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Abstract—We study the problem of computing the largest
root of a real rooted polynomial p(x) to within error ‘z’ given
only black box access to it, i.e., for any x, the algorithm can
query an oracle for the value of p(x), but the algorithm is
not allowed access to the coefficients of p(x). A folklore result
for this problem is that the largest root of a polynomial can
be computed in O(n log (1/z)) polynomial queries using the
Newton iteration. We give a simple algorithm that queries the
oracle at only O(log n log(1/z)) points, where n is the degree of
the polynomial. Our algorithm is based on a novel approach for
accelerating the Newton method by using higher derivatives.

Keywords-polynomial roots, Newton’s method.

I. INTRODUCTION

Computing the roots of a polynomial is a fundamental

algorithmic problem. According to the folklore Abel-Ruffini

theorem, polynomials of degree five or higher do not have any

algebraic solution in general, and the roots of polynomials

can be irrational. Therefore, the roots of a polynomial can

be computed only to some desired precision. The classical

Newton’s method (also known as the Newton-Raphson

method) is an iterative method to compute the roots of a

real rooted polynomial. Starting with an initial upper bound

x0 ∈ R on the largest root of a polynomial f(x) of degree

n, the Newton’s method iteratively computes better estimates

to the largest root as follows

xt+1 := xt − f(xt)

f ′(xt)
.

A folklore result is that after O
(
n log(x0/ε)

)
iterations, xt

will be ε-close to the largest root of the polynomial.

We study the problem of computing the largest root of a

real rooted polynomial p(x) given only blackbox access to

it, i.e., for any x ∈ R, the algorithm can query an oracle for

the value of p(x), but the algorithm is not allowed access

to the coefficients of p(x). This model is useful when the

polynomial is represented implicitly, and each evaluation of

the polynomial is computationally expensive. An important

example is the characteristic polynomial, say f(x), of a

matrix, say A; each evaluation of f(x) amounts to computing

the determinant of the matrix (A− xI). More generally,

equations involving determinants of polynomial matrices fall

into this category. A slightly modified Newton’s method

can be used to compute the largest root of a polynomial

using O
(
n log(x0/ε)

)
black box queries; we review this in

Section II.

Computational Model: The two most common ways

of measuring the time complexity of an algorithm are its

arithmetic complexity, and its boolean or bit complexity.

Arithmetic complexity counts the number of basic arithmetic

operations (i.e. addition, subtraction, multiplication, divi-

sion) required to execute an algorithm, whereas boolean/bit

complexity counts the number of bit operations required to

execute the algorithm. For most algorithms for combinatorial

optimization problems, these two notions of time complexity

are roughly the same with arithmetic operations being done

on O (log n)-bit numbers. However, for many numerical

algorithms, they can differ vastly. For example, Gaussian

elimination is usually said to take O
(
n3
)

time, but this

usually refers to the number of arithmatic operations, and

if done naively, the intermediate bit complexity can be

exponential in n [Bla66], [Fru77]. However, using a more

careful variant of Gaussian elimination due to Edmonds

[Edm67], the bit complexity is known to be Õ
(
n4
)

(see

also [Bar68], [Dix82], [Sch98]). In this paper, we will be

bounding the bit complexity of our algorithms.

Polynomial Time Algorithms: An algorithm is said

to have a polynomial running time if its running time is

polynomial in the input description, i.e., the number of

bits to describe the p(x) (if p(x) is given explicitly), and

the parameter ε, the latter being log(1/ε) bits. Standard

iterative optimization methods can take time that grows

polynomially with 1/ε, which is undesirable since they are

not polynomial time algorithms. Given only black box access

to p(x), we seek algorithms that query the black box in

O (poly(n, log(1/ε))) points in R, where each queried point

is represented using O (poly(n, log(1/ε))) bits.

A. Our results

In this paper we study an alternative approach, inspired by

the classical Newton iteration for finding roots of polynomials.

