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Abstract—Can quantum computers solve optimization
problems much more quickly than classical computers?
One major piece of evidence for this proposition has been
the fact that Quantum Annealing (QA) finds the minimum
of some cost functions exponentially more quickly than
classical Simulated Annealing (SA).

One such cost function is the simple “Hamming weight
with a spike” function in which the input is an n-bit
string and the objective function is simply the Hamming
weight, plus a tall thin barrier centered around Hamming
weight n/4. While the global minimum of this cost function
can be found by inspection, it is also a plausible toy
model of the sort of local minima that arise in real-
world optimization problems. It was shown by Farhi,
Goldstone and Gutmann [1] that for this example SA takes
exponential time and QA takes polynomial time, and the
same result was generalized by Reichardt [2] to include
barriers with width nζ and height nα for ζ + α ≤ 1/2.
This advantage could be explained in terms of quantum-
mechanical “tunneling.”

Our work considers a classical algorithm known as Sim-
ulated Quantum Annealing (SQA) which relates certain
quantum systems to classical Markov chains. By proving
that these chains mix rapidly, we show that SQA runs
in polynomial time on the Hamming weight with spike
problem in much of the parameter regime where QA
achieves an exponential advantage over SA. While our
analysis only covers this toy model, it can be seen as
evidence against the prospect of exponential quantum
speedup using tunneling.

Our technical contributions include extending the
canonical path method for analyzing Markov chains to
cover the case when not all vertices can be connected by
low-congestion paths. We also develop methods for taking
advantage of warm starts and for relating the quantum
state in QA to the probability distribution in SQA. These
techniques may be of use in future studies of SQA or of
rapidly mixing Markov chains in general.

I. INTRODUCTION

Classical algorithms are often useful but not provably

so, with justifications for their success coming from a

combination of empirical and heuristic evidence. For

example, the simplex algorithm for linear programming

was successful for decades before being proven to run in

polynomial time, and for a long time was the most prac-

tical LP solver even while the ellipsoid algorithm was

the only provably poly-time solver. Another example is

MCMC (Markov chain Monte Carlo) which is used for

applications in statistics, simulation, optimization and

elsewhere, but almost never in regimes that are covered

by formal proofs of correctness.

With quantum algorithms, there has been necessar-

ily a greater emphasis on provable correctness. The

present state of quantum computing technology does

not yet allow us to test large-scale quantum algorithms

empirically, nor can we usually empirically determine

whether a proposed quantum algorithm outperforms all

classical algorithms on worst-case inputs. Nevertheless,

heuristic quantum algorithms are likely to be important

for practical problems, just as they have been throughout

the history of classical computing.

A particularly compelling heuristic proposal for op-

timization problems is quantum annealing (QA), also

known as quantum adiabatic optimization [3], [4] (in

this work we use the term “quantum annealing” to

mean adiabatic optimization in thermal equilibrium at

a low but non-zero temperature, though in some other

contexts QA may be taken to include non-equilibrium

thermal effects). The idea of QA is to interpolate

between a static problem-independent Hamiltonian such

as −∑
i σ

i
x for which we can efficiently prepare the

ground state, and a final Hamiltonian whose ground

state yields the desired answer. If we want to minimize

a function f : {0, 1}n → R then we can take this final

Hamiltonian to be proportional to diag(f). This can be

thought of as a quantum version of classical simulated

annealing (SA) with the diagonal terms playing the role

of bias and the off-diagonal terms causing hopping. Like

SA its performance is hard to make provable general

statements about, but it is a promising general-purpose

heuristic, and rigorous statements about its performance
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are known for many illustrative cases.

Intriguingly, QA has been shown to have an expo-

nential asymptotic advantage over simulated annealing

for certain cost functions [1], and here we focus on one

such class of examples called the ”Hamming weight

with a spike” which has a cost function given by

f(z) :=

{
|z|+ nα : n

4 − nζ

2 < |z| < n
4 + nζ

2

|z| : o.w.
, (1)

where |z| is the Hamming weight of the string z, and

α > 0, ζ ≥ 0 are independent of n. The global

minimum of f is the string with |z| = 0, but the spike

term creates a local minimum at |z| = �n/4 + nζ/2�.
The spike presents a problem for a simulated annealing

algorithm which only proposes moves that flip k bits for

k ≤ nζ . First recall the definition of SA: starting with a

point x ∈ {0, 1}n, repeatedly choose a random nearby

point y (say within the Hamming ball of radius k)
and move to y with probability min(1, e(f(x)−f(y))/T ),
where T is a temperature parameter that is gradually

lowered. Following [1], consider first a SA algorithm

that flips one bit at a time, i.e. with k = 1. Since SA

begins at high temperature the initial state is overwhelm-

ingly likely to have Hamming weight near n/2, and as

the temperature of the system is lowered the random

walk will move to strings of lower Hamming weight

until reaching the local minimum at �n/4 + nζ/2�.
This will happen for T = O(1), so at this point

the probability of accepting a move onto the spike is

e−Ω(nζ), and so classical SA requires exponential time

to find the global minimum with high probability. This

argument applies to flipping any k < nζ bits at once.

