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Abstract—We consider the problem of estimating a Fourier-
sparse signal from noisy samples, where the sampling is done
over some interval [0, T ] and the frequencies can be “off-grid”.
Previous methods for this problem required the gap between
frequencies to be above 1/T , the threshold required to robustly
identify individual frequencies. We show the frequency gap is
not necessary to estimate the signal as a whole: for arbitrary
k-Fourier-sparse signals under �2 bounded noise, we show how
to estimate the signal with a constant factor growth of the noise
and sample complexity polynomial in k and logarithmic in the
bandwidth and signal-to-noise ratio.

As a special case, we get an algorithm to interpolate degree
d polynomials from noisy measurements, using O(d) samples
and increasing the noise by a constant factor in �2.

Keywords-Fourier transform; super-resolution; sparse recov-
ery; polynomial interpolation; compressive sensing;

I. INTRODUCTION

In an interpolation problem, one can observe x(t) =
x∗(t) + g(t), where x∗(t) is a structured signal and g(t)
denotes noise, at points ti of one’s choice in some interval

[0, T ]. The goal is to recover an estimate x̃ of x∗ (or of x).
Because we can sample over a particular interval, we would

like our approximation to be good on that interval, so for

any function y(t) we define

‖y‖2T =
1

T

∫ T

0

|y(t)|2dt.

to be the �2 error on the sample interval. For some param-

eters C and δ, we would then like to get

‖x̃− x∗‖T ≤ C ‖g‖T + δ ‖x∗‖T (1)

while minimizing the number of samples and running time.

Typically, we would like C to be O(1) and to have δ be very

small (either zero, or exponentially small). Note that, if we

do not care about changing C by O(1), then by the triangle

inequality it doesn’t matter whether we want to estimate x∗

or x (i.e. we could replace the LHS of (1) by ‖x̃− x‖T ).

Of course, to solve an interpolation problem one also

needs x∗ to have structure. One common form of structure

is that x∗ have a sparse Fourier representation. We say that

a function x∗ is k-Fourier-sparse if it can be expressed as a

sum of k complex exponentials:

x∗(t) =
k∑

j=1

vje
2πifjt.

for some vj ∈ C and fj ∈ [−F, F ], where F is the

“bandlimit”. Given F , T , and k, how many samples must

we take for the interpolation (1)?

If we ignore sparsity and just use the bandlimit, then

Nyquist sampling and Shannon-Whittaker interpolation uses

FT + 1/δ samples to achieve (1). Alternatively, in the

absence of noise, x∗ can be found from O(k) samples by a

variety of methods, including Prony’s method from 1795 or

Reed-Solomon syndrome decoding [1], but these methods

are not robust to noise.

If the signal is periodic with period T—i.e., the frequen-

cies are multiples of 1/T—then we can use sparse discrete

Fourier transform methods, which take O(k logc(FT/δ))
time and samples (e.g. [2], [3], [4]). If the frequencies are

not multiples of 1/T (are “off the grid”), then the discrete

approximation is only k/δ sparse, making the interpolation

less efficient; and even this requires that the frequencies be

well separated.

A variety of algorithms have been designed to recover

off-grid frequencies directly, but they require the minimum

gap among the frequencies to be above some threshold.

With frequency gap at least 1/T , we can achieve a kc

approximation factor using O(FT ) samples [5], and with

gap above O(log2 k)/T we can get a constant approximation

using O(k logc(FT/δ)) samples and time [6].

Having a dependence on the frequency gap is natural. If

two frequencies are very close together—significantly below
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1/T—then the corresponding complex exponentials will be

close on [0, T ], and hard to distinguish in the presence

of noise. In fact, from a lower bound in [5], below 1/T
frequency gap one cannot recover the frequencies in the

presence of noise as small as 2−Ω(k). The lower bound

proceeds by constructing two signals using significantly

different frequencies that are exponentially close over [0, T ].
But if two signals are so close, do we need to distinguish

them? Such a lower bound doesn’t apply to the interpolation

problem, it just says that you can’t solve it by finding the

frequencies. Our question becomes: can we benefit from

Fourier sparsity in a regime where we can’t recover the

individual frequencies?

We answer in the affirmative, giving an algorithm for

the interpolation using O(poly(k log(FT/δ)) samples. Our

main theorem is the following:

Theorem I.1. Let x(t) = x∗(t) + g(t), where x∗ is k-
Fourier-sparse signal with frequencies in [−F, F ]. Given
samples of x over [0, T ] we can output x̃(t) such that with
probability at least 1− 2−Ω(k),

‖x̃− x∗‖T � ‖g‖T + δ ‖x∗‖T .

Our algorithm uses poly(k, log(1/δ)) · log(FT ) samples
and poly(k, log(1/δ)) · log2(FT ) time. The output x̃ is
poly(k, log(1/δ))-Fourier-sparse signal.

Relative to previous work, this result avoids the need

for a frequency gap, but loses a polynomial factor in the

sample complexity and time. We lose polynomial factors in

a number of places; some of these are for ease of exposition,

but others are challenging to avoid.

