
Amplification and Derandomization Without Slowdown

Ofer Grossman
Department of EECS

MIT
Cambridge, MA

ofer.grossman@gmail.com

Dana Moshkovitz
Department of Computer Science

UT Austin
Austin, TX

danama@cs.utexas.edu

Abstract—We present techniques for decreasing the
error probability of randomized algorithms and for con-
verting randomized algorithms to deterministic (non-
uniform) algorithms. Unlike most existing techniques that
involve repetition of the randomized algorithm and hence
a slowdown, our techniques produce algorithms with a
similar run-time to the original randomized algorithms.
The amplification technique is related to a certain stochas-
tic multi-armed bandit problem. The derandomization
technique – which is the main contribution of this work
– points to an intriguing connection between derandom-
ization and sketching/sparsification. We demonstrate the
techniques by showing algorithms for approximating free
games (constraint satisfaction problems on dense bipartite
graphs).

Keywords-Amplification; derandomization; Free game;
multi-armed bandit; sketching;

I. INTRODUCTION

Randomized algorithms are by now ubiquitous in
algorithm design. With certain probability – called their
error probability – they do not output the correct answer
within the allotted time. In return, they may have
gains in efficiency, or speedup, over the best known
deterministic algorithms, at least for some problems. At
the same time, for many other problems, the design of
an efficient randomized algorithm is eventually followed
by the design of an equally efficient deterministic algo-
rithm. “Derandomization” is achieved either by one of
a few general derandomization methods, or by solutions
tailored to the problem at hand. Unfortunately, most
general derandomization methods incur a slowdown,
i.e., a loss in efficiency in the deterministic algorithm
compared to the randomized algorithm. For instance,
the main approach to derandomization is by designing
a pseudorandom generator and invoking the algorithm
on all its seeds, which slows down the deterministic
algorithm by a factor equal to the number of seeds. In
general, the number of seeds is likely at least linear in

This material is based upon work supported by the National Science
Foundation under grants number 1218547 and 1648712.

the number of pseudorandom bits needed [18], yielding
a substantial slowdown.

Closely related is the slowdown incurred by decreas-
ing the error probability of a randomized algorithm
to a non-zero quantity. Given a randomized algorithm
that has error probability 1/3, we can construct a
randomized algorithm with error probability 2−Ω(k) by
repeating the algorithm k times. However, the resulting
algorithm is slower by a factor of k than the original
algorithm, which is significant when k is large (for
instance, consider k that equals the input size n, or
equals nε for some constant ε > 0). One could save
in randomness, implementing k-repetition roughly with
the number of random bits required for a single repe-
tition [20], but the number of invocations – and hence
the run-time – provably remains large (see, e.g., [14]).

In this work we develop general methods for de-
randomization and error reduction that do not incur
a substantial slowdown. Specifically, we give positive
answers in certain cases to the following questions:
• Amplification: Can we decrease the error probabil-

ity of a randomized algorithm without substantially
increasing its run-time?

• Derandomization: Can we convert a randomized al-
gorithm to a deterministic (non-uniform) algorithm
without substantially increasing its run-time?

The increase in the run-time, or slowdown, in our ap-
plications is poly-logarithmic in the input size, beating
most existing derandomization methods (we provide a
detailed comparison in Section I-C). In some cases, our
methods may yield only a constant slowdown. Our de-
randomization method yields non-uniform algorithms.
We explain the reason when we describe the method
in Section I-A and we discuss the importance of non-
uniform algorithms in Section I-B.

The methods themselves are quite different from
commonly used methods. Ironically, they employ ideas
rooted in the study of randomized algorithms, like
sketching and stochastic multi-armed bandit problems.
In the full version of the paper [16], we demonstrate the

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.87

769

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.87

770

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.87

770

utility of the methods by deriving improved algorithms
for problems like finding a dense set in a graph that
contains a large clique, finding an approximate max-
cut in a dense graph with a large cut, approximating
constraint satisfaction problems on dense graphs (“free
games”) and going from Reed-Muller list decoding to
unique decoding. We hope that the methods will find
more applications in the future.

A. Derandomization From Sketching

Our derandomization method is based on the deran-
domization method of Adleman [2]. Adleman’s method
works in a black-box fashion for all algorithms, and
generates a non-uniform deterministic algorithm that is
slower by a linear factor than the randomized algorithm.
Our method works for many, but not all, algorithms, and
generates a non-uniform deterministic algorithm with a
significantly smaller slowdown. In this section we recall
Adleman’s method and discuss our method.

Adleman’s idea (somewhat modified from its original
version) is as follows. Suppose there exists some algo-
rithm A which solves our problem with error probability
1
3 . We create a new algorithm B, which runs algorithm
A in series Θ(n) times (where n is the input size). We
then output the majority of the outputs of the executions
of A. By the Chernoff bound, the error probability of
algorithm B can be made less than 2−n. By a union
bound over all 2n inputs, we see that there must exist
some choice of randomness r such that algorithm B
succeeds for all inputs of length n given the randomness
r. The randomness string r can be hard-wired to a non-
uniform algorithm as an advice string. We note that
algorithm B is slower than algorithm A by a factor
of Θ(n).

