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Abstract—Recent work has made substantial progress in
understanding the transitions of random constraint satisfaction
problems (CSPs). In particular, for several of these models, the
exact satisfiability threshold has been rigorously determined,
confirming predictions from the statistical physics literature.
Here we revisit one of these models, random regular NAE-SAT:
knowing the satisfiability threshold, it is natural to study, in the
satisfiable regime, the number of solutions in a typical instance.
We prove here that these solutions have a well-defined free
energy (limiting exponential growth rate), with explicit value
matching the one-step replica symmetry breaking prediction.
The proof develops new techniques for analyzing a certain
“survey propagation model” associated to this problem. We
believe that these methods may be applicable in a wide class
of related problems.
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I. INTRODUCTION

In a general random constraint satisfaction problem (CSP),

there are n variables taking values in a finite alphabet X ,

subject to a random collection of constraints. In previous

works on models of this kind, it has emerged that the

space of solutions — a random subset of Xn — can

have a complicated structure, posing major obstacles to

mathematical analysis.

On this front, major advances were achieved by statistical

physicists, who developed powerful analytic heuristics to

shed light on the behavior of random CSPs ([1] and refer-

ences therein). Their insights and methods are fundamental

to the current understanding of random CSPs.

One prominent application of the physics heuristic is in

giving explicit predictions for the locations of satisfiability

thresholds in a large class of random CSPs ([2] and others).

Some of these thresholds are established rigorously in recent

works [3], [4], [5].

However, the satisfiability threshold is only one aspect of

the rich picture that physicists have developed. There are

deep conjectures for the behavior of these models inside

the satisfiable regime, and it remains an outstanding math-

ematical challenge to prove them. In this paper we address

one part of this challenge, concerning the total number of

solutions for a typical instance in the satisfiable regime.

A. Main result

Given a CNF boolean formula, a not-all-equal-SAT (here-

after NAE-SAT) solution is an assignment x of literals to

variables such that both x and its negation �x evaluate to

TRUE — equivalently, such that no clause gives the same

evaluation to all its variables. A k-NAE-SAT problem is one

in which each clause has exactly k literals; it is termed

d-regular if each variable appears in exactly d clauses.

Sampling such a formula in a uniformly random manner

gives rise to the random d-regular k-NAE-SAT model. We

refer to [6] for important early work on the closely related

model of random (Erdős–Rényi) NAE-SAT. The appeal of

this model is that it has certain symmetries making the

analysis particularly tractable, yet it is expected to share

most of the interesting qualitative phenomena exhibited by

other commonly studied problems, including random k-SAT

and random graph colorings.

Following convention, we fix k and then parametrize the

model by its clause-to-variable ratio, α “ d{k. The partition
function of the model, denoted Z ” Zn, is simply the

number of valid NAE-SAT assignments for an instance on

n variables. It is conjectured that for each k ě 3, the model

has an exact satisfiability threshold αsatpkq: for α ă αsat

it is satisfiable (Z is positive) with high probability, but

for α ą αsat it is unsatisfiable (Z is zero) with high

probability. (An event is said to hold with high probability
if its probability tends to one in the limit n Ñ 8, with k
and α fixed.) This has been proved [3] for all k exceeding

an absolute constant k0, together with an explicit formula

for αsat which matches the physics prediction. The exact

formula (described in [3]) is rather intricate so we omit it

here, and note only its approximate value

αsat “
ˆ
2k´1 ´ 1

2
´ 1

4 ln 2

˙
ln 2` εk (1)

where εk denotes an error tending to zero as k Ñ8.

We say the model has free energy fpαq if Z1{n converges

to fpαq in probability as nÑ8. A priori, the limit may not

be well-defined. If it exists, however, Markov’s inequality

and Jensen’s inequality imply that it must be upper bounded

by the replica symmetric free energy

fRSpαq ” pEZq1{n “ 2p1´ 2{2kqα. (2)

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.82

723

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.82

724

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.82

724



An intriguing prediction from the physics analysis [7], [8]

is that there is a critical value αcond strictly below αsat, such

that fpαq and fRSpαq agree up to α “ αcond and diverge

thereafter. Since fRS
is analytic, f must be non-analytic at

αcond. This is the condensation or Kauzmann transition, to be

further described below. For α P pαcond, αsatq the conjecture

is that fpαq takes a value f1RSBpαq strictly below fRSpαq. See

Figure 1. The function f1RSBpαq is explicit though not simple:

it is derived via the heuristic of one-step replica symmetry
breaking (1RSB), and is presented below in Definition I.4.