Degree d polynomials are the special case of d-Fourier-
sparse functions in the limit of fj → 0, by a Taylor expan-

sion. This is a regime with no frequency gap, so previous

sparse Fourier results would not apply but Theorem I.1

shows that poly(d log(1/δ)) samples suffices. In fact, in this

special case we can get a better polynomial bound:

Theorem I.2. For any degree d polynomial P (t) and an
arbitrary function g(t), Procedure ROBUSTPOLYNOMIAL-

LEARNING takes O(d) samples from x(t) = P (t) + g(t)
over [0, T ] and reports a degree d polynomial Q(t) in time
O(dω) such that, with probability at least 99/100,

‖P (t)−Q(t)‖2T � ‖g(t)‖2T .
where ω < 2.373 is matrix multiplication exponent [7], [8],
[9].

In the full version we also show how to reduce the

failure probability to an arbitrary p > 0 with O(log(1/p))
independent repetitions.

Although we have not seen such a result stated in the

literature, our method is quite similar to one used in [10].

Since d samples are necessary to interpolate a polynomial

without noise, the result is within constant factors of optimal.

One could apply Theorem I.2 to approximate other

functions that are well approximated by polynomials or

piecewise polynomials. For example, a Gaussian of standard

deviation at least σ can be approximated by a polynomial of

degree O(
(
T
σ

)2
+ log(1/δ)); hence the same bound applies

as the sample complexity of improper interpolation of a

positive mixture of Gaussians.

A. Related work

Sparse discrete Fourier transforms: There is a large

literature on sparse discrete Fourier transforms. Results gen-

erally are divided into two categories: one category of results

that carefully choose measurements that allow for sublinear

recovery time, including [2], [11], [12], [13], [3], [14], [4],

[15]. The other category of results expect randomly chosen

measurements and show that a generic recovery algorithm

such as �1 minimization will work with high probability;

these results often focus on proving the Restricted Isometry

Property [16], [17], [18], [19]. At the moment, the first

category of results have better theoretical sample complexity

and running time, while results in the second category have

better failure probabilities and empirical performance. Our

result falls in the first category. The best results here can

achieve O(k log n) samples [14], O(k log2 n) time [12], or

within log logn factors of both [4].

For signals that are not periodic, the discrete Fourier

transform will not be sparse: it takes k/δ frequencies to

capture a 1 − δ fraction of the energy. To get a better

dependence on δ, one has to consider frequencies “off the

grid”, i.e. that are not multiples of 1/T .

Off the grid: Finding the frequencies of a signal with

sparse Fourier transform off the grid has been a question of

extensive study. The first algorithm was by Prony in 1795,

which worked in the noiseless setting. This was refined by

classical algorithms like MUSIC [20] and ESPRIT [21],

which empirically work better with noise. Matrix pencil [22]

is a method for computing the maximum likelihood sig-

nal under Gaussian noise and evenly spaced samples. The

question remained how accurate the maximum likelihood

estimate is; [5] showed that it has an O(kc) approximation

factor if the frequency gap is at least 1/T .

Now, the above results all use FT samples, which is

analogous to n in the discrete setting. This can be decreased

down till O(k) by only looking at a subset of time, i.e.

decreasing T ; but doing so increases the frequency gap

needed for decent robustness results.

A variety of works have studied how to adapt sparse

Fourier techniques from the discrete setting to get sublinear

sample complexity; they all rely on the minimum separation

among the frequencies to be at least c/T for c ≥ 1. [23]

showed that a convex program can recover the frequencies

exactly in the noiseless setting, for c ≥ 4. This was improved

in [24] to c ≥ 2 for complex signals and c ≥ 1.87 for real

signals. [24] also gave a result for c ≥ 2 that was stable to
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noise, but this required the signal frequencies to be placed on

a finely spaced grid. [25] gave a different convex relaxation

that empirically requires smaller c in the noiseless setting.

[26] used model-based compressed sensing when c = Ω(1),
again without theoretical noise stability. Note that, in the

noiseless setting, exact recovery can be achieved without any

frequency separation using Prony’s method or Berlekamp-

Massey syndrome decoding [1]; the benefit of the above

results is that a convex program might be robust to noise,

even if it has not been proven to be so.

In the noisy setting, [27] gave an extension of Orthogonal

Matching Pursuit (OMP) that can recover signals when c =
Ω(k), with an approximation factor O(k), and a few other

assumptions. Similarly, [28] gave a method that required

c = Ω(k) and was robust to certain kinds of noise. [29] got

the threshold down to c = O(1), in multiple dimensions, but

with approximation factor O(FTkO(1)).
[30] shows that, under Gaussian noise and with separation

c ≥ 4, a semidefinite program can optimally estimate

x∗(ti) at evenly spaced sample points ti from observations

x∗(ti) + g(ti). This is somewhat analogous to our setting,

the differences being that (a) we want to estimate the signal

over the entire interval, not just the sampled points, (b) our

noise g is adversarial, so we cannot hope to reduce it—

if g is also k-Fourier-sparse, we cannot distinguish x∗ and

g, and of course (c) we want to avoid requiring frequency

separation.