Our methods will allow us to reduce this Θ(n)
slowdown of Adleman’s technique. The principle behind
the method is simple. Fix a randomized algorithm A that
we wish to derandomize. In Adleman’s technique, we
amplified the error probability below 2−n, and then used
a union bound on all inputs. Instead of applying a union
bound on the 2n possible inputs, we partition the inputs
into 2n

′
sets where n′ � n, such that inputs in the

same part have mostly the same successful randomness
strings (a randomness string is successful for an input
if the algorithm is correct for the input when using
the randomness string). One can think of inputs in the
same part as inputs on which the algorithm A behaves
similarly with respect to the randomness1. Then, one

1We’d like to emphasize that the algorithm usually distinguishes
inputs in the same part: its execution and output are different for
different inputs. The similar behavior is only in terms of which
randomness strings are successful.

can perform the union bound from Adleman’s proof
over the 2n

′
different parts, instead of over the 2n

inputs. It suffices that the error probability is lower
than 2−n

′
(i.e., for every part, the fraction of common

successful randomness strings is larger than 1−2−n
′
) to

deduce the existence of a randomness string on which
the algorithm is correct for all inputs. Therefore, the
only slowdown that is incurred is the one needed to
get the error probability below 2−n

′
, and not the one

needed to get the error probability below 2−n.
It’s surprising that this principle can be useful for

algorithms that may access any bit of their input. Our
contribution is in setting up a framework for arguing
about partitions as above, and then using the framework
to derive desired partitions for various algorithms. The
framework is based on sketching and oblivious verifica-
tion.

We associate an n′-bit string with every part, and
think of it as a sketch (a lossy, compressed version) of
the inputs in the part. In our applications the input is
often a graph, and the sketch is a small “representative”
sub-graph, whose existence we argue by analyzing a
probabilistic construction. Note that there are no com-
putational limitations on the computation of the sketch,
only the information-theoretic bound of n′ bits.

To argue about inputs with the same sketch having
common successful randomness strings we design an
oblivious verifier for the algorithm, as we define next.
The task of an oblivious verifier is to test whether the
algorithm works for some input and randomness string
given only the sketch of the input. This means that
the verifier cannot in general simulate the algorithm.
However, unlike the algorithm, we impose no compu-
tational limitations on the verifier. The verifier’s mere
existence proves that the randomized algorithm behaves
similarly on inputs with the same sketch as we wanted.
The verifier should satisfy:

1) If the verifier accepts a randomness string and a
sketch of an input, then the algorithm necessarily
succeeds on the input using the randomness string.

2) For every sketch, the verifier accepts almost all2

randomness strings.
It is not difficult to check that the existence of an
oblivious verifier is equivalent to the existence of a
partition of the inputs as above and hence to a saving in
Adleman’s union bound. The difficulty lies in the design
of sketches and oblivious verifiers. In our opinion, it is

2I.e., more than 1− 2−n′
fraction. To achieve this, it suffices that

the error probability is not much higher than 2−n′
, since in this case

we can use repetition to bring the error probability below 2−n without
incurring much slowdown.

770771771

surprising that the algorithms we consider – ordinary
algorithms that require full access to their input – can
be verified obliviously, and indeed we work quite hard
to design oblivious verifiers. Our oblivious verifiers
often take the form of repeatedly verifying that certain
key steps of the algorithm work as expected, at least
approximately, using the sketch. In addition – since the
verifier cannot access the input and therefore cannot
simulate the algorithm – the verifier exhaustively checks
all possible branchings of the algorithm. Interestingly,
the algorithm, the verifier and the sketch are typically
all randomized, and yet the argument above shows that
they yield a deterministic (non-uniform) algorithm.

B. The Significance of Non-Uniform Algorithms

Like Adleman’s method, our derandomization
method produces non-uniform algorithms, i.e.,
sequences of algorithms, one for each input size. Since
the input size is known, the algorithm can rely on an
“advice” string depending on the input size, though this
advice string may be hard to compute. This is different
than the usual, uniform, model of computation, where
the same algorithm works for all input sizes.

In this section we discuss non-uniformity and several
connections between non-uniform and uniform algo-
rithms. Below we only refer to non-uniform algorithms
that (i) if given a correct advice, are correct on all
their inputs. (ii) If given an incorrect advice, may either
be correct on their input or output ⊥ (but never an
incorrect output). This is true of all the non-uniform
algorithms we consider in this work. For some of the
items below this requirement can be relaxed.

An intriguing open problem in derandomization is
about non-uniform algorithms: The problem of find-
ing an optimal deterministic minimum spanning tree
algorithm is known to be equivalent to the problem
of finding an optimal deterministic non-uniform algo-
rithm [26]. Indeed, this was the original motivation for
our work. For any problem for which inputs of size
n can be reduced to many inputs of size a where
a is sufficiently smaller than log n (“downward self-
reduction”), a deterministic non-uniform algorithm im-
plies a deterministic uniform algorithm with essentially
the same run-time. The reason is that one can find the
advice string for input size a using brute force (checking
all possible advice strings and all possible inputs) in
sub-linear time in n. Next one can solve the many
inputs of size a using the advice. Many problems have
downward self-reductions including minimum spanning
tree, matrix multiplication and 3SUM [7].

Amortization gets rid of non-uniformity: If one
needs to solve a problem on a long sequence of in-

puts, much longer than the number of possible advice
strings3, one can amortize the cost searching for the
correct advice over all possible inputs. We start the first
input with the first advice string. If the algorithm is
incorrect with the current advice string, it moves on to
the next one.

Preprocessing gets rid of non-uniformity: A non-
uniform algorithm can be simulated by a uniform algo-
rithm and a preprocessing step to find a correct advice.

Non-determinism gets rid of non-uniformity: In
complexity theory one often wishes to argue about
uniform non-deterministic algorithms. Such algorithms
can guess the advice string, invoke the algorithm on the
advice, and then verify the output.

Non-uniformity as a milestone: An efficient non-
uniform deterministic algorithm gives evidence that
such efficiency is possible deterministically, and may
eventually lead to an efficient uniform deterministic
algorithm.

