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Abstract—The traditional Erdős-Rényi model of a random
network is of little use in modelling the type of complex
networks which modern researchers study. In this graph, every
pair of vertices is equally likely to be connected by an edge.
However, 21st century networks are of diverse nature and usu-
ally exhibit inhomogeneity among their nodes. This motivates
the study, for a fixed degree sequence D = (d1, ..., dn), of a
uniformly chosen simple graph G(D) on {1, ..., n} where the
vertex i has degree di. In this paper, we study the existence of
a giant component in G(D).

A heuristic argument suggests that a giant component in
G(D) will exist provided that the sum of the squares of the
degrees is larger than twice the sum of the degrees. In 1995,
Molloy and Reed essentially proved this to be the case when
the degree sequence D under consideration satisfies certain
technical conditions [Random Structures & Algorithms, 6:161–
180]. This work has attracted considerable attention, has been
extended to degree sequences under weaker conditions and has
been applied to random models of a wide range of complex
networks such as the World Wide Web or biological systems
operating at a sub-molecular level. Nevertheless, the technical
conditions on D restrict the applicability of the result to
sequences where the vertices of high degree play no important
role. This is a major problem since it is observed in many real-
world networks, such as scale-free networks, that vertices of
high degree (the so-called hubs) are present and play a crucial
role.

In this paper we characterize when a uniformly random
graph with a fixed degree sequence has a giant component.
Our main result holds for every degree sequence of length
n provided that a minor technical condition is satisfied. The
typical structure of G(D) when D does not satisfy this condition
is relatively simple and easy to understand.

Our result gives a unified criterion that implies all the known
results on the existence of a giant component in G(D), including
both the generalizations of the Molloy-Reed result and results
on more restrictive models. Moreover, it turns out that the
heuristic argument used in all the previous works on the topic,
does not extend to general degree sequences.

Keywords-random graphs; degree sequences; complex net-
works; giant component.

I. INTRODUCTION

The traditional Erdős-Rényi model of a random network

is of little use in modelling the type of complex networks

which modern researchers study. Such a graph can be con-

structed by adding edges one by one such that in every step,

every pair of non-adjacent vertices is equally likely to be

connected by the new edge. However, 21st century networks

are of diverse nature and usually exhibit inhomogeneity

among their nodes. For example, we observe empirically

in the web that certain authoritative pages will have many

more links entering them than typical ones. This motivates

the study, for a fixed degree sequence D = (d1, ..., dn), of

a uniformly chosen simple graph G(D) on [n] = {1, ..., n}
where the vertex i has degree di. In this paper, we study the

existence of a giant component in G(D).
A heuristic argument suggests that a giant component

will exist provided that the sum of the squares of the

degrees is larger than twice the sum of the degrees. In

1995, Molloy and Reed essentially proved this to be the

case provided that the degree sequence under consideration

satisfied certain technical conditions [24]. This work has

attracted considerable attention and has been applied to

random models of a wide range of complex networks such

as the World Wide Web or biological systems operating at

a sub-molecular level [1], [2], [5], [28], [29]. Furthermore,

many authors have obtained related results which formalize

the Molloy-Reed heuristic argument under different sets of

technical conditions [6], [15], [18], [21], [25].

Unfortunately, these technical conditions do not allow

the application of such results to many degree sequences

that describe real-world networks. While these conditions

are of different nature, here we exemplify their limitations

with a well-known example, scale-free networks. A network

is scale-free if its degree distribution follows a power-

law, governed by an exponent. It is well-known that many

real-world networks are scale-free and one of the main

research topic in this area is to determine the exponent of

a particular network. It has been observed that many scale-

free networks have a fat-tailed power-law degree distribution

with exponent between 2 and 3. This is the case of the

World Wide Web, where the exponent is between 2.15 and

2.2 [9], or the Movie Actor network, with exponent 2.3 [4].
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In scale-free networks with exponents between 2 and 3, the

vertices of high degree (called hubs) have a crucial role in

several of the network properties, such as in the “small-

world” phenomenon. However, one of the many technical

conditions under the previous results on the existence of a

giant component in G(D) hold, is that the vertices of high

degree do not have a large impact on the structure of the

graph. (In particular, it is required that there is no mass of

edges in vertices of non-constant degree.) Hence, often these

results cannot be directly applied to real-world networks

where hubs are present and for each particular network ad-

hoc approaches are needed (see e.g. the Aiello-Chung-Lu

model for the case of scale-free networks [1]).