Applying the Newton iteration (see Section II), we see that

the iterates converge within Õ (n) iterations. Can we do

better than this? Our main idea is to accelerate the Newton

iteration using higher derivatives of the polynomial. The

standard generalization to Householder methods via higher

derivatives [Hou70], [OR70] does not give any significant
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benefit. In Section III, we give an new iteration based on

higher derivatives that converges faster, yielding our following

main result. The complete algorithm is described in Figure 1.

Theorem I.1. Given black-box access to a monic real
rooted polynomial f of degree n, an upper bound γ on
the absolute value of its roots, and an error parameter
ε ∈ (0, 1/2], there exists a deterministic algorithm that
queries f at O (log n log(γ/ε)) locations, each having
precision O (log n log(nγ/ε)) bits, and outputs an x ∈ Q

satisfying λ1 � x � λ1 + ε, where λ1 is the largest root of
f .

Computing Matrix Eigenvalues: For a matrix A ∈ Zn×n,

its characteristic polynomial is defined as f := det (xI −A).
The eigenvalues of a matrix are also the roots of its

characteristic polynomial. We note that the algorithms for

computing the roots of an explicit polynomial are not

directly useful for computing the eigenvalues of a matrix,

as computing the characteristic polynomial of a matrix is a

computationally non-trivial task. To the best of our knowl-

edge, the current best algorithm to compute the characteristic

polynomial of a matrix is due to Kaltofen and Villard

[KV05] achieving bit complexity Õ
(
n2.697

)
. Computing

the determinant of an integer matrix has asymptotic bit

complexity O
(
nω log2 n log(‖A‖F )

)
for any integer matrix

A [Sto05]. Using this determinant algorithm as a black box,

we get the following result for computing the eigenvalues of

matrices.

Theorem I.2. Given a symmetric matrix A ∈ Qn×n, and a
parameter ε ∈ (0, 1/2], there exists a Las Vegas algorithm
having bit complexity Õ

(
nω log2 (‖A‖F /ε)

)
that outputs

an x ∈ Q satisfying λ1 � x � λ1 + ε, where λ1 is the
largest eigenvalue of A.

A problem that arises naturally in the context of solving

SDPs is that of determining whether a given matrix is PSD.

Theorem I.2 yields an algorithm to check if a matrix is

approximately PSD.

Remark I.3. Given a symmetric matrix A ∈ Qn×n, and a

parameter ε ∈ (0, 1/2], there exists a Las Vegas algorithm

having bit complexity Õ
(
nω log2 (‖A‖F /ε)

)
to check if

A � −εI .

B. Related work

Accelerated Newton’s methods: A folklore result about

the Newton’s iteration is that it has quadratic local conver-

gence, i.e., if the initial estimate x0 is “close” to a root a of

the function f , then (xt+1 − a) is roughly O
(
(xt − a)

2
)

.

Kou et. al.[KLW06] gave a modification to the Newton’s

method that has local cubic convergence. Gerlach [Ger94]

(see also [FP96], [KKZN97], [KG00]) gave a way to modify

the function f to obtain a function Fm (where m ∈ Z+ is

a parameter) such that the Newton’s method applied to Fm

will yield local convergence of order m (the complexity of

the computation of Fm increases with m). Ezquerro and

Hernández [EH99], and Gutiérrez and Hernández [GH01]

gave an acceleration of the Newton’s method based on the

convexity of the function. Many other modifications of the

Newton’s method have been explored in the literature, for

e.g. see [OW08], [LR08], etc. None of these improve the

asymptotic worst-case complexity of root-finding.

