-D (and assuming condition (2b)).

Parts (b,c) are new results.

Remark 2. The possibility of using distribution ωinit which
is different from ω was first proposed by Achlioptas and
Iliopoulos in [7]. Namely, they used a distribution with
|supp(ωinit)| = 1, and later extended it to arbitrary dis-
tributions ωinit in [2]. There is a trade-off in choosing
ωinit: smaller supp(ωinit) leads to a smaller set Indinit but
increases the constant γinit. It is argued in [2] that using
ωinit �= ω can be beneficial when sampling from ω is a
difficult problem, or when the number of flaws is exponentially
large.

Next, we analyze the parallel version.

Theorem 8. Suppose that (ρ,∼) satisfies either condition (2)

or the Shearer’s condition, and is strongly commutative. Then
the probability that Algorithm 2 produces a flawless object in

782783783

fewer than T + r rounds is at least 1− θr where

T =
1

log θ−1

⎛
⎝log γinit + log

∑
f∈F

μf

⎞
⎠ (6)

where γinit is the constant from Theorem 7, and μf =
q{f}(p)
q∅(p)

(in the case of the Shearer’s condition).

Our techniques The general idea of the proofs is to construct

a “swapping mapping” that transforms “walks” (which are

possible executions of the algorithm) to some canonical form

by applying swap operations from Definition 3. Importantly,

we need to make sure that the mapping is injective: this will

guarantee that the sum over original walks is smaller or equal

than the sum over “canonical walks”. We then upper-bound

the latter sum using some standard techniques [18], [1]. We

use two approaches:

1) Theorem 7(b): transforming walks to “forward stable

sequences” (a forward-looking analysis). This works

only in the atomic case (under the weak commutativity

assumption), and can make use of the knowledge of the

set supp(ωinit), leading to a tighter definition of the set

Indinit.

2) Theorems 7(c) and 8: transforming walks to “backward

stable sequences” (a backward-looking analysis). This

works in the non-atomic cases, but requires strong

commutativity. In this approach the “roots” of stable

sequences are on the right, and have no connection to

ωinit; this means that we must use Indinit=Ind(F).
Analyzing the parallel version requires dealing with

“partial execution logs” instead of “full execution logs”.

It appears that this is possible only with backward

sequences.

Note that previously a backward-looking analysis (with

either “stable sequences” or “witness trees”) was used for the

variable model of Moser and Tardos [3], [18], [14], while a

forward-looking analysis was used for LLL versions on non-

Cartesian spaces [7], [1], [2] and also on Cartesian spaces [19].

After the first version of this work [20] we learned about a

recent book draft by Knuth [11]. He considers the variable

model of Moser-Tardos, and gives an alternative proof of

algorithm’s correctness which is also based on swapping

arguments (justified by a technique of “coupling” two random

sources, similar to [3]). We emphasize that we go beyond the

variable model, in which case justifying “swapping” seems to

require different techniques.

The next section gives a sketch of the proofs of Theo-

rems 7 and 8; complete proofs can be found in the full

version of this paper [12]. For convenience, we use the same

numeration of statements in both versions. The most technical

part is probably constructing an injective swapping mapping

for transforming to backward stable sequences. In [12] we

also describe our third result, which is a proof of strong

commutativity of some existing resampling oracles. Finally,

we consider one application, namely rainbow matchings in

complete graphs.

IV. PROOF SKETCH

We write f ∼= g for flaws f, g ∈ F if either f ∼ g or f = g
(and f �∼= g otherwise).

A walk of length t is a sequence τ =
σ1

w1→ σ2 . . . σt
wt→ σt+1 such that wi ∈ Fσi and

σi+1 ∈ A(wi, σi) for i ∈ [t]. Its length is denoted as

|τ | = t. For such a walk we define quantity

p(τ) = ωinit(σ1) ·
∏
i∈[t]

ρ(σi+1|wi, σi) (7)

Let Λ be the strategy for selecting flaws used in Algorithm

1. We assume that this strategy is deterministic, i.e. the

flaw wi in a walk τ = σ1
w1→ . . .

wi−1→ σi
wi→ . . . is uniquely

determined by the previous history τi = σ1
w1→ . . .

wi−1→ σi.

This assumption can be made w.l.o.g. (see [12]).