Now suppose that the SA algorithm flips nc bits at

a time for some c ≤ 1. Once the Hamming weight

is ≈ n/4, flipping nc random bits will change the

Hamming weight by a random variable with expectation

≈ 1
2n

c and standard deviation ≈
√
3
2 n

c/2. This has prob-

ability e−Ω(nc) probability of being negative, so with

high probability the SA algorithm will not even attempt

to move past the spike. In contrast, for any α+ζ < 1/2
it can be shown that QA finds the global minimum

with high probability in time O(n) [2], showing that

an exponential separation in the perfomance of SA and

QA is possible.

While the spike is clearly a toy problem and can be

solved efficiently by classical algorithms that exploit its

structure, an important aspect of both QA and SA is

that a single, general implementation of these algorithms

is meant to be useful for solving a large variety of

different problems without knowledge of their structure.

Moreover, the spike arguably demonstrates a general

advantage of QA over SA in tunneling through thin,

high barriers in the energy landscape.

On the other hand, the standard formulation of QA

uses a stoquastic Hamiltonian (i.e. a local Hamiltonian

with non-positive off-diagonal matrix elements in the

computational basis), and computational models based

on ground states or thermal states of such systems

are believed to be less powerful than universal quan-

tum computation. In addition to complexity theoretic

evidence [5], [6], suggestive evidence for this belief

is also provided by the quantum-to-classical mapping

of Suzuki et al. [7], [8], which allows for proper-

ties of low-energy states of a stoquastic Hamiltonian

to be estimated using classical Markov chain Monte

Carlo methods. These algorithms are known as quantum

Monte Carlo (QMC) methods, and despite the name,

are algorithms for classical computers. While QMC

for stoquastic Hamiltonians is always a well-defined

algorithm, its performance depends on the rate at which

a Markov chain converges to its stationary distribution.

This can range from polynomial to exponential time,

and few general conditions are known in which it

is provably polynomial-time. A few cases where the

simulation can be made provably efficient are adiabatic

evolution with frustration-free stoquastic Hamiltonians

with a unique ground state [9] and ferromagnetic trans-

verse Ising models in a large range of temperatures [10],

but while these have some physics significance, they do

not translate into nontrivial cost functions for QA.

When QMC is applied to QA Hamiltonians the result

is an algorithm called simulated quantum annealing

(SQA). Although there are examples for which stan-

dard versions of SQA take exponentially longer than

the quantum evolution being simulated [11], [12], the

general challenge from SQA to QA remains: for any

purported speedup of QA we should see whether it can

also be achieved by SQA. Moreover, since SQA is a

Markov chain based algorithm on a domain that can be

interpreted as a classical spin system, and since SQA

is designed to sample from the output of a quantum

optimization procedure, SQA can be considered as yet-

another physics-inspired classical optimization method

in its own right, which can naturally be compared with

QA and with SA.

The main result of this paper is that the standard

version of SQA, which does not use any structure of the

problem, finds the global minimum of the cost function

(1) in polynomial-time when α+ ζ < 1/2.

Theorem 1. Simulated quantum annealing based on the
path-integral Monte Carlo method efficiently samples
the output distribution of QA for the spike cost function
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(1) when α + ζ < 1/2. The running time using single-
qubit worldline updates is Õ(n7), and the running time
using single-site spin flips is Õ(n17). (Worldline and
single-site spin flips are defined in Section II-B.)

Thus SQA obtains an exponential speedup over SA

for this particular problem. This result suggests that

the benefits of tunneling through energy barriers with

adiabatic evolution should not be thought of as an

exclusively quantum advantage, since it can also be

achieved by a general-purpose classical optimization

algorithm.

Previous Work

There have been many past studies comparing the

performance of SA and SQA using numerics [13],

[14], [15] and more recently using physical methods

such as the instanton approximation to tunneling [16],

[17]. Studies comparing QA to SA and SQA have

also emerged since [18] found the success probabilities

of SQA are highly correlated with the results of QA

performed on D-Wave quantum hardware with hundreds

of qubits, while the distribution of success probabili-

ties for SA on the same set of instances bears little

resemblance to that of QA and SQA. More recently,

the performance of QA, SQA, and SA was empirically

compared on an ensemble of spin glass instances with

were designed to have tall, thin barriers [19], as a step

towards understanding the kinds of instances for which

QA has an advantage over SA. In that work QA and

SQA were found to have roughly the same scaling with

system size for that particular ensemble of instances,

though it was also pointed out that the large constant

overhead in SQA made it less competitive in the sense

of wall-clock times using modern classical hardware.

Another classical algorithm which has been compared

with QA is spin vector dynamics (SVD), which ap-

proximates the state of the system by a collection of

classical spin vectors, which are updated through either

a nonlinear system of differential equations [20] or with

Monte Carlo updates [21]. Although numerical evidence

suggests that SVD can efficiently find the ground state

of spike cost functions [22], a significant drawback

of this method is that it uses an ad hoc dynamics

and makes an uncontrolled approximation by neglecting

the entanglement in the system, and so unlike SQA

it is not guaranteed to systematically converge to a

faithful simulation of the quantum system in the limit

of increasing computational effort.