In [6], we gave the first algorithm with O(1) approxima-

tion factor, finding the frequencies when c � log(1/δ), and
the signal when c � log(1/δ) + log2 k.

Now, all of the above results algorithms are designed

to recover the frequencies; some of the ones in the noisy

setting then show that this yields a good approximation to

the overall signal (in the noiseless setting this is trivial).

Such an approach necessitates c ≥ 1: [5] gave a lower

bound, showing that any algorithm finding the frequencies

with approximation factor 2o(k) must require c ≥ 1.
Thus, in the current literature, we go from not knowing

how to get any approximation for c < 1, to getting a polyno-

mial approximation at c = 1 and a constant approximation

at c � log2 k. In this work, we show how to get a constant

factor approximation to the signal regardless of c.
Polynomial interpolation: Our result is a generalization

of robust polynomial interpolation, and in Theorem I.2 we

construct an optimal method for polynomial interpolation as

a first step toward interpolating Fourier-sparse signals.

Our result here can be seen as essentially an extension

of a technique shown in [10]. The focus of [10] is on the

setting where sample points xi are chosen independently, so

Θ(d log d) samples are necessary. One of their examples,

however, shows a key building block that leads to our

theorem.

The recent work [31] looks at robust polynomial interpo-

lation in a different noise model, featuring �∞ bounded noise

with some outliers. In this setting they can get a stronger �∞
guarantee on the output than is possible in our setting.

Nyquist sampling: The classical method for learning

bandlimited signals uses Nyquist sampling—i.e., samples

at rate 1/F , for FT points—and interpolates them using

Shannon-Nyquist interpolation. This doesn’t require any

frequency gap, but also doesn’t benefit from sparsity like

sparse Fourier transform-based techniques. As discussed

in [6], on the signal x(t) = 1 it takes FT +O(1/δ) samples

to get δ error on average. Our dependence is logarithmic on

both those terms.

B. Our techniques

Previous results on sparse Fourier transforms with robust

recovery all required a frequency gap. So consider the oppo-

site situation, where all the frequencies converge to zero and

the coefficients are adjusted to keep the overall energy fixed.

If we take a Taylor expansion of each complex exponential,

then the signal will converge to a degree k polynomial. So

robust polynomial interpolation is a necessary subproblem

for our algorithm.

Polynomial interpolation: Let P (x) be a degree d poly-

nomial, and suppose that we can query f(x) = P (x)+g(x)
over the interval [−1, 1], where g represents adversarial

noise. We would like to query f at O(d) points and output a

degree d polynomial Q(x) such that ‖P −Q‖ � ‖g‖, where

we define ‖h‖2 :=
∫ 1

−1
|h(x)|2dx.

One way to do this would be to sample points S ⊂ [−1, 1]
uniformly, then output the degree d polynomial Q with the

smallest empirical error

‖P + g −Q‖2S :=
1

|S|
∑
x∈S

|(P + g −Q)(x)|2

on the observed points. If ‖R‖S ≈ ‖R‖ for all degree d
polynomials R, in particular for P −Q, then since usually

‖g‖S � ‖g‖ by Markov’s inequality, the result follows.

This has two problems: first, uniform sampling is poor

because polynomials like Chebyshev polynomials can have

most of their energy within O(1/d2) of the edges of the

interval. This necessitates Ω(d2) uniform samples before

‖R‖S ≈ ‖R‖ with good probability on a single polynomial.

Second, the easiest method to extend from approximating

one polynomial to approximating all polynomials uses a

union bound over a net exponential in d, which would give

an O(d3) bound.

To fix this, we need to bias our sampling toward the edges

of the interval and we need our sampling to not be iid. We

partition [−1, 1] into O(d) intervals I1, . . . , In so that the

interval containing each x has width at most O(
√
1− x2),

except for the O(1/d2) size regions at the edges. For any

degree d polynomial R and any choice of n points xi ∈ Ii,
the appropriately weighted empirical energy is close to ‖R‖.
This takes care of both issues with uniform sampling. If the

points are chosen uniformly at random from within their
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intervals, then ‖g‖ is probably bounded as well, and the

empirically closest degree d polynomial Q will satisfy our

requirements.

This result is shown in the full version.

Clusters: Many previous sparse Fourier transform algo-

rithms start with a one-sparse recovery algorithm, then show

how to separate frequencies to get a k-sparse algorithm by

reducing to the one-sparse case. Without a frequency gap,

we cannot hope to reduce to the one-sparse case; instead,

we reduce to individual clusters of nearby frequencies.

Essentially the problem is that one cannot determine all of

the high-energy frequencies of a function x only by sampling

it on a bounded interval, as some of the frequencies might

cancel each other out on this interval. We also cannot afford

to work merely with the frequencies of the truncation of x to

the interval [0, T ], as the truncation operation will spread the

frequencies of x over too wide a range. To fix this problem,

we must do something in between the two. In particular,

we instead study x · H for a judiciously chosen function

H . We want H to approximate the indicator function of the

interval [0, T ] and have small Fourier-support, supp(Ĥ) ⊂
[−kc/T, kc/T ]. By using some non-trivial lemmas about the

growth rate of x∗, we can show that the difference between

x · H on R and the truncation of x to [0, T ] has small �2
mass, so that we can use the former as a substitute for the

latter.