A walk τ of length t that can be produced by Algorithm 1

with a positive probability will be called a bad t-trajectory.

Equivalently, it is a walk that starts at a state σ ∈ supp(ωinit)
and follows strategy Λ. Note that it goes only through flawed

states (except possibly the last state). Let Bad(t) be the set

of all bad t-trajectories. Clearly, for any τ ∈ Bad(t) the

probability that the algorithm will produce τ equals p(τ), as

defined in (7). This gives

Proposition 9. The probability that Algorithm 1 takes t steps
or more equals

∑
τ∈Bad(t) p(τ).

If W = w1 . . . wt is the complete sequence of flaws

in a walk τ then we will write τ
•
=W . If we want

to indicate certain intermediate states of τ then we will

write them in square brackets at appropriate positions, e.g.

τ
•
= [σ1]w1w2[σ3]w4w5[σ6].
In general, a sequence of flaws will be called a word, and

a sequence of flaws together with some intermediate states

(such as [σ1]w1w2[σ3]w4w5[σ6]) will be called a pattern. For

a pattern X we define 〈X〉 = {τ | τ •=X} to be the set of

walks consistent with X . The length of X (i.e. the number of

flaws in it) is denoted as |X|.
Lemma 10. For any word W and state σ we have∑

τ∈〈W [σ]〉
p(τ) ≤ γinit · λW · ω(σ) (8a)

∑
τ∈〈W 〉

p(τ) ≤ γinit · λW (8b)

where for a word W = w1 . . . wt we denoted λW =∏
i∈[t] λwi . (As described in the previous paragraph, 〈W [σ]〉

is the set of walks τ whose sequence of flaws is W and the
last state is σ.)

Proof. Summing (8a) over σ ∈ Ω gives (8b), so it suffices to

prove the former inequality. We use induction on the length

of W . If W is empty then 〈W [σ]〉 contains a single walk

τ with the state σ; we then have p(τ) = ωinit(σ), and the

claim follows from the definition of γinit in Theorem 7. This

establishes the base case. Now consider a word W ′ = Wf

783784784

with f ∈ F and a state σ′. We can write∑
τ ′∈〈W ′[σ′]〉

p(τ ′) =
∑

σ:σ′∈A(f,σ)

∑
τ∈〈W [σ]〉

p(τ) · ρ(σ′|f, σ)

(a)≤
∑

σ:σ′∈A(f,σ)
γinit · λW · ω(σ) · ρ(σ′|f, σ)

(b)≤ γinit · λW · [λf · ω(σ′)]
= γinit · λW ′ · ω(σ′)

where (a) is by the induction hypothesis, and (b) follows

from (2a). This gives the induction step, and thus concludes

the proof of the lemma.

Next, we need define stable sequences and stable walks.

Definition 11. A sequence of sets ϕ = (I1, . . . , Is) with s ≥ 1
is called stable if Ir ∈ Ind(F) for each r ∈ [s] and Ir+1 ⊆
Γ+(Ir) for each r ∈ [s− 1].
Definition 12. A word W = w1 . . . wt is called stable if it
can be partitioned into non-empty words as W = W1 . . .Ws

such that flaws in each word Wr are distinct, and the sequence
(I1, . . . , Is) is stable where Ir is the set of flaws in Wr (for
r ∈ [s]). If in addition each word Wr = wi . . . wj satisfies
wi ≺π . . . ≺π wj then W is called π-stable.

A walk τ
•
=W is called stable (π-stable) if the word W is

stable (π-stable).

It can be shown that for a stable word the partitioning in

Definition 12 is unique. Let Stabπ be the set of π-stable words

W that satisfy the following condition:

• There exists walk τ such that either τ
•
=W or

τ
•
= REV[W], where REV[W] = wt . . . w1 is the reverse

of word W = w1 . . . wt.
For a stable word W let RW be the first set (the “root”) of

the stable sequence ϕ = (I1, . . . , Is) corresponding to W ,

i.e. RW = I1. (If W is empty then RW = ∅). Denote

Stabπ(R) = {W ∈ Stabπ : RW = R}, Stabπ(t) = {W ∈
Stabπ : |W | ≥ t} and Stabπ(R, t) = Stabπ(R)∩Stabπ(t).
The following result is proven in [12] using techniques

from [18], [1].