Explicit polynomials: A related problem is to compute

the roots of an explicit polynomial of degree n, say p(x),
to within error ε. The Jenkins-Traub [JT70] algorithm for

computing the roots of polynomials converges at better than

quadratic rate. Pan [Pan96], [Pan97] gave an algorithm to

compute all the roots of an explicit polynomial using Õ (n)
arithmetic operations; the bit complexity of this algorithm is

bounded by Õ
(
n3
)
. Bini and Pan [BP98] gave an algorithm

to compute the roots of a real-rooted polynomial; the bit

complexity of their algorithm is bounded by Õ
(
n2
)
. We

note that this model is different from the blackbox model

that we study; in the blackbox model of a polynomial p,

the algorithm can query an oracle for the value of p(x) for

any x ∈ R, but the algorithm is not allowed access to the

coefficients of p(x).
The Householder’s methods [Hou70], [OR70] are a class

of iterative root-finding algorithms. Starting with an initial

guess x0, the dth order iteration is defined as

xt+1 := xt + d
(1/f)(d−1)(xt)

(1/f)(d)(xt)

where (1/f)(d) is the dth derivative of 1/f . If the initial

guess x0 is sufficiently close to a root, then this iteration has

convergence of the order d+ 1.

We refer the reader to [BP94], [McN07], [MP13] for a

comprehensive discussion on algorithms for computing the

roots of polynomials. In particular, Chapter 9 of [MP13]

discusses methods involving higher derivatives.

Matrix Eigenvalues: The Power Iteration algorithm

[MPG29] produces an ε-approximation to the top eigenvalue

of a matrix in (log n)/ε iterations, thereby giving a running

time bound of O
(
n2(log n)/ε

)
. Other methods such as the

Lanczos algorithm [Lan50], the Arnoldi iteration [Arn51],

etc. also have a polynomial dependance on 1/ε in the running

time [KW92], whereas methods such as the Jacobi Method

[Rut71], the Householder method [Hou58], etc. have worst

case running time O
(
n3
)
. Faster methods are known for

special matrices such as diagonally dominant matrices (of

which Laplacians are an important special case), but their

dependence on 1/ε is again polynomial [Vis13].

An algorithm for computing the largest eigenvalue of a

matrix can be obtained by checking PSDness of a sequence

of matrices, namely, a binary search for x s.t. xI − A is

PSD. Checking whether a matrix is PSD can be done using

Cholesky decomposition or Gaussian elimination in Õ
(
n4
)

bit operations [Edm67]. Independently and concurrently,
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Ben-Or and Eldar [BOE15] gave an algorithm having bit

complexity Õ (nω+ν) for any ν > 0, to compute all the

eigenvalues of a matrix.

Algorithms due to [PC99] (see also [NH13]) compute all

the eigenvalues of a matrix in Õ
(
n3
)

arithmetic operations.

[DDH07] gave an algorithm to compute the eigenvalues in

Õ (nω) arithmetic operations. We refer the reader to [BP94],

[PTVF07], [GL12] for a comprehensive discussion.

C. Preliminaries

Assumption I.4. Given a real rooted polynomial f of degree

n and an upper bound a on the absolute value of its roots,

the roots of the polynomial f(4ax)/(4a)n lie in [−1/4, 1/4]
and the roots of the polynomial f(4ax − 1/4)/(4a)n lie

in [0, 1/2]. Therefore, we can assume without loss of

generality that the given polynomial has all its roots in

the range [0, 1/2]. Similarly, for a symmetric matrix A,

0 � I/4+A/(4 ‖A‖F ) � I/2. Note that in both these cases,

we will need to scale the error parameter ε accordingly; since

our algorithms will only have a logarithmic dependance on

1/ε, this scaling will not be a problem.

Notation: For an x ∈ R, we use B (x) to denote the bit

complexity of x, i.e., the number of bits need to represent

x. For a function g, we use Õ (g) to denote O (g logc g) for

absolute constants c. For a function g, we use g(k)(x) to

denote its kth derivative w.r.t. x.

II. THE BASIC NEWTON ITERATION

For finding the root of a polynomial function f(·) : R→ R,

the basic Newton iteration is the following: initialize x0 = 1,

and then

xt+1 := xt − f(xt)

f ′(xt)
.

If x0 � λ1, then this iteration maintains xt � λ1 ∀t and

reduces xt − λ1 by a factor of at least
(
1− 1

n

)
from the

following observation.