On the other hand, the Fourier transform of x · H is

the convolution x̂ ∗ Ĥ , which has most of its mass within

poly(k)/T of the frequencies of x∗. Although it is impos-

sible to determine the individual frequencies of x∗, we can

hope to identify O(k) intervals each of length poly(k)/T so

that all but a small fraction of the energy of x̂ is contained

within these intervals.

Note that many of these intervals will represent not

individual frequencies of x∗, but small clusters of such

frequencies. Furthermore, some frequencies of x∗ might not

show up in these intervals either because they are too small,

or because they cancel out other frequencies when convolved

with Ĥ .

One-cluster recovery: Given our notion of clusters, we

start looking at Fourier-sparse interpolation in the special

case of one-cluster recovery. This is a generalization of one-

sparse recovery where we can have multiple frequencies, but

they all lie in [f−Δ, f+Δ] for some base frequency f and

bandwidth Δ = kc/T . Because all the frequencies are close

to each other, values x(a) and x(a + β) will tend to have

ratio close to e2πifβ when β is small enough. We find that

β < 1
Δ
√
TΔ

is sufficient, which lets us figure out a frequency

f̃ with |f̃ − f | ≤ Δ
√
TΔ = kO(1)/T .

Once we have the frequency f̃ , we can consider x′(t) =
x(t)e−2πi ˜f . This signal is k-Fourier-sparse with frequencies

bounded by kO(1)/T . By taking a Taylor approximation

to each complex exponential1, can show x∗ is δ-close to

P (t)e2πi
˜f for a degree d = O(kc + k log(1/δ)) polynomial

P . Thus we could apply our polynomial interpolation algo-

rithm to recover the signal.
k-cluster frequency estimation: Reminiscent of algo-

rithms such as [3], [6], we choose random variables σ ≈
T/kc, a ∈ [0, 1], and b ∈ [0, 1/σ] and look at v ∈ C

kc

given

by

vi = (x ·H)(σ(i− a))e−2πiσbiG(i)

where G is a filter function. That is, G has compact support

(supp(G) ⊂ [−kc, kc]), and Ĝ approximates an interval of

length Θ( 2πk ). In other words, G is the same as Ĥ with

different parameters: an interval convolved with itself kc

times, multiplied by a sinc function.

We alias v down to O(k) dimensions and take the discrete

Fourier transform, getting û. It has been implicit in previous

work—and we make it explicit—that ûj is equal to zσa for

a vector z defined by

ẑ = (x̂ ∗ Ĥ) · Ĝ(j)
σ,b

where Ĝ
(j)
σ,b is a particular permutation of Ĝ. In particular,

Ĝ
(j)
σ,b has period 1/σ, and approximates an interval of size
1

σB within each period.

In previous work, when σ and b were chosen randomly,

each individual frequency would have a good chance of

being the only frequency preserved in ẑ, and we could apply

one-sparse recovery by choosing a variety of a. Without a

frequency gap we can’t quite say that: we pick 1/σ � Δ
so that the entire cluster usually lands in the same bin, but

then nearby clusters can also often land in the same bin.

Fortunately, it is still usually true that only nearby clusters

will collide. Since our 1-cluster algorithm works when the

signal frequencies are nearby, we apply it to find a frequency

approximation within

√
T/σ

σ = kO(1)/T of the cluster.

The above algorithm recovers each individual frequency

with constant probability. By repeating it O(log k) times,

with high probability we find a list L of O(k) frequencies

within kO(1)/T of each significant cluster.
k-sparse recovery: Because different clusters aren’t

anywhere close to orthogonal, we can’t simply approximate

each cluster separately and add them up. Instead, given the

list L of candidate frequencies, we consider the O(kd)-
dimensional space of functions

x̃(t) :=
∑
˜f∈L

d∑
i=0

α
˜f,it

ie2πi
˜ft

where d = O(kO(1) + log(1/δ)). We then take a bunch of

random samples of x, and choose the x̃(t) minimizing the

1There is a catch here, that the coefficients of the exponentials are
potentially unbounded, if the frequencies are arbitrarily close together. We
first use Gram determinants to show that the signal is δ-close to one with
frequency gap δ2−k , and coefficients at most 2k/δ.
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empirical error using linear regression. This regression can

be made slightly faster using oblivious subspace embeddings

[32], [33], [34], [35].

Our argument to show this works is analogous to the naive

method we considered for polynomial recovery. Similarly

to the one-cluster setting, using Taylor approximations and

Gram determinants, we can show that this space includes

a sufficiently close approximation to x. Since polynomials

are the limit of sparse Fourier as frequencies tend to zero,

these functions are arbitrarily close to O(kd)-Fourier-sparse
functions. Hence we know that the maximum of |x̃(t)|
is at most a poly(kd) factor larger than its average over

[0, T ]. Using a net argument, this shows poly(kd) samples

are sufficient to find a good approximation to the nearest

function in our space.