Another problem is that all the previous results apply to a

sequence of degree sequences (Dn)n≥1 instead of a degree

sequence D of fixed length. This can be a major problem

when modelling complex networks. In most of the real-world

applications, researchers extract the degree sequence D of

a particular network and then aim to model the structure of

such network by considering a random network with degree

sequence D. Since the previous results are on sequences of

degree sequences, it is possible that they give no information

for the particular degree sequence D.

Finally, all the previous results on the existence of a giant

component in G(D) do not cover degree sequences where

most of the vertices have degree 2.

In this paper we characterize when G(D) has a giant

component for every degree sequence D of length n. We

only require that the sum of the degrees in the sequence

which are not 2 is at least λ(n) for some arbitrary function

λ going to infinity with n. Besides the fact that it is a

relatively minor technical condition, we also show that if

it is not satisfied, both the probability that G(D) has a

giant component and the probability that G(D) has no giant

component are bounded away from 0.

It turns out that the heuristic argument which was used

in [24] to describe the existence of a giant component in

G(D) for degree sequences satisfying some technical con-

ditions and that was generalized in the subsequent papers [6],

[15], [18], [21], [25], does not extend to general degree

sequences. Precisely, if we let S be a smallest set such

that (i) no vertex outside of S has degree bigger than a

vertex in S, and (ii) the sum of the squares of the degrees

of the vertices outside of S is at most twice the sum of

their degrees, then whether or not a giant component exists

depends on the sum of the degrees of the vertices in S, not

on the sum of the squares of the degrees of the vertices in

S as suggested by this heuristic argument

This new unified criterion on the existence of a giant

component in G(D) is valid for every sequence D and

implies all the previous results on the topic both for arbitrary

degree sequences [6], [18], [24] or for particular models [1].

In this paper we present our main results and briefly

describe the proof strategy. We refer the interested reader

to the full version of the paper [19] for complete proofs.

A. The Molloy-Reed Approach

Let us first describe the result of Molloy and Reed [24].

Throughout the paper we assume that all the di are positive,

as we can simply delete the isolated vertices from the graph

and analyse what remains. It is straightforward to transfer

our results to the case when there are vertices of degree 0.

We also restrict our attention to feasible degree sequences,

that is, those D such that the set of graphs with degree

sequence D is nonempty.

For every 1 ≤ i ≤ n, one can explore the component

containing a specific initial vertex i of a graph on [n] via

breadth-first search. Initially we have di “open” edges out

of i. Upon exposing the other endpoint j of such an open

edge, it is no longer open, but we gain dj − 1 open edges

out of j. Thus, the number of open edges has increased by

dj − 2 (note that this is negative if dj = 1).

One can generate the random graph G(D) for D =
(d1, ..., dn) and carry out this exploration at the same

time, by choosing each vertex as j with the appropriate

probability.

Intuitively speaking, the probability we pick a specific

vertex j as the other endpoint of the first exposed edge

is proportional to its degree. So, the expected increase in

the number of open edges in the first step is equal to∑
k∈[n]\{i} dk(dk−2)
∑

k∈[n]\{i} dk
. Thus, it is positive essentially if and

only if the sum of the squares of the degrees exceeds twice

the sum of the degrees.

Suppose that this expected increase remains the same

until we have exposed a linear number of vertices. It seems

intuitively clear that if the expected increase is less than

0, then the probability that initial vertex i is in a linear

order component is very small, and hence the probability

that G(D) has no linear order component is 1− o(1). If for

some positive constant ε, the expected increase is at least ε,
then there is some γ = γ(ε) > 0 such that the probability

that i is in a component with at least γn vertices exceeds γ.

In [24], Molloy and Reed proved, subject to certain tech-

nical conditions which required them to discuss sequences

of degree sequences rather than one single degree sequence,

that we essentially have that (i) if
∑n

k=1 dk(dk−2)
∑n

k=1 dk
> ε for

some ε > 0, then the probability that G(D) has a giant

component is 1 − o(1), and (ii) if
∑n

k=1 dk(dk−2)
∑n

k=1 dk
< −ε for

some ε > 0, then the probability that G(D) has no giant

component is 1 − o(1). We present their precise result and

some of its generalizations later in this introductory section.

B. Our Refinement

It turns out that, absent the imposed technical conditions,

the expected increase may change drastically during the

exploration process. Consider for example the situation in

which n = k2 for some large odd k, d1 = d2 = .. = dn−1 =
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1 and dn = 2k. Then
∑n

k=1 dk(dk−2)
∑n

k=1 dk
= 4k2−4k−(n−1)

2k+n−1 ≈ 3,

and so the Molloy-Reed approach would suggest that with

probability 1 − o(1) there will be a giant component.