Non-uniformity is natural: In real life often we do
have a bound on the input size. If one can design better
algorithms using this bound, that’s something we’d like
to know

C. Comparison With Other Derandomization Methods

There are two main existing methods for derandom-
ization: the method of conditional probabilities and
pseudorandom generators. In the method of conditional
probabilities one derandomizes by fixing the random
bits one after the other. This is possible when there is
a way to quickly assess the quality of large subsets of
randomness strings. This is the case, for instance, when
searching for an assignment that satisfies 7/8 fraction of
the clauses in a 3SAT formula. Interestingly, the method
typically incurs no slowdown (see, e.g., [23]). However,
it is useful only in very specific cases, and – in a sense
– when it’s useful, it shows that the randomization was
only a conceptual device rather than an actual resource.
In contrast, the current work is about incurring little
slowdown for broader classes of randomized algorithms.

Perhaps the main method to derandomize algorithms
is via pseudorandom generators (PRGs). These are
constructions that expand a small seed to sufficiently
many pseudorandom bits. The pseudorandom bits “look
random” to the algorithm. This is possible when the
algorithm uses the randomness in a “sufficiently weak”
way. For instance, the very existence of an upper bound
on the run-time of the algorithm implies a limitation
on the algorithm’s usage of randomness, since the

3This is especially useful if the space of possible advice strings is
of polynomial size. In our case, this can be possible to arrange via
pseudorandom generators as discussed in Section I-C.

771772772

algorithm cannot perform tests on the randomness that
require more time than its run-time. Impagliazzo and
Wigderson [19] capitalize on that to show how to (con-
ditionally) construct PRGs that “fool” any randomized
algorithm that runs in a fixed polynomial time. For some
algorithms, k-wise independent generators or ε-biased
generators may suffice.

The disadvantage of PRGs is that one needs try all
seeds to derandomize the algorithm, causing a slow-
down. The slowdown is likely at least linear in the
number of random bits that the algorithm uses [18]. For
k-wise independent generators the slowdown is at least
Ω(nk) [22]. One case when only a poly-logarithmic
slowdown can be achieved is almost k-wise independent
generators for small k [25]. For those generators the
slowdown is only poly(log n, 2k), but they are only
suitable for a limited class of algorithms. In this work
we obtain a poly-logarithmic slowdown for algorithms
that use their randomness in a much stronger way.

It is interesting to note the relation between de-
randomization from sketching and pseudorandom gen-
erators. In many senses the two methods are dual.
In PRGs, one shrinks the space of possible random-
ness strings. In derandomization from sketching one
shrinks the space of possible inputs. PRGs need to
work against non-uniform algorithms (since the input
to the algorithm may give it “advice” helping it dis-
tinguish pseudorandom bits from truly random bits),
whereas derandomization from sketching produces non-
uniform algorithms (now the successful randomness
is the advice). Of course, it is possible to combine
PRGs and derandomization from sketching, so, e.g.,
one can amortize the cost of searching for a successful
randomness string over fewer inputs, or have reduced
search cost in a preprocessing phase.

D. Amplification

Derandomization from sketching as discussed above
only relaxes the amplification task - instead of requiring
a randomized algorithm with error probability below
2−n as in Adleman’s method, it requires an algorithm
with error probability below 2−n

′
. In our applications

n′ ≈
√
n, so amplification by repetition would still

incur a large slowdown. In this section we discuss our
approach to amplification with little slowdown. The
method has a poly-logarithmic slowdown in k when it
amplifies the error probability to 2−Ω(k), as opposed to
standard repetition that has a slowdown that is linear
in k. In fact, in certain situations the slowdown is only
constant! However, unlike repetition, our method does
not work in all cases. It requires a quick check that ap-
proximates probabilistically the quality of a randomness

string given to it as input.
Fix an input to the randomized algorithm. Assign a

“grade” in [0, 1] to each randomness string indicating
the quality of the randomness. A “quick check” is a
randomized procedure that given the randomness string
r accepts with probability equal to the grade of r. For
example, suppose that the algorithm is given as input a
graph, and its task is to find a cut that contains at least
1/2 − ε fraction of the edges in the graph, for some
constant ε. The algorithm uses its randomness to pick
the cut. The grade of the randomness is the fraction
of edges in the cut. The randomness checker picks a
random edge in the graph and checks whether it is in
the cut, which takes O(1) time.

In general, if the run-time of the algorithm is T and it
has a quick check that runs in time t, then we show how
to decrease the error probability from 1/3 to exp(−k)
in time roughly k · t+ T instead of k · T of repetition.
This follows from an algorithm for a stochastic multi-
armed bandit problem that we define. In this problem,
which we call the biased coin problem, there is a large
pile of coins, and 2/3 fraction of the coins are biased,
meaning that they fall on heads with high probability.
The coins are unmarked and the only way to discover
information about a coin is to toss it. The task is to
find one biased coin4 with certainty 1 − e−Ω(k) using
as few coin tosses as possible. The analogy between
the biased coin problem and amplification is that the
coins represent possible randomness strings for the
algorithm, many of which are good. The task is to
find one randomness string that is good with very high
probability. Tossing a coin corresponds to a quick check.
We show how to find a biased coin using only Õ(k)
coin tosses. Moreover, when there is a gap between the
grades of good randomness strings and the grades of bad
randomness strings, we show that only O(k) coin tosses
suffice. The algorithm for finding a biased coin can be
interpreted as an algorithm for searching the space of
randomness strings in order to find a randomness string
of high grade. The number of coin tosses determines
the run-time of the algorithm.

The biased coin problem is related to the stochas-
tic multi-armed bandit problem studied in [10], [24],
however, in the latter there might be only one biased
coin, whereas in our problem we are guaranteed that
a constant fraction of the coins are biased. This makes
a big difference in the algorithms one would consider
for each problem and in their performance. In the setup
considered by [10], [24] one has to toss all coins, and

4We allow the bias of the output coin to be slightly smaller than
the bias of the 2/3 fraction of the coins that have high bias.