Proposition II.1. For any t, the Newton iterate xt satisfies
xt � λ1 and

xt − λ1 � f(xt)

f ′(xt)
� xt − λ1

n

Proof: Since f(x) = Πi∈[n](x− λi) we have

f(x)

f ′(x)
=

1∑
i∈[n]

1
x−λi

, x− λ1 � 1∑
i∈[n]

1
x−λi

� x− λ1

n
.

Along with the next elementary lemma, we get a bound

of O (n log (1/ε)) on the number of iterations needed for xt

to be ε close to λ1.

Lemma II.2. Let x0, x1, . . . be iterates satisfying x0 � λ1

and
xt+1 � xt − xt − λ1

q(n)
.

Then for all t � q(n) ln(1/ε), we have 0 � xt − λ1 � ε .

Proof: Suppose the condition is satisfied. Then,

xt+1 − λ1

xt − λ1
� 1− 1

q(n)
.

Therefore,(
xt − λ1

)
�
(
1− 1

q(n)

)t (
x0 − λ1

)
�
(
1− 1

q(n)

)t

.

Hence, for all t � q(n) log (1/ε), we have 0 � xt−λ1 � ε .

This leaves the task of computing f ′(x). We can simply use

the approximation (f(x+δ)−f(x))/δ for a suitably small δ.

Thus the modified iteration which only needs evaluation of f
(i.e., determinant computations when f is the characteristic

polynomial of a matrix), is the following: initialize x0 = 1,

and then

xt+1 := xt − δ

2

f(xt)

f(xt + δ)− f(xt)

with δ = ε2.

When f(·) is the characteristic polynomial of a matrix A,

evaluation of f(x) reduces to computing det(A−xI) which

can be done using Theorem III.10. This gives an overall bit

complexity of Õ
(
nω+1

)
for computing the top eigenvalue.

III. ACCELERATING THE NEWTON ITERATION

To see the main idea, consider the following family of

functions. For any k ∈ Z, define

gk(x) :=
∑
i∈[n]

1

(x− λi)
k
.

We define the k’th order iteration to be

xt+1 := xt − 1

n1/k

gk−1(x
t)

gk(xt)
(1)

Note that g1(x) = f ′(x)/f(x) and for k = 1 we get the

Newton iteration, as g0(x) = n. Viewing the gk(x) as the

k’th moment of the vector
(

1
x−λ1

, 1
x−λ2

, . . . , 1
x−λn

)
, we can

use the following basic norm inequality.

Lemma III.1. For any vector X ∈ Rn,
1

n1/k
‖X‖k−1

k−1 ‖X‖∞ � ‖X‖kk � ‖X‖k−1
k−1 ‖X‖∞ .

Proof: Using Holder’s Inequality, we get

‖X‖k−1
k−1 =

∑
i

X(i)k−1 �
(∑

i

X(i)k

) k−1
k

n
1
k

= ‖X‖k−1
k n

1
k .

By the monotonicity of norms, we have ‖X‖∞ � ‖X‖k.

Therefore,

1

n1/k
‖X‖k−1

k−1 ‖X‖∞ � ‖X‖kk .
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Next,

‖X‖kk =
∑
i

X(i)k � ‖X‖∞
∑
i

X(i)k−1

= ‖X‖k−1
k−1 ‖X‖∞ .

Lemma III.1 implies that

xt − λ1 � 1

n1/k

gk−1(x
t)

gk(xt)
� xt − λ1

n1/k
.

Therefore, the distance to λ1 shrinks by a factor of (1 −
1/n1/k) in each iteration, thereby needing only Õ

(
n1/k

)
iterations in total.

This brings us to question of how to implement the

iteration, i.e., how to compute gk(x)? We first note that

these can be rewritten in terms of higher derivatives of g1(x).

Let g
(i)
k (x) be the i’th derivative of gk(x).

Lemma III.2. For any k ∈ Z,

g′k(x) = −k gk+1(x) .

g
(i)
k (x) = (−1)igk+i(x)

i−1∏
j=0

(k + j) .

Proof:

g′k(x) =
d

dx

(
n∑

i=1

1

(x− λi)k

)

=
n∑

i=1

−k · 1

(x− λi)k+1
= −k gk+1(x) .