However, with probability 1, G(D) is the disjoint union of

a star with 2k leaves and n−2k−1
2 components of order 2

and hence it has no giant component. The problem is that

as soon as we explore vertex n, the expected increase drops

from roughly 3 to −1, so it does not stay positive for a

significant part of the process.
Thus, we see that the Molloy-Reed criterion cannot be

extended for general degree sequences. To find a variant

which applies to arbitrary degree sequences, we need to

characterize those for which the expected increase remains

positive for a sufficiently long time.
Intuitively, since the probability that we explore a vertex

is essentially proportional to its degree, in lower bounding

the length of the period during which the expected increase

remains positive, we could assume that the exploration

process picks at each step a highest degree vertex that

has not been explored yet. Moreover, note that vertices

of degree 2 have a neutral role in the exploration process

as exposing such a vertex does not change the number of

open edges. These observations suggest that we should focus

on the following invariants of D defined by considering a

permutation π of the vertices that satisfies dπ1 ≤ ... ≤ dπn :

- jD is the smallest integer between n and j ∈ [n] such

that
j∑

i=1

dπi(dπi − 2) > 0.

- RD =
n∑

i=jD
dπi

, and

- MD =
∑
di �=2

di.

We emphasize that these invariants are determined by the

multiset of the degrees given by D and are independent from

π.
Our intuition further suggests that in the exploration

process, the expected increase in the number of open edges

will be positive until we have explored RD edges and will

then become negative. Thus, we might expect to explore a

component with about RD edges, and indeed we can show

this is the case.
This allows us to prove our main result which is that

whether G(D) has a giant component essentially depends

on whether RD is of the same order as MD or not. There is

however a caveat, this is not true if essentially all vertices

have degree 2.
For any function λ : N→ N, we say a degree sequence D

is λ-well-behaved or simply well-behaved if MD is at least

λ(n). Our main results hold for any function λ → ∞ as

n→∞.

Theorem 1. For any function δ → 0 as n→∞, for every
γ > 0, if D is a well-behaved degree sequence with RD ≤
δ(n)MD, then the probability that G(D) has a component
of order at least γn is o(1).

Theorem 2. For any positive constant ε, there is a γ > 0,
such that if D is a well-behaved degree sequence with RD ≥
εMD, then the probability that G(D) has a component of
order at least γn is 1− o(1).

As we shall see momentarily, previous results in this field

apply to sequences of degree sequences, and required that

these degree sequences approached a limit in some smooth

way. We can easily deduce results for every sequence of

degree sequences from the two theorems above, and from

our results on degree sequences which are not well-behaved,

presented in the next section.
We denote by D = (Dn)n≥1 a sequence of degree

sequences where Dn has length n. We say that D is well-
behaved if for every b, there is an nb such that for all

n > nb, we have MDn
> b; D is lower bounded if for

some ε > 0, there is an nε such that for all n > nε, we

have RDn
≥ εMDn

; and D is upper bounded if for every

ε > 0, there is an nε such that for all n > nε, we have

RDn ≤ εMDn .
The following is an immediate consequence of Theorem 1

and 2, and Theorem 6, which will be presented in the next

section.

Theorem 3. For any well-behaved lower bounded sequence
of degree sequences D, there is a γ > 0 such that the
probability that G(Dn) has a component of order at least
γn is 1− o(1).

For any well-behaved upper bounded sequence of degree
sequences D and every γ > 0, the probability that G(Dn)
has a component of order at least γn is o(1).

If a sequence of degree sequences D is either not well
behaved or neither upper bounded nor lower bounded, then
for every sufficiently small positive γ, there is a 0 < δ < 1
such that there are both arbitrarily large n for which the
probability that G(Dn) has a component of order at least γn
is at least δ, and arbitrarily large n for which the probability
that G(Dn) has a component of order at least γn is at most
1− δ.

C. The Special Role of Vertices of Degree 2
At first glance, it may be surprising that the existence of a

giant component depends on the ratio between RD and MD
rather than the ratio between RD and

∑n
i=1 di. It may also

be unclear why we have to treat differently degree sequences

where the sum of the degrees which are not 2 is bounded.
To clarify why our results are stated as they are, we now

highlight the special role of vertices of degree 2.
We let H(D) be the multigraph obtained from G(D) by

deleting all cyclic components1 and suppressing all vertices

of degree 2.2 Clearly, H(D) is uniquely determined by

1A component is cyclic if it is a cycle and non-cyclic if it is not.
2Here and throughout the paper, when we say we suppress a vertex u

of degree 2, this means we delete u and we add an edge between its
neighbours. Observe that this may create loops and multiple edges, so the
resulting object might not be a simple graph.
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G(D). Moreover, the degree sequence of H(D) is precisely

that of G(D) without the vertices of degree 2. Note that the

non-cyclic components of G(D) can be obtained from the

multigraph H(D) by subdividing some of its edges, so that

every loop is subdivided at least twice, and all but at most

one edge of every set of parallel edges are subdivided at

least once.