772773773

the algorithms focus on which coins to eliminate. In our
setup it is likely that we find a biased coin quickly, and
the focus is on certifying bias. In [10], [24] an Ω(k2)
lower bound is proved for the number of coin tosses
needed to find a biased coin with probability 1−e−Ω(k),
whereas we present an Õ(k) upper bound for the case
of a constant fraction of biased coins.

E. Previous Work

Questions on the cost of derandomization are not
new in theoretical computer science. In particular, the
question of whether one can derandomize algorithms
with little slowdown is related to Luby’s question [23]
of whether one can save in the number of processors
when derandomizing parallel algorithms. Unlike Luby,
we focus on sequential algorithms.

The connection that we make between derandomiza-
tion and sketching adds to a long list of connections
that have been identified over the years between de-
randomization, compression, learning and circuit lower
bounds, e.g., circuit lower bounds can be used for
pseudorandom generators and derandomization [19];
learning goes hand in hand with compression, and can
be used to prove circuit lower bounds [12]; simplifi-
cation under random restrictions can be used to prove
circuit lower bounds [28] and construct pseudorandom
generators [17]. Sparsification of the distinguisher of a
pseudorandom generator (e.g., for simple distinguishers
like DNFs) can lead to more efficient pseudorandom
generators and derandomizations [15]. Our connection
differs from all those connections. In particular, previous
connections are based on pseudorandom generators,
while our approach is dual and focuses on shrinking
the number of inputs.

The idea of saving in a union bound by only con-
sidering representatives is an old idea with countless
appearances in math and theoretical computer science,
including derandomization (one example comes from
the notion of an ε-net and its many uses; another
example is [15] we mentioned above). Our contribution
is in the formulation of an oblivious verifier and in
designing sketches and oblivious verifiers.

Our applications have Atlantic City5 algorithms that
run in sub-linear time and have a constant error
probability. There are works that aim to derandomize
sub-linear time algorithms. Most notably, there is a
deterministic version of the Frieze-Kannan regularity
lemma [13], [9], [8], [4], which is relevant to some of
our applications but not to others. Regularity lemmas

5Atlantic City algorithms have a two-sided error, as opposed to
Monte Carlo algorithms that have a one-sided error, and Las Vegas
algorithms that never err but may decline to output a solution.

do not apply to problems such as free games which we
discuss in Section I-F.

Another work is [29] that generates deterministic
average case algorithms for decision problems with cer-
tain sub-linear run time (Zimand’s work incurred a slow-
down that was subsequently removed by Shaltiel [27]).
We focus on worst-case algorithms.

F. Application: Free Games

In the full version of the paper [16], we demonstrate
our techniques with applications for MAX-CUT on
dense graphs, (approximate) CLIQUE on graphs that
contain large cliques, free games (constraint satisfaction
problems on dense bipartite graphs), and reducing the
Reed-Muller list decoding problem to its unique decod-
ing problem. All our algorithms run in nearly linear
time in their input size, and all of them beat the current
state of the art algorithms in one aspect or another. The
biggest improvement is in the algorithm for free games
that is more efficient by orders of magnitude than the
best deterministic algorithms.

A free game G is defined by a complete bipartite
graph G = (X,Y,X × Y), a finite alphabet Σ and
constraints πe ⊆ Σ × Σ for all e ∈ X × Y . For
simplicity we assume |X| = |Y |. A labeling to the
vertices is given by fX : X → Σ, fY : Y → Σ.
The value achieved by fX , fY , denoted valfX ,fY (G),
is the fraction of edges that are satisfied by fX , fY ,
where an edge e = (x, y) ∈ X × Y is satisfied by fX ,
fY if (fX(x), fY (y)) ∈ πe. The value of the instance,
denoted val(G), is the maximum over all labelings
fX : X → Σ, fY : Y → Σ, of valfX ,fY (G). Given
a game G with value val(G) ≥ 1− ε, the task is to find
a labeling to the vertices gX : X → Σ, gY : Y → Σ,
that satisfies at least 1−O(ε) fraction of the edges.

Free games have been studied in the context of one
round two prover games (see [11] and subsequent works
on parallel repetition of free games) and two prover
AM [1]. They unify a large family of problems on
dense bipartite graphs obtained by considering differ-
ent constraints. For instance, for MAX-2SAT we have
Σ = {T, F}, and πe contains all (a, b) that satisfy α∨β
where α is either a or ¬a and β is either b or ¬b. Note
that on a small fraction of the edges the constraints
can be “always satisfied”, so one can optimize over
any dense graph, not just over the complete graph (the
density of the graph is crucial: if fewer than ε |X| |Y | of
the edges have non-trivial constraints, then any labeling
satisfies 1− ε fraction of the edges).

There are randomized algorithms for free games that
have constant error probability [5], [3], [6], [1], as
well as a derandomization that incurs a polynomial

773774774

slowdown [5]. In addition, deterministic algorithms for
free games of value 1 are known. In the full version
of the paper [16], we show a randomized algorithm
with exponentially small error probability in |X| |Σ| and
a non-uniform deterministic algorithm whose running
time is similar to that of the randomized algorithms with
constant error probability.

Theorem I.1. The following hold:
1) There is a Las Vegas algorithm that given a free

game G with vertex sets X,Y , alphabet Σ, and
val(G) ≥ 1−ε0, and given ε > 0, finds a labeling
to the vertices that satisfies 1−ε0−O(ε) fraction
of the edges, except with probability exponentially
small in |X| |Σ|. The algorithm runs in time
Õ(|X| |Y | |Σ|O((1/ε2) log(|Σ|/ε))

).
2) There is a deterministic non-uniform algorithm

that given a free game G with vertex sets X,Y ,
alphabet Σ, and val(G) ≥ 1 − ε0, and given
ε > 0, finds a labeling to the vertices that satisfies
1−ε0−O(ε) fraction of the edges. The algorithm
runs in time Õ(|X| |Y | |Σ|O((1/ε2) log(|Σ|/ε))

).