Growth rate of Fourier-sparse signals: We need that
1√
T
‖x∗ ·H‖2 ≈ ‖x∗‖T , where H approximates the interval

1[0,T ]. Because H has support size kc/T , it has a transition

region of size T/kc
′
at the edges, and it decays as (t/T )−kc′′

for t � T . The difference between 1√
T
‖x∗ ·H‖2 and

‖x∗‖T involves two main components: mass in the transition

region that is lost, and mass outside the sampling interval

that is gained. To show the approximation, we need that

|x∗(t)| � Õ(k2) ‖x∗‖T within the interval and |x∗(t)| �
(kt/T )O(k) ‖x∗‖T outside.

We outline the bound of max
t∈[0,T ]

|x∗(t)| in terms of its

average ‖x∗‖T to bound |x∗(t)| within the interval. Notice

that we can assume |x∗(0)| = max
t∈[0,T ]

|x∗(t)|: if t∗ =

argmax
t∈[0,T ]

|x∗(t)|2 is not 0 or T , we can rescale the two

intervals [0, t∗] and [t∗, T ] to [0, T ] separately. Then we

show that for any t′, there exist m = Õ(k2) and constants

C1, · · · , Cm such that x∗(0) =
∑

j∈[m]

Cj ·x∗(j · t′). Then we

take the integration of t′ over [0, T/m] to bound |x∗(0)|2 by

its average. For any outside t > T , we follow this approach

to show x∗(t) =
∑

j∈[k]
Cj · x∗(tj) where tj ∈ [0, T ] and

|Cj | ≤ poly(k) · (kt/T )O(k) for each j ∈ [k]. These results

are shown in Section IV.

C. Organization

This paper is organized as follows. We define several

notations in Section II. We provide a brief overview about

signal recovery in Section III. In Section IV, we show two

bounds for signals with k-sparse Fourier transform. We defer

the rest statements and proofs to the full version.

II. NOTATIONS

For any function f , we define Õ(f) to be f · logO(1)(f).
We use f � g to denote that f ≤ Cg for some universal

constant C. We use [n] to denote {1, 2, · · · , n}. We use

k, d, T, F for sparsity of signal, degree of polynomial, sam-

ple duration, frequency range. For a fixed T > 0, we define

the inner product of two functions x, y : [0, T ]→ C as

〈x, y〉T =
1

T

∫ T

0

x(t)y(t)dt.

We define the ‖ · ‖T norm as

‖x(t)‖T =
√
〈x(t), x(t)〉T =

√
1

T

∫ T

0

|x(t)|2dt.

III. PROOF SKETCH

In this section we present the key lemmas on the path

to producing the algorithm. Proofs are deferred to the full

version.

We first consider one-cluster recovery centered at zero,

i.e., x∗(t) =
k∑

j=1

vj ·e2πifjt where every fj is in [−Δ,Δ] for

some small Δ > 0. The road map is to replace x∗ by a low

degree polynomial P such that ‖x∗(t)− P (t)‖2T � δ‖x∗‖2T
then recover a polynomial Q to approximate P through the

observation x(t) = P (t) + g′(t) where g′(t) = g(t) +(
x∗(t)− P (t)

)
.

A natural way to replace x∗(t) =
k∑

j=1

vje
2πifjt by a low

degree polynomial P (t) is the Taylor expansion. To bound

the error after taking the low degree terms in the expansion

by δ‖x∗‖T , we show the existence of x′(t) =
k∑

j=1

v′je
2πif ′

jt

approximating x∗ on [0, T ] with an extra property—any

coefficient v′j in x′(t) has an upper bound in terms of

‖x′‖2T = 1
T

∫ T

0
|x′(t)|2dt. We prove the existence of x′(t)

via two more steps, both of which rely on the estimation of

some Gram matrix constituted by these k signals.

The first step is to show the existence of a k-Fourier-
sparse signal x′(t) with frequency gap η ≥ exp(− poly(k))·δ

T
that is sufficiently close to x∗(t).

Lemma III.1. There is a universal constant C1 > 0 such

that, for any x∗(t) =
k∑

j=1

vje
2πifjt and any δ > 0 , there

always exist η ≥ δ
T · k−C1k

2

and x′(t) =
k∑

j=1

v′je
2πif ′

jt

satisfying

‖x′(t)− x∗(t)‖T ≤ δ‖x∗(t)‖T ,
with min

i�=j
|f ′i − f ′j | ≥ η and max

j∈[k]
{|f ′j − fj |} ≤ kη.

We outline our approach and defer the proof to the full

version. We focus on the replacement of one frequency fk

in x∗ =
k∑

j=1

vje
2πifjt by a new frequency fk+1 �= fk and

its error. The idea is to consider every signal e2πifjt as a

vector and prove that for any vector x∗ in the linear subspace

span{e2πifjt|j ∈ [k]}, there exists a vector in the linear
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subspace span{e2πifk+1t, e2πifjt|j ∈ [k − 1]} with distance

at most exp(k2) · (|fk − fk+1|T ) · ‖x∗‖T to x∗.
The second step is to lower bound ‖x′‖2T by its coeffi-

cients through the frequency gap η in x′.