α

frs(α)f(α) = f1-rsb(α)

αcond αsat α1

Figure 1: The free energy f is the quantity of interest, while fRS
and f1RSB

are two candidate

explicit formulas for f. For a class of models, the conjecture is that all three functions agree up to

αcond, beyond which f “ f1RSB
diverges from fRS

.

Our main result is to prove this prediction for large k:

Theorem 1.
In random regular k-NAE-SAT with k ě k0, for all α ă
αsatpkq the free energy fpαq exists and equals the predicted
value f1RSBpαq.
Remark I.1.
We allow for k0 to be adjusted as long as it remains an
absolute constant (so it need not equal the k0 from [3]).
The result of Theorem 1 is already proved [3] for

α ď αlbd ” p2k´1 ´ 2q ln 2,
so we restrict our attention to α P pαlbd, αsatq, which is a
strict superset of the condensation regime pαcond, αsatq.

Of course, for α ą αsat, we already know fpαq “ 0. The
case α “ αsat can arise only if dsatpkq ” kαsatpkq is integer-
valued for some k. We have no reason to believe that this
ever occurs; if however it does miraculously occur then the
probability for Z to be positive is bounded away from both
zero and one [3]. In this situation, our methods would show
that Z1{n does not concentrate around a single value but
rather on two values, zero and limαÒαsat

f1RSBpαq.
The condensation transition has been actively studied in

recent work. The existence of a condensation phenomenon

was first established for random NAE-SAT [9], and has since

been found in random regular NAE-SAT and independent set

[3], [4]. It has been demonstrated to occur even at positive

temperature in the problem of hypergraph bicoloring (which

is very similar to NAE-SAT) [10]. However, determining

the precise location of αcond is challenging, and was first

achieved for the random graph coloring model [11] by an

impressive and technically challenging analysis. Subsequent

work pinpoints αcond for random regular k-SAT (which again

is very similar to NAE-SAT) [12]. The main contribution of

this paper is to determine for the first time the free energy

throughout the condensation regime pαcond, αsatq.
In the remainder of this extended abstract we present

some of the physics intuition for this problem, and give an

overview of our approach. The proof appears in the full

version of this paper, which is available online.

(http://arxiv.org/abs/1604.08546).

B. Statistical physics predictions

According to the statistical physics heuristic, the random

regular NAE-SAT model has exactly one level of replica

symmetry breaking (1RSB). We refer to [13, Ch. 19] for

an expository account. We now summarize some of the key

phenomena that are predicted from the 1RSB framework

[7], [1], [8]. While part of the following discussion remains

conjectural, much of it is rigorously established by the

present paper. For this discussion we focus on the leading

exponential terms and ignore exptopnqu corrections.

Take the NAE-SAT model with k, d fixed, and write α ”
d{k. Abbreviate 0 ” TRUE, 1 ” FALSE. For small α, almost

all of the solutions lie in a single well-connected subset

of t0,1un. This holds until a clustering transition αclust,

above which the solution space becomes broken up into

exponentially many well-separated components, or clusters.

For k large, αclust is very small relative to αsat. For α above

αclust, the number of clusters of size exptnsu has mean value

exptnΣps;αqu, and further is concentrated about this mean;

Σ is sometimes termed the “(entropic) cluster complexity
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function.” It is common to abbreviate Σpsq ” Σps;αq.
Summing this prediction over cluster sizes s gives that the

total number Z of NAE-SAT solutions has mean

EZ
.“

ÿ
s

exptnrs` Σpsqsu .“ exptnrs1 ` Σps1qsu,

where
.“ indicates equality up to exptopnqu factors, and

s1 “ argmaxrs` Σpsqs.
It is predicted that the function Σ is continuous and strictly

concave in s, and that s ` Σpsq has a unique maximizer

s1 with Σ1ps1q “ ´1. Note the implicit dependence s1 “
s1pαq, and Σps1q “ Σps1pαq;αq.