At the high level, for a free games algorithm with
constant error probability, we sample a subset V ′ ⊆
X of the vertices of size roughly 1

ε2 log(|Σ|/ε). Then,
we use brute force to find the best assignment induced
by V ′. In the full version, we show how to amplify
this algorithm, and then derandomize it using oblivious
verifiers.

II. DERANDOMIZATION BY OBLIVIOUS
VERIFICATION

In this section we develop a technique for con-
verting randomized algorithms to deterministic non-
uniform algorithms. The derandomization technique is
based on the notion of “oblivious verifiers”, which are
verifiers that deterministically test the randomness of an
algorithm while accessing only a sketch (compressed
version) of the input to the algorithm. If the verifier
accepts, the algorithm necessarily succeeds on the input
and the randomness. In contrast, the verifier is allowed
to reject randomness strings on which the randomized
algorithm works correctly, as long as it does not do so
for too many randomness strings.

Definition II.1 (Oblivious verifier). Suppose that A is
a randomized algorithm that on input x ∈ {0, 1}N uses
p(N) random bits. Let s : N → N and ε : N → [0, 1].
An (s, ε)-oblivious verifier for A is a deterministic
procedure that gets as input N , a sketch x̂ ∈ {0, 1}s(N)

and r ∈ {0, 1}p(N), either accepts or rejects, and
satisfies the following:

• Every x ∈ {0, 1}N has a sketch x̂ ∈ {0, 1}s(N).
• For every x ∈ {0, 1}N and its sketch x̂ ∈
{0, 1}s(N), for every r ∈ {0, 1}p(N), if the verifier
accepts on input x̂ and r, then A succeeds on x
and r.

• For every x ∈ {0, 1}N and its sketch x̂ ∈
{0, 1}s(N), the probability over r ∈ {0, 1}p(N) that
the verifier rejects is at most ε(N).

For example, the sketch for a free game on G =
(X ∪ Y,E) consists of the restriction of the game to a
small random subset of Y . In the full version, we show
that such a sketch suffices to estimate the value of the
labelings considered by our algorithm for free games.

Note that ε of the oblivious verifier may be somewhat
larger than the error probability of the algorithm A,
but hopefully not much larger. We do not limit the
run-time of the verifier, but the verifier has to be
deterministic. Indeed, the oblivious verifiers we design
run in deterministic exponential time. We do not limit
the time for computing the sketch x̂ from the input x
either. Indeed, we use the probabilistic method in the
design of our sketches. Crucially, the sketch depends
on the input x, but is independent of r.

Our derandomization theorem shows how to trans-
form a randomized algorithm with an oblivious verifier
into a deterministic (non-uniform) algorithm whose run-
time is not much larger than the run-time of the ran-
domized algorithm. Its idea is as follows. An oblivious
verifier allows us to partition the inputs so inputs with
the same sketch are bundled together, and the number
of inputs effectively shrinks. This allows us to apply
a union bound, just like in Adleman’s proof [2], but
over many fewer inputs, to argue that there must exist
a randomness string for (a suitable repetition of) the
randomized algorithm that works for all inputs.

Theorem II.2 (Derandomizing by verifying from a
sketch). For every t ≥ 1, if a problem has a Las Vegas
algorithm that runs in time T and a corresponding
(s, ε)-oblivious verifier for ε < 2−s/t, then the problem
has a non-uniform deterministic algorithm that runs in
time T · t and always outputs the correct answer.

Proof: Consider the randomized algorithm that
runs the given randomized algorithm on its input for
t times independently, and succeeds if any of the runs
succeeds. Its run-time is T · t. For any input, the proba-
bility that the oblivious verifier rejects all of the t runs
is less than (2−s/t)t = 2−s. By a union bound over the
2s possible sketches, the probability that the oblivious
verifier rejects for any of the sketches is less than
2s·2−s = 1. Hence, there exists a randomness string that

774775775

the oblivious verifier accepts no matter what the sketch
is. On this randomness string the algorithm has to be
correct no matter what the input is. The deterministic
non-uniform algorithm invokes the repeated randomized
algorithm on this randomness string.

Adleman’s theorem can be seen as a special case of
Theorem II.2, in which the sketch size is the trivial
s(N) = N , the oblivious verifier runs the algorithm
on the input and randomness and accepts if the algo-
rithm succeeds, and the randomized algorithm has error
probability ε < 2−N/t.

The reason that we require that the algorithm is a Las
Vegas algorithm in Theorem II.2 is that it allows us to
repeat the algorithm and combine the answers from all
invocations. Combining is possible by other means as
well. E.g., for randomized algorithms that solve decision
problems or for pseudo-deterministic algorithms (algo-
rithms that typically return the same answer) one can
combine by taking majority. For algorithms that return
a list, one can combine the lists.

The derandomization technique assumes that the error
probability of the algorithm is sufficiently low. To com-
plement it, in Section III we develop an amplification
technique to decrease the error probability. Interestingly,
our applications are such that the error probability
can be decreased without a substantial slowdown to
a point at which our derandomization technique kicks
in, but we do not know how to decrease the error
probability sufficiently for Adleman’s original proof to
work without slowing down the algorithm significantly.

III. AMPLIFICATION BY FINDING A BIASED COIN

In this section we develop a technique that will
allow us to significantly decrease the error probability
of randomized algorithms without substantially slowing
down the algorithms. The technique works by testing
the random choices made by the algorithm and quickly
discarding undesirable choices. It requires the ability
to quickly estimate the desirability of random choices.
The technique is based on a solution to the following
problem.