The number of vertices of a non-cyclic component of

G(D) equals the sum of the number of vertices of the

corresponding component of H(D) and the number of

vertices of degree 2 used in subdividing its edges. Intuitively,

the second term in this sum depends on the proportion of

the edges in the corresponding component of H(D). Subject

to the caveat mentioned above and discussed below, if the

number of vertices of degree 2 in G(D) is much larger than

the size3 of H(D), then the probability that G(D) has a giant

component is essentially the same as the probability H(D)
has a component containing a positive fraction of its edges.

The same is true, although not as immediately obvious, even

if the number of vertices of degree 2 is not this large.

Theorem 4. For every γ > 0, there exists a ρ > 0 such that
for every well-behaved degree sequence D, the probability
that G(D) has a component of order at least γn and H(D)
has no component of size at least ρMD is o(1).

Theorem 5. For every ρ > 0, there exists a γ > 0 such that
for every well-behaved degree sequence D, the probability
that G(D) has no component of order at least γn and H(D)
has a component of size at least ρMD is o(1).

As we mentioned above, if D is not well-behaved, then

the results conclusions in Theorem 1 and 2 do no longer

hold. For instance, suppose that MD = 0, that is, di = 2 for

every i ∈ [n]. Then H(D) is empty and G(D) is a uniformly

chosen disjoint union of cycles. In this case it is known that

the probability of having a giant component is bounded away

both from 0 and 1 (see e.g. [3]). Indeed, the latter statement

also holds whenever MD is at most a constant.

Theorem 6. For every b ≥ 0 and every 0 < γ < 1, there
exists an nb,γ and a 0 < δ < 1 such that if n > nb,γ and
D is a degree sequence with MD ≤ b, then the probability
that there is a component of order at least γn in G(D) lies
between δ and 1− δ.

This theorem both explains why we concentrate on well-

behaved degree sequences and sets out how degree se-

quences which are not well-behaved actually behave (badly

obviously). Combining it with Theorem 1 and 2 immediately

implies Theorem 3.

3As it is standard, we use order and size to denote the number of vertices
and the number of edges of a graph, respectively.

D. Previous Results

The study of the existence of a giant component in random

graphs with an arbitrary prescribed degree sequence4, started

with the result of Molloy and Reed [24]. Although they

define the concept of asymptotic degree sequences, we will

state all the previous results in terms of sequences of degree

sequences D = (Dn)n≥1. Using a symmetry argument,

one can translate results for sequences of degree sequences

to asymptotic degree sequences, and vice versa. For every

Dn = (d1, . . . , dn), we define ni = ni(n) = |{j : dj = i}|.
Before stating their result, we need to introduce a number

of properties of sequences of degree sequences. A sequence

of degree sequences D is

- feasible, if for every n ≥ 1, there exists at least one

simple graph on n vertices with degree sequence Dn.

- smooth, if for every i ≥ 0, there exists λi such that

limn→∞ ni

n = λi.

- sparse, if there exists 0 < λ < ∞ such that

limn→∞
∑

i≥1
ini

n = λ.

- f -bounded, for some function f of n, if ni = 0 for

every i > f(n).

In particular, observe that random graphs G(Dn) arising

from a sparse sequence of degree sequences D have a linear

number of edges, provided that n is large enough.

Given that D is smooth, we define the following parameter,

Q(D) =
∑
i≥1

i(i− 2)λi .

Note that Q(D) is very close to the notion of initial expected

increase described in Section I-A.

A sequence of degree sequences D satisfies the MR-
conditions if

(a.1) it is feasible, smooth and sparse,

(a.2) it is n1/4−ε-bounded, for some ε > 0,

(a.3) for every i ≥ 1,
i(i−2)ni

n converges uniformly to i(i−
2)λi, and

(a.4) limn→∞
∑

i≥1 i(i − 2)ni

n exists and converges uni-

formly to
∑

i≥1 i(i− 2)λi.