Lemma III.2. There exists a universal constant c > 0 such

that for any x(t) =
k∑

j=1

vje
2πifjt with frequency gap η =

min
i �=j
|fi − fj |,

‖x(t)‖2T ≥ k−ck2

min
(
(ηT )2k, 1

) k∑
j=1

|vj |2.

Combining Lemma III.1 and Lemma III.2, we bound |v′j |
by exp(poly(k)) ·δ−O(k) ·‖x′‖T for any coefficient v′j in x′.
Now we apply the Taylor expansion on x′(t) and keep the

first d = O(ΔT + poly(k) + k log 1
δ ) terms of every signal

v′j · e2πif
′
jt in the expansion to obtain a polynomial P (t) of

degree at most d. To bound the distance between P (t) and

x′(t), we observe that the error of every point t ∈ [0, T ]
is at most ( 2πΔ·Td )d

∑
j |v′j |, which can be upper bounded

by δ‖x′(t)‖T via the above connection. We summarize all

discussion above as follows.

Lemma III.3. For any Δ > 0 and any δ > 0, let x∗(t) =
k∑

j=1

vje
2πifjt where |fj | ≤ Δ for each j ∈ [k]. There exists

a polynomial P (t) of degree at most

d = O(TΔ+ k3 log k + k log 1/δ)

such that
‖P (t)− x∗(t)‖2T ≤ δ‖x∗‖2T .

To recover x∗(t), we observe x(t) as a degree d poly-

nomial P (t) with noise. We use properties of the Legendre

polynomials to design a method of random sampling such

that we only need O(d) random samples to find a polynomial

Q(t) approximating P (t).

Theorem I.2. For any degree d polynomial P (t) and an
arbitrary function g(t), Procedure ROBUSTPOLYNOMIAL-

LEARNING takes O(d) samples from x(t) = P (t) + g(t)
over [0, T ] and reports a degree d polynomial Q(t) in time
O(dω) such that, with probability at least 99/100,

‖P (t)−Q(t)‖2T � ‖g(t)‖2T .
where ω < 2.373 is matrix multiplication exponent [7], [8],
[9].

We can either report the polynomial Q(t) or transfer Q(t)
to a signal with d-sparse Fourier transform. We defer the

technical proofs and the formal statements to the full version

and discuss the recovery of k clusters from now on.

As mentioned before, we apply the filter function

(H(t), Ĥ(f)) on x∗ such that x̂∗ ·H has at most k clusters

given x̂∗ with k-sparse Fourier transform. First, we show that

all frequencies in the “heavy” clusters of x̂∗ ·H constitute

a good approximation of x∗ in the full version.

Definition III.4. Given x∗(t) =
k∑

j=1

vje
2πifjt, any N >

0, and a filter function (H, Ĥ) with bounded support
in frequency domain. Let Lj denote the interval of
supp( ̂e2πifjt ·H) for each j ∈ [k].

Define an equivalence relation ∼ on the frequencies fi
by the transitive closure of the relation fi ∼ fj if Li ∩
Lj �= ∅. Let S1, . . . , Sn be the equivalence classes under
this relation.

Define Ci = ∪
f∈Si

Li for each i ∈ [n]. We say Ci is a

“heavy” cluster iff
∫
Ci
|Ĥ · x∗(f)|2df ≥ T · N 2/k.

Claim III.5. Given x∗(t) =
k∑

j=1

vje
2πifjt and any N > 0,

let H be the filter function defined in the full version and
C1, · · · , Cl be the heavy clusters from Definition III.4. For

S =

{
j ∈ [k]

∣∣∣∣fj ∈ C1 ∪ · · ·Cl

}
,

we have x(S)(t) =
∑
j∈S

vje
2πifjt approximates x∗ within

distance ‖x(S)(t)− x∗(t)‖2T � N 2.

Hence it is enough to recover x(S) for the recovery of x∗.
Let Δh denote the bandwidth of Ĥ . We choose Δ > k ·Δh

such that for any j ∈ S,
∫ fj+Δ

fj−Δ
|Ĥ · x∗(f)|2df ≥ T · N 2/k

from the fact |Ci| ≤ k ·Δh. Then we prove Theorem III.6

which finds O(k) frequencies to cover all heavy clusters of

x̂∗ ·H .

Theorem III.6. Let x∗(t) =
k∑

j=1

vje
2πifjt and x(t) =

x∗(t) + g(t) be our observable signal where ‖g(t)‖2T ≤
c‖x∗(t)‖2T for a sufficiently small constant c. Then Pro-
cedure FREQUENCYRECOVERYKCLUSTER returns a set
L of O(k) frequencies that covers all heavy clusters of
x∗, which uses poly(k, log(1/δ)) log(FT ) samples and
poly(k, log(1/δ)) log2(FT ) time. In particular, for Δ =
poly(k, log(1/δ))/T and N 2 := ‖g(t)‖2T +δ‖x∗(t)‖2T , with
probability 1− 2−Ω(k), for any f∗ with∫ f∗+Δ

f∗−Δ

|x̂ ·H(f)|2df ≥ TN 2/k, (2)

there exists an f̃ ∈ L satisfying

|f∗ − f̃ | � Δ
√
ΔT .