Definition III.1 (Biased coin problem). Let 0 < η, ζ <
1. In the biased coin problem one has a source of coins.
Each coin has a bias, which is the probability that the
coin falls on “heads”. The bias of a coin is unknown,
and one can only toss coins and observe the outcome.
It is known that at least 2/3 fraction6 of the coins have
bias at least 1 − η. Given n ≥ 1, the task is to find a
coin of bias at least 1− η − ζ with probability at least
1− exp(−n) using as few coin tosses as possible.

62/3 can be replaced with any constant larger than 0.

A similar problem was studied in the setup of multi-
armed bandit problems [10], [24], however in that setup
there might be only one coin with large bias, as opposed
to a constant fraction of coins as in our setup. In the
former setup, many more coin tosses might be needed
(an Ω(n2/ζ2) lower bound is proved in [24]).

A. Biased Coin and Amplification

The analogy between the biased coin problem and
amplification is as follows: a coin corresponds to a
random choice of the algorithm. Its bias corresponds
to how desirable the random choice is. The assumption
is that a constant fraction of the random choices are
very desirable. The task is to find one desirable random
choice with a very high probability. Tossing a coin
corresponds to testing the random choice. The coin falls
on heads in proportion to the quality of the random
choice.

More formally, we will be able to amplify with little
slowdown randomized algorithms that have a quick
check as defined next:

Definition III.2 (Randomness checker). Let Ω be a
space of randomness strings. Let grade : Ω → [0, 1]
assign each randomness string a grade. A randomness
checker is a randomized algorithm that given r ∈ Ω
accepts with probability grade(r).

Definition III.3 (Algorithm with quick check). Let
tcheck : N → N and 0 < η, ζ < 1. We say that a
randomized algorithm A has a (tcheck, η, ζ)-quick check
if for every input x, |x| = n, to the algorithm there is
a function gradex : Ωn → [0, 1] with a randomness
checker, where Ωn is the space of randomness strings
on input size n.
• Randomization: For at least 2/3 fraction of r ∈ Ωn

we have gradex(r) ≥ 1− η.
• Approximation: If gradex(r) ≥ 1− η − ζ then A

is correct on x using randomness r.
• Quickness: The run-time of the checker is bounded

by tcheck(n).

In the full version we extend the above definitions.
The general definitions apply even if each randomness
has several possible grades, and even if the randomness
checker accepts only with probability that approximates
the grade(s) of the randomness.

For example, consider an algorithm to approximate
an instance of free games on G = (X ∪ Y,E) and an
alphabet Σ to within ε. To achieve constant error prob-
ability, the algorithm samples V ′ ⊆ X of size roughly
1
ε2 log(|Σ|/ε). Then, for every possible assignment to
V ′, the algorithm computes an induced assignment for

775776776

the rest of the vertices: for each y ∈ Y , assign σ ∈ Σ
that maximizes the fraction of satisfied edges between y
and V ′. For each x ∈ X , assign σ ∈ Σ that maximizes
the fraction of satisfied edges between x and Y .

The algorithm uses randomness to pick V ′, and for
every assignment to V ′ the randomness gets a different
grade. The grade is the fraction of satisfied edges
for the induced assignment. The randomness checker
approximates the grade by first finding an assignment
to Y , given the assignment chosen for V ′. Then, it
picks an x ∈ X (in the full version, we actually
pick a larger subset X ′ ⊆ X), and finds the best
assignment for x. The checker returns the fraction of
satisfied constraints between x and Y . Note that the run-
time of the randomness checker is O(|V ′||Y |), which
is significantly less than the run-time of the algorithm
of constant error probability.

Suppose that the desired error probability for the
amplified algorithm is exp(−k). Given an input we will
show how to find a randomness string to plug into the
basic algorithm in time roughly k · tcheck, as opposed
to k · t where t is the run-time of A.

Lemma III.4 (Amplification via biased coin). For
any k ≥ 1, if A is a randomized algorithm with
a (tcheck, η, ζ)-quick check and that runs in time t
for some problem, then there is a randomized algo-
rithm A′ for the same problem whose run-time is t +
Õ(ktcheck/ζ

2) and whose error probability is exp(−k).

The lemma follows from Lemma III.5 that we prove
in the sequel by using the quick check to “toss” the
coin associated with the randomness string. The lemma
does not imply anything new for the cut algorithm we
mentioned in the example above, since its error proba-
bility was already exponentially small in the number
of vertices. However, the lemma is useful for many
other algorithms. In applications, we often don’t have
pure quick checks, but instead have algorithms which
may simulate or approximate quick checks. A simulator
is given a number k and its task is to simulate k
applications of a randomness checker. Sometimes there
is a bound K, such that only k ≤ K is allowed (e.g.,
the simulator picks a sample of the vertices, and cannot
sample more than all the vertices).

B. The Gapped Case

Interestingly, if we knew that all coins have bias either
at least 1−η or at most 1−η−ζ, it would be possible to
solve the biased coin problem using only O(n/ζ2) coin
tosses. The algorithm is described in Figure 1. It tosses
a random coin a small number of times and expects to
witness about 1− η fraction heads. If so, it doubles the

number of tosses, and tries again, until its confidence in
the bias is sufficiently large. If the fraction of heads is
too small, it restarts with a new coin. The algorithm has
two parameters: i0 that determines the initial number of
tosses, and if that determines the final number of tosses.