For a precise statement of the uniform convergence on

conditions (a.3)–(a.4), we refer the reader to [24].

Now we can precisely state the result of Molloy and

Reed [24].

Theorem 7 (Molloy and Reed [24]). Let D = (Dn)n≥1

be a sequence of degree sequences that satisfies the MR-
conditions. Let G be a graph with n vertices chosen
uniformly at random among all such graphs with degree
sequence Dn. Then,

1) if Q(D) > 0, then there exists a constant c1 such that
the probability that G has a component of order at
least c1n is 1− o(1).

4Random graphs with special degree sequences had been studied earlier
(see, e.g. [22], [34]).
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2) if Q(D) < 0 and the sequence is n1/8−ε-bounded for
some ε > 0, then for every constant c2, the probability
that G has no component of order at least c2n is 1−
o(1).

Theorem 7 has been generalized to other sequences of de-

gree sequences, which in particular include the case Q(D) =
0. Theorem 3 implies all the criteria for the existence of

a giant component in G(Dn) introduced below (see [19]).

However, while some of these results give a more precise

description of such giant component, our results only deal

with the existence of it.

A sequence of degree sequences D satisfies the JL-
conditions if

(b.1) is feasible, smooth, and sparse,

(b.2)
∑

i≥1 i
2ni = O(n), and

(b.3) λ1 > 0.

Observe that if D satisfies the JL-conditions, then, by (b.2),

it is also O(n1/2)-bounded. Moreover, they also imply that

λ =
∑

i≥1 iλi. Janson and Luczak in [18], showed that one

can prove a variant of Theorem 7 obtained by replacing the

MR-conditions by the JL-conditions.5 They also note that

if λ2 = 1, then the criterion based on Q(D) does not apply.

Our results completely describe the case λ2 = 1.

A sequence of degree sequence D satisfies the BR-
conditions if

(c.1) it is feasible, smooth and sparse, and

(c.2)
∑

i≥3 λi > 0, and

(c.3) λ =
∑

i≥1 iλi.

Bollobás and Riordan in [6] proved a version of The-

orem 7 for sequences of degree sequences obtained by

replacing the MR-conditions by the BR-conditions.6

Theorem 7 and its extensions provide easy-to-use criteria

for the existence of a giant component and have been

widely used by many researchers in the area of complex

networks [2], [5], [28]. However, the technical conditions

on D to which they can be applied, restrict its applicability,

seem to be artificial and are only required due to the

nature of their proof. As we observed in the introduction,

many real-world networks do not satisfy them. For this

reason, researchers have developed both ad-hoc approaches

for proving results for specific types of degree sequences and

variants of the Molloy-Reed result which require different

sets of technical conditions to be satisfied.

An early example of an ad-hoc approach is the work of

Aiello, Chung and Lu on Power-Law Random Graphs [1].

They introduce a model depending on two parameters

α, β > 0 that define a degree sequence satisfying ni =
�eαi−β	. We should think about these parameters as follows:

5Their result gives convergence in probability of the proportion of
vertices in the giant component and they also consider the case Q(D) = 0.

6They also proved some results on the distribution of the order of the
largest component and also consider the case Q(D)) = 0.

α is typically large and determines the order of the graph

(we always have α = Θ(log n)), and β is a fixed constant

that determines the power-decay of the degree distribution.

Among other results, the authors prove that there exists β0,

such that if β > β0 the probability there is a component of

linear order is o(1) and if β < β0 the probability there is

a component of linear order is 1− o(1). Here, the previous

conditions are only satisfied for certain values of β and the

authors need to do additional work to determine when a

giant component exists for other values of β. Theorem 3 also

implies their results on the existence of a giant component

in the model of Power-Law Random Graphs (see [19]).

E. Future Directions

Beginning with the early results of Molloy and Reed,

the study of the giant component in random graphs with

prescribed degree sequence has attracted a lot of attention.

Directions of study include determining the asymptotic

order of the largest component in the subcritical regime or

estimating the order of the second largest component in both

regimes [6], [15], [18], [20], [21], [25], [31]. It would be

interesting to extend these known results to arbitrary degree

sequences.

For example, Theorem 1 and 2 precisely describe the

appearance of a giant component when the degree sequence

is well-behaved. While bounds on the constant γ in terms

of δ and ε respectively, may follow from their respective

proofs, these bounds are probably not of the right order of

magnitude. Molloy and Reed in [25], precisely determined

this dependence for sequences of degree sequences that

satisfy the MR-conditions. Precise constants are also given

in [6], [13], [18]. We wonder whether it is possible to

determine the precise dependence on the parameters for

arbitrary degree sequences. It is likely that our methods can

be used to find this dependence and to determine the order

of the second largest component when a giant one exists.