Let L = {f̃1, · · · , f̃l} be the list of frequencies from the

output of Procedure FREQUENCYRECOVERYKCLUSTER in

Theorem III.6. The guarantee is that, for any fj in x(S),

there exists some pj ∈ [l] such that |f̃pj
−fj | � Δ

√
ΔT for
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Δ = poly(k, log(1/δ))/T . Hence we rewrite

x(S)(t) =
∑
i∈[l]

e2πi
˜fit(

∑
j∈S:pj=i

e2πi(fj− ˜fi)t).

For each i ∈ [l], we apply Lemma III.3 of one-cluster

recovery on
∑

j∈S:pj=i

e2πi(fj− ˜fi)t to approximate it by a

degree d polynomial Pi(t).

Now we consider x(t) =
∑
i∈[l]

e2πi
˜fit ·Pi(t)+ g′′(t) where

‖g′′(t)‖T � ‖g(t)‖T + δ‖x∗(t)‖T . To recover
∑
i∈[l]

e2πi
˜fit ·

Pi(t), we treat it as a vector in the linear subspace

V = span

{
e2πi

˜fit · tj
∣∣∣∣j ∈ {0, · · · , d}, i ∈ [l]

}
with dimension at most l(d + 1) and find a vector in this

linear subspace approximating it.
We show that for any v ∈ V , the average of poly(kd)

random samples on v is enough to estimate ‖v‖2T . In

particular, any vector in this linear subspace satisfies that

the maximum of it in [0, T ] has an upper bound in terms

of its average in [0, T ]. Then we apply the Chernoff bound

to prove that poly(kd) random samples are enough for the

estimation of one vector v ∈ V .

Claim III.7. For any

	u ∈ span

{
e2πi

˜fit · tj
∣∣∣∣j ∈ {0, · · · , d}, i ∈ [l]

}
,

there exists some universal constants C1 ≤ 4 and C2 ≤ 3
such that

max
t∈[0,T ]

{|	u(t)|2} � (ld)C1 logC2(ld) · ‖	u‖2T .
At last we use an ε-net to argue that poly(kd) random

samples from [0, T ] are enough to interpolate x(t) by a

vector v ∈ V . Because the dimension of this linear subspace

is at most l(d + 1) = O(kd), there exists an ε-net in this

linear subspace for unit vectors with size at most exp(kd).
Combining the Chernoff bound on all vectors in the ε-net and
Claim III.7, we know that poly(kd) samples are sufficient

to estimate ‖v‖2T for any vector v ∈ V . In the full version,

we show that a vector v ∈ V minimizing the distance

on poly(kd) random samples is a good approximation for∑
i∈[l]

e2πi
˜fit · Pi(t), which is a good approximation for x∗(t)

from all discussion above.

Theorem I.1. Let x(t) = x∗(t) + g(t), where x∗ is k-
Fourier-sparse signal with frequencies in [−F, F ]. Given
samples of x over [0, T ] we can output x̃(t) such that with
probability at least 1− 2−Ω(k),

‖x̃− x∗‖T � ‖g‖T + δ ‖x∗‖T .

Our algorithm uses poly(k, log(1/δ)) · log(FT ) samples
and poly(k, log(1/δ)) · log2(FT ) time. The output x̃ is
poly(k, log(1/δ))-Fourier-sparse signal.

IV. BOUNDS ON THE MAGNITUDE OF A FOURIER-SPARSE

SIGNAL IN TERMS OF ITS AVERAGE NORM

The main results in this section are two upper bounds,

Lemma IV.1 on max
t∈[0,T ]

|x(t)|2 and Lemma IV.5 on |x(t)|2
for t > T , in terms of the typical signal value ‖x‖2T =
1
T

∫ T

0
|x(t)|2dt. We prove Lemma IV.1 in Section IV-A and

Lemma IV.5 in Section IV-B.

A. Bounding the maximum inside the interval

The goal of this section is to prove Lemma IV.1.

Lemma IV.1. For any k-Fourier-sparse signal x(t) : R →
C and any duration T , we have

max
t∈[0,T ]

|x(t)|2 � k4 log3 k · ‖x‖2T .

Proof: Without loss of generality, we fix T = 1. Then
‖x‖2T =

∫ 1

0
|x(t)|2dt. Because ‖x‖2T is the average over the

interval [0, T ], if t∗ = argmax
t∈[0,T ]

|x(t)|2 is not 0 or T = 1,

we can rescale the two intervals [0, t∗] and [t∗, T ] to [0, 1]
and prove the desired property separately. Hence we assume

|x(0)|2 = max
t∈[0,T ]

|x(t)|2 in this proof.

Claim IV.2. For any k, there exists m = O(k2 log k) such
that for any k-Fourier-sparse signal x(t), any t0 ≥ 0 and
τ > 0, there always exist C1, · · · , Cm ∈ C such that the
following properties hold,

Property I |Cj | ≤ 11 for all j ∈ [m],

Property II x(t0) =
∑
j∈[m]

Cj · x(t0 + j · τ).

We first use this claim to finish the proof of Lemma IV.1.