Under the 1RSB framework, physicists propose an explicit

(conjectural) formula for Σ. For NAE-SAT and related mod-

els, this explicit calculation reveals another critical value

αcond P pαclust, αsatq, characterized as

αcond “ inftα ě αclust : Σps1pαq;αq ă 0u.
For α ą αcond, EZ is dominated by clusters of size

exptns1u, whose mean number exptnΣps1qu is exponen-

tially small, meaning they are highly unlikely to appear in a

typical realization. Instead, a typical realization is dominated

by clusters of size smax where

smax ” smaxpαq ” argmaxts` Σpsq : Σpsq ě 0u.
Since Σpsmaxq “ 0, it follows that with high probability

Z
.“ exptnrsmax ` Σpsmaxqsu “ exptnsmaxu.

According to this picture, we will have (with high proba-

bility) that Z
.“ EZ for α ď αcond, while Z � EZ for

α ą αcond. See Figure 2.

s s
s‹ s1

(a)

(b)

(c) (c)

(d)

Figure 2: The number of clusters of size roughly exptnsu concentrates around its mean value

exptnΣpsqu. The left panel shows Σpsq ” Σps;αq as a function of s for four different values of

α, together with the tangent lines of slope ´1. In increasing order of α, the curves indicate (A)

αclust ă α ă αcond, (B) α “ αcond, (C) αcond ă α ă αsat, and (D) α “ αsat. The right panel shows

curve (C) only and indicates the locations of s‹ and s1.

Thus, for α ą αcond, the first moment EZ fails to capture

the typical behavior of Z. This difficulty persists up to and

beyond the satisfiability threshold

αsat “ inftα ě αcond : max
s

Σps;αq ă 0u
— indeed, it is well known that there is a non-trivial interval

pαsat, α1q in which EZ � 1 even though Z “ 0 with high

probability.

C. The tilted cluster partition function

Once the function Σps;αq is determined, it becomes

straightforward to derive αcond, αsat, and fpαq. However,

prior works have not taken the approach of actually com-

puting Σ. Indeed, αsat was determined [3] by an analysis in-

volving only maxs Σps;αq, which contains less information

than the full curve Σ. In related models, the determination

of αcond [11], [12] also avoids Σ, going instead through the

so-called “planted model.” In order to obtain Σ, consider the

λ-tilted partition function

Zλ ”
ÿ
γ

|γ|λ (3)

where the sum is taken over all clusters γ. According to the

physics heuristic as described above, EZλ
.“ exptnFpλqu

where F is the Legendre dual of ´Σ:

Fpλq ” p´Σq‹pλq ” max
s
rλs` Σpsqs.

The physics approach to computing Σ is to first compute

F, and then use the involutive property of the Legendre

transform to recover Σ:

Σ “ ´F‹.
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Note that by twice differentiating

Fpλq “ n´1 lnEZλ

with respect to λ, we find that F is convex in λ, so the

resulting Σ will indeed be concave.

The computation of Fpλq may seem at first glance quite

intractable. Indeed, the reason for NAE-SAT solutions to

occur in clusters is that a typical solution has a positive

density of variables which are free, meaning their value

can be changed without violating any clause. Each cluster

(connected component of NAE-SAT solutions, where two

solutions are connected if they differ by a single bit) may

be a complicated subset of t0,1un — changing the value at

one free variable may affect whether its neighbors are free,

so a cluster need not be a simple subcube of t0,1un. We

then wish to sum over the cluster sizes raised to non-integer

powers.