Theorem 13. Suppose that (ρ,∼) satisfies either the cluster
expansion condition (2b) or the Shearer’s condition from
Definition 6. Then∑

W∈Stabπ(R,t)

λW ≤ μ(R) · θt ∀R ∈ Ind(F) (9)

Commutativity From now on we assume that (ρ,∼)
is weakly commutative. Therefore, for any walk τ =

. . . σ1
f→ σ2

g→ σ3 . . . with f �∼= g there exists another walk

τ ′ = . . . σ1
g→ σ′2

f→ σ3 . . . obtained from τ by applying the

SWAP operator to the subwalk σ1
f→ σ2

g→ σ3. Such operation

will be called a valid swap applied to τ . A mapping Φ on a set

of walks that works by applying some sequence of valid swaps

will be called a swapping mapping. Note that if τ ′ = Φ(τ)
then the first and the last states of τ ′ coincide with that of

τ , and λW ′ = λW where τ
•
=W , τ ′ •=W ′. Furthermore, if

(ρ,∼) is strongly commutative then p(τ ′) = p(τ).

We now deal with the case when Λ is an arbitrary determin-

istic strategy, and so walks τ ∈ Bad(t) are not necessarily π-

stable. Our approach will be to construct a bijective swapping

mapping Φ that sends walks τ ∈ Bad(t) to some canonical

walks, namely either to π-stable walks (which will work only

in the atomic case) or to the reverse of such walks (which will

work in the general case).

Proof of Theorem 7(b) Assume that (ρ,∼) is atomic. This

gives the following observation.

Proposition 14 ([7]). Walk τ = σ1
w1→ σ2 . . . σt

wt→ σt+1 can
be uniquely reconstructed from the sequence of flaws w1 . . . wt

and the final state σt+1.

Proof. By atomicity, state σi can be uniquely reconstructed

from the flaw wi and the state σi+1. Applying this argument

for i = t, t− 1, . . . , 1 gives the claim.

The proposition allows us to write walks more compactly

as τ = w1 . . . wt[σt+1]. Also, Lemma 10 gives for a walk

τ = W [σt+1] that p(τ) ≤ γinit · λW · ω(σt+1). In [12] we

prove

Theorem 15. Suppose that (ρ,∼) is atomic and weakly
commutative. There exists a set of π-stable walks Badπ(t)
and a swapping mapping Φ : Bad(t) → Badπ(t) which is
a bijection.

We can now prove Theorem 7(b):

Pr[#steps ≥ t] =
∑

τ∈Bad(t)
p(τ) ≤

∑
τ=W [σ]∈Bad(t)

γinit · λW · ω(σ)

(a)
=

∑
τ=W [σ]∈Badπ(t)

γinit · λW · ω(σ)

(b)≤ γinit ·
∑

R∈Indinit
μ(R) · θt = θt−T

where (a) follows from Theorem 15, (b) can be derived from

Theorem 13, and constant T is defined in Theorem 7(b).

Reverse stable sequences To prove Theorem 7(c) and

Theorem 8, we will use reverse stable sequences instead of

forward stable sequences.

Walk τ will be called a prefix of a walk τ ′ if τ ′ starts with

τ . Walk τ is a proper prefix of τ ′ if in addition τ ′ �= τ . A

word W is called a prefix of τ if τ
•
=WU for some word U .

A set of walks X will be called valid if (i) all walks in X
follow the same deterministic strategy (not necessarily the one

used in Algorithm 1), and (ii) for any τ, τ ′ ∈ X the walk τ is

not a proper prefix of τ ′.
For a walk τ containing flaw f we define word W f

τ as the

longest prefix of τ that ends with f . Thus, we have τ
•
=W f

τ U
where W f

τ = . . . f and word U does not contain f . We will

also allow f = ∅; in this case we say that any walk τ contains

such f , and define word W f
τ so that τ

•
=W f

τ . Recall that for

a word W = w1 . . . wt its reverse is denoted as REV[W] =

784785785

wt . . . w1. The following result proved in the full version of

the paper [12] is probably the most technical part of the proof.