The second part is similar.

Therefore the terms in iteration (1) are simply a ratio

of higher derivatives of g1(x). In the complete algorithm

below (Figure 1), which only needs evaluations of f(·), we

approximate gl(x) using finite differences. The folklore finite

difference method says that for any function f : R→ R, its

kth derivative can be estimated using

1

δk

(
k∑

i=0

(−1)i
(
k

i

)
f (x+ (k − i)δ)

)

for small enough δ. We prove this rigorously in our setting

in Lemma III.7.

Discussion: While it is desirable for xt to be very close

to λ1, for g̃k(x
t) to be a good approximation of gk(x

t),
we need α and δ to be sufficiently smaller than xt − λ1.

Equivalently, we need a way to detect when xt gets “very

close” to λ1; step 2c does this for us (Lemma III.9). We

also want to keep the bit complexity of xt bounded; step 2d

ensures this by retaining only a small number of the most

significant bits of ut.

The analysis of the algorithm can be summarised as

follows.

Algorithm III.3 (Higher-order Newton Iteration).
Input: A real rooted monic polynomial f of degree n
such that all its roots lie in [0, 1/2] (Assumption I.4),

error parameter ε ∈ (0, 1/2], iteration depth k.

Output: A real number λ satisfying 0 � λ − λ1 � ε,

where λ1 is the largest root of f .

1) Initialize x0 = 1,

ε′ :=
ε

8n1/k
, δ :=

ε′

16(2e)kk
, δ′ := δk+1, α :=

δ′ε′2

2n2

2) Repeat for t = 1 to �16n1/k log(1/ε)	 iterations:

a) Compute g̃k(x
t) as follows.

g̃1(x) :=
1

f(x)

(
f(x+ α)− f(x)

α

)
and g̃k+1(x) :=

(−1)k
k!

1

δk

k∑
i=0

(−1)i
(
k

i

)
g̃1 (x+ (k − i)δ) .

(2)

b) Compute the update

ut :=
1

4n1/k

g̃k−1(x
t)

g̃k(xt)
.

c) If ut � ε′, then Stop and output xt.

d) If ut > ε′, then round down ut to an accuracy

of ε′/n to get ũt and set xt+1 := xt − ũt.

3) Output xt.

Figure 1. The Accelerated Newton Algorithm

Theorem III.4. Given a monic real rooted polynomial
f : R → R of degree n, having all its roots in [0, 1/2],
Algorithm III.3 outputs a λ satisfying

0 � λ− λ1 � ε

while evaluating f at O
(
kn1/k log(1/ε)

)
locations

on R. Moreover, given access to a blackbox
subroutine to evaluate f(x) which runs in time 1

Tf (B (x)) , Algorithm III.3 has overall time complexity
Õ
(
kn1/k log(1/ε)Tf

(
k2 + k log(n/ε)

))
.

A. Analysis

We start with a simple fact about the derivaties of

polynomials.

Fact III.5. For a degree n polynomial f(x) = Πi∈[n](x−λi),

1We assume that Tf (cn) = O
(
Tf (n)

)
for absolute constants c, and

that Tf (n1) � Tf (n2) if n1 � n2.
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and for k ∈ Z�0, k � n, we have

f (k)(x) = k!f(x)

⎛
⎜⎜⎝∑

S⊂[n]
|S|=k

Πi∈S
1

x− λi

⎞
⎟⎟⎠ .

Proof: We prove this by induction on k. For k = 1,

this is true. We assume that this statement holds for k = l
(l < n), and show that it holds for k = l + 1.

f (l+1)(x) =
d

dx
f (l)(x)

= l!
d

dx

⎛
⎜⎜⎝∑

S⊂[n]
|S|=l

f(x)Πi∈S
1

x− λi

⎞
⎟⎟⎠

= l!
∑
S⊂[n]
|S|=l

∑
j∈[n]\S

(
f(x)Πi∈S

1

x− λi

)
1

x− λj

= l!
∑
S⊂[n]
|S|=l+1

(l + 1)f(x)Πi∈S
1

x− λi

= (l + 1)!f(x)
∑
S⊂[n]
|S|=l+1

Πi∈S
1

x− λi
.