Without access to quantum hardware, comparison of

SQA and QA is either limited to small system sizes

where QA Hamiltonians can be exactly diagonalized (�

50 qubits), or to models for which analytical solutions

of the quantum system are known (such as the spike

problem we study here). We remark that the spike and

related objective functions have the subject of recent

analytic work [23], [24], and that there have also been

numerical studies of SQA [25], [26], with findings that

are consistent with our main result.

Proof Outline

Our proof of the efficient convergence of SQA on the

spike problem involves bounding the mixing time of the

underlying Markov chain, and there is an interesting

parallel between a method which was used to lower

bound the QA spectral gap when α + ζ < 1/2 [2].

There, a lower bound on the quantum gap can be

found using a variational method with a trial wave

function equal to the ground state of the system when

no spike term is present (i.e. QA for the spikeless

Hamming weight cost function f̃(z) = |z|). Similarly,

we compare the spectral gap λ of the SQA Markov

chain for the spike system with the spectral gap λ̃ of the

spikeless system (throughout the subsequent sections

we use tildes to distinguish quantities belonging to the

spikeless system). Without a spike term, the quantum

Hamiltonian H̃ is a tensor product operator with no

interactions between the qubits. This trivial system

translates in SQA to a collection of n non-interacting

1D classical ferromagnetic Ising models in a uniform

magnetic field (which will become clear when the SQA

Markov chain is described in detail in Section II-B),

and upper bounding the mixing time for this system is

relatively straightforward.

Let π and π̃ be the stationary distribution of the

SQA Markov chain with and without the spike. These

stationary distributions are close in a sense, ‖π− π̃‖1 <
poly(n−1), but on the other hand there are exponentially

many points x ∈ Ω for which the ratio π(x)/π̃(x) is

exponentially small. A review of existing comparison

techniques concludes that none is quite suited to the

present problem; indeed the review [27] states that

there have been “relatively few successes in comparing

chains with very different stationary distributions”. To

overcome this we introduce a comparison method which

involves partitioning the state space into “good” and

“bad” sets of vertices, Ω = ΩG ∪ ΩB . Beginning with

a set of canonical paths yielding a bound ρ̃ on the

congestion of the easy-to-analyze chain, we show that

the paths which lie entirely within ΩG can be used to

construct an upper bound on the congestion ρ of the

difficult-to-analyze chain, albeit within the set ΩG of

measure less than 1.
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There are two main ingredients to the comparison

method. First we show that if two chains have stationary

distributions and transition probabilities that are similar

on most of the points, then we can convert a known gap

for one chain into a set of canonical paths for most of

the state space of the other.

Theorem 2 (Most-paths comparison). Let (π, P ) and
(π̃, P̃ ) be reversible Markov chains with the same state
space graph (Ω, E). Let a = maxx∈Ω π(x)/π̃(x) and
define Ωθ := {x ∈ Ω : π(x) < θπ̃(x)}. If there is a
set of canonical paths for (π̃, P̃ ) achieving congestion
ρ̃ and satisfying 3a2ρ̃π̃(Ωθ) < 1, then there is a subset
ΩG ⊂ Ω with π(ΩG) ≥ 1 − 3a2ρ̃ θπ(Ωθ), and a
canonical flow for (π, P ) that connects every x, y ∈ ΩG

with paths contained in ΩG for which the congestion ρ
of any edge in ΩG satisfies

ρ ≤ 16 θ max
x,y∈ΩG

[
P̃ (x, y)

P (x, y)

]
a2ρ̃. (2)

The proof of Theorem 2 is omitted from this extended

abstract and can be found in our full version [28].

The intuition behind it is that low-congestion paths for

(π̃, P̃ ) (which we have assumed exist) rarely overload

edges of (π, P ). This does not yet imply a high-

probability subset for which all pairs have good paths

between them, but it does imply a high-probability

subset that is well-connected to most other points. By

routing paths through this high-probability subset we

can find a good set of paths for almost all other points.

There is a caveat here, which is that this bound on

the congestion applies to the transitions of the Markov

chain P on the subset ΩG. If we assume that walkers

leaving ΩG are deleted then, since P is not restricted

to ΩG, these transitions form a substochastic “leaky”

random walk on the set ΩG, with a quasi-stationary

distribution equal to π within this subset. (The term

“quasi-stationary” refers to the fact that in the infinite

time limit repeated applications of P |ΩG
will converge

to zero, but there may be a long intermediate time when

we are close to π.)

Thus it is necessary to show that the chain mixes

before it leaves the good set ΩG. One way to guarantee

this is to use a “warm start,” meaning a starting sample

from a distribution that is close to the quasi-stationary

distribution. Our analysis of SQA relies on the adiabatic

path used by the quantum algorithm to fulfill the warm-

start condition.