Theorem 16. Fix f ∈ F ∪ {∅}, and let X f be a valid set
of walks containing f . If (ρ,∼) is weakly commutative then
there exists a set of walks X f

π and a swapping mapping Φf :
X f → X f

π which is a bijection such that
(a) for any τ ∈ X f

π the word W = REV[W f
τ] is π-stable

(W ∈ Stabπ), and RW = {f} if f ∈ F ;
(b) for any word W the set {τ ∈ X f

π | REV[W f
τ] = W} is

valid.

Proof of Theorem 7(c) In this case we have Indinit =
Ind(F). We will use Theorem 16 with f = ∅ and X f =
Bad(t). Part (a) gives that for any τ

•
=W ′ from X∅

π the word

W = REV[W ′] satisfies W ∈ Stabπ(R, t) for some R ∈
Ind(F). We can write

Pr[#steps ≥ t] =
∑

τ∈Bad(t)
p(τ)

(a)
=

∑
τ∈X∅

π

p(τ) ≤ θt−T

where in (a) we used bijectiveness of mapping Φ∅ and

strong commutativity of (ρ,∼), and the rest is similar to the

derivation above.

Analysis of the parallel algorithm: Proof of Theo-
rem 8 This case requires dealing with “partial execution

logs”: we need to take sums over walks τ
•
=W for which word

W contains a certain subword. Our approach is to “move” this

subword to the beginning of the walk via valid swaps, and then

use the following result (which is proved by induction on the

combined total length of walks in X).

Theorem 17. Consider a word W and a valid set of walks
X such that W is a prefix of every walk in X . Then∑

τ∈X
p(τ) ≤ γinit · λW (10)

Proof. We use induction on
∑

τ∈X (|τ | − |W |). The base

case
∑

τ∈X (|τ | − |W |) = 0 is straightforward: we then

have X ⊆ 〈W 〉, and so the claim follows from Lemma 10.

Consider a valid set X with
∑

τ∈X (|τ | − |W |) ≥ 1. Let

τ̂ be a longest walk in X , then |τ̂ | ≥ |W | + 1. Let

τ̂− be the proper prefix of τ̂ of length |τ̂ | − 1. We have

τ̂− /∈ X since X is a valid set. Define set Y as follows:

Y = {τ ∈ X | τ̂− is a proper prefix of τ}. By the choice of

τ̂ we get |τ | = |τ̂ | for all τ ∈ Y , and so we must have

τ = τ̂− w→ σ for some w ∈ F and σ ∈ Ω. Since all walks

in X follow the same deterministic strategy, the flaw w in the

expression τ = τ̂− w→ σ must be the same for all τ ∈ Y .

Thus, Y = {τ̂− w→ σ | σ ∈ Y } for some set of flaws Y ⊆ F .

In fact, we must have Y ⊆ A(w, σ̂) where σ̂ is the final state

of τ̂−.

Define X− = (X − Y) ∪ {τ̂−}. We have∑
τ∈X

p(τ)−
∑

τ∈X−
p(τ) =

∑
τ∈Y

p(τ)− p(τ̂−)

= p(τ̂−) ·
[∑
σ∈Y

ρ(σ|w, σ̂)− 1
]
≤ 0

It is straightforward to check that set X− is valid, and W is

a prefix of every walk in X−. Using the induction hypothesis

for X− and the inequality above gives the claim for X .

To elaborate the argument, consider executions of Algo-

rithm 2 consisting of at least s rounds. For each such execution

let τ be the walk containing flaws addressed in the first s− 1
rounds and the first flaw addressed in round s. Let BadPar(s)
be the set of such walks τ . We prove that each τ ∈ BadPar(s)
contains a “chain” of length s, i.e. a subsequence u1 . . . us

satisfying ui
∼= ui+1 for i ∈ [s−1]. We can write BadPar(s) =⋃

f∈F BadParf (s) where BadParf (s) is the set of those walks

in BadPar(s) that contain a chain of length s ending with f .

We now apply Theorem 16 with the set X f = BadParf (s),
and get

∑
τ∈BadParf (s) p(τ) =

∑
τ∈X f

π
p(τ). Every walk

in X f
π starts with a prefix of the form REV[W] for some

W ∈ Stabπ({f}, s). By applying Theorem 17 for every such

prefix we obtain an upper bound on
∑

τ∈X f
π
p(τ), and then

complete the proof using the same arguments as before.