Next, we analyze g̃1(·).

Lemma III.6. For x ∈ [λ1 + ε′, 1], g̃1(x) defined in
Algorithm III.3 satisfies g1(x) � g̃1(x) � g1(x) + δ′.

Proof:

Using ξ := 1/(x− λ1) for brevity,

f(x+ α)− f(x)

α

=
1

α

⎛
⎝ ∞∑

j=0

αj

j!
f (j)(x)− f(x)

⎞
⎠

(Taylor series expansion of f (·) )

= f ′(x) +
1

α

⎛
⎜⎜⎝ ∞∑

j=2

αjf(x)
∑
S⊂[n]
|S|=j

Πi∈S
1

x− λi

⎞
⎟⎟⎠

(Using Fact III.5)

� f ′(x) +
f(x)

α

⎛
⎝ ∞∑

j=2

αjnjξj

⎞
⎠

(
Using

1

x− λi
� ξ

)

� f ′(x) + f(x)
α(nξ)2

1− αnξ

� f ′(x) + δ′f(x)
(Using definition of α) .

Since all the roots of f(x) are in [0, 1/2] and x ∈ [λ1+ε′, 1],
we havef(x) � 1. Therefore,

g̃1(x) =
1
α (f(x+ α)− f(x))

f(x)
� g1(x) + δ′ .

Next, since f(x), x− λi � 0,

f(x+ α)− f(x)

α

= f ′(x) +
1

α

⎛
⎜⎜⎝ ∞∑

j=2

αjf(x)
∑
S⊂[n]
|S|=j

Πi∈S
1

x− λi

⎞
⎟⎟⎠

� f ′(x) .

Therefore, g̃1(x) � g1(x).

The crux of the analysis is to show that g̃l(x) is “close”

to gl(x). This is summarised by the following lemma.

Lemma III.7 (Main Technical Lemma). For x ∈ [λ1+ε′, 1],
g̃k+1(x) defined in Algorithm III.3 satisfies

|g̃k+1(x)− gk+1(x)| �
1

4
gk+1(x) .

Proof: We first bound the quantity hk+1(x) defined as
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follows.

hk+1(x)

:=
(−1)k
k!δk

(
k∑

i=0

(−1)i
(
k

i

)
g (x+ (k − i)δ)

)

=
(−1)k
k!δk

⎛
⎝ k∑

i=0

(−1)i
(
k

i

) ∞∑
j=0

((k − i)δ)j

j!
g(j)(x)

⎞
⎠

(Taylor series expansion of g (·) )

=
(−1)k
k!δk

⎛
⎝ ∞∑

j=0

δjg(j)(x)

j!

k∑
i=0

(−1)i
(
k

i

)
(k − i)j

⎞
⎠

(Rearranging summations)

=
(−1)k
k!δk

⎛
⎝ ∞∑

j=0

δjg(j)(x)

j!
(−1)k

k∑
i=0

(−1)i
(
k

i

)
ij

⎞
⎠

(Rearranging summation)

= gk+1(x)

+
(−1)k
k!δk

⎛
⎝ ∞∑

j=k+1

δjg(j)(x)

j!
(−1)k

k∑
i=0

(−1)i
(
k

i

)
ij

⎞
⎠

(Using Fact III.8) .

Using ξ := 1/(x− λ1) for brevity,

|hk+1(x)− gk+1(x)|

=

∣∣∣∣∣∣ (−1)
k

k!

⎛
⎝ ∞∑

j=k+1

δj−kg(j)(x)

j!

k∑
i=0

(−1)i
(
k

i

)
ij

⎞
⎠
∣∣∣∣∣∣

� 1

k!

⎛
⎝ ∞∑

j=k+1

δj−kgj+1(x)

(
k∑

i=0

(
k

i

)
ij

)⎞⎠
(Using Lemma III.2)

� 1

k!