However, in the regime of interest α ě αlbd (see

Remark I.1), the analysis of NAE-SAT solution clusters is

greatly simplified by the fact that in a typical satisfying

assignment the vast majority of variables are frozen rather

than free. The result of this, roughly speaking, is that a

cluster can be encoded by a configuration x P t0,1,fun
(representing its circumscribed subcube, so xv “ f indicates

a free variable) with no essential loss of information. We call

x the frozen configuration representing the cluster. It turns

out that the frozen configurations can be regarded as the

solutions of a certain CSP lifted from the original NAE-SAT

problem — so the physics heuristics can be applied again to

the new CSP. Variations on this idea appear in several places

in the physics literature; in the specific context of random

CSPs we refer to [14], [15], [16].

Analyzing the number of frozen configurations — corre-

sponding to (3) with λ “ 0 — leads to the sharp satisfiability

threshold for this model [3]. To analyze (3) for general λ
requires a deeper investigation of the arrangement of free

and frozen variables in the frozen configurations x. In fact,

the majority of free variables are simply isolated vertices.

A smaller fraction occur in linked pairs, and a yet smaller

fraction occur in components of size three or more. Each free

component T is surrounded by frozen variables, and we let

zpT q count the number of NAE-SAT assignments on T which

are consistent with the frozen boundary. Then the total size

of the cluster represented by x is simply the product of zpT q
over all the free components T of x.

The random NAE-SAT graph has few short cycles, so

almost all of the free components are trees, and so their

weights zpT q can be evaluated recursively by the method

of belief propagation (BP). To implement this, we must

replace variable spins by “messages,” which are indexed by

the directed edges of the graph and so are more natural

for tree recursions. The message mvÑa from variable v to

clause a represents the state of v “in absence of a.” It is also

necessary to introduce a richer alphabet of symbols for these

messages, replacing t0,1,fu with probability measures on

t0,1u (where any non-degenerate measure will project to

f). Thus the message mvÑa represents the distribution at v
(within the cluster) in absence of clause a. The messages are

related to one another via local consistency equations, which

are precisely the BP equations. The configuration m encodes

the same cluster as x, with the key advantage that the cluster
size can be readily deduced from m, as a certain product of
local functions. For the cluster size raised to power λ, simply

raise each local function to power λ. Thus the configurations

m with λ-tilted weights form a spin system (Markov random

field), whose partition function is the quantity of interest

(3). The new spin system is sometimes termed the “auxiliary

model” [13, Ch. 19].

D. One-step replica symmetry breaking

Above, we asserted informally that each BP solution m
encodes a cluster of NAE-SAT solutions. An important caveat

is that this is only rigorous if the free variables in m occur

in trees, separated by frozen regions where we must have

messages mvÑa that are degenerate (supported on either on

0 or on 1). Otherwise, one always has the trivial “replica

symmetric” BP solution where every mvÑa is unifpt0,1uq,
and this is not a “meaningful” solution for large α. One

way to understand this is via the physics calculation of

fRSpαq, which we now describe by way of motivating the

more complicated expression for f1RSBpαq.
Given a random regular NAE-SAT instance G on n vari-

ables, choose k uniformly random variables v1, . . . , vk, and

assume for simplicity that no two of these share a clause.

Then (1) remove the k variables along with their kd incident

clauses, producing an instance G 2, and (2) add dpk ´ 1q
new clauses to G 2, producing G 1. Then G 1 is distributed as

a random regular NAE-SAT instance on n ´ k variables. If

the free energy exists, then

fpαqn .“ Z
.“

ˆ
ZpG q
ZpG 1q

˙n{k
. (4)

Suppose u is a variable in G 1 of degree d ´ 1, meaning it

was a neighbor of a clause a which was deleted from G .

The interpretation of m is that in G 2, the spin at u has law

muÑa, and the different u1s are independent. If every muÑa

is unifpt0,1uq, then

ˆ
ZpG q
ZpG 2q

˙1{k
“ 2p1´ 2{2kqd,

ˆ
ZpG 1q
ZpG 2q

˙1{k
“ p1´ 2{2kqαpk´1q,

(5)

Taking the ratio of these and substituting into (4) gives the

prediction fpαq .“ fRSpαq, which we know to be false for

large α. Thus the replica symmetric m gives the incorrect

prediction. The reason for this failure is that in reality the

u’s are not independent in G 2, but rather are significantly
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correlated even though they are typically far apart in G 2.
This phenomenon of long-range dependence may be taken as

a definition of replica symmetry breaking, and it is expected

to occur precisely for α ą αcond.