Theorem 3. Let (π,Ω, P ) be a reversible Markov
chain and suppose Ω = ΩG ∪ ΩB is a partition. Let
PG be the substochastic transition matrix PG(x, y) :=

P (x, y)1x∈ΩG
1y∈ΩG

. Suppose there is a set of canon-
ical paths connecting every pair of points x, y ∈ ΩG,
and the congestion of the walk P on this set of paths
is ρ. If μ is a warm start with μ(x) ≤ Mπ(x) for all
x ∈ ΩG then the distribution obtained by starting from
μ and applying t steps of the random walk satisfies

‖μP t
G − π‖1 ≤Mtπ(ΩB) + π−1

mine
−t/ρ (3)

The proof of Theorem 3 is also omitted and can be

found in our full version [28]. The proof simply uses a

union bound to show that a not-too-long random walk

with a warm start is unlikely to ever encounter a bad

point. The warm start here is crucial, since otherwise

we could simply start within the bad set, and we need

to bound the length of the random walk, since if the

mixing time is τ then after time τ/π(ΩB), we would

expect to hit the bad set.

The SQA state space can be interpreted as a path

(worldline) representation of the original quantum sys-

tem, and the bad states which constitute ΩB will be

those for which the paths spend too much “time” on

the location of the spike (i.e. on strings with Hamming

weight between n/4−nζ/2 and n/4+nζ/2). States that

spend too much time on the spike are those for which

π(x)/π̃(x) is exponentially small, and naturally those

are the ones we will need to exclude. In Section III

we show that the mean spike time is proportional to

the square of the ground state amplitude on the spike,

while the m-th moment of the spike time distribution

can also be bounded using the properties of the corre-

sponding quantum system. Finally, we use the derived

upper bound on the m-th moment of the spike time

distribution to upper bound the probability of large

deviations from the mean spike time, which yields an

upper bound on π(ΩB) that suffices to complete the

proof.

Discussion

Our proof does not bound the convergence time

for SQA α + ζ > 1/2, although QA does work for

some values of (α, ζ) in this range, such as when

ζ = 0, α = O(1) [23] or α+2ζ < 1 [24]. We conjecture

that SQA will be efficient for these values as well

(which is supported by numerical evidence), though this

will require extensions of the present techniques.

More generally, we believe that our most-paths com-

parison methods should have wider applicability. For

example, consider a collection of classical particles

with weak repulsive interactions. If the particles were

non-interacting the thermal distribution of the particles

would be easy to sample from, and if the interactions

are weak enough, then they do not shift the typical

716717717



probabilities (or energies) by very much. While some

configurations will have exponentially lower probability

in the interacting case (if many particles are very close

to each other), these configurations should be overall

very unlikely. In this setting our framework should

imply that the repulsive interactions do not significantly

worsen the mixing time.

While relatively few rigorous facts are known about

the general performance of SQA, it remains in practice

a successful and widely used class of algorithms. This

strikes us as an area where theorists should work to

catch up with current practice.

II. BACKGROUND

A. Quantum annealing

QA associates a cost function f : {0, 1}n → R with a

Hamiltonian that is diagonal in the computational basis,

Hf :=
∑

z∈{0,1}n
f(z)|z〉〈z| , (4)

so that the ground state of Hf is a computational basis

state corresponding to the bit string that minimizes f . To

prepare the ground state of Hf the system is initialized

in the ground state of a uniform transverse field, which

can be easily prepared,

H0 := −
n∑

i=1

σx
i , |ψinit〉 := 1√

2n

∑
z∈{0,1}

|z〉, (5)

and then linearly interpolates between H0 and Hf ,

H := H(s) = (1− s)H0 + sHf , (6)

where the adiabatic parameter s sweeps through the

interval 0 ≤ s ≤ 1. The total run time tmax of

the algorithm depends on how quickly the adiabatic

parameter is adjusted, which defines a time-dependent

Hamiltonian H(t) := H(s = t/T ). At zero temperature

the system evolves according to the Schrödinger equa-

tion, d
dt |ψ(t)〉 = −iH(t)ψ(t), and the adiabatic theorem

ensures that the state ψ(T ) at the end of the evolution

has a high overlap with the ground state of Hf as long

as T ≥ poly(n,Δ−1), where Δ = minsE1(s)−E0(s)
is the minimum gap between the two lowest eigenvalues

of H(s) during the evolution.

More generally (and realistically) we can take the

state of the system to be not the ground state but a

thermal state with inverse temperature β < ∞. The

equilibrium thermal state of the system evolves with

the adiabatic parameter,

σ(s) :=
e−βH(s)

Z(s) , Z(s) := tr e−βH(s). (7)

As described in more detail in Section III, the thermal

equilibrium state will have a high overlap with the

ground state at sufficiently low temperatures, and so

the distribution Πs(z) := 〈z|σ(s)|z〉 can be sampled to

determine the minimum of f .

B. Simulated quantum annealing

Stoquastic Hamiltonians such as (6) are amenable to

a variety of classical Markov chain based simulation

algorithms (at least in principle), which are collectively

known as quantum Monte Carlo (QMC) methods (the

term “stoquastic” is a combination of “quantum” +

“stochastic” in the sense of stochastic matrices [5]). Any

QMC method applied to the QA Hamiltonian (6) defines

a version of SQA. Here we consider a version based on

the path-integral representation of the thermal state (7).

See [10] for a full derivation.