∞∑
j=k+1

δj−k
(
gk+1(x)ξ

j−k
)
kj2k

(Using gj+1(x) � ξj−kgk+1(x))

= gk+1(x)
(2k)k

k!

∞∑
p=1

(kδξ)
p

(Substituting p for j − k)

= gk+1(x)
(2k)k

k!

kδξ

1− kδξ
.

Next, using Lemma III.6 and (2), we have

|g̃k+1(x)− hk+1(x)| �
∣∣∣∣∣ 1

k!δk

(
k∑

i=0

(−1)i
(
k

i

)
δ′
)∣∣∣∣∣

� δ′2k

k!δk
.

|g̃k+1(x)− gk+1(x)|
� |hk+1(x)− gk+1(x)|+ |g̃k+1(x)− hk+1(x)|

� gk+1(x)
(2k)k

k!

kδξ

1− kδξ
+

δ′2k

k!δk

� gk+1(x)4kδξ
(2k)k

k!
(Using gk+1(x) � 1 and δ′ = δk+1)

� gk+1(x)(2e)
k4kδξ

(Using Stirling’s approximation for k!)

� 1

4
gk+1(x) .

Fact III.8. For j, k ∈ Z�0,
k∑

i=0

(−1)i
(
k

i

)
ij =

{
0 for j < k

(−1)kk! for j = k
.

Proof: Define the polynomial Sj(x) to be

Sj(x) := x
d

dx
. . . x

d

dx︸ ︷︷ ︸
j times

(1 + x)k . (3)

Then,

Sj(x) =
k∑

i=0

(
k

i

)
ijxi and Sj(−1) =

k∑
i=0

(−1)i
(
k

i

)
ij .

Now, for j < k, (1+x) will be a factor of the polynomial in

(3). Therefore, Sj(−1) = 0 for j < k. For j = k, out of the

k+1 terms of Sk(x) in (3), the only term that does not have

a multiple of (1+x) is xkk!. Therefore, Sk(−1) = (−1)kk!.

Next we show that the update step in Algorithm III.3

(step 2b) makes sufficient progress in each iteration.

Lemma III.9. For xt ∈ [λ1 + ε′, 1],

xt − λ1

8n1/k
� ut � xt − λ1

2
.

Proof: We first prove the upper bound.

ut =
1

4n1/k

g̃k−1(x
t)

g̃k(xt)
� 1

4n1/k

(1 + 1/4)gk−1(x
t)

(1− 1/4)gk(xt)

� xt − λ1

2
.

Here, the first inequality uses Lemma III.7 and the

second inequality uses Lemma III.1 with the vector(
1

xt−λ1
, . . . , 1

xt−λn

)
. Next,

ut =
1

4n1/k

g̃k−1(x
t)

g̃k(xt)
� 1

4n1/k

(1− 1/4)gk−1(x
t)

(1 + 1/4)gk(xt)

� xt − λ1

8n1/k
.
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Here again, the first inequality uses Lemma III.7 and

the second inequality uses Lemma III.1 with the vector(
1

xt−λ1
, . . . , 1

xt−λn

)
.

Putting it together: We now have all the ingredients to

prove Theorem III.4. Theorem I.2 follows from Theorem III.4

by picking k = log n.

Proof of Theorem III.4: We first analyze the output

guarantees of Algorithm III.3, and then we bound its bit

complexity.
Invariants and Output Guarantees: W.l.o.g., we may

assume that x0−λ1 � ε′. We will assume that xt−λ1 � ε′,
and show that if the algorithm does not stop in this iteration,

then xt+1 − λ1 � ε′, thereby justifying our assumption.

Since we do step 2d only when ut > ε′, we get using

Lemma III.9 that

ũt � ut − ε′

n
>

ut

2
� xt − λ1

16n1/k
.

Using Lemma II.2, we get that for some iteration t �
16n1/k log(1/ε) of Algorithm III.3, we will have xt−λ1 � ε.