Another direction is the study of site and bond percolation

in G(D) for arbitrary degree sequences D. This problem has

been already approached for sequences of degree sequences

that satisfy certain conditions similar to the ones presented

in Section I-D [12], [16], [31]. In particular, our approach

might be useful to answer a question of Nachmias and Peres

on the percolation threshold for random d-regular graphs

when d→∞ as n→∞ [27].

Motivated by some applications in peer-to-peer net-

works (see, e.g. [7]), one can study efficient sampling of

the random graph G(D). Cooper et al. [8] showed that the

switching chain rapidly mixes for d-regular graphs for every

3 ≤ d ≤ n− 1. Greenhill [14] recently extended this result

to G(D), but, due to some technical reasons, this result only

holds if the maximum degree in D is small enough.

Many other basic properties of G(D), such as determining

its diameter [11], [32], [33] or the existence of giant cores

[10], [17], have already been studied for certain sequences
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of degree sequences. We believe that our method can help

to extend these results to arbitrary degree sequences.

II. A PROOF SKETCH

A. The Approach

The proofs of Theorem 4, 5 and 6 are simpler than the

remaining proofs (see [19]). By applying these theorems, we

see that in order to prove Theorem 1 and 2 it is enough to

prove the following results:

Theorem 8. For any function δ → 0 as n→∞, for every
γ > 0, if D is a well-behaved degree sequence with RD ≤
δ(n)MD, then the probability that H(D) has a component
of size at least γMD is o(1).

Theorem 9. For any positive constant ε, there is a γ > 0,
such that if D is a well-behaved degree sequence with RD ≥
εMD, then the probability that H(D) has a component of
size at least γMD is 1− o(1).

The proofs of both theorems analyse an exploration

process similar to the one discussed in Section I-A by

combining probabilistic tools with a combinatorial switching

argument. However, we will focus on the edges of H(D)
rather than the ones of G(D). Again, we will need to

bound the expected increase of the number of open edges

throughout the process and prove that the (random) increase

is highly concentrated around its expected value. In order

to do so, we will need to bound the probability that the

next vertex of H(D) explored in the process, is a specific

vertex w. One of the key applications of our combinatorial

switching technique will be to estimate this probability and

show that it is approximately proportional to the degree of

w, as in Section I-A.

Crucial to this approach is that the degrees of the vertices

explored throughout the process are not too high. Standard

arguments for proving concentration of a random variable

require that the change at each step is relatively small. This

translates precisely to an upper bound on the maximum

degree of the explored graph. Furthermore, without such

a bound on the maximum degree, we cannot obtain good

bounds on the probability that a certain vertex w is the next

vertex explored in the process. So, a second key ingredient

in our proofs will be a preprocessing step which allows us

to handle the vertices of high degree, ensuring that we will

not encounter them in our exploration process.

B. The Exploration Process

We consider a variant of the exploration process where

we start our exploration at a non-empty set S0 of vertices

of H(D), rather than at just one vertex.

Thus, we see that the exploration takes |V (H(D)) \ S0|
steps and produces sets

S0 ⊂ S1 ⊂ S2 ⊂ . . . ⊂ S|V (H(D))\S0| ,

where wt = St \ St−1 is either a neighbour of a vertex vt
of St−1 or is a randomly chosen vertex in V (H(D)) \St−1

if there are no edges between St−1 and V (H(D)) \ St−1.
To specify our exploration process precisely, we need to

describe how we choose vt and wt. To aid in this process,

for each vertex v ∈ V (H(D)) we will choose a uniformly

random permutation of its adjacency list in G(D). For this

purpose, an input of our exploration process consists of a

graph G equipped with an ordering of its adjacency lists for

all vertices v ∈ V (H(D)). Applying the method of deferred

decisions (cf. Section 2.4 in [26]), we can generate these

random linear orders as we go along with our process. We

note that this yields, in a natural manner, an ordering of

the non-loop edges of H(D) which have the vertex v as an

endpoint. If there are no edges between St−1 and V (H(D))\
St−1, we choose each vertex of V (H(D)) \ St−1 to be wt

with probability proportional to its degree. Otherwise we

choose the smallest vertex vt of St−1 (with respect to the

natural order in [n]), which has a neighbour in V (H(D)) \
St−1. We expose the edge of H(D) from vt to V (H(D)) \
St−1 which appears first in our random ordering and let wt

be its other endpoint. Furthermore, we expose all the edges

of H(D) from wt to St−1\{vt} as well as the loops incident

to wt. Finally, we expose the paths of G(D) corresponding

to the edges of H(D) which we have just exposed and the

position in the random permutation of the adjacency list of

wt in G(D) of the edges we have just exposed.
Thus, after t iterations of our exploration process we have

exposed

• the subgraph of H(D) induced by St,

• the paths of G(D) corresponding to the exposed edges

of H(D), and

• where each initial and final edge of such a path appears

in the random permutation of the adjacency list of its

endpoints which are also endpoints of the path.