The idea of 1RSB is that, in passing from the original

NAE-SAT model to the (seemingly far more complicated)

“auxiliary model” of weighted BP solutions, we in fact return

to replica symmetry, provided Σpsλq is positive for

sλ ” argmaxstλs` Σpsqu. (6)

That is, for such λ, the auxiliary model is predicted to

have correlation decay, in contrast with the long-range

correlations of the original model. The implication is that in

this context, the above heuristic ((4) and (5)) is expected to

yield the correct answer. The replica symmetric BP solution

for the auxiliary model will be a certain measure 9qλ over

messages m. Taking 9qvÑa ” 9qλ is the precise analogue,

in the auxiliary model, of taking mvÑa ” unifpt0,1uq on

every v Ñ a in the original model. Under the assumption

that the auxiliary model has strong correlation decay, (4) and

(5) give an expression for Fpλq in terms of 9qλ.

E. The 1RSB free energy prediction

Having described the heuristic reasoning, we now proceed

to formally state the 1RSB free energy prediction.

We first describe 9qλ as a certain discrete probability mea-

sure over m. Since m is a probability measure over t0,1u, we

can encode it by a single real number x ” mp1q P r0, 1s. A

measure q on m can thus be encoded by an element μ PP
where P is the set of discrete probability measures on r0, 1s.

Now, for any measurable B Ď r0, 1s, define

R̂λμpBq ” Ẑ pμq´1

ż ˆ
2´

k´1ź
i“1

xi ´
k´1ź
i“1

p1´ xiq
˙λ

1

"
1´śk´1

i“1 xi

2´śk´1
i“1 xi ´śk´1

i“1 p1´ xiq
P B

* k´1ź
i“1

μpdxiq,

9RλμpBq ” 9Z pμq´1

ż ˆ d´1ź
i“1

yi `
d´1ź
i“1

p1´ yiq
˙λ

1

" śd´1
i“1 yiśd´1

i“1 yi `śd´1
i“1 p1´ yiq

P B
* d´1ź

i“1

μpdyiq,
(7)

where Ẑ pμq and 9Z pμq are the normalizing constants such

that R̂λμ and 9Rλμ are also probability measures on r0, 1s.
(For λ “ 0 we make the convention that 00 “ 0.) Denote

Rλ ” 9Rλ ˝ R̂λ : P Ñ P.

The map Rλ represents the BP recursion for the auxiliary

model. We now present a fixed point of this recursion in the

regime

p2k´1 ´ 2q ln 2 ” αlbd ď α ď αubd ” 2k´1 ln 2,

which we recall is a superset of pαcond, αsatq.
Definition I.2.
For any λ P r0, 1s, let 9μλ,l P P be the sequence of
probability measures defined by

9μλ,0 ” 1

2
δ0 ` 1

2
δ1, and 9μλ,l`1 “ Rλ 9μλ,l

for all l ě 0.

To specify the topology of convergence, let

Sl ” psupp 9μλ,lqzpsuppp 9μλ,0 ` . . .` 9μλ,l´1qq,
so Sl is a finite subset of r0, 1s. Regard 9μλ,l as an infinite

sequence indexed by the elements of S1 in increasing order,

followed by the elements of S2 in increasing order, and so

on. We then have the following convergence result:

Proposition I.3.
For k ě k0 and αlbd ď α ď αubd, in the limit l Ñ 8,
9μλ,l converges in the �1 sequence space to a limit 9μλ PP .
The limit is a fixed point of the recursion, 9μλ “ Rλ 9μλ. It
satisfies the symmetry condition 9μλpdxq “ 9μλpdp1´ xqq. It
is mostly supported on t0, 1u with 9μλpp0, 1qq ď 7{2k.