The state space of the SQA Markov chain is the set of

trajectories (x1, ..., xL), where xi ∈ {0, 1}n and L is a

polynomial in n which is Θ(n2β3/2) in order for certain

standard approximations to hold with high precision.

The stationary distribution of the SQA Markov chain is

π(x1, ..., xL) =
1

Z
e−

βs
L

∑L
i=1 f(xi)

n∏
j=1

φ(x̄j) (8)

where x̄j := (xj,1, ..., xj,L) is called “the worldline

of the j-th qubit”, where ω := β(1 − s)/L, and

φ(x̄j) := tanh(ω)|{k:xj,k �=xj,k+1}| counts the number of

consecutive bits which disagree in that worldline. The

quantum distribution Π(x) = 〈x|σ|x〉 arising from (7)

can be expressed as a marginal of π,

Π(x) =
∑

x2,...,xL

π(x, x2, ..., xL). (9)

From this point SQA proceeds by discretizing the

adiabatic path and using the Markov chain Monte Carlo

method to sample from π at various values of the

adiabatic parameter s1, s2, . . . , smax, with s1 ≈ 0 and

smax ≈ 1. We will analyze two discrete-time Markov

chains with stationary distribution (8). The first chain

consists of single-site Metropolis updates. If x, x′ ∈ Ω
differ by a single bit, the transition probability from x
to x′ is

PM (x, x′) =
1

2nL
min

{
1,
π(x′)
π(x)

}
, (10)

and otherwise the transition probability is zero.

In practical implementations of SQA it is important

to speed up the equilibration using non-local cluster

updates, therefore in addition to the single-site Metropo-

lis updates defined above we will analyze the popular
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single-qubit heat-bath worldline updates, which are

a form of generalized heat-bath updates [29].

Definition. The heat-bath worldline update
(x̄1, . . . x̄n)→ (x̄′1, . . . , x̄

′
n) proceeds as follows:

1) Select a site i ∈ {1, . . . , n} uniformly at random.
2) Set x̄′j = x̄j for all j �= i.
3) Choose x̄′i from the conditional distribution

π(x̄′i|x̄′1, . . . , x̄′i−1, x̄
′
i+1, . . . , x̄

′
n).

As with all generalized heat-bath updates these tran-

sitions define a Markov chain which is reversible with

respect to π. An algorithm that efficiently implements

these transitions is given in [30] and without using any

structure of the cost function (1) it runs in Õ(n2β2)
elementary steps with high probability.

C. Mixing times of Markov chains

At each value of the adiabatic parameter, the run-time

of SQA will be determined by the mixing time of either

of the Markov chains described above. This quantity can

be defined in terms of the total variation distance from

π to the distribution P t(x, ·) obtained by running the

chain for t steps starting from x,

dx(t) := max
A⊆Ω

|P t(x,A)− π(A)|, (11)

with the mixing time τ(ε) being the worst-case time

needed to be within variation distance ε of the stationary

distribution,

tmix(ε) := max
x∈Ω

min
t
{t : dx(t′) ≤ ε ∀t ≥ t′}. (12)

A standard way to bound the mixing time is to relate

it to the spectral gap λ of the transition matrix P [31].

For all x ∈ Ω,

‖P t(x, ·)− π‖1 ≤ π−1
mine

−λt. (13)

which implies tmix(ε) ≤ λ−1 log
(

1
επmin

)
. Finally, in

Section III we will use the method of canonical paths

to bound the the spectral gap of a chain in terms of its

congestion. For any set of paths {γxy} that connects

every pair of points in the state space, define the

congestion ρ(e) through the edge e to be

ρ :=
1

Q(e)

∑
x,y∈Ω
e∈γxy

π(x)π(y)|γ̃xy|, (14)

where Q(x, y) = π(x)P (x, y). The maximum conges-

tion through any edge, ρ := maxe ρ(e), is related to the

spectral gap by λ ≥ 1/ρ [31].

III. EFFICIENT CONVERGENCE OF SQA FOR THE

SPIKE COST FUNCTION

In this section we apply Theorem 2 with the easy-to-

analyze chain (π̃, P̃ ) taken to be the SQA Markov chain

with heat-bath worldline updates for the system without

the spike, and (π, P ) equal to the corresponding chain

for the spike system.

The subset ΩB will be shown to satisfy π̃(ΩB) ≤
O(n−c) for a constant c that we will choose so that we

can prove a walker beginning in ΩG is likely to mix

before it hits a point in ΩB .

Congestion of the spikeless chain. Recall that ΩB is

defined in terms of a set of canonical paths {γ} on Ω
with congestion ρ̃ for the spikeless chain, together with

a subset Ωθ of points which are excluded from paths

in {γ} to obtain a new set of paths with congestion

ρ ≤ O(θρ̃) for the chain with the spike, within the

subset ΩG. The spikeless distribution π̃ corresponds

to a collection of n non-interacting 1D ferromagnetic

Ising models of length L in the presence of 1-local

fields that bias the distribution towards configurations of

lower Hamming weight. The spin-spin coupling is such

that each broken bond in x lowers π̃(x) by a factor of

Θ(tanh(ω)).
First we will bound the congestion of heat-bath

worldline updates (defined in Section II-B). Here it is

convenient to represent states x ∈ Ω by their worldlines

x = (x̄1, . . . , x̄n), where x̄i := (xi,1, . . . , xi,L). For the

spikeless system (π̃, P̃ ) spins in different worldlines do

not interact and so the conditional distribution of the

i-th worldline is equal to the marginal of the stationary

distribution on that worldline,

π̃(x̄′i|x̄′1, . . . , x̄′i−1, x̄
′
i+1, . . . , x̄

′
n)

=
∑

x̄j :j �=i

π̃(x̄1, . . . , x̄
′
i, . . . , x̄n).