Therefore, if the algorithm does not stop at step 2c, and

terminates at step 3, the λ output by the algorithm will

satisfy 0 � λ−λ1 � ε. If the algorithm does stop at step 2c,

i.e., ut � ε′, then from Lemma III.9 we get

xt − λ1 � 8n1/k ut � 8n1/k ε′ � ε .

Therefore, in both these cases, the algorithm outputs a λ
satisfying 0 � λ− λ1 � ε.

Next, if the algorithm does not stop in step 2c, then we

get from Lemma III.9 that

ε′ < ut � xt − λ1

2
(4)

and since ũt � ut,

xt+1 − λ1 =
(
xt − ũt

)
− λ1 �

(
xt − ut

)
− λ1

(from step 2b of Algorithm III.3)

� xt − λ1

2
(from Lemma III.9)

> ε′ (from (4)) .

Therefore, if we do not stop in interation t, then we ensure

that xt+1 − λ1 � ε′.
Bit Complexity: We now bound the number of bit

operations performed by the algorithm. We will show by

induction on t that the bit complexity of each xt is

B
(
xt
)
� log(n/ε′) . (5)

We will assume that B (xt) � log(n/ε′). We use this to

bound the number of bit operations performed in each step

of Algorithm III.3 and to show that B
(
xt+1

)
� log(n/ε′).

Each computation of g̃1(·) involves two computations of

f(·) and one division by f(·). The bit complexity of the

locations at which f(·) is computed can be upper bounded

by

B
(
xt
)
+ B (kδ) + B (α) = O (B (α)) .

From our assumption that Tf (n1) � Tf (n2) , ∀n1 � n2,

and that Tf (cn) = O (Tf (n)), we get that the bit complexity

of each of these f(·) computations can be bounded by

O (Tf (B (α))). Since, division can be done in nearly linear

time [SS71], the bit complexity of the computation of g̃1(·)
is Õ (Tf (B (α))).

The computation of the g̃k(·) involves k computations of

g̃1(·) and one division by δk, and therefore can be done using

Õ (kTf (B (α))) bit operations. Next, the computation of ut

involves computing the ratio of g̃k−1(x
t) and g̃k(x

t), both

of which have bit complexity Õ (kTf (B (α))). Therefore, ut

can be computed in Õ (kTf (B (α))) bit operations [SS71].

Finally, since xt+1 = xt − ũt, we get that B
(
xt+1

)
=

B (xt − ũt) � log(n/ε′). For our choice of parameters

B (α) = log

(
2n2(16k)k+1(2e)k

2+k

ε′k+3

)

= O
(
k2 + k log(n/ε)

)
.

Finally, since the number of iterations in the algorithm

is at most 16n1/k log (1/ε), the overall query complexity of

the algorithm is O
(
n1/k log (1/ε) · k

)
, and the overall bit

complexity (running time) is

Õ
(
n1/k log (1/ε) · kTf

(
k2 + k log(n/ε)

))
.

B. Computing the top eigenvalue of a matrix

Our algorithm (Theorem I.2) uses an algorithm the com-

pute the determinant of a matrix as a subroutine. Computing

the determinant of a matrix has many applications in

theoretical computer science and is a well studied problem.

We refer the reader to [KV04] for a survey. The algorithm

for computing the determinant of a matrix with the current

fastest asymptotic running time is due to Storjohann [Sto05].

Theorem III.10 ([Sto05]). Let A ∈ Zn×n. There exists a
Las Vegas algorithm that computes det(A) using an expected
number of O

(
nω log2 n log ‖A‖F

)
bit operations.

Proof of Theorem I.2: Using Theorem III.10, each

computation of f(x) = det(xI −A) can be done in time

O
(
nω log2 n log (‖A‖F /α)

)
= O

(
nω log2 n

(
k2 log (‖A‖F /ε)

))
Using Theorem III.4 with k = �log n	, the overall bit

complexity (running time) of Algorithm III.3 is

O
(
nω log5 n log2 (‖A‖F /ε)

)
.
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