The limit 9μλ of Proposition I.3 encodes the desired replica

symmetric solution 9qλ for the auxiliary model. We can then

express Fpλq in terms of 9μλ as follows. Writing μ̂λ ” Rλ 9μλ,

let 9wλ, ŵλ, w̄λ PP be defined by

9wλpBq “ p 9Zλq´1

ż ˆ dź
i“1

yi `
dź

i“1

p1´ yiq
˙λ

1

" dź
i“1

yi `
dź

i“1

p1´ yiq P B
* dź

i“1

μ̂λpdyiq,

ŵλpBq “ pẐλq´1

ż ˆ
1´

kź
i“1

xi ´
kź

i“1

p1´ xiq
˙λ

1

"
1´

kź
i“1

xi ´
kź

i“1

p1´ xiq P B
* kź

i“1

9μλpdxiq,

w̄λpBq “ pZ̄λq´1

ĳ ˆ
xy ` p1´ xqp1´ yq

˙λ

1
!
xy ` p1´ xqp1´ yq P B

)
9μλpdxqμ̂λpdyq,

(8)
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with 9Zλ, Ẑλ, Z̄λ the normalizing constants. The analogue of

(5) for this model is

ˆ
ZλpG q
ZλpG 2q

˙1{k
“ 9ZλpẐλ{Z̄λqd,ˆ

ZλpG 1q
ZλpG 2q

˙1{k
“ pẐλqαpk´1q,

and substituting this into (4) gives the 1RSB prediction:

Zλ
.“ exptFpλqu

with high probability, where

Fpλq ” Fpλ;αq ” ln 9Zλ ` α ln Ẑλ ´ kα ln Z̄λ. (9)

Further, the maximizer of (6) is predicted to be given by

sλ ” sλpαq ”
ż
lnpxq 9wλpdxq ` α

ż
lnpxqŵλpdxq

´ kα

ż
lnpxqw̄λpdxq.

(10)

If s “ sλ for λ P r0, 1s we define

Σpsq ” Σps;αq ” Fpλ;αq ´ λsλpαq.
This yields the predicted thresholds

αcond ” suptα : Σps1;αq ą 0u,
αsat ” suptα : Σps0;αq ą 0u,

and we can now formally state the predicted free energy of

the original NAE-SAT model:

Definition I.4.
For α P k´1

Z, 1RSB free energy prediction f1RSBpαq is
defined as

f1RSBpαq “
$&
%

fRSpαq “ 2p1´ 2{2kqα α ď αcond,
exprsupts : Σpsq ě 0us αcond ď α ă αsat,
0 α ą αsat.

(11)

(In regular k-NAE-SAT we must have integer d “ kα, so we
need not consider α R k´1

Z.)

Proposition I.5.
Consider α P A ” rαlbd, αubdsXpk´1

Zq. For k ě k0 and α P
A, the function Σpsq ” Σps;αq is well-defined, continuous,
and strictly decreasing in s, so that fRSpαq is well-defined.

Proposition I.6.
For k ě k0 and λ P r0, 1s,

Σpsλ;αq ” Fpλq ´ λsλ

is strictly decreasing as a function of α P A. There is a
unique αλ P A such that Σpsλ;αq is non-negative for all
α ď αλ, and is negative for all α ą αλ. In particular

αcond “ α1 “ p2k´1 ´ 1q ln 2` err,

αsat “ α0 “
ˆ
2k´1 ´ 1

2
´ 1

4 ln 2

˙
ln 2` err.

We remark that the asymptotic expansion of αsat matches

the previously mentioned result (1) from [3]. The asymptotic

expansion of αcond matches an earlier result of [17], which

was obtained for a slightly different but closely related

model.

F. Proof approach

Since f “ fpαq is a priori not well-defined, the statement

f ď g means formally that for all ε ą 0,

lim
nÑ8PpZ1{n ě g` εq “ 0.

With this notation in mind, we will prove separately the

upper bound fpαq ď f1RSBpαq and the matching lower bound

fpαq ě f1RSBpαq. This implies the main result Theorem 1: the

free energy fpαq is indeed well-defined, and equals f1RSBpαq.
The upper bound is proved by an interpolation argument.