The probability that the algorithm restarts at the i’th
phase is exponentially small in ζ2k for k = 2i: either
the coin had bias at least 1 − η, and then there’s an
exponentially small probability in ζ2k that there were
less than (1− η − ζ/2)k heads, or the coin had bias at
most 1−η−ζ, and then there is probability exponentially
small in ζ2k that the coin had at least 1 − η − ζ/2
fraction heads in all the previous phases (whereas if
this is phase i = i0, then the probability that a coin
with bias less than 1 − η was picked in this case is
constant, i.e., exponentially small in ζ2k). Moreover,
the number of coin tosses up to this step is at most 2k.
Hence, we maintain a linear relation (up to ζ2 factor)
between the number of coin tosses and the exponent
of the probability. To get the error probability down to
exp(−n) we only need O(n/ζ2) coin tosses.

FIND-BIASED-COIN-GIVEN-GAP(n, η, ζ)

1 Set i0 = log(1/ζ2) + Θ(1);
if = log(n/ζ2) + Θ(1)
(constants picked appropriately).

2 Pick a coin at random.
3 for i = i0, i0 + 1, . . . , if
4 Toss the coin for k = 2i times.
5 If the fraction of heads is less than

1− η − ζ/2, restart.
6 return coin.

Figure 1: An algorithm for finding a coin of bias at least
1 − η − ζ when all the coins either have bias at least
1−η or at most 1−η−ζ. The algorithm uses O(n/ζ2)
coin tosses and achieves error probability exp(−n).

C. The General Case

Counter-intuitively, adding coins of bias between
1 − η − ζ and 1 − η – all acceptable outcomes of the
algorithm – derails the algorithm we outlined above,
as well as other algorithms. If one fixes a threshold
like 1 − η − ζ/2 for the fraction of heads one expects
to witness, there might be a coin whose bias is close
to the threshold. We might toss this coin a lot and
then decide to restart with a new coin. One can also
consider a competition-style algorithm like the ones
studied in [10], [24] when one tries several coins each
time, keeping the ones that fall on heads most often.

776777777

Such an algorithm may require Ω(n2/ζ2) coin tosses,
since coins can lose any short competition to coins with
slightly smaller bias; then, such coins can lose to coins
with slightly smaller bias, and so on, until we may end
up with a coin of bias smaller than 1− η − ζ.

There is, however, an algorithm that uses only
Õ(n/ζ2) coin tosses. This algorithm decreases the
threshold for the fraction of heads one expects to
witness with respect to the number of coin tosses one
already made for this coin. If the coin was already
tossed a lot, the deviation of the number of heads from
1− η would have to be large for us to decide to restart
with a new coin. The algorithm is described in Figure 2.

FIND-BIASED-COIN(n, η, ζ)

1 Set i0 = log(1/ζ2) + Θ(1);
if = log(n/ζ2) + Θ(log log(n/ζ));
β = ζ/if .

2 Pick a coin at random.
3 for i = i0, i0 + 1, . . . , if
4 Toss the coin for k = 2i times.
5 If the fraction of heads is less than

1− η − iβ, restart.
6 return coin.

Figure 2: An algorithm for finding a coin of bias at
least 1 − η − ζ using Õ(n/ζ2) coin tosses. The error
probability is exponentially small in n.

Note that the deviation parameter β is picked so 1−
η − iβ ≥ 1− η − ζ for all i ≤ if .

Lemma III.5. Within O((n/ζ2) log2(n/ζ)) = Õ(n/ζ2)
coin tosses, FIND-BIASED-COIN outputs a coin of bias
at least 1− η − ζ except with probability exp(−n).

Proof: Suppose that the algorithm restarts at phase
i. The number of coin tosses made by this point since
the previous restart (if any) is 2i0 + 2i0+1 + . . .+ 2i ≤
2i+1. Moreover, if the coin had bias smaller than 1 −
η− iβ + β/2, then, if i > i0, by a Chernoff bound, the
probability the coin passed the previous test, where it
was supposed to have at least 1− η− (i− 1)β fraction
of heads, is at most exp(−β22i−2). If i = i0, there is
probability less than 1/3 that the coin was picked. If
the coin had bias at least 1 − η − iβ + β/2, then by
the Chernoff bound, the probability it failed the current
test, where it is supposed to have at least 1 − η − iβ
fraction of heads, is at most exp(−β22i−1). In any case,
the ratio between the number of coin tosses and the
exponent of the probability is O(1/β2). The value of
if is chosen so that the error probability in the last

iteration is exp(−n). By the choice of β, the coin tosses
to exponent ratio is O((1/ζ2) log2(n/ζ)). Therefore, the
number of coin tosses one needs in order to reach error
probability exp(−n) is O((n/ζ2) log2(n/ζ)).

IV. OPEN PROBLEMS

• We believe that the question of what slowdown
is incurred by deterministic vs. randomized algo-
rithms deserves a great deal of attention from the
research community.

• We obtained efficient non-uniform deterministic
algorithms. It would be very interesting to convert
them to uniform algorithms.

• What other algorithms can be derandomized using
our method? Can more sophisticated sketching
and sparsification techniques be used to handle
algorithms on sparse graphs?

• What lower bound can one prove on the number
of coin tosses needed to find a biased coin? What
if the target bias is not known, yet it is known that
a large fraction of the coins achieve that target?
Solving the latter would yield an algorithm for
FREE GAMES that handles games with general
value, rather than value close to 1.

• Can one use the existence of an oblivious verifier
(i.e., effectively fewer inputs to consider) to con-
struct better psuedorandom generators?

• The run-times of our algorithms have poly log n
factors coming from our algorithm for the biased
coin problem and from the size of the sketches.
Can they be eliminated?

• The minimum spanning tree (MST) problem has
a randomized linear time algorithm achieving er-
ror probability exponentially small in the number
of edges m [21]. Also, a result of Pettie and
Ramachandran proves that a non-uniform linear
time algorithm for MST would imply a uniform
algorithm [26]. Therefore, an (O(m), 2−Ω(m))-
oblivious verifier for such a minimum spanning
tree algorithm would imply a linear time determin-
istic algorithm for MST. Finding such an oblivious
verifier remains open.