Including a 1/2 probability of the chain

not moving at each step in order to make

it irreducible, the probability of a transition

P ((z̄1, . . . , z̄i, . . . , z̄n), (z̄
′
1, . . . , z̄

′
i, . . . , z̄

′
n)) that

updates the i-th worldline (z̄j = z̄′j for all j �= i) is

1

2n

∑
z̄′′j :j �=i

π̃(z̄′′1 , . . . , z̄
′
i, . . . , z̄

′′
n) (15)

The path γxy from x = (x̄1, . . . , x̄n) to y =
(ȳ1, . . . , ȳn) proceeds by updating the worldlines in

order {1, . . . , n}. The paths have length |γxy| = n.

The k-th step of the path γxy will go through the

edge (z, z′) with z = (ȳ1, . . . , ȳk−1, x̄k, . . . , x̄n) and

z′ = (ȳ1, . . . , ȳk, x̄k+1, . . . , x̄n). To evaluate the sum
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(14) we apply the standard encoding trick [32]. De-

fine an injective function η(z,z′) which maps the paths

through (z, z′) into the state space Ω,

η(z,z′)(γxy) = (x̄1, . . . , x̄k−1, ȳk, . . . , ȳn),

which is injective since z and η(z,z′)(γxy) provide

sufficient data to uniquely determine γxy . Notice that

π̃(x)π̃(y) = π̃(z)π̃
(
η(z,z′)(γxy)

)
, and so the congestion

ρ̃(z, z′) is

=
1

π̃(z)P (z, z′)

∑
γxy�(z,z′)

π̃(x)π̃(y)|γxy| (16)

=
n

P̃ (z, z′)

∑
yxy�(z,z′)

π̃
(
η(z,z′)(γxy)

)
(17)

=
n

P̃ (z, z′)

∑
x̄1,...,x̄k−1
ȳk+1,...,ȳn

π̃(x̄1, ..., x̄k−1, ȳk, ..., ȳn) (18)

= 2n2, (19)

where in going from (17) to (18) we do not sum over ȳk
because it is fixed by z′. Finally, since the edge (z, z′)
was arbitrary we have

ρ̃ = O(n2). (20)

Now we will analyze the single-site Metropolis chain

for the spikeless system (π̃, P̃M ). The path from

x = ((x1,1, . . . , x1,L), . . . , (xn,1, . . . , xn,L)) to y =
((y1,1, . . . , y1,L), . . . , (yn,1, . . . , yn,L)) proceeds as fol-

lows: for each i in order from {1, . . . , n} update spin

(i, j) for j going in order from {1, . . . , L}. The paths

have length |γxy| = nL. Edges (z, z′) along such a path

will create at most two new broken bonds (i.e. pairs of

spins which disagree) along the direction {1, . . . , L} so

PM (z, z′) is Ω
(
(nL)−1 tanh(ω)

)
.

Just as for the heat-bath worldline updates, we ap-

ply an encoding function to injectively map the paths

through an arbitrary edge into the state space. The

only difference from the version above is that z and

η(z,z′) (γxy) may in the worst-case each have two

broken imaginary-time bonds which are not present in

either x or y, and so

π̃(x)π̃(y) = O (
coth(ω)2π̃(z)π̃

(
η(z,z′)(γxy)

))
. (21)

Applying the same calculations in (16)-(18) but using

(21) along with the the fact that coth(ω) = O(ω−1
min) =

O(nLβ−1), the congestion is

ρ̃M = O(L5n5β−3) = O(n15β−9/2). (22)

Comparing (22) with (20) shows that there is a large

polynomial overhead resulting from single-site updates,

which arises from the strong interactions that occur in

the imaginary-time direction when the transverse field

term of the QA Hamiltonian is small.