ACKNOWLEDGMENT

The author is supported by the European Research Council

under the European Unions Seventh Framework Programme

(FP7/2007-2013)/ERC grant agreement no 616160.

REFERENCES

[1] N. Harvey and J. Vondrák, “An algorithmic proof of the Lovász local
lemma via resampling oracles,” in FOCS, 2015.

[2] D. Achlioptas and F. Iliopoulos, “Focused stochastic local search and
the Lovász local lemma,” in SODA, 2016.

[3] R. A. Moser and G. Tardos, “A constructive proof of the general Lovász
local lemma,” J. ACM, vol. 57, no. 2, 2010.

[4] P. Erdős and L. Lovász, “Problems and results on 3-chromatic hyper-
graphs and some related questions,” in Colloq. Math. Soc. J. Bolyai,
Infinite and Finite Sets. North-Holland, 1975, vol. 10, pp. 609–627.

[5] M. Szegedy, “The Lovász local lemma - a survey,” in Computer Science
Theory and Applications, A. A. Bulatov and A. M. Shur, Eds. Springer,
Lecture Notes in Computer Science, 2013, vol. 7913, pp. 1–11.

[6] D. G. Harris and A. Srinivasan, “A constructive algorithm for the Lovász
local lemma on permutations,” in SODA, 2014, pp. 907–925.

[7] D. Achlioptas and F. Iliopoulos, “Random walks that find perfect objects
and the Lovász local lemma,” in 55th IEEE Annual Symposium on
Foundations of Computer Science (FOCS), 2014, pp. 494–503.

[8] P. Erdős and J. Spencer, “The lopsided Lovász local lemma and latin
transversals,” Discrete Applied Mathematics, vol. 30, pp. 151–154, 1991.

[9] L. Lu, A. Mohr, and L. Székely, “Quest for negative dependency graphs,”
in Recent Advances in Harmonic Analysis and Applications, D. Bilyk,
L. De Carli, A. Petukhov, A. Stokolos, and B. Wick, Eds. Springer,
2013.

[10] A. Mohr, “Applications of the lopsided Lovász local lemma regarding
hypergraphs,” Ph.D. dissertation, University of South Carolina, 2013.

[11] D. Knuth, “The art of computer programming, Volume 4B (draft, pre-
fascicle 6a),” http://web.archive.org/web/20150815030301/http://www-
cs-faculty.stanford.edu/ uno/news.html, Jul. 2015.

[12] V. Kolmogorov, “Commutativity in the algorithmic Lovász local lemma,”
CoRR, vol. abs/1506.08547v7, Aug. 2016.

[13] R. Bissacot, R. Fernández, A. Procacci, and B. Scoppola, “An improve-
ment of the Lovász local lemma via cluster expansion,” Combin. Probab.
Comput., vol. 20, pp. 709–719, 2011.

[14] W. Pegden, “An extension of the Moser-Tardos algorithmic local
lemma,” SIAM Journal on Discrete Mathematics, vol. 28(2), pp. 911–
917, 2014.

[15] J. Böttcher, Y. Kohayakawa, and A. Procacci, “Properly coloured copies
and rainbow copies of large graphs with small maximum degree,”
Random Structures and Algorithms, vol. 40(4), pp. 425–436, 2012.

785786786

[16] S. Ndreca, A. Procacci, and B. Scoppola, “Improved bounds on coloring
of graphs,” European Journal of Combinatorics, vol. 33(4), pp. 592–609,
2012.

[17] J. B. Shearer, “On a problem of Spencer,” Combinatorica, vol. 5(3), pp.
241–245, 1985.

[18] K. B. R. Kolipaka and M. Szegedy, “Moser and Tardos meet Lovász,”
in Proceedings of the Forty-third Annual ACM Symposium on Theory of
Computing, ser. STOC, 2011, pp. 235–244.

[19] I. Giotis, L. Kirousis, K. I. Psaromiligkos, and D. M. Thilikos, “On
the algorithmic Lovász local lemma and acyclic edge coloring,” in
Proceedings of ANALCO, 2015.

[20] V. Kolmogorov, “Commutativity in the random walk formulation of the
Lovász local lemma,” CoRR, vol. abs/1506.08547v1, Jun. 2015.

786787787