ACKNOWLEDGEMENTS

Dana Moshkovitz is grateful to Sarah Eisenstat for
her collaboration during the long preliminary stages of
this work.

REFERENCES

[1] S. Aaronson, R. Impagliazzo, and D. Moshkovitz. AM
with multiple Merlins. In 2014 IEEE 29th Conference on
Computational Complexity (CCC), pages 44–55, 2014.

777778778

[2] L. Adleman. Two theorems on random polynomial time.
In Proc. 19th IEEE Symp. on Foundations of Computer
Science, pages 75–83, 1978.

[3] N. Alon, W. F. de la Vega, R. Kannan, and M. Karpinski.
Random sampling and approximation of MAX-CSPs.
Journal of Computer and System Sciences, 67(2):212–
243, 2003.

[4] N. Alon, R.A. Duke, H. Lefmann, V. Rödl, and R. Yuster.
The algorithmic aspects of the regularity lemma. Journal
of Algorithms, 16(1):80 – 109, 1994.

[5] S. Arora, D. Karger, and M. Karpinski. Polynomial
time approximation schemes for dense instances of NP-
hard problems. In Proc. 27th ACM Symp. on Theory of
Computing, pages 284–293, 1995.

[6] B. Barak, M. Hardt, T. Holenstein, and D. Steurer.
Subsampling mathematical relaxations and average-case
complexity. In Proc. 22nd Annual ACM-SIAM Symp. on
Discrete Algorithms, pages 512–531, 2011.

[7] I. Baran, E. Demaine, and M. Patrascu. Subquadratic al-
gorithms for 3SUM. In Algorithms and Data Structures,
volume 3608 of Lecture Notes in Computer Science,
pages 409–421. 2005.

[8] D. Dellamonica, S. Kalyanasundaram, D. Martin,
V. Rödl, and A. Shapira. A deterministic algorithm for
the Frieze-Kannan regularity lemma. SIAM Journal on
Discrete Math, 26:15–29, 2012.

[9] D. Dellamonica, S. Kalyanasundaram, D. Martin,
V. Rödl, and A. Shapira. An optimal algorithm for
finding Frieze-Kannan regular partitions. Combinatorics,
Probability and Computing, 24(2):407–437, 2015.

[10] E. Even-Dar, S. Mannor, and Y. Mansour. PAC bounds
for multi-armed bandit and Markov decision processes.
In Computational Learning Theory, volume 2375 of
Lecture Notes in Computer Science, pages 255–270.
2002.

[11] U. Feige. Error reduction by parallel repetition - the
state of the art, 1995.

[12] L. Fortnow and A. R. Klivans. Efficient learning algo-
rithms yield circuit lower bounds. Journal of Computer
and System Sciences, 75(1):27 – 36, 2009.

[13] A. Frieze and R. Kannan. The regularity lemma and
approximation schemes for dense problems. In Proc.
37th IEEE Symp. on Foundations of Computer Science,
pages 12–20, 1996.

[14] O. Goldreich. A sample of samplers - a computational
perspective on sampling (survey). Technical report,
ECCC Report TR97-020, 1997.

[15] P. Gopalan, R. Meka, and O. Reingold. DNF sparsi-
fication and a faster deterministic counting algorithm.
Computational Complexity, 22(2):275–310, 2013.

[16] O. Grossman and D. Moshkovitz. Amplification and
derandomization without slowdown. Technical report,
ECCC Report TR15-158, 2015.

[17] R. Impagliazzo, R. Meka, and D. Zuckerman. Pseudo-
randomness from shrinkage. In Proc. 53rd IEEE Symp.
on Foundations of Computer Science, pages 111–119,
2012.

[18] R. Impagliazzo, S. Shaltiel, and A. Wigderson. Reducing
the seed length in the nisan-wigderson generator. Com-
binatorica, 26(6):647–681, 2006.

[19] R. Impagliazzo and A. Wigderson. P = BPP if E requires
exponential circuits: Derandomizing the XOR lemma. In
Proc. 29th ACM Symp. on Theory of Computing, pages
220–229, 1997.

[20] R. Impagliazzo and D. Zuckerman. How to recycle
random bits. In Proc. 30th IEEE Symp. on Foundations
of Computer Science, pages 248–253, 1989.

[21] D. Karger, P. Klein, and R. Tarjan. A randomized linear-
time algorithm to find minimum spanning trees. Journal
of the ACM, 42:321–328, 1995.

[22] H. Karloff and Y. Mansour. On construction of k-
wise independent random variables. Combinatorica,
17(1):91–107, 1997.

[23] M. Luby. Removing randomness in parallel computation
without a processor penalty. In Proc. 29th IEEE Symp.
on Foundations of Computer Science, pages 162–173,
1988.

[24] S. Mannor and J. N. Tsitsiklis. The sample complexity
of exploration in the multi-armed bandit problem. J.
Mach. Learn. Res., 5:623–648, 2004.

[25] J. Naor and M. Naor. Small-bias probability spaces:
Efficient constructions and applications. SIAM Journal
on Computing, 22(4):838–856, 1993.

[26] S. Pettie and V. Ramachandran. An optimal minimum
spanning tree algorithm. Journal of the ACM, 49(1):16–
34, 2002.

[27] R. Shaltiel. Weak derandomization of weak algorithms:
Explicit versions of yao’s lemma. computational com-
plexity, 20(1):87–143, 2011.

[28] B. A. Subbotovskaya. Realizations of linear functions
by formulas using +, *, -,. Sov. Math. Dokl., 2:110–112,
1961.

[29] M. Zimand. Exposure-resilient extractors and the de-
randomization of probabilistic sublinear time. computa-
tional complexity, 17(2):220–253, 2008.

778779779