Ωθ and the spike time distribution. The states in Ωθ

which will be excluded from the set of paths {γ} are

those which have |xi| ∈ IS := (n/4−nζ/2, n/4+nζ/2)
for too many i. Define 1S : {0, 1}n → {0, 1} to be the

indicator function for the spike i.e. 1S(z) = 1 if z ∈ IS ,

and 1S(z) is zero otherwise. The spike time for x ∈ Ω
is defined to be ST(x) :=

∑L
i=1 1S(xi). Let ε := 1

2−α,

and define

Ωθ =

{
x ∈ Ω : ST(x) ≥ L

n
1
2 (1−ε)−ζ

}
. (23)

Set β = nε/2 so that π(x)/π̃(x) is Ω(1) for every x /∈
Ωθ.which shows θ = O(1) in the congestion bound in

Theorem 2. The remainder of the section will be devoted

to computing the m-th moment of the random variable

ST ∼ π̃, with m = c/ε, in order to show,

Pr

[
ST ≥ L

n
1
2 (1−ε)−ζ

]
π̃

≤ O(n−c), (24)

which is equivalent to the statement π̃(Ωθ) ≤ O(n−c).
To calculate the moments 〈STm〉π̃ we will relate

them to expectation values of the spikeless quantum

system, and use the fact that the latter is exactly

solvable because the qubits are non-interacting. Let

{|k〉 : k = 0, . . . , n} be a basis of states for the

symmetric subspace which are labeled by Hamming

weight, and let S =
∑

k∈IS |k〉〈k|. Since the observable

S is diagonal in the computational basis we can include

the term λS into the diagonal part of the Hamiltonian

for the quantum-to-classical mapping and find that

〈S〉σ̃ = L−1〈ST〉π̃. (25)

Let |ψ̃1〉, . . . , |ψ̃n〉 denote the excited eigenstates of H̃ .

Define Δ := 2
√
(1− s)2 + s2 and observe that |ψ̃k〉

is an eigenstate of H̃ with eigenvalue kΔ, and that the

degeneracy of the k-th energy level is
(
n
k

)
so

‖σ̃ − |ψ̃0〉〈ψ̃0|‖1 ≤
n∑

k=1

e−βΔk

(
n

k

)
, (26)

which is O(ne−nε

) and since ε > 0 is a constant this

error will be sub-leading, and this justifies replacing the

thermal state in (25) with the ground state.

The ground state probability distribution for the

spikeless system is a binomial distribution [2] on the

Hamming weights, and so 〈S〉σ̃ is asymptotically never

larger than the central binomial coefficient times the

width nζ of the spike term, which implies

〈ST〉π̃ = O
(
Lnζ−1/2

)
. (27)
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To obtain (24) we will use the moment inequality,

Pr [ST ≥ b]π̃ ≤
〈STm〉π̃
bm

, (28)

with b = Ln−
1
2 (1−ε). Expanding the definition we have

〈STm〉π̃ =
L∑

t1,...,tm

〈1S(zt1) . . . 1S(ztm)〉π̃. (29)

To compute these m-point correlation functions we

return to the quantum description,

〈1S(zt1) . . . 1S(ztm)〉π̃ =

〈
m∏
i=1

e−(τi−τi−1)HS

〉
σ̃

where τi := βti/L. Once again we replace the low-

temperature thermal state with the ground state and

incur a sub-leading error as in (26). Since the ground

state, the Hamiltonian, and the operator S are all bit-

symmetric, the expectation can be evaluated in the sym-

metric subspace. Using the basis of symmetric energy

eigenstates {|ψ̃k〉}, 〈STm〉π̃ can be expressed as

∑
k1,...,km
t1,...,tm

m∏
i=1

e−(τi+1−τi)Δki〈ψki+1
|S|ψki

〉 (30)

States with higher energy will contribute less to the sum

over all times t1, . . . , tm in (30)because the exponentials

decay more quickly. For ki > 0, the sum over ti can be

truncated whenever τi − τi−1 � 1/kiΔ.

Since the ground state wave function is a binomial

distribution the mean spike time will only be large when

the peak of the ground state is near the support of the

spike IS . In the range of the adiabatic parameter in

which this occurs the excited spikeless eigenstates sat-

isfy 〈ψ̃i|k〉 ≤ |〈ψ̃0|k〉| ≤ O(n−1/4) for all i = 1, . . . , n
and k ∈ IS , because the ground state wave function

is centered on the spike and the excited state wave

functions have a greater spread, which can be seen from

the explicit form of the spikeless eigenfunctions given

in [23]. Now we define gi := ti − ti−1 and relabel the

sum of t1, . . . , tm = 0, . . . , L by a sum over the gi. For

the purpose of obtaining an upper bound on the m-th

moment we relax the constraint
∑

i gi = L, and instead

sum over the full range gi = 1, . . . , L for each i. Using

these facts we can upper bound (30) by

〈STm〉π̃ ≤ nm(ζ−1/2)
∑

k1,...,km
g1,...,gm

e−
∑m

i=1 giΔki (31)

We will now organize the terms of (31) according to

the number � of excited energies Ẽki
> 0 they contain.

There are
(
m



)
terms of (31) that contain � eigen-

states above the ground state, and for each � we must

sum over the ga1
, . . . , ga�

for which the corresponding

ka1 , . . . , ka�
are non-zero. Now (31) becomes

≤ nm(ζ−1/2)
m∑

=1

(
m

�

)
Lm−


(m− �)!
∑

ga1 ,...ga�
ka1 ...ka�


∏
i=1

e−gai
Δkai

where the factor of Lm−
/(m − �)! results from per-

forming the sum over the m − � of the gi which have

ki = 0. Now we sum over ga1
, . . . , ga�

using the fact

that
∑L

g=1 e
−gk ≤ k−1,

≤ Lmnm(ζ−1/2)
m∑

=0

(
m

�

)
(βΔ)−


n∑
ka1 ...ka�


∏
i=1

1

ki
.