We refer to this set of information as the configuration Ct
at time t. A configuration can also be understood as a set of

inputs. During our analysis of the exploration process, we

will consider all the probabilities of events conditional on

the current configuration.
An important parameter for our exploration process is the

number Xt of edges of H(D) between St and V (H(D))\St.

We note that if Xt = 0, then St is the union of some

components of H(D) containing all of S0. We note that if

|S0| = 1, then every Xt is a lower bound on the maximum

size of a component of H(D) (not necessarily the one

containing the vertex in S0).
We prove Theorem 8 by showing that under its hypotheses

for every vertex v of H(D), there is a set S0 = S0(v)
containing v such that, given we start our exploration process

with S0, the probability that there is a t with Xt = 0 for

which the number of edges within St is at most γMD, is

1 − o(M−1
D ). Since H(D) has at most 2MD vertices, it

follows that the probability that H(D) has a component of
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size at least γMD is o(1). The set S0 \ {v} is a set of

highest degree vertices the sum of whose degrees exceeds

RD. By the definition of jD and RD, this implies that, unless

X0 = 0, the expectation of X1 −X0 is negative. We show

that, as the process continues, the expectation of Xt−Xt−1

becomes even smaller. We can prove that the actual change

of Xt is highly concentrated around its expectation and

hence complete the proof, because S0 contains all the high

degree vertices and so in the analysis of our exploration

process we only have to deal with low degree vertices.

We prove (a slight strengthening of) Theorem 9 for graphs

without large degree vertices by showing that under its

hypotheses and setting S0 to be a random vertex v chosen

with probability proportional to its degree, with probability

1−o(1), there exists some t such that Xt ≥ γMD (and hence

there is a component of H(D) of size at least γMD). Key

to doing so is that the expected increase of Xt is a positive

fraction of the increase in the sum of the degrees of the

vertices in St until this sum approaches RD. To handle the

high degree vertices, we expose the edges whose endpoints

are in components containing a high degree vertex. If this

number of edges is at least a constant fraction of MD, then

we can show that in fact all the high degree vertices lie in one

component, which therefore contains a constant fraction of

the edges of H(D). Otherwise, we show that the conditions

of Theorem 9 (slightly relaxed) hold in the remainder of

the graph, which has no high degree vertices. We then can

find the desired component of H(D) in the remainder of the

graph, concluding the proof of Theorem 9.

III. SWITCHING

As mentioned above, the key to extending our branching

analysis to arbitrary well-behaved degree sequences is a

combinatorial switching argument. In this section, we de-

scribe the type of switchings we consider and demonstrate

the power of the technique.

Let H be a multigraph. We say a multigraph H ′ is

obtained by switching from H on a pair of orientations of

distinct edges uv and xy, if H ′ can be obtained from H
by deleting uv and xy, and adding the edges ux and vy.

Observe that switching ux and vy in H ′ yields H . Observe

further that if H is simple and we want to ensure that H ′ is

simple, then we must insist that u �= x, v �= y and, unless

u = y or v = x, the edges ux and vy are not edges of H .

Switching was introduced in the late 19th century by

Petersen [30]. Much later, McKay [23] reintroduced the

method to count graphs with prescribed degree sequences

and, together with Wormald, used it in the study of random

regular graphs. We refer the interested reader to the survey of

Wormald on random regular graphs for a short introduction

to the method [35].

In this paper we will consider standard switchings as well

as a particular extension of them. This extension concerns

pairs consisting of a simple graph G and the multigraph

HG obtained from G by deleting its cyclic components and

suppressing the vertices of degree 2 in the non-cyclic ones.