We choose t0 = 0 such that ∀τ > 0, there always exist

C1, · · · , Cm ∈ C, and

x(0) =
∑
j∈[m]

Cj · x(j · τ).

By the Cauchy-Schwarz inequality, it implies that for any τ ,

|x(0)|2 ≤ m
∑
j∈[m]

|Cj |2|x(j · τ)|2

� m
∑
j∈[m]

|x(j · τ)|2. (3)
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At last, we obtain

|x(0)|2 = m

∫ 1/m

0

|x(0)|2dτ

� m ·
∫ 1/m

0

(m
m∑
j=1

|x(j · τ)|2)dτ

= m2 ·
m∑
j=1

∫ 1/m

0

|x(j · τ)|2dτ

= m2 ·
m∑
j=1

1

j

∫ j/m

0

|x(τ)|2dτ

≤ m2 ·
m∑
j=1

1

j
·
∫ 1

0

|x(τ)|2dτ

� m2 logm · ‖x‖2T ,

where the first inequality follows by Equation (3), the second

inequality follows by j/m ≤ 1 and the last step follows

by
m∑
i=1

1
i = O(logm). From m = O(k2 log k), we obtain

|x(0)|2 = O(k4 log3 k‖x‖2T ).
To prove Claim IV.2, we use the following lemmas about

polynomials. We defer their proofs to the full version.

Lemma IV.3. Let Q(z) be a degree k polynomial, all of
whose roots are complex numbers with absolute value 1.

For any integer n, let rn,k(z) =
k−1∑
l=0

r
(l)
n,k · zl denote the

residual polynomial of

rn,k(z) ≡ zn (mod Q(z)).

Then, each coefficient of rn,k is bounded: |r(l)n,k| ≤ 2knk−1

for any l.

Lemma IV.4. For any k ∈ Z and any z1, · · · , zk on the unit
circle of C, there always exists a degree m = O(k2 log k)

polynomial P (z) =
m∑
j=0

cjz
j with the following properties:

Property I P (zi) = 0, ∀i ∈ {1, · · · , k},
Property II c0 = 1,

Property III |cj | ≤ 11, ∀j ∈ {1, · · · ,m}.

Proof of Claim IV.2. For x(t) =
k∑

i=1

vie
2πifit, we fix t0 and

τ then rewrite x(t0+j ·τ) as a polynomial of bi = vi·e2πifit0

and zi = e2πifiτ for each i ∈ [k].

x(t0 + j · τ) =
k∑

i=1

vie
2πifi·(t0+j·τ)

=
k∑

i=1

vie
2πifit0 · e2πifi·jτ

=
k∑

i=1

bi · zji .

Given k and z1, · · · , zk, let P (z) =
m∑
j=0

cjz
j be the degree

m polynomial in Lemma IV.4.

m∑
j=0

cjx(t0 + jτ) =
m∑
j=0

cj

k∑
i=1

bi · zji

=
k∑

i=1

bi

m∑
j=0

cj · zji

=
k∑

i=1

biP (zi),

= 0, (4)

where the last step follows by Property I of P (z) in Lemma

IV.4. From the Property II and III of P (z), we obtain

x(t0) = −
m∑
j=1

cjx(t0 + jτ).

B. Bounding growth outside the interval

Here we show signals with sparse Fourier transform

cannot grow too quickly outside the interval.

Lemma IV.5. Let x(t) be a k-Fourier-sparse signal. For
any T > 0 and any t > T ,

|x(t)|2 ≤ k7 · (2kt/T )2.5k · ‖x‖2T .

Proof: For any t > T , let t = t0 + n · τ such that

t0 ∈ [0, T/k], τ ∈ [0, T/k] and n ≤ 2kt
T . We define bi =

vie
2πifit0 , and zi = vie

2πifiτ such that x(t0 + n · τ) =
k∑

j=1

bjz
n
j .

By Lemma IV.3, we have for any z1, z2, · · · , zk and any

n,

zn ≡
k−1∑
i=0

aiz
i (mod

k∏
i=1

(z − zi)),

where |ai| ≤ 2k ·nk, ∀i ∈ {0, 1, · · · , k−1}. Thus, we obtain

x(t0 + nτ) =
k∑

j=1

bjz
n
j =

k∑
j=1

bj(
k−1∑
i=0

aiz
i
j).
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From the fact that x(t0 + i · τ) =
k∑

j=1

bjz
i
j , we simplify it to

be

x(t0 + nτ) =
k−1∑
i=0

ai

k∑
j=1

bjz
i
j =

k−1∑
i=0

aix(t0 + i · τ).

Because (t0 + i · τ) ∈ [0, T ] for any i = 0, · · · , k − 1, we

have |x(t0 + iτ)|2 ≤ max
t∈[0,T ]

|x(t)|2 � k4 log3 k‖x‖2T from

Lemma IV.1. Hence

|x(t0 + n · τ)|2 ≤ k
k−1∑
i=0

|ai|2 · |x(t0 + i · τ)|2

≤ k
k−1∑
i=0

n2.2k · max
t∈[0,T ]

|x(t)|2

≤ k7 · (2kt/T )2.2k‖x‖2T .
Thus, we complete the proof.
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