Using
(
m



) ≤ m
 and
∑n

k=1 ≤ log(n) + 1, at last this

becomes

〈STm〉π̃ ≤ Lmnm(ζ−1/2)
m∑

=0

(
log(n) + 1

mβΔ

)


(32)

Since m and Δ are constant and β = nε/2 with fixed

ε > 0 the terms with inverse powers of β are sub-leading

and so 〈STm〉π̃ ≤ O(Lmnm(ζ−1/2)). Finally, applying

(28) with m = c/ε yields the desired result (24).

Adiabatic schedule. Here we show that a discretiza-

tion of the adiabatic path with 1/ poly(n) step size

is sufficient to fulfill the statement we need for the

warm starts in Theorem 3. We will take the largest

value of the adiabatic parameter to be smax = 1− n−1

so that ||ψ0(1)〉 − |ψ0(smax)〉|1 ≤ poly(n−1), and the

global minimum of the cost function can be obtained

by sampling from Π at s = smax with effectively the

same probability at it would be obtained by sampling

from the ground state probability distribution.

We will sample from π at several values of the

adiabatic parameter s1, . . . , smax. Define si := s0−iΔs,
ωi := β(1 − si)/L, Δω := βΔs/L, and let πi be the

stationary distribution (8) when the adiabatic parameter

is si. At each stage we simulate the Markov chain

(10) for sufficiently many steps to achieve a variational

distance to the stationary distribution of exp(−nΩ(1)).
These errors then add up to a negligible amount. To

choose a step size Δs satisfying the warm start condi-

tion πi+1 ≤ 2πi we’ll use a claim which is inspired by

Lemma 5.1 of [9] but is a bit simpler in the classical

case.

Lemma 4. Let E1, E2 : A → R be en-
ergy functions on a domain A and define Zi :=∑

x∈A e
−Ei(x) and pi(x) = e−Ei(x)/Zi for i = 1, 2.

If maxx |E1(x) − E2(x)| ≤ δ, then | log(Z1/Z2)| ≤ δ
and maxx | log(p1(x)/p2(x))| ≤ 2δ.
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Proof. Applying the uniform bound |E2(x)−E1(x)| ≤ δ
for all x ∈ A to the sum Z2 =

∑
x∈A e

−E1(x)

leads to e−δZ1 ≤ Z2 ≤ eδZ1, therefore

| log(Z1/Z2)| ≤ δ. Using the triangle inequal-

ity maxx | log(p1(x)/p2(x))| can be expressed as

| log(Z2/Z1)| + maxx | log(eE2(x)−E1(x))| which is

then at most 2δ. Since | log(p1(x)/p2(x))| =
| log(p2(x)/p1(x))| the other case follows similarly.

Applying Lemma 4 with the form of the stationary

distribution (8) we may take

δ =
β

L
Δsfmax + nL log

(
tanh(ωi −Δω)

tanh(ωi)

)
,

which is O (βΔsn log(n)) and so taking Δs to be

O (
(βn log(n))−1

)
fulfills the warm start condition.

Quasi-stationary mixing. Finally we will bound the

overall run time of SQA applied to the spike cost

function. First we need to show that taking c in (24)

to be a sufficiently large constant will allow the leaky

walk for the spike system sample from ΩG according to

the quasi-stationary distribution π for an expected time

of nq , for any desired constant q, before it is eventually

likely to escape into ΩB .

Inserting ρ̃ from (20) into Theorem 2 yields ρ =
O(n2). To apply Theorem 3 we next must consider

π−1
min. From (8) we have log π−1

min ≤ O(nL log(n))
because there can be L pairs of bits which disagree

in each of the n worldlines. However, according to (8)

these disagreements follow a binomial distribution with

mean β(1−s), and so we may abort the algorithm with

exponentially small probability if it ever encounters a

configuration with Ω(β log n) jumps in any worldline,

which allows us to take log π−1
min = O(nβ log(n). This

implies a mixing time of tmix = O(n3β log n) within

ΩG for the SQA spike chain with single qubit worldline

updates at each value si of the adiabatic path.

Meanwhile, from (24) we have π(ΩB) ≤
Θ(ρ̃π̃(Ωθ)) = Θ(n2−c). At each step si of the

adiabatic path, after time t ≥ tmix the leaky random

walk mixes to within a distance O(tπ(ΩB)) so by

Theorem 3 it suffices to take c = 2 + q + log(1/δ) in

order for the leaky walk to be with distance δ to the

stationary distribution π for times tmix ≤ t ≤ Θ(nq).
Finally, since there are Õ(nβ) steps of the adiabatic

path, and each worldline update takes Õ(n2β2) time

to implement, we obtain a total run time of Õ(n6β4),
which implies the Õ(n7) stated in Theorem 1. Repeat-

ing the analysis above for single-site Metropolis up-

dates, we combine the congestion (22) with log π−1
min =

Õ(nβ) and Õ(nβ) steps of the adiabatic path to arrive

bound the total run time by Õ(n17) as stated in Theorem

1.
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