For certain switchings of HG which yield H ′, our extension

constructs a simple graph G′ from G such that HG′ = H ′.
We now describe for which switchings in HG we can obtain

such an H ′ and how we do so.
Our extension considers directed walks (either a path or

a cycle) of G which correspond to (oriented) edges in HG,

(note that an edge of HG corresponds to exactly two such

directed walks, even if it is a loop and hence has only

one orientation). We can switch on an ordered pair of such

directed walks in G, corresponding to an ordered pair of

orientated distinct edges e1 = uv and e2 = xy of HG, such

that none of the following hold: (i)

1) there is an edge of G between u and x which forms

neither e1 nor e2, and the walk corresponding to e1
has one edge,

2) there is an edge of G between v and y which forms

neither e1 nor e2 and the walk corresponding to e2
has one edge,

3) u = x and the directed walk corresponding to e1 has

at most two edges, or

4) v = y and the directed walk corresponding to e2 has

at most two edges.

To do so, let u = w0, w1, . . . , wr = v be the directed

walk corresponding to e1 and let x = z0, z1, . . . , zs = y be

the directed walk corresponding to e2. We delete the edges

wr−1v and xz1 and add the edges wr−1x and vz1.
We note that (i)-(iv) ensure that we obtain a simple graph

G′. Furthermore, we have that HG′ is obtained from HG

by switching on uv and xy. We remark further that if we

reverse both the ordering of the edges and the orientation

of both edges, we always obtain the same graph G′; that is,

it is equivalent to switch the ordered pair (uv, xy) or the

ordered pair (yx, vu). Therefore, given two walks between

u and v and between x and y (either paths or cycles) of G,

we always consider the four following possible switches:

(uv, xy), (uv, yx), (vu, xy) and (vu, yx). We note that

some of these choices might give rise to the same graph

G′. However, we consider each of them as a valid switch

since it will be simpler to count them considering these

multiplicities.
Given any two disjoint sets of (multi)graphs A and B,

we can build an auxiliary bipartite graph with vertex set

A∪ B where we add an edge between H ∈ A and H ′ ∈ B
for every (extended) switching that transforms H into H ′.
This definition is symmetric. We can also consider subgraphs

of this auxiliary graph where we only add an edge if the

switching satisfies some special property. Given a lower

bound dA on the degrees in A and an upper bound dB on

the degrees in B, we obtain immediately that |A| ≤ dB
dA
|B|.

We frequently use this fact without explicitly referring to it.
To illustrate our method, we show here that if MD is large

with respect to the number of vertices, then there exists a
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component containing most of the vertices.

Lemma 10. If MD ≥ n log logn, then the probability that
G(D) has a component of order (1− o(1))n is 1− o(1).

In proving the lemma, we will need the following result

on 2-edge cuts of graphs (see [19] for the proof).

Lemma 11. The number of pairs of orientations of edges
uv, xy in a graph G of order n, such that by switching on
uv and xy we obtain a graph with one more component
than G, is at most 8n2.

Proof of Lemma 10: We can assume n is large

enough to satisfy an inequality stated below since the

lemma makes a statement about asymptotic behaviour. Let

K = �(1 − 1√
log logn

)n	. For every k ≥ 1, let Fk be

the event that G(D) has exactly k components and let

F ′k be the event that G is in Fk and that all components

of G have order at most K. Denote by F ′ = ∪k≥2F ′k.

Our goal is to show that P[F ′] = o(1). If so, with high

probability G has a component of order larger than K.

Observe that if one proves for some f(n) which is o(1)
that P[F ′k+1] ≤ f(n)P[Fk], for every k ≥ 1, then P[F ′] =∑

k≥1 P[F ′k+1] ≤ f(n)
(∑

k≥1 P[Fk]
)
= f(n) = o(1). We

adopt this approach with f(n) = 16√
log logn

.

Fix k ≥ 1. Now suppose that there exist s+ and s− such

that for every G in Fk, there are at most s+ switchings that

transform G into a graph in F ′k+1, and for every graph G
in F ′k+1, there are at least s− switchings that transform G
into a graph in Fk. Then,

P[F ′k+1]s
− ≤ P[Fk]s

+ .

Let us now obtain some values for s+ and s−. On the one

hand, applying Lemma 11, we can choose

s+ = 8n2 .

On the other hand, if G is in F ′k+1, in order to merge two

components it is enough to perform a switching between

an oriented non-cut edge (at least MD − 2n ≥ (log logn−
2)n choices) and any other oriented edge not in the same

component as the first one (since G has minimum degree

at least 1 and the largest component has order at most K,

there are at least n−K choices). Since n is large, we can

choose

s− = (log log n− 2)n · (n−K) ≥
√
log logn

2
n2 .

From the previous bounds, we obtain the desired result

P[F ′k+1] ≤
s+

s−
· P[Fk] ≤ 16√

log log n
· P[Fk] .
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