This builds on similar bounds for spin glasses on Erdős–

Rényi graphs [18], [19], together with ideas from [20] for

interpolation in random regular models. Write Znpβq for

the partition function of NAE-SAT at inverse temperature

β ą 0. The interpolation method yields an upper bound on

E lnZnpβq which is expressed as the infimum of a certain

function Ppμ;βq, with μ ranging over probability measures

on r0, 1s. We then choose μ according to Proposition I.3, and

take β Ñ8 to obtain the desired bound fpαq ď f1RSBpαq.
Most of the paper is devoted to establishing the matching

lower bound. The proof is inspired by the physics picture

described above, and at a high level proceeds as follows.

Take any λ for which the (predicted) value of Σpsλq is non-

negative, and let Yλ be the number of clusters of size
.“

exptnsλu. The informal statement of what we show is that

Yλ
.“ exptnrλsλ ` Σpsλqsu. (12)

Adjusting λ as indicated by (11) then proves the desired

bound fpαq ě f1RSBpαq.
Proving a formalized version of (12) occupies a significant

part of the present paper. We introduce a slightly modified

version of the messages m which record the topologies of

the free trees T . We then restrict to free trees with fewer

than T variables, which limits the distance that information

can propagate between free variables. We prove a version of

(12) for every fixed T , and show that this yields the sharp

lower bound in the limit T Ñ 8. The proof of (12) for

fixed T is via the moment method for the auxiliary model,

which boils down to a complicated optimization problem

over many dimensions. It is known (see e.g. [3, Lem. 3.6])

that stationary points of the optimization problem correspond

to “generalized” BP fixed points — these are measures

QvÑapmvÑa,maÑvq, rather than the simpler “one-sided”

measures qvÑapmvÑaq considered in the 1RSB heuristic.

The one-sided property is a crucial simplification, but

is challenging to prove in general. One contribution of

this work that we wish to highlight is a novel resampling

argument which yields a reduction to one-sided messages,
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and allows us to solve the moment optimization problem.

(We are helped here by the truncation on the sizes of

free trees.) Furthermore, the approach allows us to bring

in methods from large deviations theory. With these we

can show that the objective function has negative-definite

Hessian at the optimizer, which is necessary for the second

moment method. This resampling approach is quite general

and should apply in a broad range of models.

G. Open problems

Beyond the free energy, it remains a challenge to estab-

lish the full picture predicted by statistical physicists for

α ď αsat. We refer the reader to several recent works targeted

at a broad class of models in the regime α ď αcond [21], [22],

[23]. In the condensation regime pαcond, αsatq, an initial step

would be to show that most solutions lie within a bounded

number of clusters. A much more refined prediction is that

the mass distribution among the largest clusters forms a

Poisson–Dirichlet process. Another question is to show that

on a typical problem instance over n variables, if x1,x2 are

sampled independently and uniformly at random from the

solutions of that instance, then the normalized overlap

R1,2 ” n´1tv : x1
v “ x2

vu
concentrates on two values (corresponding roughly to the

two cases that x1,x2 come from the same cluster, or from

different clusters). This criterion is sometimes taken as the

precise definition of 1RSB, and so would be quite interesting

to prove for models in the condensation regime.

Beyond the immediate context of random CSPs,

understanding the condensation transition may deepen our

understanding of the stochastic block model, a model for

random networks with underlying community structure.

Here again ideas from statistical physics have played an

important role [24]. A great deal is now known rigorously

for the case of two blocks [25], [26], where there is no

condensation regime. For models with more than two blocks,

however, it is predicted that the condensation can occur,

and may define a regime where detection is information-

theoretically possible but computationally intractable.
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[25] L. Massoulié, “Community detection thresholds and the weak
Ramanujan property,” in Proc. 46th STOC. New York: ACM,
2014, pp. 694–703.

[26] E. Mossel, J. Neeman, and A. Sly, “Reconstruction and
estimation in the planted partition model,” Probab. Theory
Related Fields, vol. 162, no. 3-4, pp. 431–461, 2015. [Online].
Available: http://dx.doi.org/10.1007/s00440-014-0576-6

730731731


